
Received: 22 December 2022 Revised: 3 July 2023 Accepted: 5 July 2023

DOI: 10.1002/cpe.7870

R E S E A R C H A R T I C L E

A portable C++ library for memory and compute abstraction
on multi-core CPUs and GPUs

Pietro Incardona1,2,3,4 Aryaman Gupta1,2,3 Serhii Yaskovets1,2,3 Ivo F. Sbalzarini1,2,3

1Faculty of Computer Science, Technische

Universität Dresden, Dresden, Germany

2Max Planck Institute of Molecular Cell

Biology and Genetics, Dresden, Germany

3Center for Systems Biology Dresden,

Dresden, Germany

4Center for Scalable Data Analytics and

Artificial Intelligence ScaDS.AI, Leipzig,

Germany

Correspondence

Ivo F. Sbalzarini, CSBD, Pfotenhauerstr. 108,

D-01307 Dresden, Germany.

Email: sbalzarini@mpi-cbg.de

Present address

Ivo F. Sbalzarini, IGSB, University Hospital

Bonn, Bonn, Germany

Funding information

Bundesministerium für Bildung und Forschung,

Grant/Award Numbers: 01/S18026A-F,

031L0160

Abstract

We present a C++ library for transparent memory and compute abstraction across

CPU and GPU architectures. Our library combines generic data structures like vec-

tors, multi-dimensional arrays, maps, graphs, and sparse grids with basic generic

algorithms like arbitrary-dimensional convolutions, copying, merging, sorting, pre-

fix sum, reductions, neighbor search, and filtering. The memory layout of the data

structures is adapted at compile time using C++ tuples with optional memory

double-mapping between host and device and the capability of using memory man-

aged by external libraries with no data copying. We combine this transparent memory

layout with generic thread-parallel algorithms under two alternative common inter-

faces: a CUDA-like kernel interface and a lambda-function interface. We quantify

the memory and compute performance and portability of our implementation using

micro-benchmarks, showing that the abstractions introduce negligible performance

overhead, and we compare performance against the current state of the art in a

real-world scientific application from computational fluid mechanics.

K E Y W O R D S

C++ tuples, generic algorithms, GPU, memory layout, multi-core, performance portability

1 INTRODUCTION

Performance portability and maintainability of thread-parallel codes are rapidly gaining importance as hardware is becoming more heterogeneous.

With Graphics Processing Units (GPU) now commonplace, new accelerator architectures from Nvidia, AMD, and Intel are about to enter the mar-

ket. Additionally, the landscape of multi-core Central Processing Units (CPU) is diversifying with x86_64/amd64 increasingly joined by ARM and

POWER. Porting code to new hardware costs valuable developer time due to the large semantic gap between different hardware-specific program-

ming models. There is thus an urgent need for code that runs across a variety of hardware platforms with minimal or no changes, while still achieving

state-of-the-art performance. Going forward, this will be crucial for maintainability of software.

Typically, portability and maintainability are achieved in software engineering by abstraction.1 This has been successfully demonstrated also for

performance portability, for example by libraries like Kokkos,2,3 Alpaka,4 and RAJA,5 as well as Intel’s OneAPI built on top of SYCL.6 These libraries

provide abstractions to execute code across hardware architectures. While providing a good variety of data structures as containers, these libraries

are, however, limited in having containers that fit the requirements of a particular hardware, in particular if the object is a not a primitive type

(memory layout restructuring). Libraries like LLAMA,7 used in Alpaka,4 therefore provide more complex memory layout restructuring across hard-

ware platforms, but are in turn limited to multi-dimensional arrays as the only container type they support. The data structures created by such

libraries also typically use a single memory type, for example, they are stored either on the CPU or on the GPU. Moreover, most of the existing

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Concurrency and Computation: Practice and Experience published by John Wiley & Sons Ltd.

Concurrency Computat Pract Exper. 2023;e7870. wileyonlinelibrary.com/journal/cpe 1 of 15
https://doi.org/10.1002/cpe.7870

http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/CPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.7870&domain=pdf&date_stamp=2023-07-24

2 of 15 INCARDONA ET AL.

libraries currently lack the capability of combining data structures with tuples of types, where the tuples are parsed to generate a specific mem-

ory layout for the container (i.e., for tuple-based layout switching). Additionally all of them lack support for sparse data structures or the possibility

to automatically serialize/deserialize arbitrarily nested levels of containers. These limitations currently prevent their use in applications involving

complex, high-dimensional, or sparse data, as is increasingly the case in computer simulations, data science, and machine learning.

Here, we address this gap by providing an open-source memory- and compute-abstraction library that supports arbitrarily nested and sparse

tuple data structures mapped to different memory layouts, as well as commonly used basic algorithms tuned for performance on a variety of

hardware targets. Our library is implemented using C++14 tuples (see Section 2) for compile-time code generation of generic scalar, vector, and

multi-dimensional tensor arrays, in addition to more complex data structures like compressed-sparse-row graphs and arbitrary-dimensional sparse

block grids.7 Our library uses double-mapping to support data structures that simultaneously exist on both device and host, enabling user codes to,

for example, have CPU and GPU sections share an abstract data structure simultaneously mapped to both memories. Along with the abstract data

structures, we provide optimized generic algorithms, for example, for arbitrary-dimensional convolutions, neighborhood search, copying, merging,

sorting, prefix sum, reduction, and filtering (Section 3).

The presented library, openfpm_data, is available as part of the OpenFPM scalable computing project.9 It provides the shared-memory layer

of OpenFPM, but can also be used as a stand-alone library. It provides two interfaces for user-implemented algorithms over abstract data structures:

CUDA-like compute kernels and lambda functions. Since openfpm_data is able to use any provided external memory to construct compile-time

data structures, it seamlessly interfaces with other libraries (Section 4) that provide algorithms or shape memory, like Kokkos2,3 or LLAMA.7 As such,

we intend openfpm_data to integrate between existing solutions, rather than to replace them, supplementing them with functionality like sparse

grids, graphs, and generic neighborhood search.

We show in micro-benchmarks and in a real-world application that the flexibility and portability afforded by openfpm_data does not impact

performance (Section 5). Indeed, we find that combining memory layout restructuring of complex data structures with generic algorithms under

the same interface can benefit the performance optimizations of modern C++ compilers on multiple CPU and GPU architectures. We conclude the

paper in Section 6.

2 FROM C++ TUPLES TO COMPILE-TIME DATA STRUCTURES

We construct memory-layout reconfigurable data structures with a common abstract programming interface by exploiting two features of the C++
programming language: The first is the existence of three types of brackets —<>,(), and[]. We use them to cleanly separate the semantics of data

structures. Angle braces are used to specify which property of a tuple/composite data structure one wants to access. Round parentheses are used

to specify an element of a discrete set. Square brackets are used to access individual components of a vector or array. This three-brackets access

semantic is common across all openfpm_data data structures and independent of the physical memory layout used.

The second C++ feature we use are tuples (and, consequently, variadic templates). We use the tuple data structure provided by the Boost

library* to define properties or elements of an openfpm_data data structure. Using tuples instead of structs enables content parsing at compile

time using template meta-programming10,11 to define the implementation of a data structure. Template meta-programming uses the C++ tem-

plate pre-processor to implement code-generation logic for the compiler in so-called meta-algorithms.11 We use meta-algorithms to determine the

memory address of each tuple element of a container (i.e., the memory mapping) at compile time, enabling memory layout restructuring. We then

construct an object that stores the information about a container with the specified layout and injects the appropriate data-access methods with

layout-specific code required to overload the three parenthesis operators for memory mapping.

2.1 Data structures and memory layouts

The data structures and memory layouts available in openfpm_data are summarized in Figure 1. The UML diagram on the left shows the compo-

sition of the available containers, starting from the base class “multi-dimensional array”. A vector is a one-dimensional array, a Compressed Sparse

Row (CSR) graph is stored in an encapsulated vector of vertices and edges, a map is a sorted vector, and a sparse grid is an n-dimensional map.8 All

sub-classes inherit the layout reconfigurability of the base class as defined by the four template parameters (distinguished by different colors) shown

in the right box. Every container in the hierarchy can override every layout parameter, leading to a combinatorial diversity of possible implementa-

tions. At the time of writing, there are two different mappings for the <> operator (red in Figure 1) and five that control the linearization for the ()

operator (violet, two examples shown). Since the component access operator [] is uniquely defined, this makes a total of 10 memory mappings.

The best layout for a given data structure depends on both the hardware backend and the algorithm to be used on that data structure. By default,

openfpm_data selects an Array-of-Struct (AoS) layout for data structures on the CPU, while for GPU data structures the default is Struct-of-Arrays

(SoA) as they generally improve memory coalescence. The default can be overridden and fine-tuned by the user passing any combination of template

parameters to select the implementations of the <> and () operators. This can be used to account for additional knowledge about the algorithm or

the structure of the input data.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

INCARDONA ET AL. 3 of 15

F I G U R E 1 Summary of the openfpm_data library: The UML diagram on the left lists the implemented containers and their composition,
starting from multi-dimensional arrays, with template parameters as listed in the right box. The first template parameter (green) is the tuple
defining the data type of the container. The memory layout is defined in the second parameter (red) for the<> bracket with two current

implementations. The linearization of multi-dimensional indices () is defined by the third template parameter (violet), where two of the currently
available five implementations are shown exemplarily. The fourth template argument (yellow) defines the type of memory to be allocated: GPU
device (Nvidia or AMD), heap memory, or external memory.

F I G U R E 2 Example to illustrate the classes involved in accessing an element of a Struct-of-Arrays (SoA) container in GPU memory with
standard C++ striding linearization for the () operator. The figure illustrates how the method grid.get<stress>(element)[x][y] is
implemented across classes using the three bracket types of C++. Colors of arrows and parameters match the parenthesis and in-parenthesis

parameter colors. In the example of the figure, the component [x][y] (two-dimensional tensor index) of the element (element) of a named
property <stress> is accessed. This is how one would access the components of a stress tensor field in a fluid mechanics simulation. The
operator () is overloaded by grid_sm (green arrow), which converts the multi-index to an integer (orange) using standard C++ striding. This
integer is passed to multi_array_ref_openfpm, which overloads the [] operator. The class memory_traits_inte implements the
interleaved memory layout for SoA with memory allocated on the GPU in the CudaMemory object, which is in turn used to store the grid object.

Figure 2 illustrates by example the mechanism used for resolving memory addresses so as to render data access independent from the memory

mapping (abstract layout switching). In the example of the figure, the object memory_traits_inte implements the meta-algorithm to transform

a tuple into a multi-dimensional container object with interleaved (i.e., Struct of Arrays) memory layout, and it contains the code for the parentheses

functions. The figure also shows how the parentheses are used to calculate a memory address once the property in <>, the element in (), and the

components in [] have been specified. In the figure, this is shown for the example of a get method on a multi-dimensional array named grid to

access tensor component [x, y] of a certain element of a container called stress (e.g., the stress tensor field of a fluid mechanics simulation). All

layout-specific code is encapsulated in the objects that overload the parenthesis operators, as indicated by the colors.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 15 INCARDONA ET AL.

2.2 Double-mapped data structures

We distinguish single-map data structures, which are mapped to a memory layout on one device, and double-map data structures, which are simul-

taneously mapped (possibly using different layouts) to two physically separate memories. Thus, all openfpm_data data structures can use host

memory, device memory, or both simultaneously. Double-mapped data structures can simplify code where some sections run, for example, on a CPU

and others on a GPU. A single double-mapped data structure then replaces two separate single-mapped data structures for the host and the device.

Multi-socket devices are supported using a kernel that copies the data from the host to the devices. This guarantees that the memory pages allocated

by any given socket will be used by that same socket in all subsequent kernels, reducing NUMA accesses across sockets.

However,openfpm_data does not provide any memory consistency model. This means thatopenfpm_data does not attempt any automatic

or implicit communication or transfer of data. Data transfer between the host and device memory of a double-mapped data structure needs to be

explicitly triggered by the user program when needed (synchronization of a double-mapped data structure). Functions to conveniently move data

from host to device, and vice versa, are provided. If the two maps of a double-mapped data structure use different memory layouts, these functions

also automatically and transparently convert the data from one layout to the other.

3 GENERIC ALGORITHMS FOR PERFORMANCE PORTABILITY

We complement the hardware-independent data structures and memory layout capabilities of openfpm_datawith generic algorithms optimized

for massively parallel architectures. This includes commonly used primitives of parallel computing12,13 as listed in Table 1. All of these are translated

to optimized hardware-specific implementations at compile time using theopenfpm_datahardware backends. Any program that can be written as

a combination of parallel kernels with these primitives becomes performance portable and scalable. This set of “stock” algorithms can be extended

by user-implemented algorithms.

3.1 User-implemented algorithms

We expose two different interfaces for user-implemented algorithms: a CUDA-like kernel interface and a lambda function interface. Like in CUDA,

openfpm_data kernels are labeled with the attribute __global__ and device functions are labeled with the attribute __device__. Also like in

CUDA, computation is divided into a grid of blocks, where each block contains a user-defined number of threads. Within a kernel, openfpm_data

provides the local variablesblockIdx,blockDim,threadIdx, andgridDim that contain the thread block index, the block dimension, the thread

index within the block, and the number of blocks in the grid. Static shared memory is marked with __shared__.

To illustrate the similarity of the openfpm_data kernel programming interface with CUDA, and to provide an example of how user-defined

algorithms can be implemented, List 1 shows the first part (defining the shared memory and loading the fields) of the miniBUDE benchmark14 imple-

mented as an openfpm_data kernel that can run on both CPUs and GPUs, along with the code required to launch the kernel using the CUDA-like

interface of openfpm_data (Lines 20–24).

TA B L E 1 Intrinsic generic algorithms provided by openfpm_data at the time of writing.

Atomic add

Prefix sum

In-warp exclusive prefix sum (blockScan)

Segmented reduce

In-warp reduce

Adding and removing elements from maps

Data structure copying and merging

Neighbor search using cell-lists

Sorting

Multi-dimensional stencils operations

Multi-dimensional convolutions

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

INCARDONA ET AL. 5 of 15

1 / / / / / / CUDA−LIKE KERNEL INTERFACE

2

3 t e m p l a t e<typename vector_atom , . . . >

4 _ _ g l o b a l _ _ v o i d f a s t e n _ m a i n (. . .

5 c o n s t vector_atom p r o t e i n _ m o l e c u l e ,

6 c o n s t vector_atom l i g a n d _ m o l e c u l e , . . .) {

7 / / Compute f i r s t i n d e x

8 i n t i x = b l o c k I d x . x∗blockDim . x∗N_TD_PER_THR + t h r e a d I d x . x ;

9 i n t t i d = t h r e a d I d x . x ;

10 i x = i x < numTransforms ? i x : numTransforms − N_TD_PER_THR

11

12 # i f d e f USE_SHARED

13 _ _ s h a r e d _ _ FFParams f o r c e f i e l d [N_ATOM_TYPES] ;

14 i f (t i d < num_atom_types) {

15 f o r c e f i e l d [t i d] . hbtype = . . . ; f o r c e f i e l d [t i d] . r a d i u s = . . . ;

16 }

17 # e n d i f

18 . . .

19 }

20

21 CUDA_LAUNCH_DIM3 (f a s t e n _ m a i n , g l o b a l , l o c a l ,

22 . . .

23 d _ p r o t e i n . t o K e r n e l () ,

24 d _ l i g a n d . t o K e r n e l () ,

25 . . .) ;

Listing 1: Example of an openfpm_data compute kernel able to run on both GPU and CPU. The listing shows the first part of the miniBUDE

benchmark 13 and the code to launch the kernel using the CUDA-like interface, with the backend-specific kernel launch syntax abstracted by

the macro CUDA_LAUNCH_DIM3.

1 / / / / / / LAMBDA FUNCTION INTERFACE

2

3 auto lamb = [. . . d _ p r o t e i n . t o K e r n e l () , d _ l i g a n d . t o K e r n e l () , . . .] _ _ d e v i c e _ _ \

4 (dim3 & b l o c k I d x , dim3 & t h r e a d I d x)

5 {

6 . . .

7 } ;

8

9 CUDA_LAUNCH_LAMBDA(i t e , lamb) ;

Listing 2: Example of how to launch the kernel from List 1 on using the lambda interface of openfpm_data.

For lambda-based computation, openfpm_data supports directly launching a lambda function similar to libraries like Kokkos,2,3 RAJA,5 and

SYCL.6 The blockIdx and threadIdx constants are passed to the function as arguments, as illustrated in List 2). This implies that TLS for the

OpenMP backend is not required, because blockIdx and threadIdx are local function arguments rather than global variables.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 15 INCARDONA ET AL.

3.2 Hardware backends

In order foropenfpm_datakernels to run on different hardware,openfpm_devicesprovide hardware-native implementations of every algorith-

mic primitive from Table 1. These hardware-specific implementations can be selected at compile time without changes to the user code. All changes

are encapsulated in C++ objects that determine the specific implementation of an algorithm for a given hardware backend (switchable backends).

At the time of writing, the following backends are available in openfpm_data: CUDA (Nvidia GPU), HIP (AMD GPU), SEQUENTIAL (CPU), and

OpenMP (CPU). The backend is chosen by the user at compile time.

For the CUDA backend,openfpm_datauses the optimized algorithm implementations from the header-only C++CUDA librarymoderngpu15

and from the Nvidia header library CUB. RAJA also uses CUB as its backend for CUDA, while Kokkos has its own implementations. Themoderngpu

library provides traditional bulk synchronous parallel (BSP) general-purpose functions in addition to templated pattern functions. These kernel prim-

itives support argument passing with lambda capture or using variadic arguments with automatic restrict tagging of pointers. The most important

algorithmic primitives provided by moderngpu are listed in Table 2.

For the HIP backend, the openfpm_data algorithms directly wrap the corresponding implementations from AMD’s hipCUB API and

RadeonOpenCompute (ROCm).

The SEQUENTIAL backend executes each block sequentially on the CPU. Then, __global__ and __device__ map at preprocessor level

to an empty string and an inline, respectively, and blockIdx, blockDim, threadIdx, and gridDim are global variables. The global vari-

ables blockDim and gridDim are recomputed every time the kernel launches before looping over the blocks. The variables blockIdx and

threadIdx are set in each iteration of the loop. __syncthreads() is implemented with lightweight threads (number of threads = size of

the thread block). Each thread has 8 KB of stack memory by default, adjustable via a compile-time parameter, and supports fast context switch-

ing. Every time __syncthreads() is encountered, execution is stopped and a fast context switch is performed, moving to the next lightweight

thread. While this leads to sub-optimal performance, it provides a direct mapping for user-defined kernels where no backend-native implemen-

tation is available to at least run (e.g., for debugging). When reaching the end of a block, the first lightweight thread in the block is resumed in

a cyclic way. The threads are created internally in the SEQUENTIAL backend, while fast context switching is performed using the Boost library’s

boost::context. Because lightweight threads are not concurrent, atomicAdd reduces to a regular addition operation. A block scan is imple-

mented as a__syncthreads() followed by the calculation of the exclusive prefix sum for thread zero in the block and a final__syncthreads().

The use of lightweight threads in the SEQUENTIAL backend is necessary to support the thread-block programming model. Unnecessarily using

this model, however, impedes performance. It prevents the compiler from using vectorization and optimization across iterations because a context

switch happens at every iteration. This problem is avoided in openfpm_data by always forcing the compilation of two versions of each kernel:

one with lightweight threads and one without. Then, openfpm_data starts executing one block using the lightweight threads implementation. If

after one block the library did not detect any context switch, it changes to the other implementation, where the compiler was able to apply the

optimizations.

In the OpenMP backend,blockIdx andthreadIdx are marked thread_local and use thread-local storage (TLS) in order to have an inde-

pendent copy for each thread. Blocks are distributed across OpenMP workgroups, with each thread of a block executed by one OpenMP thread.

Again, if blocks do not use __syncthreads(), the backend automatically switches to non-lightweight threads to enable vectorization and facili-

tate compiler optimizations. The TLS mechanism incurs an overhead for small kernels, but the benchmarks of Section 5 show that the effect of this

overhead becomes negligible for memory-bound applications. This is because having more cores than memory channels compensates for a thread

being slower due to TLS. For compute-bound applications, however, performance degradation will depend on the timing ratio between the TLS

mechanism and the compute kernel.

TA B L E 2 Parallel computing primitives provided by the moderngpu library for the CUDA backend.

Templated pattern functions BSP functions

transform reduce

transform_reduce scan

transform_scan merge

transform_lbs bulk_remove

lbs_segreduce bulk_insert

mergesort

segmented_sort

sorted_search

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

INCARDONA ET AL. 7 of 15

4 INTEROPERABILITY

The openfpm_data library is intended to seamlessly integrate with existing abstraction libraries and frameworks, supplementing them with func-

tionality like sparse grids, graphs, and fast neighborhood search not otherwise available. This renders interoperability of data structures a primary

design goal. The interoperability of openfpm_data rests on the concept of “absorbing” external memory, that is, transparently using memory allo-

cated by other software. This memory absorbing is, for example, useful to transfer coded functions from openfpm_data to other frameworks, or

to benefit from memory layout capabilities of other frameworks. Conceptually, this amounts to constructing data structures around memory that

has not been allocated by that data structure itself, but is “externally” managed. This is achieved in openfpm_data by declaring the data structure

with the special memory allocator PtrMemory (yellow template parameter in Figure 1), which accepts a pointer to external memory along with a

description of the layout used by the external memory.

We illustrate this in an example showing how to construct an openfpm_data cell-list neighbor search data structure16 on Kokkos array views

using a SoA layout with zero copying. The corresponding C++code is shown in List 3. In line 1, we create anopenfpm_datavector wrapper with SoA

layout. The wrapper does not allocate any memory, but accepts external memory that it is going to wrap, as indicated by the allocator PtrMemory.

The container w_pos contains the particle position for which we build the cell-list. In line 2, we create the memory object (PtrMemory) providing

the address of the beginning of the Kokkos view (&pos(0,0)) followed by the size of the chunk of memory (N*sizeof(float)*3), where N is

the total number of particles. Line 3 sets the memory for the wrapper, and line 4 resizes the vector to the number of particles. openfpm_data data

structures internally ensure that the external memory does not overflow during resizing. In debug mode, they additionally perform range checks

and notify of errors with a complete stack trace.

Lines 23–25 construct the openfpm_data cell-list data structure based on the wrapped Kokkos memories. For this, line 23 first declares a

box-shaped computational domain as the three-dimensional unit cube containing all particles. Line 24 declares an openfpm_data cell-list object

consisting of 10 × 10 × 10 cells with extra padding of two cells at each border to handle boundary conditions (“ghost layer”, “halo layer”). Thanks to

the dynamic GPU context created in line 21, the CudaMemory type automatically switches between host and GPU memory depending on whether

a GPU is available in the system and the code has been configured to make use of it. The optionno_print_props suppresses all diagnostic output

from the automatic detection. In line 25, we call theopenfpm_datageneric algorithm to build the cell-list and sort the particles and their properties

into the newly created cell-list.

While the sorting of the particles in the cell list is optional, it improves memory-access patterns for particle-based computation. It does, how-

ever, require a second memory buffer to store the sorted vectors. This is also done using native Kokkos memory, illustrating write access to Kokkos

memory with no need for copying data. The declaration of the sorted vector(w_pos_ord) follows the same logic as was already used for the input

vector (lines 6–9). It is also possible to correspondingly reorder any vector of particle properties stored in Kokkos memory by constructing additional

openfpm_datawrappers, as shown here for a particle mass (w_mass and w_mass_ord, lines 11–19).

Taken together, this example shows that openfpm_data can transparently use memory allocated and mapped by third-party libraries, such as

Kokkos, for zero-copy read and write operations, and how this can effectively be used to extend other frameworks with openfpm_data-specific

functionality, like cell-lists.

1 openfpm : : v e c t o r<a g g r e g a t e< f l o a t [3]> , PtrMemory , m e m o r y _ t r a i t s _ i n t e> w_pos ;

2 { PtrMemory & p t r = ∗ (new PtrMemory (&pos (0 , 0) ,N∗ s i z e o f (f l o a t) ∗3)) ;

3 w_pos . setMemory (p t r) ;

4 w_pos . r e s i z e (N) ; }

5

6 openfpm : : v e c t o r<a g g r e g a t e< f l o a t [3]> , PtrMemory , m e m o r y _ t r a i t s _ i n t e> w_pos_ord ;

7 { PtrMemory & p t r = ∗ (new PtrMemory (&pos_ord (0 , 0) ,N∗ s i z e o f (f l o a t) ∗3)) ;

8 w_pos_ord . setMemory (p t r) ;

9 w_pos_ord . r e s i z e (N) ; }

10

11 openfpm : : v e c t o r<a g g r e g a t e< f l o a t> , PtrMemory , m e m o r y _ t r a i t s _ i n t e> w_mass ;

12 { PtrMemory & p t r = ∗ (new PtrMemory (&mass (0) ,N∗ s i z e o f (f l o a t))) ;

13 w_mass . setMemory (p t r) ;

14 w_mass . r e s i z e (N) ; }

15

16 openfpm : : v e c t o r<a g g r e g a t e< f l o a t> , PtrMemory , m e m o r y _ t r a i t s _ i n t e> w_mass_ord ;

17 { PtrMemory & p t r = ∗ (new PtrMemory (&mass_ord (0) ,N∗ s i z e o f (f l o a t))) ;

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 15 INCARDONA ET AL.

18 w_mass_ord . setMemory (p t r) ;

19 w_mass_ord . r e s i z e (N) ; }

20

21 mgpu : : o f p _ c o n t e x t _ t c o n t e x t (mgpu : : g p u _ c o n t e x t _ o p t : : n o _ p r i n t _ p r o p s) ;

22

23 SpaceBox<3 , f l o a t> box ({ 0 . 0 f , 0 . 0 f , 0 . 0 f } , { 1 . 0 f , 1 . 0 f , 1 . 0 f }) ;

24 C e l l L i s t _ g p u<3 , f l o a t , CudaMemory> c l 2 (box , { 1 0 , 1 0 , 1 0 } , 2) ;

25 c l 2 . c o n s t r u c t (w_pos , w_pos_ord , w_mass , w_mass_ord , context , N) ;

Listing 3: Zero-copy openfpm_data cell-list construction on Kokkos memory.

5 BENCHMARKS

We profile the memory and compute performance of openfpm_data in micro-benchmarks, and we showcase the resulting performance porta-

bility in a real-world application from computational fluid dynamics. All benchmarks are performed on the hardware and using the compilers

listed in Table 3. Benchmarks for sparse data structures are available elsewhere.8 We only benchmark the OpenMP, CUDA, and HIP backends of

openfpm_data; SEQUENTIAL is always slower and only intended for debugging or porting purposes.

In certain types of computation, kernels require blocks of threads. This is typical of GPU programming, for example. In CUDA and

openfpm_data, blocks of threads are created during kernel launch. OpenMP and Kokkos provide similar functionality in the form of workgroups

and teams, respectively. In the first benchmark, we therefore compare the performance ofopenfpm_data__syncthreadson CPUs with Kokkos

teams. This benchmark does not actually compute anything, but only measures the latency of thread synchronization. It does so by executing 24

context switches for every thread in 262,144 workgroups of 64 threads each and computing the average time per switch.

Table 4 shows the measured latency on each tested CPU, defined as the mean wall-clock time to complete a context switch (averaged over about

400 million context switches), in comparison with a single CPU clock tick. The openfpm_data code uses the OpenMP backend with a workgroup

size of 64 threads. The team size in Kokkos is limited by the number of CPU cores available and was chosen as large as possible on each tested CPU.

On the GPUs, the kernel primitives simply wrap the equivalent CUDA or HIP functions, respectively, so we do not benchmark them here.

Compared to openfpm_data __syncthreads, Kokkos teams are not only slower, but also less flexible. Their main limitation is that perfor-

mance sharply deteriorates when using team sizes that exceed the number of CPU cores available to OpenMP. For example, using team sizes ranging

from 16 to 64 on the 64-core AMD EPYC 7702 CPU, synchronization latency is between 88 and 287 ns. Using team sizes larger than 64 significantly

increases latency to 2165 ns for a team of size 128. This is because the only way to run Kokkos teams larger than the number of cores is to oversub-

scribe the cores in a way that multiple threads run on a single core. In openfpm_data, the performance of __syncthreads is independent of the

number of physical cores and of the block size.

5.1 Memory performance

We next analyze the memory performance of openfpm_data. We do so using a micro-benchmark that moves data between structures con-

taining scalars, vectors, and rank-two tensors. Because this benchmark is memory-bound, it assesses the memory performance portability of the

TA B L E 3 Hardware/compiler combinations considered for the benchmarks.

Hardware Type Vendor Compiler

A100 GPU Nvidia NVCC 11.01

RTX 3090 GPU Nvidia NVCC 11.01

M1 CPU Apple clang 12.05

POWER 9 CPU IBM GCC 10.2

Ryzen 3990X CPU AMD GCC 9.3

EPYC 7702 CPU AMD GCC 10.2

Xeon 8276 CPU Intel GCC 10.2

RXVega 64 GPU AMD clang 13

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

INCARDONA ET AL. 9 of 15

TA B L E 4 Measured latency (in nanoseconds, ns) for a single thread synchronization operation.

CPU __syncthreads Kokkos teams Clock tick

M1 41.1 227 0.313

POWER 9 55.3 109 0.250

Ryzen 3990X 13.4 65 0.233…0.345

EPYC 7702 16.6 407 0.291…0.500

Xeon 8276 9.0 168 0.250…0.455

Note: We compare the openfpm_data __syncthreads primitive on different CPUs using the OpenMP backend with a workgroup size of 64 threads with

Kokkos teams with team sizes equal to the number of cores available on the respective CPU. The duration of a single CPU clock tick is given in the last

column for scale; dynamically clocked CPUs provide a range. The standard deviations over 20 repetitions of the Kokkos timings are: M1 (2.3%), POWER 9

(0.3%), Ryzen 3990X (11.9%), EPYC 7702 (3.8%), Xeon 8276 (3.0%).

openfpm_data aggregates/tuple data abstractions. We evaluate the results both absolutely and relatively. For the relative evaluation, we com-

pare against a hand-tuned implementation in Kokkos2 and a C++ plain-array implementation. For the absolute evaluation, we compare the memory

bandwidth achieved by openfpm_data with the synthetic benchmarks babel-STREAM (for Power 9, ARM, and dual-socket x86_64), pmbw (for

single-socket x86_64 — an optimized parallel memory bandwidth benchmark written in assembly), and vendor-specific memory copy functions for

the GPUs, as well as with the theoretical peak memory bandwidth reported in the data sheets.

We perform the benchmark on 67.1 million elements, each containing a scalar, two 2-vectors, and a tensor of rank two and size 2 × 2. As evi-

dent from Figure 2, this tests all abstraction levels of openfpm_data. We repeat each benchmark both for reading and for writing. The write

benchmark reads one element from component 0 of the first vector and copies it into component 1 of the first vector, the scalar, all four compo-

nents of the 2 × 2 tensor, and all components of the second 2-vector. This requires a total of nine memory accesses (counted from the generated

assembly code): 8 write and 1 read. The read benchmark reads the values from the first 2-vector, the scalar, the tensor, and component 0 of the

second vector, sums them, and writes the sum into component 1 of the second vector. This results in a total of 8 reads and 1 write. In this bench-

mark, we use lambda-based openfpm_data implementations compiled for the OpenMP backend on CPUs and for CUDA/HIP backends on GPUs.

Memory bandwidth is calculated as the number of access operations divided by the runtime to complete all of them. The results are shown in

Table 5.

On the x86_64 CPUs, the measured memory bandwidth when reading is significantly larger than when writing. This suggests the use of a cache

policy of type write_allocate rather than write_around. In write_allocate, a write to a memory location out of cache generates a cache

line that is filled from memory. Eventually the line is written back, causing double transfer of data compared to a read. The GPUs appear to imple-

ment a write_through cache policies. On all platforms, the memory performance of openfpm_data is comparable to that of plain C++ arrays

(Table 5). With the exception of the M1 and the POWER 9, the numbers also match the synthetic benchmarks, confirming that the double-map tuple

abstraction ofopenfpm_data incur low performance overhead. Further analysis shows that the difference betweenopenfpm_data/Kokkos/C++
and the synthetic benchmark on the M1 is mainly due to the performance of the thread-local storage (TLS). In particular, reading the Software

TA B L E 5 Memory performance (read/write) on different hardware in Gigabytes/second (GB/s) for the same memory transfer
micro-benchmark (see main text) implemented in openfpm_data, Kokkos, and plain C++ arrays, compared with the synthetic memory

benchmarks described in the text and the vendor-provided memory bandwidth from the data sheet, where available.

Hardware openfpm_data Kokkos Plain C++ Synthetic Data sheet

A100 (1390∕1212) (1375∕1131) (1394∕1226) 1297 1555

RTX 3090 (868∕818) (869∕819) (868∕818) 835 936

M1 (47.5∕27.5) (43.1∕28.6) (47.8∕26.1) 61.8 N/A

POWER 9 (120.2∕109.8) (143.0∕112.8) (121.6∕111.8) 250.0 340

Ryzen 3990X (70.8∕37.7) (54.0∕32.8) (70.6∕37.7) (77.1∕37.7) 96

EPYC 7702 (242.5∕135.3) (243.6∕134.7) (243.9∕133.2) 214.0 384

Xeon 8276 (137.1∕87.7) (142.9∕89.6) (144.3∕89.6) 150.0 216.8

RXVega 64 (359∕358) (323∕293) (359∕360) 378 484

Note: All synthetic benchmarks except pmbw (for Ryzen 3990X) and data sheets only report composite read/write bandwidth. For each measurement, the

standard deviation over 100 repetitions (after 10 warm-up repetitions) is<3%.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 15 INCARDONA ET AL.

Thread ID Register TPIDRRO_EL0 on the M1 seems to be slow, slowing down codes using private variables as are used here to store blockIdx

and threadIdx for each kernel.

5.2 Compute performance

In order to benchmark the compute performance of openfpm_data, we use the miniBUDE performance benchmark,14 which has previously been

used to compare compute performance of programming models including OpenCL, Kokkos, CUDA, SYCL, OpenMP, and OpenACC. While this bench-

mark does not over-stress the data structures, it quantifies the performance portability of the algorithms provided by openfpm_data. We do so

by running the miniBUDE CUDA benchmark kernel through openfpm_data’s kernel interface. The openfpm_data compute kernel remains the

same across all benchmarks, but is compiled using different backends. On Nvidia GPUs we use the CUDA backend of openfpm_data, on CPUs we

use the OpenMP backend, and on AMD GPUs we use the HIP backend.

To render the results reproducible and comparable across compilers, we manually enable DAZ (denormals are zero) and FTZ (flush to zero) on

all hardware. This does not affect significantly the values computed, but prevents compilers from using different SIMD mask flags with different

compilation options when subnormal numbers are computed.

Table 6 reports the relative performance of the sameopenfpm_data code on different hardware compared with the respective best performer

from the miniBUDE test suite, as indicated in the last column. Despite the fact that the openfpm_data kernel was not manually changed or tuned

for the different hardware targets, it mostly performs on par with the specialized CUDA or OpenMP implementations of miniBude, demonstrating

performance portability of the algorithm kernels. The only exception is the RXVega 64, where OpenCL is faster than openfpm_data with HIP

backend. Code inspection shows that this is because the two compilers produce different code: HIP produces code with fewer registers and higher

occupancy, while OpenCL does the opposite. While it is counter-intuitive that this explains the performance difference, it is what the measurements

show, and it possibly hints at latency or GPU stalling as the problem for openfpm_data on the RXVega 64.

We confirm that the openfpm_data data structures do not interfere with the vectorization capabilities of the compiler on the CPU backends.

For this, we consider the N-body code in List 4, where we compute the pairwise forces between all N2 combinations of N particles. This code uses

openfpm_data slice-like views supporting complex memory-access patterns. The listing shows the main loop calculating the force and resulting

velocity change on each particle j due to interactions with all other particles.

Lines 1 and 5 use an openfpm_data directive to specify that the loops can be vectorized. This directive is mapped to the appropriate pragmas

in a portable way across compilers. Lines 2–6 loop through all pairwise particle interactions. In line 8, we get a view on the current particle j. A

view is used in this case in order to delay the memory address computation until all indices are known. This view pj does not access any data.

In line 10, we use this generic view to access the position property POS of the particle using the <> access operator (see Section 2). The result

posj is another view on which we can use the operator [] to access individual spatial coordinate components like in lines 13–15. Lines 17–24

contain the force calculation, while lines 27–29 perform the time integration to compute the resulting change in particle velocity using explicit Euler

time stepping.

We show that despite the view abstractions, the clang 13 compiler is able to understand the contiguity of the memory access and vectorize

the code for an x86_64 CPU with 256 bit AVX extensions. Generation of AXV-512 instructions requires clang 15 with proper compiler options†. An

excerpt from the generated assembly code from List 4 using 256 bit AVX is shown in List 5. The full file, as well as the file for AVX-512 are provided

TA B L E 6 Performance of the same miniBUDE-like openfpm_data kernel on different hardware compared with the respective best
performer of the miniBude benchmark14 as given in the last column.

Hardware openfpm_data/miniBude Best miniBude

A100 1.00 ± 0.07 CUDA

RTX 3090 1.00 ± 0.04 CUDA

M1 1.05 ± 0.01 OpenMP

POWER 9 0.80 ± 0.09 OpenMP

Ryzen 3990X 1.08 ± 0.04 OpenMP

EPYC 7702 1.01 ± 0.03 OpenMP

Xeon 8276 0.97 ± 0.03 OpenMP

RXVega 64 0.54 ± 0.01 OpenCL

Note: Values are given as relative performance (GFlops openfpm_data)/(GFlops best miniBude) with mean± standard deviation over 30 independent

repetitions. Values>1 (in bold) mean that openfpm_datawas statistically significantly faster than the fastest miniBude implementation.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

INCARDONA ET AL. 11 of 15

in the github repository‡. In particular, lines 2, 5, 7 load the x, y, and z components of the position of particle j (indexed by %rbp) into AVX registers

ymm0, ymm1, and ymm2, respectively. Lines 4, 6, 8 subtract posj[0], posj[1], posj[2] for 8 particles at once in one AVX instruction. This is

possible because we chose a data structure layout where posj[0] of particle n is contiguous with posj[0] of particle n − 1, and posj[0] is not

contiguous with posj[1] like it would be in standard C ordering. Lines 9–25 contain the force computation as vectorized AVX instructions, while

lines 26, 28, 30 have the vectorized store operations for the resulting velocity.

1 IVDEP

2 f o r (i n t i = 0 ; i < PROBLEM_SIZE ; i ++) {

3 c o n s t auto& p i = p a r t i c l e s . g e t (i) ;

4 c o n s t auto& p o s i = p i . g e t<POS> () ;

5 IVDEP

6 f o r (i n t j = 0 ; j < PROBLEM_SIZE ; j ++) {

7 / / C o n s t r u c t a view on p a r t i c l e j

8 c o n s t auto& p j = p a r t i c l e s . g e t (j) ;

9 / / C o n s t r u c t a view on the p o s i t i o n o f p a r t i c l e j

10 c o n s t auto& p o s j = p j . g e t<POS> () ;

11

12 / / C a l c u l a t e f o r c e on the p a r t i c l e

13 c o n s t f l o a t d i s t a n c e X = p o s i [0] − p o s j [0] ;

14 c o n s t f l o a t d i s t a n c e Y = p o s i [1] − p o s j [1] ;

15 c o n s t f l o a t d i s t a n c e Z = p o s i [2] − p o s j [2] ;

16

17 c o n s t f l o a t d i s t a n c e S q r X = d i s t a n c e X ∗ d i s t a n c e X ;

18 c o n s t f l o a t d i s t a n c e S q r Y = d i s t a n c e Y ∗ d i s t a n c e Y ;

19 c o n s t f l o a t d i s t a n c e S q r Z = d i s t a n c e Z ∗ d i s t a n c e Z ;

20

21 c o n s t f l o a t d i s t S q r = EPS2 + d i s t a n c e S q r X + d i s t a n c e S q r Y + d i s t a n c e S q r Z ;

22 c o n s t f l o a t d i s t S i x t h = d i s t S q r ∗ d i s t S q r ∗ d i s t S q r ;

23 c o n s t f l o a t invDistCube = 1 . 0 f / s q r t f (d i s t S i x t h) ;

24 c o n s t f l o a t s t s = p j . g e t<2> () ∗ invDistCube ∗ TIMESTEP ;

25

26 / / S t o r e the change i n p a r t i c l e v e l o c i t y

27 p a r t i c l e s . g e t<VEL> (j) [0] += d i s t a n c e S q r X ∗ invDistCube ∗ s t s ;

28 p a r t i c l e s . g e t<VEL> (j) [1] += d i s t a n c e S q r Y ∗ invDistCube ∗ s t s ;

29 p a r t i c l e s . g e t<VEL> (j) [2] += d i s t a n c e S q r Z ∗ invDistCube ∗ s t s ;

30 }

31 }

Listing 4: N-body force calculation in openfpm_data.

1 / / l o a d v e c t o r i z e d p a r t i c l e j

2 v b r o a d c a s t s s 0x0(% rbp) ,%ymm0

3

4 vsubps (% r11) ,%ymm0,%ymm0

5 v b r o a d c a s t s s 0x0(%rbp ,% r s i , 4) ,%ymm1

6 vsubps (%r11 ,% r s i , 4) ,%ymm1,%ymm1

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 15 INCARDONA ET AL.

7 v b r o a d c a s t s s 0x0(%rbp ,% r9 , 4) ,%ymm2

8 vsubps (%r11 ,% r s i , 8) ,%ymm2,%ymm2

9 vmulps %ymm0,%ymm0,%ymm0

10 vmulps %ymm1,%ymm1,%ymm1

11 vmulps %ymm2,%ymm2,%ymm2

12 vaddps %ymm6,%ymm0,%ymm3

13 vaddps %ymm2,%ymm1,%ymm4

14 vaddps %ymm4,%ymm3,%ymm3

15 vmulps %ymm3,%ymm3,%ymm4

16 vmulps %ymm3,%ymm4,%ymm3

17 v r s q r t p s %ymm3,%ymm4

18 vmulps %ymm4,%ymm3,%ymm3

19 vfmadd213ps %ymm7,%ymm4,%ymm3

20 vmulps %ymm4,%ymm8,%ymm4

21 vmulps %ymm3,%ymm4,%ymm3

22 vmulps (% rax ,% rcx , 4) ,%ymm9,%ymm4

23 vmulps %ymm3,%ymm3,%ymm3

24 vmulps %ymm4,%ymm3,%ymm3

25 vfmadd213ps (% rbx) ,%ymm3,%ymm0

26 vmovups %ymm0, (% rbx) / / v e c t o r i z e d s t o r e f o r v e l i [x]

27 vfmadd213ps (% rbx ,% rdx , 4) ,%ymm3,%ymm1

28 vmovups %ymm1, (% rbx ,% rdx , 4) / / v e c t o r i z e d s t o r e f o r v e l i [y]

29 vfmadd213ps (% rbx ,% rdx , 8) ,%ymm3,%ymm2

30 vmovups %ymm2, (% rbx ,% rdx , 8) / / v e c t o r i z e d s t o r e f o r v e l i [z]

Listing 5: Assembly code generated by C++; compiler from List4

5.3 Application example: Smoothed particle hydrodynamics

We demonstrate the use of openfpm_data in a typical real-world application from scientific computing: a computational fluid dynamics sim-

ulation using the numerical method of Smoothed Particle Hydrodynamics (SPH).17 As a baseline, we use the CPU-only implementation of SPH

from the original OpenFPM paper,9 which is freely available in the OpenFPM repository, albeit without the CPU-specific manual optimizations

(like Verlet lists and symmetric interactions). This MPI implementation was shown in the original paper to be almost a factor of two faster than

the state-of-the-art specialized SPH code “DualSPHysics”,18 therefore providing a good baseline for the present comparison. We derive from this

code a version implemented using the CUDA-like interface of openfpm_data along with the built-in algorithmic primitives cell-list, sort, and

prefix sum.

We use both codes—the original MPI-only CPU code9 and the code using openfpm_data kernels—to simulate the same “dam break” SPH test

case,9 solving for the dynamics of a fluid sloshing around a square pillar in a rectangular tank (see Figure 3).

Table 7 shows the measured relative performances of these two codes on different CPUs. Performance is reported as the runtime ratio (original

code)/ (openfpm_data code) in percent for the OpenMP backend of openfpm_data. Therefore, numbers>100% (in bold) indicate speedup. The

most expensive part of the simulation, the force calculation step, is also profiled separately.

The results show that the openfpm_data abstraction layer adds no detectable performance penalty in this complex real-world application.

It actually being a few percent faster than the original MPI code is likely because the OpenMP backend has a lower communication overhead

than MPI.

Unlike the original MPI version, however, the openfpm_data code can also run on GPUs. On an Nvidia A100, for example, it runs 36

times faster than on all cores of an EPYC 7702 CPU, and on a RXVega 64, the speedup is 2.7. This difference in speedups is expected, as pro-

filing shows the bottleneck for this application to be memory access and L2 cache. The Vega has slower memory than the A100 (484 GB/s vs.

1.5 TB/s) and 10x less L2 cache (4 MB vs. 40 MB). In addition, the Vega uses the old GCN architecture, known to be less efficient than AMD’s

new CDNA architecture. The performance difference between the A100 and the EPYC 7702 CPU is justified by the difference in memory band-

widths and the lack of CPU vectorization due to the scattered memory access pattern of the SPH particles, although there could be additional

reasons, too.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

INCARDONA ET AL. 13 of 15

F I G U R E 3 Visualization (using ParaView) of a smoothed particle hydrodynamics (SPH) simulation of the “dam break” test case at simulated
time t = 0.6.

TA B L E 7 Performance of the openfpm_data SPH “dam break” simulation on different CPUs using all available cores, relative to the
performance of the original MPI code9 on the same CPUs (=100%).

Hardware Overall Force calculation

M1 109%± 2.5% 113%± 2.5%

Ryzen 3990X 105%± 2.4% 98%± 2.4%

EPYC 7702 115%± 2.5% 121%± 2.6%

Xeon 8276 122%± 2.5% 97%± 2.4%

Note: Numbers>100% (in bold) indicate statistically significant speedups.

6 CONCLUSIONS

We have presented and benchmarked a C++ library for memory and compute abstraction across different CPU and GPU architectures. The pre-

sented library, called openfpm_data, combines hardware-independent abstract data structures with generic algorithmic building blocks. This

places openfpm_data between libraries that focus on algorithm portability, like Kokkos2,3 or Alpaka,4 and libraries that focus on memory abstrac-

tion, like LLAMA.7 Compared to the state of the art, openfpm_data provides more flexible memory layouts with tuples, memory double-mapping

and absorbing, and advanced data structures like cell list, sparse grids, and graphs.

The present combination of abstract algorithms and data structures1 allows accounting for their interdependence (e.g., reordering a data struc-

ture may require changing an algorithm for better performance, as shown here in the cell-list example of Section 4). We have shown the benefits this

brings for performance portability in both micro-benchmarks and a typical real-world numerical simulation application, comparing to the respec-

tive state of the art. The presented benchmarks have also shown that memory layout switching using double-mapped C++ tuples and views do

not interfere with performance and do not distract compiler optimizations. Finally, we have demonstrated how the memory absorbing capability

of openfpm_data can be used to transparently wrap data structures that are allocated and managed by other software and enable their native

use in openfpm_data. This allows extending and complementing existing frameworks by openfpm_data-specific functionality, and it enables

openfpm_data to benefit from other memory-layout capabilities of external libraries.

The algorithmic primitives provided byopenfpm_data include arbitrary-dimensional convolution, copying, merging, sorting, prefix sum, reduc-

tions, neighbor search, and filtering. They are available in optimized implementations for CUDA, HIP, SEQUENTIAL, and OpenMP backends and

can be used and extended in either a CUDA-like kernel programming interface or a lambda-function interface. This allows the same code to run on

different hardware platforms without losing performance, as demonstrated in the SPH fluid-flow simulation example.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

14 of 15 INCARDONA ET AL.

The abstract data structures provided byopenfpm_data are composable and can be used as building blocks for more complex data structures,

such as distributed sparse block grids,8 and for domain-specific data structures.9 The memory layout capabilities are inherited, as well as the memory

double-mapping and absorbing capabilities, allowing the same data structure to simultaneously be mapped to host and device. Moreover, third-party

libraries can be interfaced via external memory. This is used in the scalable distributed scientific computing project OpenFPM.9 The distributed

data structures of OpenFPM are implemented on top of theopenfpm_data abstraction layer presented here, enabling multi-node and multi-GPU

applications with transparent network communication.

While the current version of openfpm_data at the time of writing is fully usable for practical applications, it has several limitations. One

limitation is that no convenient user interface is available for layout overriding. Each parenthesis operator can be overridden with a user-defined

memory layout without requiring changes to code using the data structure in question. At the moment, however, openfpm_data does not provide

a simple way to generate custom layouts, and they need to be written by hand. A second limitation is that while openfpm_data improves perfor-

mance portability, some manual fine-tuning may still be required, for example, to optimize thread block sizes. Also, hardware-specific optimization

of user-implemented kernels is still required, albeit the algorithmic primitives provided by openfpm_data help. Future work could also include

the addition of more backends, for example for OpenCL or OpenACC, in order to support more hardware and/or further improve performance

portability.

Taken together, the hardware-portable data structures, generic algorithms, and the CUDA-like and lambda kernel interfaces provided by

openfpm_data enable C++ codes to transparently run across multiple CPU and GPU architectures upon recompiling with a different backend

enabled. We believe this has the potential to significantly reduce developer overhead in porting codes and enable more applications to harness the

power of GPU computing and accelerator hardware.

ACKNOWLEDGMENTS

We thank Christian Trott from the Kokkos project for his help and advise in tuning the Kokkos benchmarks for optimal performance. The authors are

grateful to the Center for Information Services and High Performance Computing (ZIH) of TU Dresden and to the Scientific Computing Facility of

MPI-CBG for providing their facilities for the benchmarks. This work was supported by the Federal Ministry of Education and Research (Bundesmin-

isterium für Bildung und Forschung, BMBF) under grants 01/S18026A-F (competence center for Big Data and AI “ScaDS.AI Dresden/Leipzig”) and

031L0160 (project “SPlaT-DM – computer simulation platform for topology-driven morphogenesis”). Open Access funding enabled and organized

by Projekt DEAL.

DATA AVAILABILITY STATEMENT

The source code of the presented library is available under the GPLv3 license as part of the OpenFPM project for scalable scientific computing (http://

openfpm.mpi-cbg.de/) at: https://github.com/mosaic-group/openfpm_data. The repository also contains all benchmark codes used to generate the

results in this paper:

• __syncthreads and Kokkos teams: https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/Syncthreads_

kokkos_benchmark,

• memory bandwidth: https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/memBW/,

• miniBUDE https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/miniBUDE,

• N-body: https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/Nbody_benchmark, and

• SPH: https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Vector/7_SPH_dlb_gpu_opt.

ENDNOTES
∗https://www.boost.org/
†-march=skylake-avx512-mavx2-mtune=skylake-avx512-mprefer-vector-width=512
‡https://github.com/mosaic-group/openfpm_pdata/blob/master/example/Performance/Nbody_benchmark as “nbody.s” (AVX) and “nbody_avx512.s”

(AVX-512).

REFERENCES

1. Sbalzarini IF. Abstractions and middleware for petascale computing and beyond. Int J Distrib Syst Technol. 2010;1(2):40-56.

2. Trott C, Lebrun-Grandié D, Arndt D, et al. Kokkos 3: programming model extensions for the exascale era. IEEE Trans Parallel Distrib Syst. 2022;33:805-817.

3. Edwards HC, Trott C, Sunderland D. Kokkos: Enabling manycore performance portability through polymorphic memory access patterns. J Parallel Distrib
Comput. 2014;74(12):3202-3216.

4. Zenker E, Worpitz B, Widera R, et al. Alpaka–an abstraction library for parallel kernel acceleration. IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 2016:631-640.

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://openfpm.mpi-cbg.de/
http://openfpm.mpi-cbg.de/
https://github.com/mosaic-group/openfpm_data
https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/Syncthreads_kokkos_benchmark
https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/Syncthreads_kokkos_benchmark
https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/memBW/
https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/miniBUDE
https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Performance/Nbody_benchmark
https://github.com/mosaic-group/openfpm_pdata/tree/master/example/Vector/7_SPH_dlb_gpu_opt
https://www.boost.org/
https://github.com/mosaic-group/openfpm_pdata/blob/master/example/Performance/Nbody_benchmark

INCARDONA ET AL. 15 of 15

5. Beckingsale D, Burmark J, Hornung R, et al. RAJA: portable performance for large-scale scientific applications. IEEE/ACM International Workshop on
Performance, Portability and Productivity In HPC (P3HPC). 2019:71-81.

6. Reyes R, Lomüller V. SYCL: single-source C++ accelerator programming. Parallel Computing: on the Road to Exascale. IOS Press; 2016:673-682.

7. Gruber B, Amadio G, Blomer J, Matthes A, Widera R, Bussmann M. LLAMA: The low-level abstraction for memory access. Softw: Pract Exp.

2023;53(1):115-141.

8. Incardona P, Bianucci T, Sbalzarini IF. Distributed sparse block grids on GPUs. High Perform Comput. ISC High Perform. 2021;2021(12728):272-290.

9. Incardona P, Leo A, Zaluzhnyi Y, Ramaswamy R, Sbalzarini IF. OpenFPM: a scalable open framework for particle and particle-mesh codes on parallel

computers. Comput Phys Commun. 2019;241:155-177.

10. Alexandrescu A. Modern C++Design: Generic Programming and Design Patterns Applied. Addison Wesley; 2001.

11. Bancila M. Template Metaprogramming with C++: Learn Everything about C++Templates and Unlock the Power of Template Metaprogramming. Packt Publishing;

2022.

12. Mattson TG, Sanders B, Massingill B. Patterns for parallel programming. Pearson Education; 2004.

13. Green O, McColl R, Bader D. GPU merge path: a GPU merging algorithm. Proceedings of the 26th ACM International Conference on Supercomputing.

2012:331-340. 10.1145/2304576.2304621.

14. Poenaru A, Lin W, McIntosh-Smith S. A performance analysis of modern parallel programming models using a compute-bound application. High Perform
Comput ISC High Perform. 2021;2021(12728):332-350.

15. Baxter S. moderngpu 2.0. 2016. https://github.com/moderngpu/moderngpu/wiki

16. Hockney R, Eastwood J. Computer Simulation Using Particles. Institute of Physics Publishing; 1988.

17. Monaghan J. Smoothed particle hydrodynamics. Ann Rev Astron Astrophys. 1992;30:543-574.

18. Crespo AJC, Domínguez JM, Rogers BD, et al. DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH).

Computer Physics Communications. Elsevier; 2015:204-216. doi:10.1016/j.cpc.2014.10.004

How to cite this article: Incardona P, Gupta A, Yaskovets S, Sbalzarini IF. A portable C++ library for memory and compute abstraction on

multi-core CPUs and GPUs. Concurrency Computat Pract Exper. 2023;e7870. doi: 10.1002/cpe.7870

 15320634, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.7870 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [25/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/moderngpu/moderngpu/wiki
http://info:doi/10.1016/j.cpc.2014.10.004

	A portable C++ library for memory and compute abstraction on multi-core CPUs and GPUs
	1 INTRODUCTION
	2 FROM C++ TUPLES TO COMPILE-TIME DATA STRUCTURES
	2.1 Data structures and memory layouts
	2.2 Double-mapped data structures

	3 GENERIC ALGORITHMS FOR PERFORMANCE PORTABILITY
	3.1 User-implemented algorithms
	3.2 Hardware backends

	4 INTEROPERABILITY
	5 BENCHMARKS
	5.1 Memory performance
	5.2 Compute performance
	5.3 Application example: Smoothed particle hydrodynamics

	6 CONCLUSIONS

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	REFERENCES

