
A Note on Scoring Clones Given a Probe Ordering

Mudita Jain
�

Eugene W. Myers
�

December 28, 1995

Abstract

We present an efficient algorithm for scoring clones given an ordering of probes under a schema

proposed by Alizadeh et al. [1] in the context of physical mapping with unique probes. The algorithm

runs in time linear in the number of blocks of ones in the underlying sparse incidence matrix. A sparse

and efficient algorithm for this task is important as it appears to be a central task in most algorithms for

physical mapping.

1 Introduction

The problem of physical mapping is to find an interval ordering of a collection of clones (fragments) of

a DNA strand by inferring the overlap order from fingerprint data. One of the ways in which clones are

fingerprinted is by recording hybridization data between a set of STS probes and the clones. Each STS probe

is assumed to be specific enough that it hybridizes to a unique location in the underlying DNA sequence.

Given � STS probes and � clones, the input for the problem is then presented as an � � � incidence matrix

�
, where � � � is 1 if probe 	 hybridizes with clone
 and 0 otherwise. Since the clones are intervals of the

DNA strand, a permutation � of the rows/probes that gives the permuted matrix
� �

the consecutive ones

Dept. of Computer Science, University of Arizona, Tucson, AZ 85721 (e-mail: jainm@cs.arizona.edu). Fully supported by

NLM grant LM-04960�
Dept. of Computer Science, University of Arizona, Tucson, AZ 85721 (e-mail: gene@cs.arizona.edu). Partially supported by

NLM grant LM-04960

1

property, gives an ordering of the clones [2]. However, in practice, the measured data contains errors in the

form of false positives (i.e. a 1 where there should be a 0), false negatives (i.e. a 0 where there should be

a 1), and chimeras (i.e. two distinct intervals reported as one). Under these more realistic assumptions, the

problem becomes one of finding the most-likely permutation � and set of error corrections that give
� �

the

consecutive ones property. Figure 1 shows an example of the actual layout versus the measured data.

Actual data Measured data

A

B

C

D

E

F

B

C

D

E

F

1 0 0 0 0 0 A

1 0 0 0 0 1

1 1 0 1 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 1 0 1 1

1 0 0 0 0 1

1 1 0 1 0 0

0 0 1 1 1 0

0 0 1 0 1 1

C1

C2

C3

C4

C5

C6

 B C D E FAC1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

0 1 1 0 0

1 0 0 0 0

 0

 1

 0 0

 1

Figure 1: Actual vs. Measured Data. The clones are denoted by � � , � � , � � , � � , � � , � � , and � , � , � ,

�
, 	 ,
 represent the probes. The layout on the right indicates the actual layout of the clones where � � is

chimeric. The false positives and negatives in the measured data incidence matrix are emboldened.

Correcting a false positive is to turn a 1 into a 0, correcting a false negative is to turn a 0 into a 1, and

correcting a chimera is to split a column into two, or alternatively, to allow two blocks of consecutive 1’s

in a column of
� �

. The goal is to correct
� �

to the matrix that is most-likely to reflect the actual, perfect

data. Assuming that each type of error occurs at a fixed rate, Alizadeh et al. [1] show that minimizing the

objective function

� � �
 � � � � � � � �
 � � � � � � � �
 � � �

maximizes the likelihood, Probability
 � �� � �
, of � given

� �
, where �
 � � �

is the number of chimera

corrections, � �
 � � �
is the number of false positive corrections, � �
 � � �

is the number of false negative

corrections, and � ,
�

, and
�

are non-negative constants reflecting the error rates. Specifically, if false

2

negatives occur at fixed rate � , false positives at rate
�
, and chimeras at rate � , then these constants were

shown to be the log-likelihood ratios: � � � � � �� �
� ,

� � � � � 	� �
 , and
� � � � �
� � 	 .

A primary focus of the work of Alizadeh et al. is how to intelligently explore the space of row

permutations (probe orderings) in search of ones that permit the objective function to be minimized. So

given a permutation � , a central subtask is to find a set of corrections to
� �

that minimizes the objective

function. Since the objective is additive, it suffices to determine how to optimally correct each column of

� �
on an individual basis. Alizadeh et al. give an algorithm that is quadratic in the number of ones in a

column. We improve this to linear time, and further generalize it to permit chimeras that are the union of up

to � distinct intervals (called k-meras). We make no assumption about the distribution of the ordinality of

chimeras by using the objective function

�
� � � �
 � � � � �
 � � � � � � � �
 � � � � � � � �
 � � �

where �
 � �
may be any score for � -meras and � �
 � � �

is the number of corrected � -meras. On the other

hand, we do not consider here the case where one knows that some probe incidences are at the ends of the

clone involved, as in [1], in order to keep the treatment simple. We discuss at the end of this note how one

can proceed to generalize our result to handle such additional probe information.

2 The Basic Linear Algorithm

We begin by developing an algorithm that is linear in the length � of a column � of
� �

, and will derive our

sparse algorithm in the next section. We use the following notation for regular expressions: � � � denotes the

union or disjunction of patterns � and � , � � denotes their concatenation, �

denotes the concatenation of �

copies of � , and � � denotes the concatenation of zero-or-more copies. Also, � � will denote the 	 th of a string

� .

3

We begin by viewing column � � � � � � � � � � � as a string of 0’s and 1’s. Observe that our goal is to

correct � to match the pattern
 � � � � �
 � � with minimal cost. Without chimera costs, the problem is clearly

just an instance of the approximate regular expression pattern matching problem solvable in �
 � � �
time

[8]. Moreover, we claim without proof that the edit graph formalism developed in [8] can be modified to

accommodate chimera costs. However, in order to ultimately derive a sparse algorithm, we proceed with an

independent development.

Let � �
be the pattern
 � � � � � � � � for

� � � � � . Further let �
 � � pat
�

be the minimum cost of making

false positive and negative corrections to � in order that it match pattern pat precisely. Formally,

�
 � � pat
� � 	
 �� � �
 � � � � � � �
 � �� � � �
 � � � � � � � �

�
 � � � � �

���������
��������

�
if � � � � � � � (false negative)

�
if � � � � � � �

(false positive)

�
if � � �

Informally, �
 � � pat
�

is the minimum weighted Hamming distance between � and a word of length �
in � � � . By construction �
 � � � � � � �
 � �

is the cost of correcting � into a � -mera. Therefore, the minimal

cost correction for column � is 	
 � � � � � �
 �
 �
 � � � � � � �
 � � �
.

To compute �
 � � � � �
, we develop tandem dynamic programming recurrences for the cost of correcting

every prefix of the column to � �
and also to the pattern 	 � �
 � � � � � �

for � � � � � . Let � � represent the

prefix � � � � � � � � � of column � . The lemma below provides the needed recurrences.

Lemma 1

�
 � � � �
 � �

���������
��������

�
if 	 � �

�
 � � � � � �
 � � �
 � � � � �
if 	 � �

and � � �

	
 �
 �
 � � � 	
 � � �
 � � � � � �
 � � �
 � � � � � �
otherwise

4

�
 � � � 	
 � �

�����
����

�
if 	 � �

	
 �
 �
 � � � �
 � � � � �
 � � � � � 	
 � � �
 � � � � � �
otherwise

Proof: By induction on � and 	 . The recurrence for �
 � � � �
 �
follows directly from the pattern identity

�
 � 	
 � �
 �
, and that for �
 � � � 	
 �

from the identity 	
 � �
 � � � 	
 � . For example, if 	 � � � �

then �
 � � � �
 �
= �
 � � � 	
 � �
 � �

= 	
 �
 �
 � � � 	
 � � �
 � � � �
 � � �
and �
 � � � �
 � �

= �
 � � � � � � � �
 � �
=

�
 � � � � � �
 � � �
 � � � � �
.

The recurrences permit each quantity to be computed in constant time from previously computed

quantities. Since there are
 � � � � �
 � � � �
quantities, this leads directly to an �
 � � �

time, �
 � �
working-

space algorithm for evaluating the cost of column � . Note that in the context of Alizadeh et al. [1], � is

fixed at 2 and our algorithm takes �
 � �
time and constant working space.

Figure 2 shows the computed recurrences � � , 	 �
, and � �

for the example data in Figure 1 with the

correct permutation of the probes, and
� � � � � .

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 1 0

 3 1 0 1 1 1

 3 2 1 1 1 1

 3 2 2 2 2 1

 3 2 3 2 3 2

 0 0 0 0 0 0

 0 0 0 0 1 0 2 0 0 0 1 1

 0 0 0 0 1 1

 1 0 0 1 1 1

 2 1 0 1 1 1

 3 2 0 1 1 1

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 1 1 0

 0 0 0 1 1 1

Measured data

B

C

D

E

F

A

1 0 0 0 0 1

1 1 0 1 0 0

0 0 1 1 1 0

0 0 1 0 1 1

B(0) E(1) B(1)

C1 C2 C3 C4 C5 C6

0 1 1 0 0

1 0 0 0 01

 0 0

1

Figure 2: The computed recurrences � � , 	 �
, and � �

, given the probe permutation of Figure 1.

3 The Sparse, Block-Based Algorithm

Typically the underlying incidence matrix
�

is sparse in that 10% or less of the entries in the matrix have

value 1. To take advantage of this sparsity, note the simple observation that it is never advantageous to

5

begin or end a clone boundary in the middle of a “block” of consecutive zeroes or consecutive ones. This

observation leads to the simple extension of our previous algorithm presented below. Note that the algorithm

is sparse because the number of blocks is not more than twice plus one the number of ones in a row.

Let �
�

� �
�� �

�
� � � � �

�
� � be the homeomorphic image of � obtained by replacing every block of ones with

a single � , and every block of zeroes with a single
�
. Further let

� � be the length of the 	 th block. Now we can

simply extend the recurrence of the previous section to compute �
 �
�� � �
 �

and �
 �
�� � 	
 �

save that now

we must weight every character replacement �
 �
�� � � �

by the length
� � of the block as shown in the statement

of the corollary below. With this weighting it is clear that �
 �
�� � � � � �
 � � � � �

where � � � �
 � � �
 .

Corollary 1

�
 �
�� � �
 � �

���������
��������

�
if 	 � �

�
 �
�� � � � �
 � � �
 �

�� � � � � � � � if 	 � �
and � � �

	
 �
 �
 �
�� � 	
 � � �
 �

�� � � � �
 � � �
 �
�� � � � � � � � �

otherwise

�
 �
�

� � 	
 � �

�����
����

�
if 	 � �

	
 �
 �
 �
�� � �
 � � � � �
 �

�� � � � 	
 � � �
 �
�� � � � � � � � �

otherwise

It follows as in the previous section that the cost of the best correction for column � is 	
 � � � � � �
 �
 �
 �
�
� � � � �

�
 � � �
. Thus given the � blocks of a matrix

� �
, the recurrences above allow us to evaluate its score/likelihood

in �
 � � �
time.

The remaining difficulty is that in order to evaluate
� �

we must be able to deliver its blocks. Naively, this

would require �
 � � �
time. Recall that an overall algorithm for physical mapping will start with

�
, explore

permutations � of
�

, and for each
� �

will evaluate the score of all its columns. Before the overall algorithm

begins take �
 � � �
time to determine lists, � � , of the positions of the 1s in each column
 of

�
. When the

evaluation of
� �

is required for a specific permutation � , use bucket sort to simultaneously sort �
 � � �
for all

 in �
 � � 	 �
time, where 	 � � � � � � �, i.e., the number of ones in

�
. Given the sorted ones-lists, one can

6

then deliver the blocks of each row in �
 	 �
additional time. Thus, with �
 � � �

preprocessing, we may then

evaluate the score/likelihood of any
� �

in �
 � � 	 � � � �
time. Since � is �
 	 �

it would be desirable if

only �
 � � � � �
time were taken. This is possible, but only in situations where the exploration of possible

choices of � allows the �
 � �
updating of block boundaries as � is being manipulated, for example, 2-OPT

or other swapping strategies.

4 Discussion

We conclude by noting that because our algorithm is a specialization of an approximate regular expression

pattern matching algorithm [8], it follows that other sequence comparison results apply. For example, the

corrections achieving the best score can be obtained by the usual divide-and-conquer approach [6, 7]. It

is also true that one can model any row property expressible as a regular expression over a finite scalar

alphabet, and so, for example, can accommodate the end-clone hybridizations described in [1]. Efficiency

improvements might be possible using path compression ideas [4, 10] and/or shortest path approaches [6, 3].

The efficiency of the presented algorithm(s) in practice and how they are best rendered to such practice is an

open issue.

5 Acknowledgement

The authors wish to thank one of the referees whose comments lead to a significantly simpler exposition of

the sparse algorithm.

References

[1] Farid Alizadeh, Richard M. Karp, Deborah K. Weisser, and Geoffrey Zweig. “Physical Mapping of

7

Chromosomes Using Unique Probes”. In Proc. 5th ACM-SIAM Symposium on Discrete Algorithms,

1994.

[2] Kellogg S. Booth and George S. Leuker. “Testing for the Consecutive Ones property, Interval Graphs,

and Graph Planarity Using PQ-Tree Algorithms”. In J. Comp. and Syst. Sci., vol.13, pp. 335-379, 1976.

[3] Ficket, J.W. “Fast Optimal Alignment”. In Nucleic Acids Research, vol. 12, pp. 175-179, 1984.

[4] F. Hadlock. “Minimum Detour Methods for String or Sequence Comparison”. In Congressus Numeran-

tium, vol. 61, pp. 263274, 1988.

[5] Toru Mizukami, William I. Chang, Igor Garkavtsev, Nancy Kaplan, Diane Lombardi, Tomohiro Mat-

sumoto, Osami Niwa, Asako Kounosu, Mitsuhiro Yanagida, Thomas G. Marr, and David Beach. “A

13kb Resolution Cosmid Map of the 14 Mb Fission Yeast Genome by Nonrandom Sequence-Tagged-Site

Mapping”. In Cell, vol.73, pp. 121-132, 1993.

[6] Eugene W. Myers. “An O(ND) Difference Algorithm and Its Variations”. In Algorithmica, vol. 1, pp.

251-266, 1986.

[7] Webb Miller, and Eugene W. Myers. “Optimal Alignments in Linear Space”. In CABIOS, vol. 4, pp.

11-17, 1988.

[8] Eugene W. Myers, and Webb Miller. “Approximate Matching of Regular Expressions”. In Bulletin of

Mathematical Biology, vol.51, pp. 5-37, 1989.

[9] Michael J. Palazzolo, Stanley A. Sawyer, Christopher H. Martin, David A. Smoller, and Daniel L. Hartl.

“Optimized Strategies for Sequence-Tagged Site Selection in Genome Mapping”. In Proc. Natl. Acad.

Sci. USA, vol.88, pp. 8034-8038, 1991.

8

[10] Wu, S., Myers E., Manber, U. and W. Miller. “An O(NP) Sequence Comparison Algorithm”. In

Information Processing Letters, vol. 35, pp. 317-323, 1990.

9

