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Abstract

We present an efficient algorithm for scoring clones given an ordering of probes under a schema
proposed by Alizadeh et al. [1] in the context of physical mapping with unique probes. The agorithm
runsin time linear in the number of blocks of ones in the underlying sparse incidence matrix. A sparse
and efficient algorithm for thistask isimportant as it appears to be a central task in most algorithms for

physical mapping.

1 Introduction

The problem of physical mapping is to find an interval ordering of a collection of clones (fragments) of
a DNA strand by inferring the overlap order from fingerprint data. One of the ways in which clones are
fingerprinted is by recording hybridization databetween a set of STS probesand the clones. Each STS probe
is assumed to be specific enough that it hybridizes to a unique location in the underlying DNA sequence.
Given m STS probesand » clones, theinput for the problem isthen presented as an m x n incidence matrix
D, where d;; is 1if probe i hybridizes with clone j and O otherwise. Since the clones are intervals of the

DNA strand, a permutation 7 of the rows/probes that gives the permuted matrix D, the consecutive ones
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property, gives an ordering of the clones[2]. However, in practice, the measured data contains errorsin the
form of false positives (i.e. a1 where there should be a 0), false negatives (i.e. a0 where there should be
al), and chimeras (i.e. two distinct intervals reported as one). Under these more realistic assumptions, the
problem becomes one of finding the most-likely permutation = and set of error corrections that give D, the

consecutive ones property. Figure 1 shows an example of the actual layout versus the measured data.

Cl1 C2C3C4C5C6 Cl1 C2 C3C4C5C6 A B C D E F
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Actual data Measured data

Figure 1: Actual vs. Measured Data. The clones are denoted by C'1, C2, C'3, C4, C'5, C6,and A, B, C,
D, E, F represent the probes. The layout on the right indicates the actua layout of the cloneswhere C'6 is

chimeric. Thefa se positives and negatives in the measured data incidence matrix are embol dened.

Correcting afalse positiveis to turn a1 into a 0, correcting a false negative isto turn a0 into a 1, and
correcting a chimera is to split a column into two, or aternatively, to alow two blocks of consecutive 1's
inacolumn of D,. Thegoa isto correct D, to the matrix that is most-likely to reflect the actua, perfect
data. Assuming that each type of error occurs at afixed rate, Alizadeh et al. [1] show that minimizing the

objective function

maximizes the likelihood, Probability(A|D.), of A given D., where x(D,) is the number of chimera
corrections, fp(D,) is the number of false positive corrections, fn(D,) is the number of false negative

corrections, and ', P, and N are non-negative constants reflecting the error rates. Specificaly, if false



negatives occur at fixed rate ¢, false positives at rate ¢, and chimeras at rate p, then these constants were

shown to be thelog-likelihoodratios: C' = — In 1% P=—-In;5,andN = —1In 11.

A primary focus of the work of Alizadeh et a. is how to intelligently explore the space of row
permutations (probe orderings) in search of ones that permit the objective function to be minimized. So
given a permutation 7, a central subtask is to find a set of correctionsto D, that minimizes the objective
function. Since the objective is additive, it suffices to determine how to optimally correct each column of
D, on anindividual basis. Alizadeh et al. give an algorithm that is quadratic in the number of onesin a
column. We improve thisto linear time, and further generalizeit to permit chimeras that are the union of up

to k distinct intervals (called k-meras). We make no assumption about the distribution of the ordinality of

chimeras by using the objective function

where C'(c) may be any score for c-meras and y. (D) is the number of corrected c-meras. On the other
hand, we do not consider here the case where one knows that some probe incidences are at the ends of the
cloneinvolved, asin[1], in order to keep the treatment simple. We discuss at the end of this note how one

can proceed to generalize our result to handle such additional probe information.

2 TheBascLinear Algorithm

We begin by developing an agorithm that is linear in the length m of acolumn V' of D.., and will derive our
sparse algorithm in the next section. We use the following notation for regular expressions: r|s denotesthe
union or disjunction of patterns r and s, rs denotes their concatenation, r* denotes the concatenation of &

copiesof r, and r* denotesthe concatenation of zero-or-more copies. Also, w; will denotethe it of astri ng



We begin by viewing column V' = wv,v,...v,, asastring of 0's and 1's. Observe that our god is to
correct V to match the pattern (0*1*)*0* with minimal cost. Without chimera costs, the problem is clearly
just an instance of the approximate regular expression pattern matching problem solvable in O (mk) time
[8]. Moreover, we claim without proof that the edit graph formalism developed in [8] can be modified to
accommodate chimera costs. However, in order to ultimately derive a sparse algorithm, we proceed with an
independent devel opment.

Let B¢ be the pattern (0*1*)°0* for 0 < ¢ < k. Further let A(V, pat) be the minimum cost of making

false positive and negative correctionsto V' in order that it match pattern pat precisely. Formally,

A(V,pat) = min (72, Ay, w;)).

wepat,|w|=m

N ifa=0,b=1 (fdsenegative)
Ala,b)=4q P ifa=1,b=0 (fasepositive)

0 ifa=5b

Informally, A(V, pat) is the minimum weighted Hamming distance between V' and aword of length m
in pat. By construction A(V, B°) 4+ C'(c) isthe cost of correcting V' into a c-mera. Therefore, the minimal
cost correction for column V ismin e 51 (A(V, B) 4+ C(¢)).

To compute A (V, B°), we develop tandem dynamic programming recurrences for the cost of correcting
every prefix of the column to B¢ and also to the pattern £° = (0*1*)° for 1 < ¢ < k. Let V; represent the

prefix vy v, . .. v; of column V. The lemma bel ow provides the needed recurrences.

Lemmal
0 ifi=20
A(Vi, B) =3 A(Viy, B¥) + A(;,0) ifi>0andk =0

min(A(V;, E*), A(Vi_1, B*) + A(v;,0))  otherwise




0 ifi=0
AV, EF) =
min(A(V;, BE=1), A(Vi_y, E*) + A(v;, 1))  otherwise
Proof: By induction on & and :. The recurrence for A(V;, B¥) follows directly from the pattern identity
Bf = E*|B*0, and that for A(V;, E*) from the identity F* = B*~'|E*1. For example, if i,k > 0
then A(V;, B¥) = A(V;, E*|B*0) = min(A(V;, E*), A(V;, B*0)) and A(V;, B50) = A(V;_iv;, B*0) =
A(Vi_y, B*) + A(v;,0). |
The recurrences permit each quantity to be computed in constant time from previously computed
quantities. Sincethereare (2k + 1)(m + 1) quantities, thisleads directly to an O (km) time, O (k) working-
space algorithm for evaluating the cost of column V. Note that in the context of Alizadeh et a. [1], & is
fixed at 2 and our algorithm takes O (m) time and constant working space.

Figure 2 shows the computed recurrences B°, E'', and B! for the example data in Figure 1 with the

correct permutation of the probes,and P = N = 1.

Cl1 C2 C3 C4 C5 C6 0O 0 00 0 0O 0Ol 0 00 0O0 O 0Ol 0 00 0 00O
A1 0 0 0 10 1l1 00 0 1 0 110 00 O 0O 11 0 00 0 0O
B|1 0 0O 0 O 1 22 00 0 11 2l 0 00 O 1 0 2 0 00 0 0O
c|i11 01 00 33101 11 3 000 0 11 3l 0 00 0 00O
D|0O1 1 0 0 O 413 21 1 11 41 0 0 1 1 1 4/ 0 0 0 0O O O
E|0OO0O 1 1 1 O 5(3 2 2 2 21 5/ 2 10 1 11 5/ 0 00 1 10
F|{oo0o 1 0 1 1 6 3 2 3 2 3 2 6] 3 20 1 11 6| 0 00 1 11

Measured data B(0) E(1) B(1)

Figure 2: The computed recurrences B°, ', and B*, given the probe permutation of Figure 1.

3 The Sparse, Block-Based Algorithm

Typically the underlying incidence matrix D is sparse in that 10% or less of the entries in the matrix have

value 1. To take advantage of this sparsity, note the simple observation that it is never advantageous to
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begin or end a clone boundary in the middle of a “block” of consecutive zeroes or consecutive ones. This
observation leads to the simple extension of our previousalgorithm presented below. Notethat the algorithm
is sparse because the number of blocksis hot more than twice plus one the number of onesin arow.

Let V' = v,v,---v,, bethe homeomorphicimage of V' obtained by replacing every block of oneswith
asingle1, and every block of zeroeswithasingle0. Further et /; be thelength of the it block. Now we can
simply extend the recurrence of the previous section to compute A (V; , B*) and A(V;, E*) save that now
we must weight every character replacement A (v;, b) by thelength /; of the block as shown in the statement
LX) = A(V,, X)wheres = S, [

of the corollary below. With thisweighting it isclear that A(V;

(3

Corollary 1
0 ifi=0
AV, BY) = AV, BX) + A(ul, 0) ) ifi>0andk =0
min(A(V;, E¥), A(V,_,, B¥) + A(v;,0) x[;)) otherwise
, 0 ifi=0
A(V;, E) =

min(A(V;, B¥=1Y), A(V,_,, E*) + A(v;, 1) % [;))  otherwise

It followsasintheprevioussection that the cost of thebest correctionfor column Vismin e 5 (A(V', BS)+
C'(¢)). Thusgiventhe B blocksof amatrix D, therecurrences above allow usto eval uateitsscore/likelihood
inO(kB) time.

Theremaining difficulty isthat in order to evaluate D, we must be ableto deliver itsblocks. Naively, this
would require O (nm) time. Recall that an overall agorithm for physical mapping will start with D, explore
permutations 7 of 1, and for each D, will evaluatethe score of al itscolumns. Before the overall algorithm
begins take O (mn) time to determine lists, U;, of the positions of the 1sin each column j of D. When the
evaluationof D, isrequired for aspecific permutation 7, use bucket sort to simultaneously sort 7 (U;) for dll

JinO(m+ E) time, where E' = ¥;|U;|, i.e., thenumber of onesin D. Given the sorted ones-lists, one can

6



then deliver the blocksof each row in O (£) additional time. Thus, with O (mn) preprocessing, we may then
evaluate the score/likelihood of any D, in O(m + E + kB) time. Since B isO(F) it would be desirable if
only O(m + kB) time were taken. Thisis possible, but only in situationswhere the exploration of possible
choices of 7 alowsthe O(1) updating of block boundaries as 7 is being manipulated, for example, 2-OPT

or other swapping strategies.

4 Discussion

We conclude by noting that because our algorithm is a specialization of an approximate regular expression
pattern matching algorithm [8], it follows that other sequence comparison results apply. For example, the
corrections achieving the best score can be abtained by the usual divide-and-conquer approach [6, 7]. It
is aso true that one can model any row property expressible as a regular expression over a finite scalar
alphabet, and so, for example, can accommodate the end-clone hybridizations described in [1]. Efficiency
improvements might be possibleusing path compression ideas[4, 10] and/or shortest path approaches[6, 3].
The efficiency of the presented algorithm(s) in practice and how they are best rendered to such practiceisan

open issue.
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