Algorithms for Computing and Integrating Physical Maps Using
Unique Probes

Mudita Jain * Eugene W. Myers |
April 3, 1997

Abstract

Current physical mapping projects based on STS-probes involve additional clues such as the fact that
some probes are anchored to a known map and that others come from the ends of clones. Because of
the disparate combinatorial contributions of these varied data items, it is difficult to design a “tailored”
algorithm that incorporates them all. Moreover, it is inevitable that new experiments will provide new
kinds of data, making obsolete any such algorithm. We show how to convert the physical mapping prob-
lem into a 0/1 linear programming (LP) problem. We further show how one can incorporate additional
clues as additional constraints in the LP formulation. We give a simple relaxation of the 0/1 LP problem
that solves problems of the same scale as previously reported tailored algorithms to equal or greater
optimization levels. We also present a theorem proving that when the data is 100% accurate, then the
relaxed and integer solutions coincide. The LLP algorithm suffices to solve problems on the order of 80-100
probes — the typical size of the 2- or 3-connected contigs of Arratia et al. We give a heuristic algorithm
which attempts to order and link the set of L.P-solved contigs. Unlike previous work, this algorithm only
links and orders contigs when the join is 90% or more likely to be correct. It is our view that there is no
value in computing an optimal solution with respect to some criteria over very noisy data as this optimal
solution rarely corresponds to the true solution. The paper involves extensive empirical trials over real
and simulated data.

1 Introduction

The STS-probe physical mapping problem involves a collection of clones that are long, anonymous segments
of a target DNA sequence, and a collection of STS probes that are short sequences of DNA whose presence
in a clone can be tested. It is assumed that each probe sequence occurs only once in the target DNA.
Formally, suppose there are m probes and n clones. The input to the basic physical mapping problem is an
m x n incidence matrix D, where d;; is 1 if probe ¢ hybridizes with clone j and 0 otherwise. The problem
is to find an ordering of the probes such that the probes incident to each clone are consecutive in the order.
Formally, one seeks a permutation 7 of the probes/rows that gives the permuted matrix D, the consecutive
ones property [BL76]. If the information in D is perfect than the problem is solvable in linear time [BL76].
However, in practice, the measured data contains errors in the form of false positives (i.e. a 1 where there
should be a 0), false negatives (i.e. a 0 where there should be a 1), and chimeras (i.e. two distinct intervals
reported as one). Under these more realistic assumptions, the problem becomes one of finding the most-likely
permutation 7 and set of error corrections that give D, the consecutive ones property. Unfortunately, this
problem is NP-complete [Kou77, GKS94].

Let m be a permutation of probes, D, be the permuted incidence matrix D, and T be the corrected
version of D that reflects the error corrections made in D to explain 7. Further suppose that one has

*Dept. of Computer Science, University of Arizona, Tucson, AZ 85721 (e-mail: jainm@cs.arizona.edu). Fully supported by
NLM grant LM-04960

tDept. of Computer Science, University of Arizona, Tucson, AZ 85721 (e-mail: gene@cs.arizona.edu). Partially supported
by NLM grant LM-04960

estimated that false negatives occur at fixed rate ¢ (typically 10-20%), false positives at rate § (typically
5-10%), and chimeras at rate x (typically 1-5%). Alizadeh et al. [AKWZ95] showed that minimizing the
objective function:

maximizes the likelihood, Pr(T|Dy), of T given Dr, where fe(Dz) is the number of chimera corrections,
Jp(Dy) is the number of false positive corrections, fn(Dy) is the number of false negative corrections, and
the constants C', P, and N are the log likelihood ratios: C' = —In %, P=—Ing%,and N = —1In 156.
Thus the phyiscal mapping problem in the presence of false positives and negatives, and chimeras is to find
7 and T that minimizes (1).

While there has been considerable work on the version of the problem just presented, the accuracy of the
data that has been generated has not been sufficient to arrive at the biologically correct solution. Because
of this, the experimentalists have gone on to map/order a subset of anchored probes using other technologies
such as FISH-mapping, and to further select end-probes from the ends of a subset of the clones in the dataset.
While this data only makes the problem more complex and less tractable from a theoretical point of view,
in practice, 1t considerably limits the solution space.

Suppose A = < ay,as,as, --aj4 > is the list of the anchored probes in their known order. There can
be errors in these maps. If anchored probes are mislocated at rate o (typically 1%), then an easy extension
of the analysis of [AKWZ95] reveals that it suffices to add the term M - fa(w) to the objective (1) above,
where fa(w) is the number of mislocated anchored probes with respect to m, and the constant M is the
log-likelihood ratio: M = —In 2-. More generally, if one knows that probe p; is to the left of p; with
probability v, then any order placing p; to the right of p; should be penalized an extra —In 2.

In this paper we consider the physical mapping problem including end-probe and anchored-probe infor-
mation. We first give a 0/1 LP formulation and associated relaxation that models all the data and errors
discussed above. What is appealing here is that the LP framework is so generic that when and if new forms
of data become available, one is likely to be able to rapidly incorporate them. In the second part, we then
give a heuristic algorithm that specifically takes advantage of these additional data items to create the best
possible global ordering of the 2- or 3-connected contigs of Arratia et al. [ALTWO91].

2 An Integer Linear Programming Model

Consider first the problem where one is given the m x n hybridization matrix D = [dp.] and the only
phenomenon to be modeled are false positives and negatives. Two sets of 0/1 variables are required for the
LP formulation. There are mn t-variables representing a proposed selection of “true” probe-clone incidences:

" 1 if probe p actually is incident to clone c.
pe 0 otherwise.

There is a one-to-one correspondence between the ¢,. variables and the observed hybridization matrix
D(P,C):

Ao — { 1 if probe p is incident to clone c.

pe 0 otherwise.

Then a false positive is represented by the clause (d,. = 1 A tp,. = 0), which is translated into the linear
equation d,.(1 —t,.) = 1. A false negative is similarly represented by the equation tp.(1 — dpc) = 1. There
is a second set of m? z-variables representing a proposed ordering of the probes:

| 1 if probe pis to the left of g.
P47 0 otherwise.

Directly translating equation (1) in terms of these variables, the LP objective is to minimize the sum:

ZP'dPC'(l_tPC)+N'(1_dpc)'tpc (2)
cp

which is a weighted combination of the ¢-variables (all other items are constants). There are two groups of
constraints, one set insuring that the z-variables encode a permutation, and the second insuring that the
t-variables encode interval graph incidences with respect to the z-permutation.

Permutation Constraints:
o z,,€{0,1}.

® x4+ g = 1. These insure antisymmetry. Informally, probe p is either to the left of probe ¢, or it is
to the right of q.

® Zpq+ Tgr — xpr < 1. These insure transitivity. Informally, if probe p is to the left of probe ¢, and ¢ is
in turn to the left of probe r, then p is also to the left of r.

Betweeness Constraints:
o t,. €{0,1}.
o (1 —=zpg)+ (L —zgr) + (1 —tpe) + tge + (1 —t;c) > 1. These insure interval graph incidences.

Informally, the last constraint asserts that if probe ¢ is between probes p and r, and probes p and r are both
incident to clone ¢, then probe ¢ has to be incident to clone ¢ also. Note that there are O(m?) antisymmetry
inequalities, O(m?) transitivity inequalities, and O(m?®n) betweeness inequalities. It is interesting to note
that the constraints on z-variables are those of the much-studied linear-ordering problem [Rei85] and the
betweeness constraints are closely related to the betweenness problem [Opa79].

Modeling Chimeras: Chimerism requires the addition of n y-variables indicating whether a given clone is

chimeric or not:
o= { 1 if clone ¢ actually is chimeric.
c

0 otherwise.

One must further add the term)~ Cx. to the objective (2) of the LP problem, constrain the variables
Xc € {0,1} to be 0/1, and augment the betweeness constraint as follows:

o (1—zpg) + (1 —zgr) + (1 —tpe) +tge + (L —trc) +xc > 1.

Informally, if probe ¢ is between probes p and r, and probes p and r are both incident to clone ¢, then either
probe ¢ is also incident to clone ¢, or clone ¢ 1s a chimera. Notice that this constraint is problematic in that
once a clone is designated a chimera, there is no way to constrain the probes incident on it as being two or
more contiguous blocks of probes. However, if the data is not adversarial, the cost of designating a clone as
chimeric, and the costs of false negatives and false positives prevent the arbitrary assignment of probes to
clones.

Modeling Anchored Probes: For each anchor a; € A, one must add a variable mis,; that indicates whether
or not the probe is mislocated in the order of A:

. 1 if anchor a; is mislocated.
Mi3a; 0 otherwise.

One then adds the term), Gmis,, to the objective (2), and adds the constraints:
® Tg.q; + misq, + misg; > 1 foralli <j.

Informally, either anchor a; is to the left of anchor a;, or at least one of a; or a; is misplaced. Including
anchors into the data adds |A| variables and O(|A|?) constraints. Note that |A| is generally much smaller
than m.

In general, any partial ordering information between probes may be incorporated. For example, if a
probe p is known to be to the left of probe ¢, we can just set x,, to one. If probe p is to the left of probe

q with some probability 7, this fact is easily incorporated into the objective function by adding the term
—In 2 %z,
1— *Tpq

Modeling End-Probes: Modeling end-clone information does not require new variables. For a clone ¢ where
probes p. and ¢, have been extracted from both ends of the clone, one adds the (m — 2) constraints:

® Ty + T+t <2

Informally, the constraints insures that either probe r is between the two end probes pe,qe, or it is not
incident to clone c. If only one end-probe, say g. is known for clone ¢, then one adds the O(m?) constraints:

® Ty + g+ tpe+1. <3

Informally, the constraints insure that if ¢, is between p and 7, then one of p or r i1s not incident to c.

2.1 Relaxations

The preceding treatment demonstrates the versatility of the LP framework as one in which to express a
physical mapping problem involving a variety of, often partial, constraints. The difficulty is that 0/1 and
integer LP problems are NP-complete. However, there has been much work on approximation algorithms
based on relaxing the integrality constraints, solving the resulting real-valued LP problem, and then applying
rounding heuristics to get back to a feasible integer solution that is often near-optimal [RT87, Shm95]. We
chose such a relaxation scheme for the following reasons:

e Linear programming is polynomial time solvable. There exist both, practical algorithms for solving
linear programs, and a wide variety of software.

e There is the hypothesis that the linear programming relaxation retains enough of the structure of the
original problem to be a useful weak representation [CR96]. Therefore, we hope that the fractional
values that result from a solution to the relaxed linear program will provide enough useful information
about the structure of the optimal solution.

e Several algorithms exist for rounding the fractional values of the variables, in a fashion that the resulting
algorithm provides provably good solutions. That is, there is an approximation bound on the goodness
of the solution. See Raghavan and Thompson [RT87] for randomized rounding, and Shmoys [Shm95]
for a survey on approximation algorithms for combinatorial optimization problems.

For our first technical result, it is necessary that all noninformative clones and probes be removed from
the problem. Specifically, a clone that has one or no probes incident to it does not provide any help in
inferring probe orderings and can be removed. Also, a set of probes that are all incident to exactly the same
set of clones cannot be distinguished /ordered and may be collapsed to a single probe. The procedure below:

repeat
RemoveSingleIncidenceClones();
ReduceEquivalentProbes();
until (no change);

filters the data set so that every pair of probes is distinguishable and every clone has at least two probes
incident to it.

Proposition 1 After filtering, every pair of probes in the data is distinguishable. That is, for every pair
of probes p; and p; , there is a clone ¢ such that exactly one of p; or p; is incident to it. Clone ¢ also has
another probe pg, k # 1,j incident to it.

C1 . .

2 . .

C3 ————o—o—

C4 ——————————
C5 . .

Figure 1: An example layout of clones and probes.

Given a filtered data set, two probes p and ¢ are said to be connected, written p ~ ¢ if there is a clone
incident to both probes. The equivalences classes of probes induced by the reflexive and transitive closure,
~* of the relation ~ are called contigs. Clearly, there is no possible way to order probes in different contigs.
Given a filtered data set, the physical mapping problem is to find the most probable order of each contig.

Consider now, relaxing the 0/1 constraints and letting the variables range over the real numbers between
0 and 1. The immediate difficulty is that an optimal objective value of 0 is obtained by setting all the
z-variables to % and setting ¢, = dp. for all p and ¢. To avoid this degenerate solution we need to select a
pair of probes p and ¢ in each contig and set x,, = 1 for each pair. Effectively, one is arbitrarily orienting
each contig. The interesting result which we prove in the full paper is as follows:

Theorem 1 Consider the relaxed LP-formulation of a filtered physical mapping problem involving only false
positives and negatives. Further assume that each contig has been oriented with the addition of an xpq =1
constraint. If D has the consecutive ones property then the optimal solution to the relazed problem is 0/1
with value 0 for the objective.

In other words, if there are no errors in the data then the relaxed LP solution provides an encoding of an
interval graph consistent with D. Appealing to continuity, one then intuits that the variables drift from their
0 or 1 values as the error rates increase from zero.

Proof: Let ly,....l;,pj,b1,...,bm,pr,71,..., 7y be the ordering along the chromosome of a set of connected
probes. As is clear from the ordering, in this proof we will assume that p; is to the left of p;. In the case
that p; is to the right of py, our proof still goes through, except that the solution to the linear program
produces the reverse ordering r,,...,71, Pk, bm, ..., b1,p5, 0, ..., 1. In figure 1, let B = p; and F = py.

We will first show that having set z;,,, = 1, the values z, ,, = 1 are forced by our constraint system for
all probes p, that are to the left of probe pr. By proposition 1, there is a clone ¢; such that it has exactly
one of p; or pg incident to it — suppose that p; is incident to ¢;. By the same proposition, there is at least
one more probe, say p,,, also incident to ¢;. In figure 1 ¢y = C'l, and A = p,,. Now consider the constraint

Tpipi + Tpipu Fleip; Hleipy —terpe <3 (3)

It is evident that a solution of zero cost has t,. = dy. for all p,c. In the case of equation 3 tc,,,,tc,p, =1,
and t.,5, = 0. Also, we are given that z,,,, = 1. Given these constraints, equation 3 is satisfied only if
Tp.p, = 0, which means that z,,,, = 1. By repeated application of this procedure, z, ,, = 1 is forced for
all probes p, that are to the left of p; and share a clone ¢; with a probe p,, such that z,, ,, =1, and p; is
not incident to ¢;.

Now consider the case of all probes b; to the left of pr such that

Vej(dpie; = 1) = (dpre; = 1) (4)

[]
[]

C1
C2
C3

C4 ——e—o—

C5

C6 ————o—

[]
[]
[]
[]

[]
[]
[]
[]
[]

[]
[]

Figure 2: A layout of probes and clones in which there are no probes p, between p; = B and p, = E that
are both incident to a clone containing pg and a clone not containing pg.

That is, probe pg 1s incident to all clones that contain probes b;. In figure 1 D = b;. We would like to show
that zp,,, = 1 1s forced by the constraints. We first consider the case of probe b,,, the probe immediately to
the left of pg in the probe permutation.

Given probes b, and pg, we know that there is a clone ¢; such that both b,, and p; are incident to it,
and there is a probe [also incident to ¢; for which z;,, = 1 is known. That such an [exists is seen by noting
that there is a set of clones connecting p; to pi. In the set of probes L to the left of p; and incident to this
set of clones, there may be a rightmost probe that is both, incident to a clone with p; and is also incident to
a clone not containing p;. We have already shown that if there is a clone containing p; and not py, then for
all such probes it can be inferred that they are to the left of pg. In figure 1, C' ={. In the case that there is
no such rightmost probe, pg is incident to all clones containing probes in L. But then we have a clone with
both p; and py incident to it, and I = p;. Figure 2 illustrates such a layout.

As by, and py are distinguishable, there is a set of clones €Ly Cn that contain pg and not b,,. In figure
1 clones C'4 is such a clone. Consider the longest such clone ¢ . The following two cases may occur.

1. F(c) ¢ F(c;). Informally, the set of probes incident to ¢ is not entirely contained in the set of probes
incident to ¢;. This case holds in figure 1, as probe G incident to C'4 is not incident to clone €3 = ¢;.

2. F(cl) C F(cj). That is, all probes incident to ¢ are also incident to cj.

In case 1, there is a probe r; incident to cl, and not incident to ¢;. This leads to the following series of
events.

(11) Lril + Tips +tc'rl + tc'pk - tc'l S 3= Tril = 0
Therefore z;,, = 1.

(1.2) 2pp; + ripp Hleji +Htcipe —tejr; <3 = Zpp, =0
Therefore z,,,, = 1.

kT ibm i sbm T jl_. Lribm —
(13) Zppr; T Zrib +tcpk+tcb teir, <3=2rp,, =0
Therefore zp, ., = 1.

(1.4) Zpyb,, + Topr, 1,

¢ Pk
So finally, zp =1.

+tc'r, _tc'bm <3= Tprbm = 0

mPk

We now consider the case 2. As all probes r; # pi incident to ¢ are also incident to ¢;, there is a clone
¢ that distinguishes between pg and r;. Note that any clone containing p; and some 7; has to contain 7.
Therefore in the following, we consider r; = r1. To distinguish between p; and 7, ¢ may contain one of
either r1 or pg, but not both.

(2.1) 1f ¢’ contains pr and not rq, then it perforce contains b,,. In this situation there is no clone
that distinguishes between the permutations b,,, pg, 71, and 71, pg, by, and both permutations are
valid. Figure 3 illustrates this situation when D = b,,, E = pg, FF = r1, C5 = cl, and C4=¢".
Therefore there is no unique valid permutation, a contradiction to our original assumption.

(2.2) If ¢ contains r1 and not Pk, then it contains some other probe r; to the right of p;. If 7; is also
incident to c;, there is a clone that has to distinguish between r;, r;. Continuing, as we have a
finite number of clones, one of two cases will occur. We may eventually find a clone that contains
some probe 7, that is not incident to ¢;. At this point we can repeatedly apply case 1, to show

.pr = 1. If there is no such probe ry, then we revert to case 2.1, and have no unique valid
permutation. Figure 4 illustrates this case, with Cb = c”, G=r;,and H = ry.

Lb

The case for forcing z,,, = 1 follows similarly. Finally, if all clones that contain p; also contain py, it
remains to be shown that for all probes /; to the left of p;, ®;,,, = 1 is forced. Letting p; be immediately to
the left of py, and I; be immediately to the left of p;, an argument exactly the same as above can be made
to show that z;,,, =1 is forced. Hence we have shown that for all probes p, to the left of p; the constraint
system forces z, p, = 1. Using symmetry it can be shown that z,,,, = 1 is forced for all probes p, to the
right of probe p;. For all probes r; to the right of pi, we can show in a manner similar to the above that
Tp,r; = 1 1is forced by the variables z,.,, = 1. Also for all probes I; to the left of p;, #;,,, = 1 is forced by
the variables z;,,, = 1.

All that remains to be shown now is that an integer value is be forced on every variable z,_p, for arbitrary
probes pg, pp. This is fairly easy now — we have shown that integer values have been forced upon all the
variables Tp,p., Tp.pi, Tpap;> Tp;pa- OF these variables, we start with any one whose value is 1. Using that
variable, in a manner exactly as above, an integer value is forced upon the variable z,_,,. Theorem 1 |

For a current real project, m is four thousand and n is six thousand. Our LP formulation requires
O(mn + m?) variables and O(m?®n) constraints, for a total of thirty-six million variables and thirty-two
trillion constraints. Borrowing several ideas from cutting plane and branch-and-cut algorithms as described
in Jinger et al. [JRT95], and Padberg and Grotschel [PG85], we reduce the number of variables and
constraints by keeping only the tightest inequalities/facets of the polyhedral solution space. For a proper
treatment of solving physical mapping formulations to optimality using branch and cut approaches, see
Christof et al. [CJKT97]. In this paper, we find that the simple expedient of eliminating a large number of
easily identified constraints and heuristically rounding gives competitive results while retaining the flexibility
of not having to redesign the algorithm with introduction of each new constraint type.

Reducing Interval Graph Constraints: Minimizing the objective function involves setting the value of the
t-variables as nearly identical to their corresponding D-matrix values as possible. Thus the betweeness
constraint x,q + Zgr +tpc +1rc —t4c < 3 tends to constrain the values of its variables only when dpe = d,c = 1

A B C D E F
C1 o o
2 o o
C3 o o o o
C4 ——e—
C5 ————

Figure 3: A layout of probes and clones that conforms to case (2.1). Both probe permutations (D, E, F')
and (F, E, D) are valid.

[]
[]

C1
C2

3 ——eo—0o—0o—o—

[]
[]

C4 ——o—

C5
C6

[]
[]

[]
[]

Figure 4: A layout of probes and clones that conforms to case (2.2). Clone C'6 and probe H is used to infer
backwards to zpg = 1.

and d,c = 0. So we retain only those betweeness constraints for which the D-matrix values are as just stated.
Typically, the average number of probes incident to a clone w is a small constant (e.g., 2 to 5), so that the

number of constraints remaining is O(w?m).

Remouving Transitivity Constraints: In the case of input data that contains no errors, one observes in the
proof of Theorem 1 that the anti-symmetry and the betweenness constraints are the only ones necessary to
obtain a valid permutation. The transitivity constraints are non-constraining and only gradually become
so as the percentage of false positives increases. Thus we remove them, and later show another method of
coping with false positives.

This culling of constraints leaves us with a real-valued LP system with O(m? 4+ w?n) constraints and
O(m(m + n)) variables. While this does not permit us to solve the problem over an entire data set, it does
allow us to solve problems where m is 50-100 — adequate for the 2- or 3-connected clusters of the global
algorithm of the final section. The solution to the relaxed system gives fractional values. Our next task is
to use these to arrive at a probe ordering that is hopefully near to optimal.

2.2 Probe Ordering

We interpret the values of the variables x,,,, as being the weight assigned by the constraint system to the
probe p; being to the left of probe p;. Now consider the graph G = (V, E), such that the set of probes is the
set of vertices V. There are directed edge between each pair of vertices, and the weight of an edge (pi,p;)
is the value of x,,,, as computed by the linear program. In the case that all z,,,, have integer values, a
topological sort of all the vertices in GG yields an optimal probe ordering. In the case that these values are
fractional, we appeal to the objective of the linear-ordering problem [Rei85], to design a greedy heuristic
that seeks a permutation m of the probes maximizing Zﬂ'(j)<ﬂ'(k) Tr(j)n(k)- We build the order from left to
right, picking the next probe in the ordering at each step. Let m; be the probe permutation computed thus
far, and let U be the set of probes not yet placed in the permutation. For each vertex p € U, compute the
sum quU_{p} Zpq. Greedily pick the probe p for which this sum is maximal, remove it from U and let
Tg41 = 7k - p. If there is a tie for the maximum, then for each tied probe p, solve the relaxed LP formulation
where the relevant z-variables are set to reflect the assumption that 7y - p is the ordering of the £+ 1 leftmost
probes. Resolve the tie by picking a probe for which the value of its associated LP objective is minimal. We
call the ordering that results the basic LP order. Figre 5 gives the pseudocode for the heuristic.

The heuristic above produces a probe ordering that generally consists of blocks of probes that are correctly
ordered, separated by break points where the adjacent probes have few clones in common. These breaks
are generally due to poor choices made by the tie-breaking strategy of the heuristic above. Proceeding
formally, suppose the basic LP order is < p1,pa, - pm >. A point ¢ is a break point if [N (p;) "N (pip1)| < 7

U« {pla"'7pM}
T 0
while U # 0 do
maxout = 0
fori < 1to M do
if (p; € U) then
outgoing[p;] + ijeU Tpip;
if (outgoing[p;] > maxout) then
next-vertex < {p;}
maxout < outgoing[p;]
else if (outgoing[p;] = maxout) then
next-vertex ¢ next-vertex U{p;}
if (|next-vertex| = 1)
TT; ¢— next-vertex
else
new-objective-val < co
for each p; € next-vertex
objective ¢ solve-linear-program(m U p;)
if (objective < new-objective-val)
next-vertex i
T — next-vertex

U%U—ﬂ'i

Figure 5: The probe ordering heuristic derived from the integer linear programming formulation. solve-
linear-program is a procedure that generates and solves the constraints described in the linear program
formulation of physical mapping for the probes in U.

where N (p) is the neighborhood of clones incident to p and threshold 7 is chosen so that one obtains 10-30
break points. A block is a segment of probes between two consecutive break points. We then proceed to
translocate and/or invert blocks to other break point sites, accepting such a move if it reduces the cost of the
objective function. This algorithm is essentially the 2-OPT local search algorithm used by Alizadeh et al.
[AKWZ95], except that our moves are non-random. In all of our trials, this swapping algorithm converged
to a near-optimal solution after 5 to 10 moves. We call the ordering that results the swap-refined LP order.

2.3 Computational Results

In this section we present examples of the basic and swap-refined LP orders that result from these heuristics.
We present results over both simulated data and the real mapping data set generated at Lawrence Berkeley
Labs for Drosophila.

Simulated Data Characteristics: The left end points of the clones were generated by a Poisson process at
a rate which produced an average clone coverage c¢. We varied ¢ between 5 and 7. Clone lengths were
chosen randomly and uniformly between a pre-specified interval [minlen, mazlen]. Each clone was specified
chimeric with probability x = 5%. The probes were generated by a Poison process at a rate which produced
an average of w probes incident to each clone. We used w = 3 or 4 for our experiments. A probe was
extracted from the end-point of a clone with a 30% probability, and a probe was designated an anchor with
a probability of 20%. For clone fingerprints, we varied the false negative rate, €, between 10% and 20%, and
the false positive rate, §, between 5% and 10%. The data sets used typically had between 5000 and 8000
clones, and between 3000 and 4000 probes.

Drosophila Data Characteristics: The data from the Drosophila mapping project has a clone coverage of 5,
and a probe coverage of 2. The false negative rate is estimated at around 20%, the false positive rate as
somewhere between 4% and 10%, and the chimera rate is practically zero. A little more than 50% of the
probes have been extracted from the ends of clones, and 41% of the probes are anchored to a FISH map.
The data consisted of 7446 clones and 3120 probes.

All of the data sets above were first clustered into 2-connected contigs as part of the global algorithm
described in Section 3.1. These clusters tend to have much lower false positive and chimera rates, generally
around 1% each. So in Figures 6-13 we present results of the LP heuristic on clusters of probes and clones
with these lower rates as these are the intended context. However, we also present the results of running
our algorithms on data that has not been pre-processed and hence contains high rates of chimeras and false
positives in Figures 14 and 15. Due to practical considerations such as the number of constraints generated,
the data sets for which we ran our algorithms without pre-processing were small, typically containing between
a 100 and 150 clones and 30 to 70 probes.

For probes sets of different sizes, Table 1 gives averages for the number of clones associated with the
probe set, the number of constraints generated after all relaxations are applied, and a lower bound on the
number of constraints that would have been required without the described relaxations.

Probe | Average Clone | Average Constraint | Original Constraint
Set Set Set Set

15 22.11 3090 78,225

20 25.00 5778 208,400

30 37.75 16,727 1,155,362

57 75.00 56,791 14,077,917

Table 1: Given data with clone coverage 5, and probe rate 4, the average number of clones associated with
probe sets of particular sizes, as well as the number of constraints generated by our relaxation, and a lower
bound on the number of constraints required without relaxations.

Drosophila Data Ordering Plots: The graphs in Figures 6, 7, and 8, are for randomly selected 2-connected
contigs from the Drosophila data set. Each plot is of an LP-computed ordering against the optimal ordering
according to objective (1). The plot at left is of the basic LP order and the plot at right is of the swap-refined
LP order.

LP Probe Permsation
°

LPISwzp Probe Pemutaion
°

10 15 1 15
Optimal Probe Permutation Optimal Probe Permutation

Figure 6: Real data. Clone coverage 5, Probe coverage 2, false negative rate 0.20, false positive rate 0.01,
and chimera rate 0.

10

LP Probe Permsation
°

LPISwzp Probe Pemutaion
°

10 15 2 1 15
Optimal Probe Permutation Optimal Probe Permutation

Figure 7: Real data. Clone coverage 5, Probe coverage 2, false negative rate 0.20, false positive rate 0.01,
and chimera rate 0.

14 | ° B 14 | ° B

12 | - 4

10 | ° 4

LP Probe Permutaion
5
T
o
9
.
LPiSwap Probe Pemutaion

14 16 18 20 2 a 6 14 16 18 20

8 10 12 8 10 12
Optimal Probe Permutation Optimal Probe Permutation

Figure 8: Real data. Clone coverage 5, Probe coverage 2, false negative rate 0.20, false positive rate 0.01,
and chimera rate 0.

Stmulated Data Ordering Plots: The graphs in Figures 9-13 are for randomly selected 2-connected contigs
of the simulated data sets, and Figures 14 and 15 are for two simulated but small, high false positive and
chimera rate, data sets. The z-axis in the plots in these figures represents the original permutation, which
is known as the data is simulated. In the graph at left the basic LP order is plotted as diamonds, and the
optimal ordering according to objective (1) is plotted as plus-signs. The graph at right plots the swap-refined
LP order as diamonds along with the optimal ordering as plus-signs.

The basic quality of the computed permutations can be estimated by how closely the plot follows the
diagonal or the anti-diagonal. We further computed the fraction of correct probe adjacencies, i.e., we compute
the percentage of left and right neighbors computed correctly for all probes. The following observations hold:

e In all cases, neighboring probes in the original or optimal permutations are usually neighboring in the
computed permutations. For the Drosophila mapping data, the fraction of correct adjacencies in the
swap-refined LP order (where the optimal permutation was taken as the reference) was 0.895. For
simulation data of varying characteristics, the fraction of correct adjacencies averaged 0.934.

e For both simulated and real data, the computed permutations are very close to the optimal permu-
tations. For the Drosophila mapping data, the average ratio of the score of the swap-refined LP
permutation and the score of the optimal permutation was 1.47. For simulated data of various charac-
teristics, this average ratio was 1.46. To give additional perspective on this ratio, Table 2 presents the
score of the swap-refined order, the score of the optimal/original permutation, the ratio of these two
scores, the number of inversions (i) and translocations (t) required to edit the computed permutation
into the reference one, and the extra false negatives (fn), false positives (fp), and mislocated anchors

11

LP Probe Permation
8
T
*
.

LPISwzp Probe Pemutaion

10

30,
Original Probe Permutation

Figure 9: Simulated data. Clone coverage 7.5, Probe coverage 4, false negative rate 0.20, false positive

0.01, and chimera rate 0.01.

30,
Original Probe Permutation

50

e o
optimal + |

LPISwzp Probe Pemutaion

LPiSwap o

opima + |

-
as - -
.
-
-
s0 - -
-
+ %o

25 - -
s -
| -
H -
5 20 - -
8 +
£ +
s =l

10

sl

°
s 10

15 20
Original Probe Permutation

Figure 10: Simulated data. Clone coverage 7.5, Probe cover

0.01, and chimera rate 0.01.

15 20
Original Probe Permutation

age 4, false negative rate 0.20, false positive

LPISwzp Probe Pemutaion

£

s

sl

|
5 - -
§ . -
¥ o Le L
£ o +
g - .
= -
a sl .

w0l - -

- -
- -
- .
- -
sk - -
- -
- .
R - hd L L
B i

15 20
Griginal Probe Pamutation

Figure 11: Simulated data. Clone coverage 7.5, Probe coverage 4, false negative rate 0.20, false positive

0.01, and chimera rate 0.01.

15 20
Griginal Probe Pamutation

rate

rate

rate

w0 | w0 |
opumg & Sang €
i i
. .
as | . 4 as | .]
B B
. .
. .
0| o 4 sl .3 4
. .
. s -
. .
E - & -
. .
3 . 3 .
g ol . 4 & »f . 4
g - T -
5 . s L
. £ .
| . 4 | . 4
. .
. .
w0l . 4 w0l . 4
. .
. .
st oo 4 st 4
23
s 10 is E3 3 20 10 is E3 3 20

Figure 12: Simulated data. Clone coverage 5, Probe coverage 4, false

20 25
Original Probe Permutaiion

20 25
Original Probe Permutaiion

negative rate 0.20, false positive

0.01, and chimera rate 0.01.
of PYPgean wF E———
PEEE: S ¢
. .
13 + -] -
g - © g -
E - & -
-4 - z -
] s b - 4 & s b - 4
g - 3 -
5 - g -
. .
. .
. .
.
.
.

Figure 13: Simulated data. Clone coverage 5, Probe coverage 4, false

0.01, and

Linear Programning
8

20

10

Figure 14: Simulated data. Clone

15 20
Original Probe Permutation

chimera rate 0.01.

30 40 50 60
Original

coverage 5, Probe

0.1, and chimera rate 0.1.

LPISHp

20

10

15 20
Original Probe Permutation

negative rate 0.20, false positive

30 40 50 60
Original

coverage 3, false negative rate 0.20, false positive

13

rate

rate

rate

Linear Programning

LPISHp

Figure 15: Simulated data. Clone coverage 5, Probe coverage 3, false negative rate 0.20, false positive rate
0.1, and chimera rate 0.1.

(ma) along with their weights in parentheses, called for the computed permutation, for each of the
graphs displayed in Figures 6-13.

Heuristic | Optimal Ratio Inversions & Overcalled
Score Score of Scores | Translocations Errors

Figure 6 20.43 12.82 1.59 1)+ 1(t) 3 fn (1.60) + 1 ma (2.94)
Figure 7 31.94 14.00 2.28 1 (i) 3 fp (13.14)+ 3 fn (4.80)
Figure 8 17.21 12.82 1.34 1 (i) 1 fp (4.38)

Figure 9 11.20 9.60 1.16 1 (i) 1 fn (1.60)

Figure 10 38.76 25.17 1.54 1 (i) 1 fp (4.38) + 1 ma (9.21)
Figure 11 15.58 15.58 1.00 0

Figure 12 9.18 4.80 1.90 1 (%) 1 fp (4.38)

Figure 13 11.19 9.60 1.16 1 (i) 1 fn (1.60)

Table 2: A perspective on the quality of the permutation as estimated by the ratio of the heuristic score to the
optimal score, versus the number of inversions and translocations required to edit the heuristic permutation
into the optimal one. The last column represents the extra false negatives (fn), false positives (fp), and
mislocated anchors (ma), called for the heuristic permutation.

e Most differences between the computed permutation and the original permutation involve swaps be-
tween probes or blocks of probes at adjacent positions. In general, these swaps are the result of an
abundance of false negatives in the observed data. Thus the computed permutation actually conforms
to the observed data. Due to these swaps, the percentage of correct adjacencies is a somewhat pes-
simistic measure of the quality of permutations produced. Counting translocations and inversions is a
better measure but unfortunately difficult to compute.

o It is also clear that for all data, the swap-refined LP order is very nearly optimal/correct.

3 Data Decomposition and Anchor ordering

A real mapping project may have anywhere between five thousand to eight thousand clones and twelve
hundred to three thousand probes. But our LP-based algorithm for physical mapping is only viable for
problems up to 100 probes. This is also the size range of the largest linear ordering problems (recall the
similarity) solved by cutting plane methods and the size of problems reported in the work of Alizadeh et al.
[AKWZ95].

14

We therefore need to decompose a large problem into smaller, relatively independent subsets or clusters
that can be ordered separately without significant loss of accuracy. We further desire that the clusters be
small enough that we can solve them optimally using our LP-algorithm to provide an initial solution to a
branch-and-bound algorithm. Given ordered clusters we then seek to connect those that can be linked with
high confidence and position the clusters using whatever anchored probes are available. It is our opinion
that producing such a partial map is superior to trying to optimize a complete solution as the links chosen
across stretches where data is sparse or inaccurate are usually wrong. We discuss approaches for the three
phases — clustering, ordering, and linking — in a sequence of subsections concluding with empirical results.
Before launching into the details we give the following synopsis of our overall strategy for determining a
physical map:

1. Clustering. Cluster together probes and clones that are highly likely to be in a contiguous region of
the chromosome.

2. Cluster Ordering. For each cluster, compute an initial probe permutation for the probes within it,
using the linear programming heuristic followed by the optimizing phase. If the number of probes in
the cluster is less than 60, use branch and bound to compute the set of optimal probe permutations
for the cluster. Otherwise use branch and bound to compute optimal probe permutations for small
sections of the cluster.

3. Linking Clusters. Identify the highly likely connections between clusters. To do so, first delete the
connections highly likely to be spurious as follows.

o Delete connections between clusters containing anchors that are highly likely to be non-adjacent
on the genome.

e Lock in one and two edge paths between clusters containing anchors that are highly likely to be
adjacent on the chromosome. Delete all other edges that interfere with the path, from the clusters
being connected.

3.1 Clustering

Chimeras and false positives incorrectly suggest that regions of a genome may be close together when they
are actually far apart. This is why these two types of errors are much more troublesome in comparison
to false negatives, which at best lead to small inversions in the probe ordering and at worst make the map
discontinuous. We therefore focused on a clustering method which filters false positives and chimeras. Recall
that N (p) is the set of clones incident to probe p. Given a threshold u, we say that p and ¢ are u-connected,
written p ~, ¢, iff |N(p) N N(¢)| > u. Informally, two probes are highly likely to belong to the same region of
the map if they are both incident to at least u of the same clones. The equivalence classes of probes induced
by the reflexive and transitive closure, ~% of the relation ~, are called u-contigs.

This partitioning of the probes constitutes our initial clustering of the data set. If § is the rate of false
positives and chimeras in the data, then the probability that a probe does not belong to its u-contig is §.
In practice, given § < 0.1, u set to two or three achieves an adequate level of accuracy in the cluster. Given
a u-contig P, the corresponding clone-cluster Cp = Up qep N(p) N N(q). Informally, a clone belongs to a
cluster Cp if at least two probes in P are incident to it. Note that clone clusters are not necessarily disjoint.

It is important to observe that our clone clusters based on the u-contigs of probes, are not the same as
the clusters of clones more traditionally built by linking clones that share u probes in common. The latter
can lead to incorrect joinings due to the presence of chimeras in the data. For example, suppose N(p) =
N(q) = {a,b}, N(s) = N(t) = {b,c} and clone b is chimeric in that probes p and ¢ are far away from s and
t. Then our technique produces 2-contigs {p,q} and {s, ¢} and corresponding clone clusters {a, b} and {b, ¢},
where as the clone-based linking would place all four probes and three clones in the same vicinity.

Our 2-contigs are the double-linked islands proposed by Arratia et al.[ALTW91]. These authors studied
the coverage statistics of these versus 1-contigs. If there are an average of w = 3 probes per clone, than

15

95% of the genome will be covered by 1-contigs if the clone coverage ¢ is 3.5, where as ¢ must be 6 to
guarantee the same level of 2-contig formation. To achieve 99% coverage, ¢ = 10 is required for 2-contigs.
Most experimentalists are using ¢ = 5 in practice, so we cannot simply discard the clones and probes not in
a 2-cluster. We attempt to utilize these in the final phase of our global strategy.

For the next phase, cluster ordering, the clusters must be on the order of 60 probes or less in order for
our algorithms to solve them optimally. If clone coverage ¢ is high, one may have a number of 2-contigs that
are significantly larger than this. One approach is to subdivide the 2-contigs into 3-contigs and then apply
a block-swapping heuristic to the 3-contigs. However, one invariably has end-probe information that can
effectively be used to partially order the probes in a large contig.

Using End Clones for Ordering. Probes from the ends of clones are natural splitters of a u-contig,
say P, into smaller sets. Consider a clone ¢ in Cp for which e, f € P are end-probes extracted from the ends
of e. Let L, M, and R be three probe sets that are initially {e}, all probes in P — {e, f} incident to ¢, and
{f}, respectively. For each probe pin P — (L UM U R), add p to the set containing the probe ¢ for which
N(p) N N(q) is the largest. Continue until all probes of p have been placed in one of the three sets. While
clearly a heuristic procedure, it is highly likely that the partitioning of P into the three parts L, M, and R
is correct, where, of course, M is between L and R.

By selecting a sequence of end-sequenced clones and computing the refinement of the 3-partitions com-
puted heuristically from each, one can arrive at a progressively finer partitioning of a u-contig into ordered
sub-blocks of the probes in a contig. Indeed, if one desired and there was sufficient end-clone information,
one could use this procedure to compute an ordering of the probes. We chose to use it, however, primarily
as a mechanism for accurately decomposing large 2-contigs into blocks sufficiently small for our intra-cluster
ordering algorithms. In general, end-sequenced contigs with the greatest number of probes incident to them
are preferable for this purpose as they best seed the set M in the heuristic. For example, Figure 16 is the
result of ordering a probe set of size 84. The ends from four clones were used to partition the set into smaller
sets of size 1, 29, 4, 4, 4, 3, 28, 4, 11, and 1, each of which were individually ordered, and the results then
combined.

5
&
S tin prog o8 4

obsarved
8

Figure 16: Simulated data. Clone coverage 8, probe coverage 4, false negative rate 0.20, false positive rate
0.01, and chimera rate 0.01.

3.2 Intra-Cluster Probe Ordering

Given a cluster of 60 probes or less the next problem is to optimally order the probes within the cluster.
We use a branch-and-bound procedure that explores the space of all permutations of probes. As with all
B&B algorithms the quality of the initial upper bound on the score is critical in determining how much of
the space can be eliminated by the bounding step, and thus how large a problem one can solve. We use the
swap-refined LP order as the initial permutation and its cost as the initial upper bound. At each step in the
algorithm, we need to compute both the cost of extending a partial permutation m; at the right end with a
probe p, and the upper bound on the cost of completing this permutation. Both these costs are computed

16

incrementally, using extensions to the recurrences of [JM95] for handling end-probe and anchor information,
as described in a bit later in this section.

The algorithm explores the space of permutations by adding probes to the right-end of an initial prefix,
m;, of length i of a permutation. Given m; as the current prefix, probes are considered for the ¢ 4+ 15t spot in
decreasing order of the number of clones they share in common with the rightmost probe of m;, i.e., for probe
p: [N(p)N N (m;(i))|. Ties are broken arbitrarily. Given the selection of a next probe p, the algorithm sets its
current prefix m; 41 to m; - p and determines if any extension of m; 41 to a full permutation will score less than
the current upper bound. If not then the algorithm backtracks, otherwise it proceeds with the extension of
mi+1. If a complete permutation 7, is achieved and it scores better than the upper bound, then the upper
bound is reset and m,, is recorded as the instance achieving it. If the score equals the current upper bound,
then m,, is added to the list of instances achieving the bound.

It remains to describe the lower bound on the score of the best possible extension of a prefix m; used
to cull the search. In effect what we know 1s the first ¢ rows of D, and we seek to bound the cost of the
best completion of the matrix. To efficiently compute a lower bound in O(n 4 lgm) time, we consider the
best extension in which the values in each column may be permuted independently of each other. These can
easily be scored using the recurrences presented in [JM95] extended to accommodate the longest increasing
sequence computation required for scoring anchors.

Note that this B&B subprocedure is not a heuristic. It solves mapping problems with up to 60 clones
optimally in less than an hour of compute time. This meets the size range handled by previous work which
cannot guarantee optimality. For example, this procedure gave us the optimal orderings of the Drosophila
contigs used for the z-axis in Figures 6-8. We conclude this section with a detailed treatment of how we
compute the score of a potential permutation prefix m; and its best possible extension, in the presence of
end-clone and anchored probe information.

Modeling End-Clone Information: Given a permutation prefix 7;, it induces a column prefex V; for the
column of Dy, for clone V. If the data were perfect, we would expect V’s complete column V,,, to be matche
by the regular expression R' = 0*el*e0* where the two e’s represent the probes known to be the two ends
of V. But in general, if it is a k-chimeric clone, it would have the form R*¥ = 0%¢(1*0*)%~11*¢0*. The best
possible corrective sequence for V,,, is the minimum cost series of false positive and negative corrections that
take one from V,, to the given regular expression. In other words, we seek the minimum weighted Hamming
distance, A(Vp,, R°) for each ¢ € [1, k] where replacing a 1 with a 0 costs P and replacing a 0 with a 1 costs
N. The overall minimum cost correction to the column is then mine A(Vy,,, R°) + (¢ — 1)C. As in our paper
[JM95], we developed a set of intertwining dynamic programming recurrences which compute A(V;, @) for
all i and @ for each of the patterns 0%, 0%e(1*0%)°=11*, 0%e(1*0%)¢, and 0%e(1*0*)°~11*e0* where ¢ € [1, k].
This permits the evaluation of the best possible correction and extension of V; for m; in O(k) time given m;_1

and A(V;_1, Q) for the 4k choices of Q.

Modeling Anchored Probes: Suppose the set of anchored probes A are known to be in the order a; <
az < ag < --- < ajq). Given a proposed probe order 7, we need to determine the minimum number of
anchored probes that can be considered to be out of order with respect to w. This amounts to solving the
longest increasing subsequence problem [Man89] over the sequence ma, a, - - Mg ,: the number of anchored
probes not in the increasing subsequence are counted as out of ordered and penalized M = In ;= apiece as
described in the introduction. Such a subsequence can be found in O(|A|lg|A|). Moreover, given the state
of this well-known algorithm for the partial order m; and an ordered list of those probes not yet positioned
by m;, an easy exercise gives an upperbound on the best possible completion in O(lg A) time.

In real data sets, the anchored probes are not necessarily totally ordered but only positioned within
intervals of the genome which may overlap with each other. This is true, for example, of the the Drosophila
mapping project at Lawrence Berkeley Laboratories: probes are extracted both from genes and clones whose
location along the previously constructed physical maps is known. Recall that both genes and clones are
subintervals of the chromosome. Hence for each probe extracted from a pre-mapped gene, marker, or clone,
the anchor information is in the form of a subinterval of the chromosome — the probe may occur at any

point along this subinterval. For large subintervals such as genes, several probes may be extracted from

17

the subinterval. For probes extracted from clones, the differences from total order occur when probes are
extracted from overlapping subintervals.

To translate such subintervals back to our model of anchors, we order all subintervals according to their
beginning locations along the chromosome. The probes are then assigned anchor locations according to the
order of the subinterval in which they occur. Hence there may be several probes assigned to the same anchor
location. In terms of scoring a permutation of such probes, the method for computing longest increasing
subsequences is easily adapted to account for non-unique integers in the integer sequence. Unfortunately, our
method of assigning anchor locations to probes may run into trouble with probes extracted from overlapping
subintervals. As an example, let probe A be extracted from interval [5,50], and probe B be extracted from
interval [30,70]. Then by our method probe A is assigned to be anchor 1, and probe B is assigned to
be anchor 2. It should be clear that this assigned order may be wrong. Probe A may have occurred at
location 45, and probe B may have occurred at location 35. However, such irregularities in the assignment
of an ordering to anchors are local, and limited to reversals in the ordering of adjacent anchors. So we
accommodate such swaps by adapting the computation of the longest increasing subsequence accordingly.
In effect, an incoming anchor a; is taken to extend the longest increasing subsequences that end with a;,
where az is equal in value to a;_1, a;, or a;41.

3.3 Linking Clusters

Long range continuity of the physical map may be achieved by determining the connections of highest
likelihood between clone clusters. To begin, consider a graph G¢ whose vertices model each clone cluster of
the probe partitioning step and each singleton clone that does not belong to any clone cluster. For a clone set
C, let P(C) be the set of probes incident to a clone in C. Note that for a clone cluster Cp for probe contig
P, P(Cp) D P. Initially there is an undirected edge from C' to D in the graph G¢ iff P(C)n P(D) # 0.

Our goal is to remove and/or direct as many of the spurious edges of G¢ as possible so that in the
culled graph unambiguous links between clusters become evident. Note that initially G¢ contains so many
spurious edges when the rates of false positives and chimeras are high, that it 1s highly likely that a path
exists between any given pair of clusters. Note that unlike optimization procedures which are trying to select
a path through G¢, our approach is to eliminate the clearly spurious parts and then report what is clearly
unambiguously ordered in what remains.

The first and most obvious method of identifying spurious edges to and from a cluster is to use the set
of optimal or near-optimal probe permutations determined in the previous stage. Clearly, any edges due to
probes in the “middle” of such a permutation are highly likely to be spurious. Proceeding formally, suppose
there is an edge between C' and D because P(C') N P(D) = {p}, that C' = Cp is the clone cluster for probe
contig P, and p is the z'? probe on a computed order for P. The probability that the edge is due to a true
overlap is €™*(®IP1=%) where ¢ is the rate of false negatives. We thus chose to delete all edges to and from
a clone cluster that are due to probes that never occur at the first three locations or last three locations in
any optimal probe ordering. For simulated data with probe coverage 3, clone coverages 5, 7, and 9, false
negatives up to 20%, false positives up to 10%, and chimeras up to 25%, at least 98% of the edges thus
deleted were observed to indeed be spurious.

Next we begin to exploit anchors in order to remove more edges and orient others. First we attempt to
determine which anchors are reliable. If anchors a; and a; are both in probe contig P and |i—j| is large, then
it is more likely that one of the anchors is misplaced if §™n(N(2:).N(25)) < o where « is the rate of mislocated
anchors. If P contains several anchors then the anchor that is not near the majority is labeled unreliable,
otherwise both a; and a; are labeled unreliable. All remaining anchors are considered reliable. Treating
reliable anchors as correct, it then follows that all edges between clusters that contain reliable anchors that
are far apart should be classed spurious. Also, all anchors in P(Cp) far apart from the anchors in P must be
false positives, and all edges adjacent to C'p dependent on these false positives should be deemed spurious.
On simulated data at least 96% of the edges thus deleted are indeed spurious.

Finally, short paths between C' and D when they contain reliable adjacent anchors are usually correct.
We find that single edge paths are correct 95-97% of the time under high error-rate conditions. Two edge

18

paths are found to be correct about 90% of the time. We thus chose to deem paths between such vertices
reliable if their length was 2 or less. Once one “locks in” such connections it is then possible to eliminate
more edges as spurious with respect to these reliable paths. Consider an edge (C, D) of a reliable path. All
edges adjacent to C involving probes at the end of C' overlapping D have a high probability of being spurious
and are therefore deleted. Similarly, all edges adjacent to D involving probes at the end of D overlapping C'
are deleted. Also, the direction of the edge is established by the order of the reliable anchors in the probe
sets of the vertices connected by the path containing the edge. Finally, if the edge (C, D) exists because
P(C)n P(D) = {p}, we have effectively assigned the location of p and all other edges dependent on p may
be deleted. In our empirical trials, at least 95% of the edges so deleted were indeed spurious.

At this point we place all clones at their reliably anchored locations and link them according to the
reliable paths. We then seek any unambiguous connections that remain between clone clusters. We find
in practice that the graph is disconnected, has the occasional unique path between clone clusters, but that
even after the extensive culling above, there are still regions of the graph where alternatives exist. While
one could select a path on the basis of some formal optimization criterion, it seems clear to us that doing so
is no better than picking a path at random. There is simply insufficient reliable data to make the decision.

3.4 Computational Results

For the Drosophila data set, we compared our results with those produced at Lawrence Berkeley Labs. We
found a 99% correlation between our results and their current maps. Nearly all differences involved an
inversion of adjacent probes. To evaluate the quality of the permutations produced on simulated data, we
use the following criteria.

e The fraction of the probes that were placed.

e The percentage of pairs of probes detected as being adjacent, and are actually so in the original
permutation.

Table 3 summarizes the results.

Probe Clone Av. Cluster | Av. Path Fraction of % Adjacencies
Coverage | Coverage Size Size Probes Placed Found
2 5 4.35 4.91 0.85 79.55
2 7 5.71 5.90 0.90 87.53
3 5 5.66 7.89 0.88 84.93
3 7 8.92 9.51 0.97 90.66
4 5 9.26 12.00 0.90 84.04
4 7 15.20 16.94 0.96 71.90
5 5 13.02 20.63 0.93 83.69
5 7 17.65 30.16 0.96 72.97

Table 3: The fraction of the genome covered and the fraction of adjacencies detected for different probe
rates, given clone coverage 5. Also, the average size of a clone cluster with w = 2, and the average size of a
path after connections between clusters have been found.

e The table indicates that there is a significant difference between the size of the average cluster and
the size of the average path after links between clusters have been frozen. This indicates that joining
clusters is very necessary and leads to larger sets of ordered clones on average.

e The column on adjacencies shows encouraging results. The percentage of adjacencies discovered in-
creases as the probe rate increases from 2 to 5, and as the clone coverage increases from 5 to 7. However,

19

keeping clone coverage constant at 5, we discover that increasing the probe rate does not lead to an
increase in the percentage of adjacencies discovered.

We hypothesize that the reason for this is insufficient clone coverage of some regions of the chromosome.
For the regions of the chromosome covered by only one clone, for example, it does not matter how much
we increase the probe rate, as the unreliability of inferences in such regions causes the algorithms to
not make decisions here, and thus miss the adjacencies in that region. In effect, the percent adjacencies
found reflects the percentage of the chromosome with good clone coverage. This reasoning is borne
out by the fact that the percentage of adjacencies increases dramatically when the clone coverage is
increased from 5 to 7, for probe rates 2 and 3.

We also believe that these figures indicate that the percentage of clones ordered correctly may be a
better indicator of algorithm quality than the percentage of adjacencies computed.

4 Conclusions and Future Work

In this paper we have presented a versatile framework for the representation of STS physical mapping data.
The use of constraints makes it easy to incorporate most current data types — random probe-clone incidences,
end-probes, genetic and in-situ information, and results of repeated and pooled experiments. This implies
easy incorporation of future data types too. A relaxation of the framework proves to be practical for large
data sets, and provides near-optimal probe orderings. This approach proves to be more robust to errors in
general, and false positive errors in particular, as compared to previous approaches. We show good probe
orderings for data sets containing high error rates.

Some interesting future work is to design approximation algorithms using this framework. The use of
branch-and-cut methods to derive probe orderings with this formulation deserve exploration. Finally, this
formulation assumes the uniqueness of STS probes. An approach dual to the one used to filter false positives
may work to filter repeats.

References

[AKWZ95] Farid Alizadeh, Richard M. Karp, Deborah K. Weisser, and Geoffrey Zweig. Physical mapping of chro-
mosomes using unique probes. Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithms,
1995.

[ALTW91] Richard Arratia, Eric S. Lander, Simon Tavare, and Michael S. Waterson. Genomic mapping by anchoring
random clones: A mathematical analysis. Genomics, 11:806-827, 1991.

BL76 Kellogg S. Booth and George S. Leuker. Testing for the consecutive ones property, interval graphs, and
g8 g g g
graph planarity using pqg-tree algorithms. J. Comp. and Syst. Sci., 13:335-379, 1976.

[CJKT97] Thomas Christof, Michael Jiinger, John Kececioglu, Petra Mutizel, and Gerhard Reinelt. A branch-
and-cut approach to physical mapping with end-probes. Proceedings of the First Annual International
Conference on Computational Molecular Biology, pages 84-92, 1997.

[CR96] Vijay Chandru and M. R. Rao. Combinatorial optimization: An integer programming perspective. ACM
Computing Surveys, 28:55-58, March 1996.

[GKS94] Martin Charles Golumbic, Haim Kaplan, and Ron Shamir. On the complexity of dna physical mapping.
Advances in Applied Mathematics, 15:251-261, 1994.

[JM95] Mudita Jain and Eugene W. Myers. A note on scoring clones given a probe ordering. Journal of
Computational Biology, 2:33-37, 1995.

[JRT95] Michael Jinger, Gerhard Reinelt, and Stefan Theinel. Practical problem solving with cutting plane
algorithms in combinatorial optimization. DIMACS Series in Discrete Mathematics, 20:111-152, 1995.

[Kou77] Lawrence T. Kou. Polynomial complete consecutive information retrieval problems. SIAM Journal on
Computing, 6(1):67-75, March 1977.

20

[Man89]
[Opa79]
[PG85]
[Rei8&5]
[RT87]

[Shm95]

Udi Manber. Introduction to Algorithms — A Creative Approach. Addison-Wesley, Reading, Massachus-
setts, 1989.

J. Opatrny. Total ordering problem. SIAM Journal of Computing, 8:111-114, 1979.

M. W. Padberg and M. Grotschel. Polyhedral computations. In E. L. Lawler, J. K. Lenstra, A. H.
G. Rinnooy Kan, and D. B. Shmoys, editors, The Travelling Salesman Problem, pages 307-360. John
Wiley & Sons Ltd., 1985.

Gerhard Reinelt. The Linear Ordering Problem: Algorithms and Applications. Helderman Verlag, Berlin,
1985.

P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7(4):365-374, 1987.

David B. Shmoys. Computing near-optimal solutions to combinatorial optimization problems. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, 20:355-397, 1995.

21

