
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022 4197

Parallel Discrete Convolutions on Adaptive Particle
Representations of Images

Joel Jonsson , Bevan L. Cheeseman, Suryanarayana Maddu, Krzysztof Gonciarz , and Ivo F. Sbalzarini

Abstract— We present data structures and algorithms for
native implementations of discrete convolution operators over
Adaptive Particle Representations (APR) of images on parallel
computer architectures. The APR is a content-adaptive image
representation that locally adapts the sampling resolution to the
image signal. It has been developed as an alternative to pixel
representations for large, sparse images as they typically occur in
fluorescence microscopy. It has been shown to reduce the memory
and runtime costs of storing, visualizing, and processing such
images. This, however, requires that image processing natively
operates on APRs, without intermediately reverting to pixels.
Designing efficient and scalable APR-native image processing
primitives, however, is complicated by the APR’s irregular mem-
ory structure. Here, we provide the algorithmic building blocks

Manuscript received August 10, 2021; revised March 28, 2022; accepted
May 20, 2022. Date of publication June 14, 2022; date of current version
June 20, 2022. This work was supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy through the Cluster of Excellence “Physics of Life” of TU
Dresden under Grant EXC-2068-390729961; and in part by the Center
for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dres-
den/Leipzig, funded by the Bundesministerium für Bildung und Forschung
(BMBF, Federal Ministry of Education and Research). The associate editor
coordinating the review of this manuscript and approving it for publication
was Dr. Nelly Pustelnik. (Corresponding author: Ivo F. Sbalzarini.)

Joel Jonsson is with the Faculty of Computer Science, Technische Univer-
sität Dresden, 01069 Dresden, Germany, also with the Max Planck Institute of
Molecular Cell Biology and Genetics, 01307 Dresden, Germany, also with the
Center for Systems Biology Dresden, 01307 Dresden, Germany, and also with
the Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)
Dresden/Leipzig, 01069 Dresden, Germany.

Bevan L. Cheeseman is with the Faculty of Computer Science, Technische
Universität Dresden, 01069 Dresden, Germany, also with the Max Planck
Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany,
also with the Center for Systems Biology Dresden, 01307 Dresden, Germany,
and also with ONI Inc., Oxford OX2 8TA, U.K.

Suryanarayana Maddu is with the Faculty of Computer Science, Technische
Universität Dresden, 01069 Dresden, Germany, also with the Max Planck
Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany,
also with the Center for Systems Biology Dresden, 01307 Dresden, Germany,
also with the Center for Scalable Data Analytics and Artificial Intelligence
(ScaDS.AI) Dresden/Leipzig, 01069 Dresden, Germany, also with the Flatiron
Institute, New York, NY 10010 USA, and also with the NSF-Simons Center
for Mathematical and Statistical Analysis of Biology, Faculty of Arts and
Sciences, Harvard University, Cambridge, MA 02138 USA.

Krzysztof Gonciarz is with the Faculty of Computer Science, Technische
Universität Dresden, 01069 Dresden, Germany, also with the Max Planck
Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany,
and also with the Center for Systems Biology Dresden, 01307 Dresden,
Germany.

Ivo F. Sbalzarini is with the Faculty of Computer Science and the Cluster of
Excellence Physics of Life, Technische Universität Dresden, 01069 Dresden,
Germany, also with the Max Planck Institute of Molecular Cell Biology and
Genetics, 01307 Dresden, Germany, also with the Center for Systems Biology
Dresden, 01307 Dresden, Germany, and also with the Center for Scalable
Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig, 01069
Dresden, Germany (e-mail: ivos@mpi-cbg.de).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TIP.2022.3181487, provided by the authors.

Digital Object Identifier 10.1109/TIP.2022.3181487

required to efficiently and natively process APR images using a
wide range of algorithms that can be formulated in terms of dis-
crete convolutions. We show that APR convolution naturally leads
to scale-adaptive algorithms that efficiently parallelize on multi-
core CPU and GPU architectures. We quantify the speedups in
comparison to pixel-based algorithms and convolutions on evenly
sampled data. We achieve pixel-equivalent throughputs of up
to 1 TB/s on a single Nvidia GeForce RTX 2080 gaming GPU,
requiring up to two orders of magnitude less memory than a
pixel-based implementation.

Index Terms— Biomedical image processing, image filter-
ing, image representation, image restoration, data compres-
sion, data structures / octrees, parallel processing, convolution,
deconvolution.

I. INTRODUCTION

FLUORESCENCE microscopy enables long-term imaging
of biological specimen at high spatial and temporal reso-

lution with morphologically or biochemically specific labeling.
This enables researchers to study biological structures and
processes in living organisms [1]–[3], providing an invaluable
source of information. However, handling and analyzing the
large amounts of data produced causes significant computa-
tional demands, especially for three-dimensional (3D) images.
Light-sheet microscopes, e.g., can acquire data at rates on the
order of 10 TB per hour [4], challenging image storage [5],
visualization [6], and processing [7]. This “data bottleneck”
often limits the throughput and scalability of fluorescence
microscopy studies and leads to under-utilization of the infor-
mation contained in the images.

To relax the data bottleneck, mainly three approaches
are followed: (1) parallelization of image processing, (2)
multi-resolution image representations, and (3) data com-
pression. Parallelizing large images in distributed-memory
computer clusters has enabled real-time segmentation of flu-
orescence microscopy images [8], and GPU acceleration has
enabled interactive handling of large images [9], [10]. Multi-
resolution representations and chunked hierarchical file for-
mats aid analysis by allowing zoomable navigation of large
volumes [11]. Tools like BigDataViewer [12] and TeraFly [13]
have leveraged this to enable interactive visualization and
annotation of Terabyte-sized volumetric images. Compression
methods, such as the Keller Lab Block (KLB) [14] and
B3D [15] formats, reduce the cost of storing and transferring
data. However, compression does not reduce the runtime of
image processing pipelines, as the data must be decompressed
to its original size prior to processing.

Adaptive-resolution image representations, such as the
Adaptive Particle Representation (APR) [16], provide an alter-
native to compression that can simultaneously reduce both

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-9054-8341
https://orcid.org/0000-0002-5748-5120
https://orcid.org/0000-0003-4414-4340

4198 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

data size and processing times. In order to take full advantage
of such representations, however, it is necessary to natively
process the images in the data-reduced representation, ideally
on parallel computer architectures. This enables efficient end-
to-end pipelines that never have to revert to pixels, not even
block-wise. For certain tasks, like graph-cut segmentation, this
has been shown to reduce both memory consumption and
runtime [16]. However, biological image analysis workflows
typically require a wider range of algorithms. Adapting these
algorithms, which have been designed for uniform pixel
grids, to content-adaptive image representations, and effi-
ciently implementing them using sparse data structures on
parallel computers, is not trivial. Particularly challenging is the
efficient implementation on GPUs, which are highly optimized
for processing uniform data structures.

Here, we introduce the data structures and algorithms
required for natively convolving APR images in parallel on
both CPUs and GPUs. Previous formulations of APR con-
volution [16] were restricted to separable kernels and either
required (locally) reconstructing the original pixels prior to
convolving, or were limited to first-neighbor kernels. The
present work extends APR convolution to dense kernels,
proposes strategies for efficient parallel implementation, and
provides scale-adaptive filters that operate on multiple res-
olution levels of an APR without having to reconstruct the
finest level everywhere. We demonstrate the efficiency of this
multi-scale approach, and we present an example of image
deconvolution using the Richardson-Lucy algorithm natively
implemented on the APR.

II. BACKGROUND

For convenience, we recapitulate the fundamental concepts
of the APR, but refer to Ref. [16] and its Supplementary
Material for more details and for mathematical proofs.

A. The Adaptive Particle Representation

The APR optimally adapts the local density of the sampling
P = {(xp, f (xp))}Np

p=1 of some function, signal, or image,
f : R

n → R, defined over � ⊂ R
n so as to guarantee that

the point-wise reconstruction error, for all of a wide-class
of reconstruction methods f̂ , is bounded everywhere in �
by a user-set constant E relative to a (potentially spatially
varying) local error scale. This places sampling points xp

where they are required in order to approximate the unknown
continuous f within the given error threshold at all original
pixel locations. Figure 1 illustrates the result for a fluorescence
microscopy image. In regions where the signal gradient is
significant, the original (pixel) sampling density is retained.
However, in regions of low signal gradient, such as the
background or homogeneous areas in the interior of objects,
the sampling density is reduced.

Mathematically, the APR bounds the infinity norm of the
relative reconstruction error∥∥∥∥∥

f − f̂

σ

∥∥∥∥∥∞
≤ E, (1)

where f is the true signal, f̂ the reconstruction, and σ the
local error scale. The reconstruction f̂ at location x can be

Fig. 1. Illustration of a fluorescence microscopy pixel image and a
corresponding Adaptive Particle Representation (APR). The image used is
a crop of Hoechst-stained mouse blastocyst cells [17], available as image set
BBBC032v1 from the Broad Bioimage Benchmark Collection [18]. The top
half of each panel shows the original image (left) and the image reconstructed
from the APR (right). The bottom halves show the sampling points (pixels or
particles) as dots, colored by sample value and scaled according to their spatial
extent. Pixels are uniform across the domain, whereas the APR particles adapt
to the content of the image.

any positive weighted combination of sampled function values
f (xp) within a certain radius R(x) of x, where the function
R : � → R is called resolution function. Thus, for an APR,
at any location x ∈ �, any reconstruction of the form

f̂ (x) =
∑

xp:|x−xp|≤R(x)

f (xp)wp, (2)

with
∑

p wp = 1 and wp ≥ 01 fulfills the reconstruction
condition in Eq. 1. The resolution function can intuitively be
seen as a local length scale of the signal.

If we consider a signal originally evenly sampled at N
points then, in general dimensions and for arbitrary R(x)
and P , only greedy locally optimal solutions can be found
in quadratic runtime O(N2), becoming infeasible even for
small problems [16]. In the APR both the resolution function
R(x) and the sampling locations xp are therefore restricted
to be power-of-two fractions of the image edge length |�|.
Under these restrictions, globally optimal sampling solutions
can be found in linear time O(N) [16]. The use of power-of-
two decompositions is common in image representations and
image processing algorithms, such as image pyramids [19],
tree-based methods [20], and wavelet decompositions [21].

Considering the analogy of an image pyramid for a function
in one dimension, as illustrated in Fig. 2, the APR corresponds
to a partition of the domain � across resolution levels l, where
at each location the coarsest element is selected under the
condition that Eq. 1 holds. Intuitively, this can be thought
of as a pruning operation of the full tree, where branches in
areas of low signal gradient (relative to σ) are cut, and the
sampling values are pushed to coarser ascendant nodes. The
APR particles (green dots in Fig. 2B) thus constitute the leaf
nodes in a pruned tree structure. The locations of particles
are taken to be the centers of the corresponding grid cells
(blue intervals in Fig. 2B), which we refer to as particle cells.
The particle cells partition the image domain, and correspond

1The non-negativity constraint can be relaxed, and classes of adaptation
satisfying higher-order constraints can also be formulated [16].

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4199

Fig. 2. Schematic comparing a regular sampling (pixels) to an APR in one
dimension. (A) shows the pixels as green dots, and successively downsampled
(by factors of 2) super-pixels as yellow dots. This forms an image pyramid
or, by connecting spatially overlapping elements, a full binary tree. The APR
particles (green dots in B) define a partition of the image domain and coincide
with nodes of this tree at different levels of resolution.

exactly to grid cells in the image pyramid. In this way, they
can be described by their resolution level l p and a multi-index
ip = (i p,1, . . . , i p,n) defining the location of the cell in the
grid at level l p . This allows the location xp of a particle cell
to be written in terms of ip and l p as

xp = ip
|�|
2l p

. (3)

For simplicity we assume the image domain � to be a
hypercube starting at 0 with all edges of length |�| a power of
two. For anisotropic domains, or domains that are not a power
of two, |�| is the maximum edge length extended accordingly.

B. Neighborhood and Reconstruction

The resolution function R(x) is taken to be a piecewise
constant function, defined in terms of the APR particles as:

R(x) =
Np∑
p=1

|�|
2l p

[⌊
x

2l p

⌋
= ip

]
, (4)

where [A] = 1 if A is true and 0 otherwise. Thus, the
value of the resolution function R(x) at any location x ∈ �
is determined solely by the level of the particle cell which
contains x. This is guaranteed to be unique, since the particle
cells partition the image domain �. In the example of Fig. 2B,
evaluating R(x) corresponds to finding the level l for which
the blue interval containing x holds a particle (green dot).

The resolution function then takes the value R(x) = |�|
2l ,

which defines the maximum radius of the reconstruction
neighborhood in Eq. 2.

The reconstruction condition in Eq. 1 is valid for any posi-
tive weighted combination of particles within the radius R(x).
This affords a lot of flexibility in defining different reconstruc-
tion methods. However, in image processing algorithms we
have found that it is often favorable to use the simplest possible
method. That is, to reconstruct the signal at a location x,
we find the particle (x∗

p, f (x∗
p)) whose particle cell contains x

and take f̂ (x) = f (x∗
p). We refer to this as piecewise constant

reconstruction. Compared to more general reconstructions,
this method is computationally efficient to evaluate, as the
reconstructed values do not depend on neighboring particles.

Moreover, this allows an intuitive view of particles and particle
cells as pixels of different sizes. In the remainder of this text,
unless otherwise stated, all reconstructions are assumed to be
piecewise constant.

C. Determining the APR

Computing the APR from a pixel image consists in finding
the largest resolution function R(x) such that Eq. 1 holds
everywhere. However, finding the optimal resolution function,
in general, requires algorithms of quadratic time complexity
O(N2) in the number of pixels N . In order to solve the
problem in linear time, for arbitrary images, the tighter bound

R(x) ≤ min
y:|x−y|≤R(x)

L(y) (5)

is considered, where

L(y) = Eσ(y)

|∇ f (y)| . (6)

Thus, determining the APR requires estimating the gradient
magnitude |∇ f | of the pixel intensity field, as well as the
local error scale σ(x) at the original N pixels. There is
some freedom in choosing how these quantities are computed.
In the implementation of Ref. [16], which we also make use
of here, the intensity gradient is computed using smoothing
cubic B-splines for robust and tunable gradient estimation in
the presence of noise [22]. The local error scale should be
a sufficiently smooth function reflecting the local range of
intensities. We here use a rescaled and smoothed estimate of
the local intensity standard deviation, computed by recursive
filters on the (downsampled by a factor of 2) B-spline image.

Once computed, |∇ f | and σ are combined with the user-
provided error bound E to form L, which is quantized into a
tree structure, and the APR solution is computed using a linear-
time algorithm called the Pulling Scheme [16]. This algorithm
outputs the adaptive tree structure shown in Fig. 2B, which
implicitly defines both the resolution function R(x) and the
particle locations {xp}Np

p=1.

The final step requires determining the particle intensity
values f (xp). Since particles at the finest resolution coincide
with the original pixels, those values remain unchanged.
Intensities at coarser particle locations are resampled. This can
be done in a number of ways. Here, as well as in [16], coarse
particle values are determined by average downsampling the
pixel values. This is simple and provides inhered denoising.
Viewed as an operation on the tree structure, coarse particle
values (i.e., leaf nodes of pruned branches in the tree) are
thus obtained by propagating the values of original leaf nodes
(i.e., pixels) upward, level by level, taking the average of the
combined nodes at each step.

D. APR-Based Image Processing

Similar to pixel images, processing algorithms can be
defined for the APR. For example, the APR naturally lends
itself to graph-cut segmentation where the particles constitute
the nodes of the graph, and edges are drawn between neigh-
bors. Ref. [16] also introduced two types of convolutions for

4200 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

the APR, both limited to separable kernels. The first was an
adaptive filtering algorithm that uses optimized data structures
to fetch the neighbors of a particle along a given dimension.
This allows the variable distance between neighboring par-
ticles at different resolution levels to be taken into account,
but is limited to small neighborhoods (direct neighbors in
Ref. [16]). Larger kernels were handled by the second method,
which applies the separable convolution operation on 2D
slices of reconstructed pixel values. The computational cost
is reduced by only applying the convolution to pixels that
intersect with a particle. The resulting algorithm, however,
is not consistent with the pixel operation.

Here, we address all of these issues by providing a data
structure that is more appropriate for the APR memory access
patterns, especially on the GPU, and algorithms to evaluate
convolutions at any resolution level (Section III). We also
extend the notion of APR convolution to dense stencils,
operating natively on multiple resolution levels to avoid pixel
reconstruction (Section IV). Finally, we provide parallel imple-
mentations on both CPUs and GPUs (Section V).

III. DATA STRUCTURES AND ALGORITHMS

We start by detailing data structures and algorithmic strate-
gies that can be used to define and efficiently implement a
wide range of image processing algorithms to natively work
on the APR. This requires sparse tree data structures with
the corresponding iterators, as well as local isotropic patch
reconstruction.

A. Sparse APR Data Structure

As described in Eq. 3, the location xp of a particle (cell)
is defined by its level l p and multi-index ip encoding the
cell coordinates in the grid at the corresponding resolution
level. This definition offers a lot of flexibility in choosing data
structures for storing the APR. Here, we base our design on
the analogy with image pyramids, as illustrated in Fig. 2B.
Since the particle cells partition the image domain, the APR
corresponds to a pyramid of disjoint sparse images, where each
location x ∈ � is covered by exactly one particle cell at some
resolution level. From this perspective, the APR amounts to
a set of sparse images at different resolutions, which can be
encoded using any sparse array format.

The original APR data structures [16] store the particle
values { f (xp)}Np

p=1 as a single, contiguous vector, while the

spatial coordinates {xp}Np
p=1 are encoded as follows: The levels

and all but one of the spatial dimensions are stored in a
dense array with each “row” in the contiguous dimension2

compressed. The sparse compression is done by storing the
first and last index of each contiguous block of particles,
along with a pointer to the particle values, in a red-black tree
structure. This allows for efficient random access via red-black
tree search in the sparse dimension.

While efficient random access is important in some appli-
cations, we argue that it is not required for most image

2In order to stay consistent with the software libraries, we assume that the
image dimensions are ordered as (z, x, y), where y is contiguous in memory,
i.e., that values at locations (z, x, y) and (z, x, y +1) are adjacent in memory.

Algorithm 1: Linear APR Access Data Structure

Fig. 3. Illustration of the linear access data structure in 2D. The APR
decomposes into a set of sparse grids, one for each resolution level. Each
sparse grid is represented in compressed sparse row (CSR) format. The CSR
data structures of each level are concatenated (yellow and green regions of
the xz_end and y_idx vectors), with an additional vector level_offset
indicating the starting point of each level in xz_end.

processing tasks. Instead, these typically rely on the abil-
ity to iterate over neighborhoods of certain, fixed structure.
Therefore, we here introduce a simplified data structure that
explicitly stores the y-coordinates. This is equivalent to storing
each resolution level l in compressed sparse row (CSR) format
and concatenating the vectors of row offsets and y-indices
for the different levels. Fig. 3 illustrates this data structure in
2D, and Algorithm 1 outlines how sparse rows of particles
are accessed. The particles are indexed linearly in the order
l → z → x → y, with sparse compression along y.
Coordinate indices in the sparse dimension are stored in the
vector y_idx, while the vector xz_end encodes the last
particle index in each sparse row, with one entry for each com-
bination of (l, z, x). An additional vector level_offset
stores the starting point of each level in the xz_end vector.
The metadata required to correctly access these vectors are the

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4201

Algorithm 2: Iteration Over Particles and Coordinates

minimum and maximum resolution levels, as well as the grid
dimensions at each level.

This linear access data structure complements, rather than
replaces, the random access data structure from Ref. [16].
Both of the data structures are available in LibAPR [23] (see
Code Availability), and the similarity between them allows for
efficient conversion from one to the other depending on the
anticipated access pattern.

B. Sequential Data Access and Iteration

Using the linear access data structure from Algorithm 1,
querying particles at random locations is inefficient, but
iterating sequentially over particles in the same sparse row
is efficient, since both y-indices and particle properties are
read from contiguous memory, promoting cache efficiency.
Algorithm 2 illustrates how one would iterate over all particles
of a given APR of class LinearAccess, accessing both
spatial coordinates and intensity values.

Most algorithms require not only iteration over individual
particles, but over pairs or neighborhoods of particles. In these
cases, the optimal strategy depends on the size and structure of
the neighborhood, as well as the type of processing hardware,
e.g. CPU or GPU. In the following section we describe the
main algorithmic contribution of this work, which includes two
iteration strategies for accessing pairs and groups of particles.

C. Neighborhood Data Access

Some of the most fundamental operations in image process-
ing, such as spatial filtering and resampling operations, com-
pute values for each pixel in the output image by accumulating
values over fixed-size neighborhoods of the input image.
These operations can be extended to the APR by instead
considering neighborhoods of particles. However, due to the
adaptive resolution, the structure of these neighborhoods varies
across the domain. This complicates both the definition and
implementation of such operations.

Rather than adapting the operations to anisotropic or non-
uniform structures, the reconstruction condition in Eq. 1
enables the interpolation of information across resolution
levels. This can be used to interpolate neighborhoods of
particles to small local patches of uniform resolution, as shown
in Fig 4. Indeed, thanks to the reconstruction condition,
coarse particles can be interpolated to the finest resolution

Fig. 4. Particle values can be interpolated between resolution levels to create
locally isotropic neighborhoods with guaranteed error bounds.

level with a guaranteed point-wise bound on the interpolation
error. This also implies a bounded error at all intermediate
resolutions, compared to a similarly downsampled signal, i.e.,
the corresponding node in the image pyramid (or the full
tree in Fig. 2A). Thus, since the APR particles and interior
nodes coincide exactly with the corresponding tree nodes and
the missing “pruned” nodes can be approximated, any image
region can be reconstructed at any resolution with guaranteed
error bounds.

While conceptually simple, this level interpolation consti-
tutes an algorithmic challenge as it requires iterations over
particles in multiple rows, across multiple resolution levels.
For example, the 3×3 patch in Fig. 4 intersects with 2 sparse
rows at the coarser resolution level, 3 sparse rows at the
target (medium) resolution, and 6 sparse rows at the finer res-
olution. Thus, reconstructing such a patch potentially requires
iterations, or search, over 11 sparse rows across three levels. In
3D, a corresponding 3×3×3 patch uses values from 49 sparse
rows. The number of rows required for local patch interpola-
tion grows exponentially with dimension as additional finer
resolution levels are included. In other words, reconstructing
coarse isotropic patches on the fly, directly from the particles,
is not feasible in practice. We address this by introducing an
auxiliary data structure, which we call the APR tree.

D. The APR Tree

We define the APR tree as the set of all interior nodes in the
tree structure, i.e., all yellow nodes in Fig. 2B. Equivalently,
this can be thought of as the set of elements in the image
pyramid that can be obtained by downsampling the APR
particles. We store and access these nodes using a separate
instance of the LinearAccess APR data structure from
Algorithm 1. The values of all APR tree particles (interior
nodes) can be computed from the APR by recursive reduction
over descendant particles. This requires iterating over all
APR particles (leaf nodes), while simultaneously accessing the
ascendant nodes. Algorithm 3 shows how this can be done,
using what we call synchronized iteration. For each particle
in the leading sparse row, the parent iterator is incremented
until the y-indices align.3

For separable reduction operators, such as maximum or
average reductions, synchronized iteration can be used to

3Note that Algorithm 3 depends on the assumption that the parent particle
always exists, which for APRs is true by construction. The iteration strategy
can be extended to pairs or groups of sparse rows with other spatial relations,
but this likely requires additional conditions to be checked.

4202 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Algorithm 3: Synchronized Iteration Over a Sparse Row
of Particles and Their Parent Nodes in the APR Tree

compute the values of all particles in an APR tree in the
following two steps:

1) iterate over all APR particles, reducing their values onto
the parent nodes;

2) iterate over all APR tree particles, level by level from
the finest resolution, to fill the tree.

This algorithm can be parallelized by distributing the sparse
rows in each step across different threads or processes. How-
ever, care must be taken to avoid competing writes to the same
address. We do this by distributing blocks of 2 × 2 (in 3D)
rows, such that each block corresponds to a single parent row.

The memory cost of storing the tree depends on the APR
structure and hence the image contents. For a uniform APR in
3D, where all Np particles are at level lmax, the tree contains

Nt =
lmax∑
k=1

Np

8k
= Np

7
(1 − 8−lmax) (7)

particles. This converges quickly to Np/7 with increasing lmax.
In general, the exact number of tree particles can be computed
recursively by considering the number of APR and tree par-
ticles at each level. However, for sufficiently large volumes
represented by sufficiently many particles, Np/7 remains a
close approximation. In that case, the memory cost of the
LinearAccess data structure is also approximately linear in
the number of particles, such that the overall memory overhead
is about 1/7 ≈ 14.3%.

E. Isotropic Patch Reconstruction

By precomputing the values of all APR tree particles, locally
isotropic patches can be reconstructed at any level without
iterating over the sparse rows at finer resolutions. This reduces
the complexity of this operation. In the following, we assume
that all particle values are reduced by average downsampling,
and that piecewise constant APR reconstruction is used.4

4For general linear reduction and reconstruction methods, the interpolation
from level l0 to l1, where l0 < l1 < lmax, can be modified such that it
corresponds to interpolation from l0 to lmax followed by downsampling to l1.

We denote the APR particles by P = {(xp, f (xp))}Np
p=1 and

the APR tree by T = {(xt , f (xt))}Nt
t=1. Suppose we wish to

reconstruct the value f̂ (xl) of a grid cell xl at resolution level
l ≤ lmax. There are two possible cases:

1) There exists an APR particle (xp, f (xp)) at resolution
level l p ≤ l whose particle cell coincides with or
contains xl .

2) The grid cell xl contains multiple APR particles at finer
resolutions l p > l. In this case, there exists a tree particle
(xt , f (xt)) at level lt = l whose cell coincides with xl .

Since we use piecewise constant reconstruction, we obtain
f̂ (xl) = f (xp) in the first case and f̂ (xl) = f (xt) in the
second case. Thus, reconstructing an isotropic patch at level
l requires iteration over APR particles within the patch at
levels l � ≤ l and, if l < lmax, tree particles at level l.
The LinearAccess data structure from Algorithm 1 allows
patches of arbitrary shape and extent in the densely encoded
dimensions. However, for performance reasons, it is best to let
the patch span the entire sparse y-dimension in order to avoid
linear searches due to the sequential access.

IV. APR PROCESSING

The ability to locally reconstruct isotropic neighborhoods
allows for a wide range of image processing algorithms to be
implemented natively for the APR. Arguably the most impor-
tant low-level vision task is discrete convolution. Not only does
this enable spatial filters, but it is also an essential component
of high-level vision algorithms including convolutional neural
networks. We therefore start by describing APR-native discrete
convolution.

A. APR Filtering by Discrete Convolution

For a pixel image u ∈ R
s of size s ∈ N

d in dimension d ,
we refer to spatial filtering as the process of applying a dense

discrete convolution operation with a stencil w ∈ R
f , f ∈ N

d ,
of the same dimensionality but not necessarily the same size5

as u. The output o = u ∗ w produced by this operation is
again an image, where each pixel is a linear combination of
a neighborhood of pixels in u, weighted by the values in w.
Now consider an APR P representing u. It is certainly possible
to approximate o by reconstructing the pixel image û from
P according to the reconstruction condition and computing
ô = û ∗ w. The output image ô can then again be converted
to a new APR P̂ using the pulling scheme. When used in
this way, the APR acts as a lossy compression technique, but
provides no computational speedup over directly processing u.

We therefore aim to define a native discrete convolution
operation for the APR, which is consistent with convolving
a fully reconstructed image, but only requires computational
operations over the particles. Thus, rather than interpolating
coarse particles to the finest resolution, we extend the convo-
lution to operate directly on the coarser resolution levels where
appropriate. This can be done by convolving each resolution

5Typically, the size of the stencil is on the order of a few pixels in each
dimension.

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4203

Fig. 5. Illustration of APR convolution in one dimension. Filter stencils
(dashed boxes) are applied centered on each APR particle (green dots),
with neighboring particle values interpolated to the appropriate resolution,
to compute the output value at the corresponding center particle. Interpolation
from coarse to fine resolution is done on the fly, while values interpolated from
fine to coarse resolution are precomputed and accessed via the auxiliary APR
tree structure (yellow dots).

level separately, similar to how convolutions can be applied to
each level of an image pyramid.

An APR corresponds to a sparse disjoint sampling of an
image pyramid constructed from the original pixel image.
Moreover, isotropic patch reconstruction (cf. Section III-E)
allows us to approximate any region in this pyramid with a
theoretically bounded reconstruction error according to Eq. 1.
This affords some freedom in designing the convolution oper-
ation. Here, we define a convolution as an operator that acts
only on the particle values f (xp), keeping their positions
xp fixed. More precisely, the filter is applied centered on
each particle to compute the output value at that location.
Neighboring particles are interpolated to an isotropic patch
at the resolution of the center particle. The size of the patch
must be at least the size of the stencil w. This is illustrated in
Fig. 5. In practice, it is typically advantageous to reconstruct
larger patches such that the stencil can be applied to multiple
locations in each patch.

Since reconstructed patches approximate the corresponding
part of the pixel image pyramid, one can derive a bound on
the error in the output values in terms of the filter w, the error
bound E , and the local error scale σ restricted to the resolution
level of the patch:|o − ô| = |w ∗ (u − û)| ≤ �w�Eσ . However,
the sampling locations computed from the input signal may
not be optimal to represent the convolved signal. Hence, while
the APR convolution is consistent with the corresponding pixel
convolution in the sense that output values can be interpreted
as the corresponding values in the convolved image pyramid,
the fixed sampling may result in additional interpolation or
aliasing errors, which depend on the image.

Ideally, one would allow the convolution to adapt the
sampling on the fly. This would require an error estimator
that depends on the filtered signal. While this could trivially
be achieved by evaluating the convolution on the full pixel
grid, operating natively on APR would require: (i) finding the
particles in the reconstruction neighborhood of each pixel loca-
tion in the target particle cell; (ii) checking the reconstruction
error for all combinations of these values; and (iii) ensur-
ing that the resulting structure adheres to APR conventions
(e.g., the level of neighboring particles cannot differ by more
than one). This would incur significant additional computa-

tional cost. The main difficulty is point (i), as the particle
locations in the neighborhood are subject to change, preventing
local decisions. In the present work, we therefore consider the
sampling locations fixed. More concretely, the result can be
viewed as a bounded-error approximation of o if the filter w
is such that it does not increase the required resolution at any
particle location. This is a limiting assumption, which clearly
does not hold for arbitrary filters. In particular, it excludes
filters that result in a significant net translation of the signal.
However, it intuitively holds, at least approximately, for impor-
tant image filters such as gradient and sharpening, as well as
many (near-symmetric) smoothing filters.

At the finest resolution level, the APR convolution operation
is equivalent to convolving the reconstructed image û. With
decreasing resolution the spatial extent of the filter grows, and
the convolution is applied to (approximations of) downsampled
versions of the image. Thus, applying the same stencil w at
coarser resolution levels is, in general, not consistent with
the convolution at the finest resolution. We address this by
modifying the stencil depending on the resolution level.

B. Pixel-Consistent APR Convolutions by Stencil Restriction

In order to render APR convolution consistent with a
convolution of the fully reconstructed image û, we use
operator restriction as commonly encountered in the
algebraic multigrid literature [24], [25]. Denote by Rl the
restriction (downsampling) operator used to determine particle
values at a coarse resolution level l < lmax, and let Pl be the
prolongation (upsampling) operator to reconstruct pixel values
from particles at level l. Let ûl be the image reconstructed
at level l and û the finest reconstruction at pixel resolution.
We then have:

ûl = Rl û , û ≈ Pl ûl . (8)

That is, ûl can be computed from û by downsampling via
Rl , and û can be approximated by upsampling via Pl . Now
consider the convolution of û with a stencil w. This is a linear
operation, which can be written as a matrix multiplication
w ∗ û := Kwû. Using the interpolation operators Rl and Pl ,
we can now define a convolution operator Kwl for the coarse
image ûl on resolution level l as

Kwl ûl := Rl Kw Pl ûl . (9)

In this way, Kwl is equivalent to interpolating ûl to the
fine resolution, applying the convolution with w there, and
downsampling the result back to the coarse resolution. Similar
to Kw , the coarse scale Toeplitz matrix Kwl corresponds to
a stencil wl , whose structure depends on the fine resolution
stencil w, as well as the restriction and prolongation operators.
For stencils w that are spatially invariant, the stencil wl can be
computed without generating the matrix Kwl , by evaluating
only the |wl | unique non-zero elements.

The interpolation operators used in the standard APR formu-
lation, i.e., block-wise average downsampling and piecewise
constant upsampling, amount to particularly simple forms of
Rl and Pl . This combination additionally has the property
that Rl Pl = I , where I is the identity matrix. In this case,

4204 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

the restricted stencil wl is computed directly by averaging the
contributions of all elements of the fine stencil w applied at
all possible positions within the coarse grid cell.

This provides for internally consistent APR convolution by
restricting the filter stencil to each resolution level, of which
there are at most log2(|�|)�, where |�| is the maximum
image side length in pixels. Figure 6 shows an example of
this approach for a Gaussian smoothing filter (middle row)
applied directly on the APR levels after restriction (right
panel), compared with applying the same filter on the raw
pixels (middle panel) and on a low-noise ground-truth (GT)
version of the pixel image (left panel). The respective input
images are shown in the top row of the figure. The results of
the smoothing filter computed on raw pixels and on the APR
are visually indistinguishable and have similar peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM)
with respect to the blurred GT image. This confirms that the
restricted APR filters provide pixel-consistent results.

C. Resolution-Adaptive Filters

The APR convolution operation is inherently spatially adap-
tive, as guided by the structure of the APR. In the previous
section, we adjusted the convolution stencils on each APR
level such that the APR convolution is consistent with the full
pixel operation. However, this may not always be the goal.
Indeed, the spatial adaptivity of the APR can be exploited to
provide scale-adaptive image filters. This can improve filter
performance, e.g., in image gradient estimation. Since the
smoothing length of the gradient estimator depends on the
spacing between neighboring discretization points, it naturally
varies with the APR resolution level. Thus, APR convolution
with a level-dependent stencil wl of the form

wl = 2−(lmax−l)w, (10)

where w is the pixel-level stencil, naturally adapts gradient
estimation to varying length scales in the image contents.
This is akin to the adaptive filters described in [16]. The
convolution defined here, however, is not limited to direct face-
connected neighbors, but can handle filter stencils of arbitrary
size. The benefits are illustrated in Fig. 6 (bottom row)
for gradients estimated using Sobel filters, which combine
central finite differences with a smoothing filter orthogonal
to the gradient direction. When used on the APR with level-
dependent rescaling according to Eq. 10, the gradients along
the edges of the objects are captured, while being less sensitive
to imaging noise in low-gradient regions. This is reflected in
the higher PSNR and SSIM values of the result computed on
the APR compared to the result computed on pixels.

V. PARALLEL IMPLEMENTATION

The APR convolution operation described so far essentially
consists of three algorithmic components:

1) computing the values of (interior) APR tree particles,
2) reconstructing isotropic patches, and
3) accumulating patch values to form the convolution

output.

Filling the APR tree (step 1) is algorithmically independent of
the convolution operation, while steps 2 and 3 are performed
alternately for each location in the image domain. In order
to take advantage of modern computing hardware, we have
implemented these algorithmic components to use thread
parallelism on multi-core CPUs and on GPUs. We describe
the design principles used to achieve this and discuss their
advantages and limitations.

A. CPU Parallelization Using OpenMP

Modern CPUs typically comprise 6 to 48 cores, each opti-
mized to execute a pipelined sequence of instructions called
a thread. Parallelization on multi-core CPUs thus amounts
to dividing a program into a small number of threads that
can be distributed across the cores and executed concurrently.
We provide a thread-parallel CPU implementation of the
present APR convolution algorithm based on the Open Multi-
Processing (OpenMP) [27] API, which provides a set of high-
level directives and work-sharing constructs for SPMD (Single
Program Multiple Data) parallelism, where the same set of
instructions is executed concurrently at multiple data points.

In order to distribute the data points, in our case APR
particles, across threads, we follow a domain-decomposition
approach as is classic for pixel images. Execution efficiency
demands that the threads iterate over the sparse y-dimension,
which is accessed sequentially according to Algorithm 2.
Therefore, we partition the APR by assigning to each CPU
core a subset of the sparse rows, rather than a subset of the
particles. However, the number of particles in each sparse row
can vary greatly. This may lead to large differences in the
amount of work done by each core, causing slowdown due
to load imbalance. We address this by runtime dynamic load
balancing, dynamically re-distributing sparse rows between
threads at runtime.

Consider the convolution with a stencil w of size k3 at some
resolution level l in the APR of an image of size Nz ×Nx ×Ny

pixels. The data are distributed such that each thread computes
the output for the APR particles in a given z-slice. Each
thread allocates a buffer of size k × k × (Ny + k − 1) for
the isotropic patches, where the k − 1 additional points in the
y-dimension allow for padding to handle boundary conditions
at the edges of the image. For each z-slice, the buffer is
iterated over along the x-dimension with the center of the
buffer at the given z-index. At each location, the thread iterates
over the necessary6 sparse rows to fill the k new rows at the
beginning of the buffer (cf. Section III-E). The output values
are then aggregated for each APR particle in the sparse row
corresponding to the center location of the buffer.

B. GPU Parallelization Using CUDA

In addition to the multi-threaded CPU implementation,
we also provide an optimized implementation of the present

6Isotropic patch reconstruction does not have to include the particles from all
coarser levels, but enough to ensure that neighborhoods of size k3 around each
output particle are filled. Since the resolution levels of neighboring particles
cannot differ by more than one [16], the number of coarser levels that must
be considered scales logarithmically with the stencil radius (k − 1)/2.

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4205

Fig. 6. Illustration of APR filtering for smoothing and gradient estimation. The images are taken from the FMD dataset [26]. Top row: ground truth (GT)
image obtained by averaging 50 acquisitions, raw image (a single acquisition), and the APR of the raw image. Middle row: Gaussian smoothing with standard
deviation 2 pixels applied to each image from the top row, using restricted stencils for coarser APR particles. Bottom row: gradient magnitudes computed
from the respective image of the top row. The ground truth gradients were computed using central finite differences, whereas the gradients on noisy raw
image were computed using Sobel filters. For the APR, the filters were rescaled according to the particle distance at each resolution level (see Eq. 10). All
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values are given with respect to the GT image in the same row.

APR convolution algorithm for GPUs. Our implementation
uses the Compute Unified Device Architecture (CUDA) API
for GPU programming and is hence limited to Nvidia GPUs.
Recent Nvidia GPUs boast thousands of cores organized into
arrays of Streaming Multiprocessors (SMs), each designed
to concurrently execute hundreds of threads. In order to
parallelize a program using CUDA, it is divided into thread
blocks (TBs). Each TB executes a program, called a CUDA
kernel, over a given block of data. The threads within a TB
are executed on the same SM in groups of 32 threads, called
warps. Threads within the same TB communicate via shared
memory and barrier synchronization, with recent versions of
CUDA additionally supporting warp-level communication and
synchronization.

CUDA programs that make good use of the hardware
resources of a GPU need to adhere to multiple design prin-
ciples: First, all threads within a warp should simultane-
ously perform the same operations. This maximizes efficiency
because the threads in a warp execute instructions in lockstep
following to the SIMT (Single Instruction Multiple Threads)
model of parallelism. Second, diverging control flow paths
within a warp are to be avoided. Otherwise, the alternative
control flow paths are executed sequentially, with masking
employed to enable and disable the appropriate threads. Third,
access to the global memory has to be minimized and done
in stride, as those transactions carry a significant overhead.
This is mainly achieved by latency hiding, where execution
switches to another warp while one warp waits for the memory.
Latency hiding requires that enough scheduled threads are

available, providing a fourth design requirement. Fifth, mem-
ory latency can be further reduced by: (1) loading frequently
accessed data into shared memory or registers and (2) ensuring
that the necessary global memory accesses are coalesced, such
that each transaction serves as many threads as possible at
once.

These programming requirements are not easily reconciled
with a dynamically adaptive tree data structure like the APR.
Considering the APR data structures proposed in Algorithm 1,
particle values and y-indices are contiguous in memory along
the sparse y-dimension. In order to promote coalesced memory
access to these vectors, adjacent threads in a warp should
therefore access adjacent particles within the same sparse row.
We achieve this by distributing the sparse rows across warps.
The size of each thread block is limited to 1024 threads on
most GPU devices. Since a warp consists of 32 threads, one
warp must handle multiple sparse rows if an operation requires
accessing more than 32 different positions in z and x . This may
lead to reduced concurrency due to increased register usage.
By instead assigning a half-warp (16 threads) to each sparse
row, this limitation can be relaxed to allow up to 64 different
positions. Therefore, our design imposes an upper limit to the
size of the stencil neighborhood that can be accessed during
convolution. Assuming a cube-shaped stencil in 3D, with odd
side length, the size is limited to 73 pixels.

Using this design, we provide optimized implementations
of 3D APR convolutions in CUDA for filter stencils of
size 33 and 53 pixels. For the sake of example, we describe
the 33 algorithm, assuming that the tree particle values f (xt)

4206 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 7. Illustration of our CUDA kernel operations for APR convolution at
an arbitrary APR level l in 2D. Each warp corresponds to a fixed position
(z, x) at level l. The threads load particles from up to three sparse rows at the
corresponding position: the APR at levels l −1 (top-left panel) and l (middle-
left), and the APR tree at level l (bottom-left). Particle values are written
to a uniform shared-memory buffer at level l to reconstruct local isotropic
neighborhoods around target particle locations (top-right, loaded particle
origins identified by color). Finally, the convolution stencil wl (middle-right)
is applied to interior positions in the buffer, computing the output at the level
l APR particle locations (bottom-right).

of T have previously been computed. For this stencil size,
we choose a thread block size of 32 × 4 × 4, resulting
in 16 warps at different positions in a 4 × 4 patch in the
z − x plane. Isotropic patches are reconstructed in a shared
memory buffer of size 4 × 4 × 32. Reconstructing neighbor-
hoods of size 33 around APR particles at level l requires values
from the APR at levels l − 1 (if l > lmin) and l, as well
as the APR tree at level l (if l < lmax). Thus, each thread
accesses particles from up to three sparse rows, one from each
of these structures, corresponding to the fixed (z, x) position
of the warp. The shared memory buffer is iterated across the
y-dimension in a synchronized manner. For each position of
the buffer, the threads:

1) Update their particles by comparing the y-indices to the
current location of the buffer. If a particle is behind
the buffer (i.e. has a y-index smaller than the beginning
of the buffer), the thread loads the next particle in the
corresponding row. This is repeated until no particles are
behind the buffer any more.

2) Reconstruct local isotropic patches by writing particle
values within the range of the patch to the shared
memory buffer.

3) Aggregate the convolution output for the level l APR
particles in the 2 × 2 center rows of the buffer.

Block-level barrier synchronization is required before
steps 2 and 3 to ensure correctness of the output. Figure 7
illustrates this algorithm in 2D. The implementation for sten-
cils of size 53 is analogous, with the main difference being the
size of the thread block, which we then choose to be 16×8×8.

We additionally implement high-level optimization strate-
gies to reduce unnecessary work for sparse images. In this
case, the sparse rows at fine resolution levels tend to be
empty or contain only few particles. Therefore, thread blocks
may needlessly reconstruct patches where there are no target
particles. We avoid this by using a pre-processing CUDA
kernel to detect the positions in the APR where the sparse
rows contain at least one particle. The convolution stencils are
then launched only at those locations. In addition, the thread
blocks use a reduction operation to determine the minimum

and maximum y-indices of the target particles. Positions of
the uniform buffer outside of this range are skipped.

VI. RESULTS

We present benchmark results of computational perfor-
mance and memory usage of our APR convolution implemen-
tations using both OpenMP on CPUs and CUDA on GPUs.
We also present an example of image deconvolution using
the Richardson-Lucy algorithm re-implemented for APRs and
compare the results with those obtained by the classic algo-
rithm on pixels.

Since the APR adapts to the contents of an image, the
performance of APR processing algorithms depends on image
contents through the number of particles required by the APR
to reach the reconstruction error bound. We quantify this using
the computational ratio (CR), defined as

CR = Number of pixels in the original image

Number of particles in the APR
. (11)

To put this metric into perspective, typical CR values for
real-world fluorescence microscopy datasets range from 3.6 to
372.2 with an average of 51.1 and a median of 22.7 [16]. The
CR value one can obtain for any given image depends mainly
on the sparsity of the image content. The APR will represent
regions where the signal gradient is significant (relative to the
local error scale σ) at high resolution. Thus, if the gradients are
distributed densely across most of the image, high CR values
cannot be obtained without significant loss of information.

In addition to the CR, also other factors may directly or indi-
rectly affect memory usage and computational performance.
For example, the size of the APR data structure explicitly
depends on the original image size in the x and z dimensions.
Moreover, performance may vary between different APRs,
even if both the image dimensions and the CR are equal,
since the particle layout can affect, e.g., cache hit rates and
conditional branches.

A. APR Convolution Benchmarks

Here we present results on the memory usage and computa-
tional performance of our APR convolution implementations.
The benchmarks are performed on APRs computed from a set
of 10 synthetic images, containing spherical objects at varying
densities, yielding a range of CR values from 1.04 to 1019.8.
The files, as well as the code used to produce all data presented
here, are available in LibAPR.

1) Memory Usage: In order to convolve an image of N
pixels, the simplest approach is to allocate enough memory to
hold the entire image plus an output buffer of the same size.
If the input and output data types require si and so bytes of
storage, respectively, this requires N(si +so) bytes of memory.
Similarly, convolving an APR requires two buffers for the
input and output particle intensities, but in addition also the
access data structures of the APR and the APR tree, as well
as the interior particle intensity values.

We benchmark this using synthetic images of size
10243 pixels and of different CR. The benchmark images
are described and examples shown in Supplementary
Material I-A. Figure 8 shows a breakdown of the memory

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4207

Fig. 8. Memory required to perform one convolution operation on a cubic
image of 10243 pixels and the corresponding APRs at different computational
ratios (CR). Pixel and particle intensities are stored using 32-bit data types.
We neglect the memory required to store the weights of the filter stencil.
The APR memory usage additionally includes the APR access data structure,
as well as the access data structure and values of the APR tree (interior nodes).

requirements for APR convolution when all pixel and particle
intensity values are stored as 32-bit data types. The straight-
forward convolution on pixels requires 8.59 GB of memory,7

exceeding the available VRAM of most modern GPUs. Tiling
strategies must then be implemented to enable processing,
but this is only efficient if image tiles can be transferred
to and from the GPU device concurrently with computation.
This adds complexity to the implementation and most likely
results in a performance penalty. Computing the convolution
natively on an APR with a CR of 20.8 (which is smaller than
the median of real-world microscopy datasets [16]) requires
0.58 GB of memory: 14.8 times less than the equivalent pixel
operation. This makes straightforward processing of the image
possible on almost any currently available GPU.

The memory required for APR convolution decreases
monotonically with increasing CR, as shown in Fig. 8. For
CR≈1, we observe that the memory overhead from the APR
data structures is about 30%. However, this overhead is quickly
amortized for higher CRs, since the size of the xz_end
vector in the LinearAccess data structure is constant (see
Algorithm 1). APR-native convolution at CR≈1020, a value
not uncommon in fluorescence microscopy, requires 25.5 MB
of memory, or 337 times less than the classic pixel-based
implementation.

For GPU implementations, the benefit of reducing the
memory requirement is two-fold: First, it enables larger image
regions to be kept in memory and processed without tiling
strategies. Second, the total amount of data that needs to be
transferred to and from the GPU is reduced proportional to
the CR, alleviating the performance bottleneck from the host-
device transfer bandwidth.

7Throughout this manuscript, we use decimal SI prefixes for Byte multiples,
so for example 1 GB = 109 Byte.

2) Computational Performance: We present benchmark
results for APR convolution using filter stencils of 33 and
53 pixels, respectively. All benchmarks are performed
on an Alienware m15 laptop equipped with a GeForce
RTX 2080 Max-Q GPU and an Intel Core i9-9980HK CPU
running Ubuntu 18.04 and CUDA Toolkit 11.0 RC.

The APR convolution implementation in CUDA consists of
three steps: 1) finding the locations of non-empty sparse rows,8

2) filling the APR tree, and 3) performing the convolution
operation. All of these steps are implemented in CUDA and
performed in sequence. In the benchmark results below, all
three steps are included in the reported times. However,
in practical situations requiring repeated convolutions, step 1
can be reused, and for convolution of the same input with
multiple filters, the tree data can also be reused, leading to
runtimes smaller than those reported here.

Rather than reporting absolute wall-clock times, we put the
results on a more intuitive scale by computing the effective
throughput, which we define as

Effective throughput = size of pixel image in Bytes

total processing time
. (12)

For a pixel algorithm, this is the classic data throughput, i.e.,
the number of Bytes processed per second. For an APR, the
effective throughput states the throughput a pixel algorithm
would need to have in order to achieve the same processing
time. Figure 9 shows the scaling of the effective throughput
for the same synthetic images of different CRs as already used
in Fig. 8, subsampled to size 5123. All data are represented
as 32-bit floating point numbers. Hence, the numerator in
Eq. 12 is 537 MB. The GPU timings include all computational
steps, but exclude the times for host-device data transfers.
The runtimes for the corresponding pixel convolutions are
shown as horizontal lines, as they do not depend on the CR.
The CUDA pixel benchmarks were performed using ArrayFire
v3.8.0 [28] in C++, while the OpenMP benchmarks use our
own implementation.

The effective throughput of the ArrayFire CUDA imple-
mentation is 26.6 GB/s for the 33 filter and 10.7 GB/s for
the larger 55 filter. Our CUDA APR convolutions break even
with the performance of ArrayFire at CR values ≈2. For
higher computational intensity of the operation (i.e., for larger
stencils), APR convolution breaks even earlier. At a CR of
20.8, the 33 and 55 APR convolution speeds correspond to
pixel throughputs of 102.2 and 64.5 GB/s, respectively. That
is 3.8 and 6.0 times faster than the ArrayFire implementa-
tion. For the benchmark image with CR=124, which is well
within the range typical of real-world microscopy images [16],
the effective throughput of APR convolution increases to
455.7 and 299.1 GB/s, respectively. Compared to ArrayFire,
this corresponds to speedup factors of 17 and 28. Considering
the theoretical peak performance of 6.447 TFLOPS (trillion
floating point operations per second) of the benchmark GPU,
the theoretical performance limit for the pixel convolution is
486 GB/s for the 33 filter and 103 GB/s for 55. The effective

8This is not strictly necessary, but we have found that it yields a speedup
of up to a factor of 5 for high CR values, while the additional overhead is
negligible for low CR values.

4208 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE I

PERFORMANCE AND QUALITY METRICS OF THE DECONVOLUTION RESULTS FROM FIG. 10. THE INPUT IMAGE HAS CR=5.3. THE PSF COVERAGE IS
THE FRACTION OF THE TOTAL INTENSITY OF THE PSF INCLUDED IN THE TRUNCATED ARRAY. REPORTED RUNTIMES FOR PIXEL IMAGES USE

DECONVOLUTIONLAB2 [31] (SINGLE-THREADED), WHEREAS APR RUNTIMES USE MULTI-THREADING ON 8 CPU CORES. THE PSNR
AND SSIM VALUES ARE COMPUTED WITH RESPECT TO THE GROUND-TRUTH IMAGE AFTER NORMALIZATION TO ACCOUNT

FOR INTENSITY RANGE DIFFERENCES DUE TO TRUNCATION AND NORMALIZATION OF THE PSF. THE FULL PSF APR
RESULT (MARKED BY *) IS OBTAINED BY DECONVOLVING THE FULL-RESOLUTION RECONSTRUCTED VOLUME AND

RESAMPLING THE RESULT ONTO THE PARTICLES

Fig. 9. Computational performance of APR convolutions using GPU (CUDA)
and CPU (OpenMP) parallelization for 10 synthetic benchmark datasets of
different computational ratios (CR). The effective throughput is calculated as
the size of the original image in GB divided by the processing time in seconds.
GPU processing times include all computations, but exclude data transfers.
The horizontal lines show measurements for pixel convolutions using CUDA
ArrayFire as well as OpenMP. We show results for stencils of size 33 and
53 voxels.

throughput of the 53 APR convolution exceeds this limit for
CR values larger than 30.

The performance of the APR convolution on the multi-
core CPU using OpenMP also scales with CR. Similar to
the CUDA results, the APR performance breaks even with
the corresponding pixel algorithm at CR values ≈2. For large
CR values > 100 . . . 500, APR performance on the CPU even
exceeds pixel performance on the GPU. If data transfer times
to and from the GPU are taken into account, the CPU breaks
even at lower CR values. Comparing the performance of the
APR convolution on the GPU and CPU, we observe that the
GPU implementation (without data transfer times) is 15 to
45 times faster across benchmark datasets and filter sizes. This
is discussed in more detail in Supplementary Material I-B.

In summary, these benchmarks suggest that native APR
convolutions are suited to overcome some of the difficulties
associated with processing large images on the GPU, providing
real-time convolution implementations for edge computing,
or accelerating CPU implementations to achieve GPU-like
performance.

B. Richardson-Lucy Deconvolution

We demonstrate an application of native APR convolution
for image restoration using the iterative Richardson-Lucy (RL)
deconvolution algorithm [29], [30]. Deconvolution is a fre-
quent example of an ill-posed inverse problem in microscopy
image processing. Suppose we have acquired a blurred (from
light diffraction) and noisy (detector shot noise and electronics
noise) image

u = η(i ∗ w), (13)

where i is the imaged sample (e.g., the spatial distribution
of fluorophores in the specimen), w is the point-spread
function (PSF) of the microscope optics, and η models the
noise distribution. Under the assumption of Poisson-distributed
noise, the RL algorithm attempts to recover i from u via the
iterative updates

ik+1 = ik

(
u

ik ∗ w
∗ w†

)
, (14)

which amounts to a fixed-point iteration for maximizing the
likelihood of observing u. Division and multiplication are
element-wise, ∗ denotes discrete convolution, and w† is the
flipped PSF with the order of elements reversed in each
dimension. We adapt this algorithm to the APR by replacing
the convolution operations with their APR-native counterparts
and restricting the PSF stencil to the different APR levels
as described in Eq. 9. In microscopy, the PSF is typically
measured experimentally on a grid of the same size as the
image, and convolutions are applied in the Fourier domain.
Since APR convolution is done in the spatial domain, using
the full PSF quickly becomes computationally infeasible.
Hence, APR deconvolution using the present discrete multi-
level operators requires truncating the PSF.

We evaluate the restoration quality for different truncations
using a synthetic microtubule dataset with known ground
truth [31]. The 3D image is of size 128 × 256 × 512 voxels
(64 MiB, 32-bit values). Figure 10 shows the ground truth
and input images, as well as restorations on pixels and on
APR (CR=5.3) for different PSF truncations. Quantitative
metrics are given in Table I. As a baseline we consider the
result of RL deconvolution using the full PSF on both the
original input pixel image and its APR reconstruction. The
result on the reconstructed volume is further re-sampled onto

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4209

Fig. 10. Maximum-intensity z-projections of the 3D ground truth and corrupted (blurred and noisy) synthetic microtubules dataset (see [31] for details),
as well as APR and pixel restorations obtained by Richardson-Lucy deconvolution using the full-sized PSF and different truncations for different numbers of
iterations. The reference and input data, as well as the full-sized pixel PSF, are taken from http://bigwww.epfl.ch/deconvolution/data/microtubules.

the particles to simulate APR-native processing. This suggests
that there is no significant degradation due to the adaptive
sampling.

Truncation of the PSF has the largest effect on the restora-
tion quality. This is expected, as the chosen truncation sizes of
113, 213, and 413 pixels only capture 6.3%, 12%, and 23.5%
of the total PSF intensity, respectively. However, even with the
PSF truncated to 113 pixels, the APR restoration (APR-RL)
appears to have improved contrast and clearer edges, which
may aid downstream processing tasks. Increasing the PSF

size leads to higher-quality restorations, at the expense of
a proportional (to the number of PSF voxels) increase in
the computational load. The restorations using a PSF of size
213 on both the pixel image and its APR show comparable
quality, both visually and quantitatively, but the APR-native
algorithm requires 10× less memory.

While these results are promising, there are a number of
limitations to APR-native image restoration. Deconvolution
in the Fourier domain using the full PSF is based on a
physically accurate problem formulation, which is crucial in

4210 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

applications requiring interpretability of the data. In addition
to truncation of the PSF, APR-RL induces errors due to the
lossy representation of the input data, and due to deviations
of the APR convolution from the underlying forward process.
Despite these limitations, however, the example presented here
indicates that APR-based image restoration may be practical in
realistic scenarios and leads to significant computational sav-
ings. This may be particularly useful in applications involving
large volume images, where memory usage is the bottleneck.
Higher restoration quality can also be expected in applications
where the PSF has smaller support, such that truncation is not
required. We present two additional examples of APR-RL
in Supplementary Material II to corroborate these findings.
One using real microscopy data, the other one using a small
synthetic PSF.

VII. DISCUSSION AND CONCLUSION

We have introduced the data structures and algorithms that
enable discrete convolutions to be directly evaluated on Adap-
tive Particle Representations (APRs) of images using multi-
core CPU or GPU acceleration. We have shown how spatial
convolution can be equivalently defined on an APR by lever-
aging the reconstruction condition to interpolate information
across resolution levels. We benchmarked the computational
efficiency of our APR convolution using a set of synthetic
images of varying content densities.

For fixed image sizes, we showed that the computational
performance of our CPU and GPU implementation scales with
image sparsity as measured by the computational ratio (CR).
APR convolution on the GPU achieved speedups of 3.8- to
28-fold compared to CUDA pixel implementations for CR
values corresponding to real-world fluorescence microscopy
datasets [16]. At the same time, APR convolutions required
orders of magnitude less memory, enabling tiling-free GPU
convolution of images of tens to hundreds of Gigabytes. For
the largest CR≈1020 tested, typical of super-resolution or
expansion microscopy images, we obtained pixel-equivalent
processing throughputs of up to 1 TB/s on an inexpensive
gaming GPU, which far exceeds the acquisition rate of current
microscopes [4]. This enables complex workflows, comprising
tens to hundreds of convolution operations, to be performed
in real time during acquisition.

The APR convolution operation is naturally decomposed by
resolution level, which offers the ability to modify the filter
stencil across resolution levels. We presented two methods
to do so: First, inspired by operator restriction in multi-grid
methods, the filter can be downsampled to coarser resolutions,
such that applying the downsampled filter on the coarser
level is consistent with applying the original filter on the
finest resolution. Second, the filter weights can be rescaled
according to the distance between particles at each level, which
is useful, e.g., in finite-difference computations. In general,
the filters applied at each level can be independent of one
another, providing additional design freedom for content-
adaptive filters.

While the parallel CPU implementation of our algorithm
accepts convolution kernels of arbitrary size in 1D, 2D, and
3D, our CUDA implementation is currently limited to filter

stencils of size 33 and 53. The main difficulties in extending
this to larger filters are the limitations to thread block size and
register usage per thread. The efficiency of our implementation
hinges on the ability to distribute the sparse rows correspond-
ing to fixed positions in the z–x plane across warps, in order to
promote coalesced access to global memory. With increasing
filter size, the amount of such positions quickly outgrows the
maximum thread block size, such that each thread must iterate
over additional rows to reconstruct isotropic patches. This
adds multiples to the workload of each thread and leads to
increasingly complex kernels that result in excessive register
pressure, requiring compromise to avoid spillage. A possible
solution is to decompose convolutions with larger stencils
into sums of 1D or 2D convolutions applied line- or plane-
wise [32].

In our benchmarks, we have neglected the time required to
transfer the image data between the host computer and the
GPU. Since data transfer times are proportional to the amount
of data being sent, these can be expected to show similar
scaling with CR as the memory usage. This means that in
practical applications, where transfer times are significant, the
overall benefit of the APR is expected to be larger than in
the presented benchmarks. This is because the APR not only
accelerates image processing, but also reduces the amount of
data that needs to be transferred.

Finally, we have only considered discrete convolutions.
While the presented approach can in principle be extended
to nonlinear filters, morphological operations, and resampling
techniques, discrete convolutions remain an essential compo-
nent of high-level image processing methods. For example,
image features computed by convolutions are routinely used
in machine learning algorithms, such as random forests and
support vector machines, to perform high-level vision tasks
such as object detection or instance segmentation. The ability
to efficiently convolve an APR enables us to extract per-
particle features and perform these tasks directly on the APR,
without reverting to pixels. This not only leverages the com-
putational ratio of the APR, but it also benefits the machine
learning algorithms, as the number of learning dimensions is
reduced.

In the future, this could be exploited to design convolutional
neural networks (CNNs) that directly operate on APR images
using layers that implement APR convolutions. The filter
weights can be learned by back-propagating the loss gradients
through the interpolation across resolutions, as presented here.
The filter weights for different resolution levels can be learned
independently, leading to an inherent spatial scale-adaptivity of
the network. The training process itself would then be guided
by the spatial structure of the APR. This is in contrast to pixel
CNNs, where each filter is applied uniformly across the entire
image. We expect that the APR focusing on informative image
regions may lead to faster convergence during training, and
it may enable smaller, shallower networks. Using our design
with fixed sampling points, one would have to consider the
structural match between the network inputs and outputs. This
restricts the range of possible applications, but should not pose
an issue in many important tasks, such as object detection and
segmentation.

JONSSON et al.: PARALLEL DISCRETE CONVOLUTIONS ON ADAPTIVE PARTICLE REPRESENTATIONS OF IMAGES 4211

Taken together, APR-native discrete convolution demon-
strates the potential for scalable image processing on CPUs
and GPUs. The presented data structures and algorithms
provide a basis for APR-native image processing and machine
learning. Combined with the results from Ref. [16], which
showed the practical applicability of the APR to microscopy
datasets, as well as existing software for generating, visual-
izing, and compressing APRs [23], [33], this brings within
reach complete APR-based workflows for storing, visualizing,
and processing large sparse image datasets without reverting
to pixels. This will allow leveraging the full potential of the
APR in big bio-image projects.

CODE AVAILABILITY

Algorithms for the generation and manipulation of
APRs are implemented in the open-source C++ soft-
ware library LibAPR [23] (available at https://github.
com/AdaptiveParticles/LibAPR). The data structures and algo-
rithms described in this work are also implemented and
publicly available there. In addition, most APR functionality
is available from Python through the package pyapr [33]
(https://github.com/AdaptiveParticles/pyapr), built on top of
LibAPR. The Python package additionally offers interactive
visualization tools for APRs (by z-slice and by maximum
intensity projection raycast), as well as visual aids for observ-
ing the conversion of pixel images to APRs.

REFERENCES

[1] E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-
sheet microscopy for adventurous biologists,” Nature Methods, vol. 12,
no. 1, p. 30, 2014.

[2] K. McDole et al., “In toto imaging and reconstruction of post-
implantation mouse development at the single-cell level,” Cell, vol. 175,
no. 3, pp. 859–876, 2018.

[3] J. Huisken, “Slicing embryos gently with laser light sheets,” BioEssays,
vol. 34, no. 5, pp. 406–411, May 2012.

[4] R. K. Chhetri, F. Amat, Y. Wan, B. Höckendorf, W. C. Lemon, and
P. J. Keller, “Whole-animal functional and developmental imaging
with isotropic spatial resolution,” Nature Methods, vol. 12, no. 12,
pp. 1171–1178, Dec. 2015.

[5] C. Allan et al., “OMERO: Flexible, model-driven data management
for experimental biology,” Nature Methods, vol. 9, no. 3, pp. 245–253,
Mar. 2012.

[6] U. Gunther et al., “Scenery: Flexible virtual reality visualization on the
Java VM,” in Proc. IEEE Vis. Conf. (VIS), Oct. 2019, pp. 1–5.

[7] J. Schindelin et al., “Fiji: An open-source platform for biological-image
analysis,” Nature Methods, vol. 9, no. 7, pp. 676–682, Jul. 2012.

[8] Y. Afshar and I. F. Sbalzarini, “A parallel distributed-memory par-
ticle method enables acquisition-rate segmentation of large fluores-
cence microscopy images,” PLoS ONE, vol. 11, no. 4, Apr. 2016,
Art. no. e0152528.

[9] L. A. Royer et al., “ClearVolume: Open-source live 3D visualization for
light-sheet microscopy,” Nature Methods, vol. 12, no. 6, pp. 480–481,
Jun. 2015.

[10] R. Haase et al., “CLIJ: GPU-accelerated image processing for everyone,”
Nature Methods, vol. 17, no. 1, pp. 5–6, Jan. 2020.

[11] J. Moore et al., “OME-NGFF: A next-generation file format for expand-
ing bioimaging data-access strategies,” Nature Methods, vol. 18, no. 12,
pp. 1496–1498, 2021.

[12] T. Pietzsch, S. Saalfeld, S. Preibisch, and P. Tomancak, “BigDataViewer:
Visualization and processing for large image data sets,” Nature Methods,
vol. 12, no. 6, pp. 481–483, Jun. 2015.

[13] A. Bria, G. Iannello, L. Onofri, and H. Peng, “TeraFly: Real-time three-
dimensional visualization and annotation of terabytes of multidimen-
sional volumetric images,” Nature Methods, vol. 13, no. 3, pp. 192–194,
Mar. 2016.

[14] F. Amat, B. Höckendorf, Y. Wan, W. C. Lemon, K. McDole, and
P. J. Keller, “Efficient processing and analysis of large-scale light-sheet
microscopy data,” Nature Protocols, vol. 10, no. 11, p. 1679, 2015.

[15] B. Balázs, J. Deschamps, M. Albert, J. Ries, and L. Hufnagel,
“A real-time compression library for microscopy images,”
bioRxiv, Jan. 2017, Art. no. 164624. [Online]. Available:
https://www.biorxiv.org/content/10.1101/164624v1

[16] B. L. Cheeseman, U. Günther, K. Gonciarz, M. Susik, and
I. F. Sbalzarini, “Adaptive particle representation of fluorescence
microscopy images,” Nature Commun., vol. 9, no. 1, p. 5160, Dec. 2018.

[17] N. C. Rivron et al., “Blastocyst-like structures generated solely from
stem cells,” Nature, vol. 557, no. 7703, pp. 106–111, May 2018.

[18] V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-
throughput microscopy image sets for validation,” Nature Methods,
vol. 9, no. 7, p. 637, 2012.

[19] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and
J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.,
vol. 29, no. 6, pp. 33–41, 1984.

[20] D. Meagher, “Geometric modeling using octree encoding,” Comput.
Graph. Image Process., vol. 19, no. 2, pp. 129–147, Jun. 1982.

[21] P. Porwik and A. Lisowska, “The Haar-wavelet transform in digital
image processing: Its status and achievements,” Mach. Graph. Learn.
, vol. 13, nos. 1–2, pp. 79–98, 2004.

[22] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing.
II. Efficiency design and applications,” IEEE Trans. Signal Process.,
vol. 41, no. 2, pp. 834–848, Feb. 1993.

[23] B. Cheeseman, K. Gonciarz, U. Günther, J. Jonsson, M. Emmenlauer,
and M. Susik, “Cheesema/LibAPR: Initial release v1.1,” Sep. 2018, doi:
10.5281/zenodo.1423158.

[24] E. Haber, L. Ruthotto, E. Holtham, and S.-H. Jun, “Learning across
scales—Multiscale methods for convolution neural networks,” in Proc.
AAAI Conf. Artif. Intell., vol. 32, 2018, pp. 3142–3148. [Online].
Available: https://aaai.org/Library/AAAI/aaai18contents.php

[25] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid. Amsterdam,
The Netherlands: Elsevier, 2000.

[26] Y. Zhang et al., “A Poisson–Gaussian denoising dataset with real
fluorescence microscopy images,” 2018, arXiv:1812.10366.

[27] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Mar. 1998.

[28] J. Malcolm, P. Yalamanchili, C. McClanahan, V. Venugopalakrishnan,
K. Patel, and J. Melonakos, “ArrayFire: A GPU acceleration platform,”
in Modeling and Simulation for Defense Systems and Applications VII,
vol. 8403. Bellingham, WA, USA: International Society for Optics and
Photonics, 2012, Art. no. 84030A.

[29] W. H. Richardson, “Bayesian-based iterative method of image restora-
tion,” J. Opt. Soc. Amer., vol. 62, no. 1, pp. 55–59, Jan. 1972.

[30] L. B. Lucy, “An iterative technique for the rectification of observed
distributions,” Astron. J., vol. 79, no. 6, p. 745, 1974.

[31] D. Sage et al., “DeconvolutionLab2: An open-source software for
deconvolution microscopy,” Methods, vol. 115, pp. 28–41, Feb. 2017.

[32] A. Eklund, M. Andersson, and H. Knutsson, “True 4D image denoising
on the GPU,” Int. J. Biomed. Imag., vol. 2011, pp. 1–16, Jan. 2011.

[33] J. Jonsson, B. Cheeseman, and J. Scholler, “Adaptiveparticles/pyapr:
V1.0.0-rc1,” May 2022, doi: 10.5281/zenodo.6578053.

Joel Jonsson received the M.Sc. degree in engi-
neering mathematics and computational science
from the Chalmers University of Technology,
Gothenburg, Sweden. He is currently pursuing the
Ph.D. degree in computer science with Technis-
che Universität Dresden under the supervision of
Prof. Ivo F. Sbalzarini. He is also affiliated with
the Center for Systems Biology Dresden (CSBD),
the Center for Scalable Data Analytics and Artifi-
cial Intelligence (ScaDS.AI), and the Max Planck
Institute of Molecular Cell Biology and Genetics

(MPI-CBG). His research interests include machine learning, parallel com-
puting, and biological image analysis.

http://dx.doi.org/10.5281/zenodo.1423158
http://dx.doi.org/10.5281/zenodo.6578053

4212 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Bevan L. Cheeseman received the Bachelor of Sci-
ence degree in applied mathematics and the Bachelor
of Commerce degree (Hons.) in finance from the
University of Auckland, New Zealand, the M.Sc.
degree in mathematics and statistics from the Univer-
sity of Melbourne, Australia, and the Ph.D. degree
in mathematics from Technische Universität Dresden
under the supervision of Prof. Ivo F. Sbalzarini in
2017. During this time, he was affiliated with the
Center for Systems Biology Dresden (CSBD) and
the Max Planck Institute of Molecular Cell Biology

and Genetics (MPI-CBG). Following his Ph.D. degree, he was awarded a
HFSP Fellowship to pursue work with the Department of Genetics, University
of Cambridge. Currently, he is working at Oxford Nanoimaging (ONI),
an Oxford and San Diego-based microscopy start-up, where he leads the Data
Science and Cloud Teams. His primary research interests include adaptive
resolution representations, data driven discovery, and scalable high-throughput
approaches to image processing.

Suryanarayana Maddu received the Bachelor of
Technology (B.Tech.) degree in mechanical engi-
neering from NIT Karnataka, India, the M.Sc. degree
in computational science from Ruhr University
Bochum, Germany, and the Ph.D. degree in com-
puter science from Technische Universität Dresden
under the supervision of Prof. Ivo F. Sbalzarini in
2021. During this time, he was affiliated with the
Center for Systems Biology Dresden (CSBD), the
Center for Scalable Data Analytics and Artificial
Intelligence (ScaDS.AI), and the Max Planck Insti-

tute of Molecular Cell Biology and Genetics (MPI-CBG). Currently, he is
holding an appointment as a Flatiron Research Fellow of the Center for
Computational Biology, Simons Foundation, New York City, USA. He also
holds a Visiting Scholar appointment with the NSF-Simons Center for
Mathematical & Statistical Analysis of Biology, Harvard University. His
primary research interests include statistical learning theory, physics-informed
machine learning, and scientific numerical computing.

Krzysztof Gonciarz received the Master of Science
and Engineering degree in computer science with
major in information networks and systems from the
Lodz University of Technology, Poland. He is cur-
rently employed as a Research Software Engineer in
the group of Prof. Ivo F. Sbalzarini, with affiliations
to the Center for Systems Biology Dresden (CSBD),
the Max Planck Institute of Molecular Cell Biology
and Genetics (MPI-CBG), and Technische Univer-
sität Dresden. His current research interests include
image processing, computer vision, and applied deep
learning.

Ivo F. Sbalzarini received the Graduate degree
(Hons.) in mechanical engineering from ETH
Zürich, Switzerland, with majors in computational
fluid dynamics and control theory and the Doctorate
(Dr. sc. techn.) degree (Hons.) in computer sci-
ence from ETH Zürich under the supervision of
Prof. Petros Koumoutsakos. In 2006, he was named
as an Assistant Professor in computational science
with the Department of Computer Science, ETH
Zürich. In 2012, he and his group moved to Dresden,
where he became one of the founding members

of the Center for Systems Biology and the Chair of Scientific Computing
for Systems Biology. Since 2021, he has been the Dean of the Faculty of
Computer Science. He is currently a Professor with the Faculty of Computer
Science, Institute of Artificial Intelligence, Technische Universität Dresden,
and a Director of the Center for Systems Biology Dresden (CSBD). He is
also a tenured Senior Research Group Leader with the Max Planck Institute
of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
He also works as an Area Lead for Applied Data Science and AI with
the Federal Center for Scalable Data Analytics and Artificial Intelligence
(ScaDS.AI) and the Research Avenue Leader of Scientific Computing and
Smart Microscopy with the Federal Cluster of Excellence “Physics of Life.”
His research interests include biological image analysis, adaptive discretization
schemes, data-driven modeling, and parallel computing, all with applications
in multi-scale problems of biological systems and the spatio-temporal systems
biology of living matter. He received the Willi Studer Award from ETH Zürich
for the Graduate degree and the Chorafas Award from the Weizmann Institute
of Science, Israel, for the Doctorate degree.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

