
Tracking by Assignment Facilitates
Data Curation

Florian Jug, Tobias Pietzsch, Dagmar Kainmüller, and Gene Myers

Max Planck Institute of Molecular Cell Biology and Genetics, Germany

Abstract Object tracking is essential for a multitude of biomedical re-
search projects. Automated methods are desired in order to avoid im-
possible amounts of manual tracking efforts. However, automatically
found solutions are not free of errors, and these errors again have to
be identified and resolved manually. We propose six innovative ways
for semi-automatic curation of automatically found tracking solutions.
Respective user interactions are six simple operations: Inclusion and ex-
clusion of objects and tracking decisions, specification of the number of
objects, and one-click altering of object segmentations. We show how
all proposed interactions can be elegantly incorporated into “assignment
models” [1,2,3,4,5,6], an innovative and increasingly popular tracking
paradigm. Given some user interaction, the tracking engine is capable of
computing the respective globally optimal tracking solution efficiently,
even benefitting from “warm start”-capabilities. We show that after in-
teractively pointing at a single mistake, multiple segmentation and track-
ing errors can be fixed automatically in one single re-evaluation, provably
leading to the new, feedback-conscious global optimum.

1 Introduction

Many research projects in molecular or developmental biology depend crucially
on some form of object tracking. Famous examples are gene expression studies
in cultured cells [7], nuclei tracking in Drosophila research [8], neuron tracing in
connectomics [5], lineage tracking in early C. elegans [9] or zebrafish [4] embryos,
and many more. Since the quality of subsequent biological conclusions in all these
examples will depend on the obtained tracking results they must be as accurate
as possible.

Today’s predominant tracking methods originated in the 1960s [10,11] and
were developed to track single or a hand-full of objects such as ships or airplanes.
However, biological data often requires to track a large number of similar ob-
jects. In particular cases this can be resolved by maintaining multiple association
hypotheses over multiple time-points [12]. However, although particle trackers
and state space models can produce impressive results, proofreading is still re-
quired. Computer-assisted approaches for proofreading are usually not related
to the automated method that produced the respective initial results.

Interactive error correction is rarely part of available tracking systems. Even
more so they usually turn out to be difficult to implement and integrate, leaving
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Figure 1: The Mother Machine data, the curation interface, and an example
tracking solution. This tracking system was chosen to demonstrate the interac-
tion capabilities of tracking systems knows as “assignment models” [1,2,3,4,5,6].
(a) Raw microscopy images and one preprocessed dataset showing only one of
the growth channels containing cells to be tracked. (b) The user interface built
to browse through tracking solutions. The goal is to resolve tracking errors with
as little effort for users as possible. (c) The first 25 frames of an automatically
found tracking solution. Cell mappings (blue), division assignments (yellow), and
exit assignments (red) are shown between image frames.

the user with an inflexible patchwork of multiple tools they have to use. Reasons
for this can be found in the way classical tracking models work. Their local itera-
tive solvers are highly specialized, not offering intrinsic possibilities to constrain
the space of possible solutions in any globally meaningful way. In other words
they rarely offer any interaction capabilities that can be employed by users to
prevent the system from making certain mistakes.

A relatively recent paradigm shift in available tracking methodology has the
potential to change the game in all these respects – so called Assignment Models.
The novelty of this type of tracking system is the way in which solutions are
found. A tracking problem is formulated as an adequate global optimization
problem which can be solved using discrete optimization methods.

In this article we introduce six simple, powerful user interactions for data
curation: (i) Force solution to contain an object (segment), (ii) force solution
to exclude segments, (iii) force tracking decision (assignment), (iv) avoid as-
signment, (v) specify object count in area, and (vi) alter segmentation. We will
show that the very nature of the underlying optimization problem allows us to
seamlessly incorporate these interactions.



3

In order to demonstrate the effectiveness of the proposed interactions we
implemented them for an existing bacteria tracking system. We will present
examples of how these interactions allow for simple and effective interactive
curation of tracking solutions.

2 Background

Here we review a class of tracking methods called assignment models or tracking
by assignment. We describe the underlying methodology using the example of
an existing bacteria tracking system. We provide sufficient technical detail to
prepare the reader for Section 3, where we will propose and implement several
user interaction types that extend the existing system. However, it is important
to note that none of the proposed interactions is specific to that particular sys-
tem. Curation schemes, as we describe them, are directly applicable to other
assignment models like [1,4,5,6].

Tracking by Assignment. Tracking consists of two equally important tasks:
Cells need to be segmented in each frame, and segments of the same cell in dif-
ferent frames need to be linked. Tracking by assignment methods approach these
tasks as a joint global optimization problem. In this context, the segmentation
task is usually understood as selecting a subset of segments out of many possi-
ble hypotheses obtained from a (possibly heavy) oversegmentation of the input
frames. Joint segmentation and tracking then boils down to enumerating many
potential subsets of segments together with potential ways of linking (assigning)
them between frames, and choosing from all these options a subset (solution)
that is optimal in the following sense: Each of the potential segments and assign-
ments is given a cost. Costs are simply a measure of how unlikely it is that this
particular segment or assignment is part of the “real” solution to the tracking
problem at hand [2,4] (also considering which other assignments are co-chosen).
An optimal solution should minimize the summed costs.

Cost functions are usually designed to reflect the knowledge of domain ex-
perts. For example, if living cells are the objects to be tracked, the cost function
for a cell division assignment that links one segment to two segments in the next
frame is likely to contain a term that evaluates the size of the three segments to
be linked. (Daughter cells should be similarly large and together be at least the
size of the parent cell.)

Structural knowledge about which assignments can be chosen simultaneously
is encoded in terms of constraints. They permit only physically meaningful solu-
tions, i.e. solutions that do not describe impossible events like cells popping into
existence out of nowhere, or cells moving to two places at once, etc. Constraints
simply force or prohibit certain segments and assignments to be jointly active.

Given a segmentation and tracking problem formalized in terms of costs and
constraints, well-established discrete optimization methods can be used to obtain
a solution that is (i) feasible, i.e., free of conflicts, and (ii) cost-minimal. In the
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following we will put these notions on formal grounds. We do this in the context
of reviewing an existing tracking system [7].

Tracking Bacteria in the Mother Machine. The Mother Machine [13] is
a microfluidic device designed to study living bacteria. It allows the observation
and quantification of growth and division of the progeny of single “mother” cells
over many generations using time lapse microscopy. Figure 1 shows sample data
and a tracking solution found by the assignment model [7], reviewed below.

An excess of segment hypotheses is generated for each frame t, with many
hypotheses partially overlapping and thereby providing alternative and mutually
exclusive interpretations of parts of the image [7]. Each segment hypothesis as
well as each possible assignment is represented as a binary variable v. In partic-
ular, each binary segmentation variable h(t) ∈ H(t) corresponds to a particular
segment hypothesis at frame t, while binary assignment variables a(t) ∈ A(t) link
segment hypotheses at time-point t to segment hypotheses at t+ 1. A mapping

assignment a
(t)
i 7→j , for example, connects two segment hypotheses h

(t)
i and h

(t+1)
j .

In any solution of the tracking problem a subset of the variables will be
active (v = 1) indicating that the respective segment or assignment is part of
the solution. As mentioned above, a cost function is defined that associates to
every variable v the cost cv ∈ R of including it in a solution. (For details on
the cost function used for the mother machine we refer to [7]. In a nutshell, the
cost measures how much a segment/assignment deviates from the expected ap-
pearance/dynamic behaviour of a bacteria cell.) The total cost C of a particular
solution is then simply the summed cost over all active variables

C =
∑
i

vi · cvi . (1)

Linear constraints are used to restrict the solutions space to only include
conflict-free and structurally sound solutions. As a simple example, two segment
hypotheses which offer conflicting explanations of a particular pixel cannot si-
multaneously be active in any feasible solution.

We will look in detail at one particular constraint, thereby introducing some
notation that will also be required later. Continuity constraints ensure that each
active segment at frame t must be involved in exactly one assignment entering
from frame t − 1 and must also be involved in exactly one assignment towards
t + 1. In other words, a cell that has a past must have a future. Formally, this
statement can be written as

∀t ∈ {2, . . . , T − 1}, ∀h(t) ∈ H(t) :
∑

a(t−1)∈ΓL(h(t))

a(t−1) = h(t) =
∑

a(t)∈ΓR(h(t))

a(t) (2)

Here we use the left neighborhood ΓL(h) and the right neighborhood ΓR(h) of a
segment variable h. The left neighborhood ΓL(h) is the set of all assignments
entering h from the previous frame. Similarly, the right neighborhood ΓR(h) is
the set of all assignments leaving h towards the next frame.
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Finding the optimal solution using Integer Linear Programming (ILP).
In tracking by assignment the globally optimal solution for picking a set of con-
flict free assignments of minimal cost is often found by solving an integer linear
program (ILP) [4,5,6,7]. An ILP is an optimization problem that is fully speci-
fied by (i) an objective function that is a linear function of a set of variables V,
and (ii) a set of constraints that are formalized as (in-)equalities on these vari-
ables. The space of feasible solutions is defined by all variable assignments that
obey all constraints. An optimal solution is a feasible solution that minimizes
the objective function.

The joint segmentation and tracking formulation introduced above is already
in ILP form: The set of variables V comprises binary segmentation and assign-
ment variables. The objective to minimize is the cost C defined in Equation (1).
(Note, that this is a linear function in the variables v ∈ V.) In Equation (2) an
example has been given of how constraints can be formalized as linear equalities.

Integer linear programming is a well-understood problem [14], and given the
above formulation we can turn to off-the-shelf solvers like Gurobi™ to find an
optimal solution. Although finding an optimal ILP solution is NP-hard, recent
success solving relatively large tracking problems [4,5,6,7] suggests that assign-
ment models pose well-natured instances to be solved as ILPs.

In the following we will make use of a particular feature of many ILP solvers,
namely the ability to perform “warm-starts”. One speaks about a warm start if a
solver can benefits from residual intermediate results created during a preceding
optimization. This can speed-up optimization significantly as shown in Figure 4.

The software presented in this paper was implemented in Java, using the
imaging library ImgLib2 [15] and other components from the open source Fiji [16]
universe. For solving ILPs we use Gurobi.

Reducing Redundancy by Substituting Segment Variables. The set of
variables V contains variables h, for available segments, and a, for available
assignments. Note that if and only if at least one assignment a that involves a
segment i is active, also the the respective segment variable is active (i.e. hi = 1).
While it can be helpful to think in terms of dedicated segmentation variables, the
model can drop them entirely [4,5,6,7]. After adequate constraints are added to

the ILP each occurrence of h
(t)
i can be substituted by a sum over all assignment

variables in ΓL(h
(t)
i ) (or ΓR(h

(t)
i )).

3 Interaction Types and Implementation

In this section we show how the optimization problem used to solve an as-
signment model can be modified in response to user feedback. Interaction-based
modifications and re-solving are iterated until the found solution reaches ground-
truth quality. Our aim is to provide a curation interface for the bacteria tracking
system discussed above by introducing several convenient user interactions. We
will see that none of those interactions require significant changes to the existing
tracking software.
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The idea behind all proposed interaction types is simple: When a user iden-
tifies a segmentation or tracking error she suggests the correct alternative or
simply points at the error, leaving the search for an alternative solution to the
model. The given feedback is incorporated into the ILP via additional constraints
or variables. Using warm-starts allows to solve the modified problem fast enough
for interactive usage. Fixing a single error will usually resolve a bulk of follow-up
errors as shown in Figures 2 and 3, and is quantified in Figure 4. What we offer
is a curation system that can be used by non-expert users. Fixing an identified
error usually requires not more than one mouse-click (or entry in a text-field).

In total we implemented six ways to interact with tracking solutions. While
we show them in the context of the Mother Machine data, they can very well be
implemented for other existing assignment models like [4,5,6]

IT1: Force Segment. A cell might be missing in the tracking solution, maybe
even in multiple frames as shown in Figure 2(a). A user can hover the mouse
over the part of the image where a cell was not picked up by the automated
system, and respective inactive segment hypotheses are highlighted. Clicking on
any highlighted segment will cause the system to (i) modify the ILP as described
below, and (ii) re-run the solver to obtain the most probable (MAP) solution
for the given data, now constrained to include the forced segment.

Technically this can be achieved by adding a single constraint to the ILP,
namely h = 1 where h is the picked segment. Applying the redundancy reduction
discussed at the end of Section 2, the constraint to be added can be expressed
in terms of assignment variables as∑

a∈ΓR(h)

a = 1, (3)

where ΓR(h) is the right neighborhood of h, i.e. the set of all assignments leaving
h towards the next frame.

IT2: Exclude Segment. Analogously to letting the user pick missing seg-
ments, she can also decide to exclude segments from an erroneous solution (see
Figure 2(b)). The re-solved ILP will correspond to the most probable (MAP)
solution for the data, constraint to exclude the chosen segment. Analogously to
IT1, the constraint to be added to the ILP is∑

a∈ΓR(h)

a = 0. (4)

IT3: Force Assignment. Instead of interacting with segments one might want
to directly work with individual assignments. The user can browse through a
library of available assignments. In Figure 2(c) a list of pre-filtered mapping as-
signments is shown. Any such assignment can be chosen to be included in future
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IT 1: force segment
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(a)

IT 2: exclude segment
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IT 3: force assignment
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(c)

Figure 2: Interaction types (IT) 1 to 3. (a-c) Tracking errors (contained in top
row) can be resolved in different ways (red cursors in middle row). The bottom
row shows the resulting tracking solution after re-solving the model (for details
see Section 2). Note that a single click by a user can cause multiple changes in
the new, re-solved solution. Re-solving finds a globally optimal solution given
the model and all user inputs. See also Figure 4 for a quantification of transitive
changes caused by single user interactions. (a) The user can force a segment to
be included in tracking solutions. Hovering over the a cell highlights the segments
to be included. A single click causes the set of all solutions to be constraint to
only the ones containing the selected segment. (b) By control-clicking on any
pixel in a dataset, the user can exclude all segments that exist at that chosen
pixel from the solution space. (c) Instead of interacting with segments, the user
can directly select assignments to be included in curated solutions. A library of
alternative assignments, here mapping assignments, are presented to the user.
A choice is again made by a single click. (The chosen assignment is shown in
green.)
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IT 4: exclude assignment
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IT 5: count cells
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IT 6: alter segmentation
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(c)

Figure 3: Interaction types (IT) 4 to 6. (a) Instead of interacting with individual
segments, the user can directly exclude select assignments from the space of
possible solutions. Simply clicking on an active assignment, here a faulty exit
assignment, and re-solving (see Section 2) the model finds a new, globally optimal
solution that complies to the model and all user interactions so far. (b) A very
interesting, but slightly more “abstract” interaction type is shown here. The user
can specify the number of cells in a given area, here in an entire time-point. By
giving a cell count the search space of the model will be restricted to include
only those solutions that contain the given number of activated segments in the
corresponding frame. (c) If data quality is particularly bad in some parts of
the images, a user can decide to replace segment hypotheses. The new ones, for
example generated by a different, computationally more expensive segmentation
method, can then be used in future model evaluations. Here we exchanged the
segment hypotheses of all 5 shown frames and solved the modified model.
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tracking solutions. Note that this also enforces the solution to contain specific
segments, namely the segments that are associated by the forced assignment.

Browsing the library of available assignments can be done in only a few
mouse-clicks. Please see the supplementary movie for a “live demo” of out inter-
active curation system.

Since there is precisely one binary variable a corresponding to the chosen
assignment, the respective constraint to be added to the ILP to force this as-
signment to be 1 (on) is simply a = 1.

IT4: Exclude Assignment. Analogously to IT3 the user might also want to
exclude an assignment that is part of the current tracking solution, as shown in
Figure 3(a). For excluding an segment a single click is sufficient. The constraint
to be added to the ILP for excluding an assignment is simply a = 0, where a is
the chosen assignment.

IT5: Count Cells. For all previous interactions the user had to pick individual
assignments or segments to include or exclude. Below we introduce an interesting
interaction type that operates on a semantically higher level.

In Figure 3(b) we show a case where a cell was not included by the automat-
ically found solution. But the user might at the same time be unsatisfied by the
two cells on top of the growth channel to be segmented as a single object. The
easiest way of to solve both problems at once would be to tell the model how
may cells are contained in the current time-point. As before, let us constrain
the solution space in the way we want – here to solutions that containing k
segmented cells at time-point t. Formally this is the constraint∑

h∈H(t)

∑
v∈ΓR(h)

v = k, (5)

where H(t) is the set of all possible segments at time t.

IT6: Alter Segmentation. So far, all interaction types depend on the existence
of the correct segments in the pool of all segment hypotheses. This is of course
not always the case. The last interaction we introduce aims at curating erroneous
solutions by means of altering the segment pool.

Such alterations can be of different nature. Users could use the mouse or
a stylus to draw an outline around an object, or use any number of interac-
tive segmentation methods like [17] in order to segment the object of desire.
We demonstrate a way to replace all segment hypotheses at a given time-point
by segments created by an alternative segmentation method (which might be
specialized to known weaknesses in parts of the data at hand).

For this type of interaction it is not enough to introduce a constraint alone.
The modification of the ILP is of more fundamental nature since we have to
remove some assignments (and associated variables v) from the ILP and replace
them by new assignments between new and old segment hypotheses.
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Figure 4: Erroneous segments and assignments and the number of interactions
and CPU time needed to correct them. The left panel shows how many user inter-
actions where needed to fully curate a dataset containing 100 frames. (Evaluated
over a total of 21 (11 + 10) datasets from 2 time-lapse movies.) Middle panel
shows how many segments and assignments had effectively been changed by the
interactions in left panel. The right panel shows execution time (wall-time) for
all datasets. We compare (i) initial runtime for setting up the model + solving it
to global optimality, and (ii) warm-starts that where performed after each user
interaction.

In Figure 3(c) we show how erroneous tracks can be fixed by switching the
segmentation method at some (in the example five) frames and re-solving the
modified ILP. Note that all necessary model changes are covered by procedures
that were also needed to build the model in the first place.

4 Results

Figures 2 and 3 show proof-of-concept results for all six interaction types for
the application of tracking bacteria in Mother Machine image data. For all these
examples, median warm-start run-time is at 2.5 second (average 3.6), while a full
run of the ILP solver without warm-start takes between 10 and 40 seconds. All
times where measured on a MacBook Pro Retina (Fall 2012), see also Figure 4,
rightmost panel.

We asked a biologist who was not involved in creating the proposed inter-
active curation system to use the interaction types of Figures 2 and 3 in order
to fix all tracking errors contained in the automatically found solutions. After
a short verbal introduction the user clicked through all errors of 21 all datasets
available to us.

On average 3.05 interactions where needed to curate a 100 frame dataset to
ground-truth quality [7]. For all 21 datasets 64 interactions lead to a grand total
of 467 changed segments or assignments. This means that a single click or input
by the user lead on average to 7.3 modifications in the final solution. This effect
of transitive error correction is also visible in Figures 2 and 3. See also the first
two box plots in Figure 4.
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5 Discussion

We proposed six intuitive user interaction types that fit seamlessly into assign-
ment models for joint segmentation and tracking. Clues given by the user are
introduced into the problem formulation as additional constraints or variables.
Given the revised model, the problem is immediately re-solved to optimality,
making sure that the user is at no point left with an inconsistent or implausible
solution. We showed that re-solving the bacteria tracking model fixes on average
7.3 segments and assignments at once. Owing to “warm-started” ILP re-solving
the user interactions can be performed fast enough for avoiding annoying waiting
times. (Re-solving time is usually below 3 seconds for datasets containing 100
time-points.)

The proposed interaction types are not specific to bacteria tracking. Other
assignment tracking systems like [4,5,6], could easily be extended by very similar
interactions. All six interaction types can be implemented by small changes to
the underlying assignment models. In five of the six cases it is enough to add a
single constraint to the ILP used to compute the global optimal tracking solution.
But also IT6, which relied on changing segment hypotheses was implemented by
calling existing code used to build the initial model.

The reason for the fast and easy realization of all 6 interactions is based on
inherent features of assignment models – they are globally searching for optimal
solutions and use solvers that operate on a clean, formal problem description
that offers enough descriptive power to also capture user inputs (in form of con-
straints). As discussed elsewhere [8], many established tracking methods are less
compliant to user interactions, possibly making assignment trackers the model
of choice for interactive tracking systems.

Solving large ILPs might eventually become a bottleneck. In such a case one
could drop the guarantee to find the global optimum by (i) switch to faster,
approximate inference methods [18], or (ii) make use of adequate “divide-and-
conquer” strategies like existing dual decomposition methods [19].

In conclusion we think that assignment models are a powerful new paradigm
that can easily be made interactive to reach ground truth quality by including
user feedback. Assignment models and interactions of the kind we presented here
are arguably the best choice for interactive curation systems that biomedical
imaging can offer today.
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