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Only a small fraction of spectra acquired in LC-MS/MS runs matches peptides from target proteins
upon database searches. The remaining, operationally termed background, spectra originate from a
variety of poorly controlled sources and affect the throughput and confidence of database searches.
Here, we report an algorithm and its software implementation that rapidly removes background spectra,
regardless of their precise origin. The method estimates the dissimilarity distance between screened
MS/MS spectra and unannotated spectra from a partially redundant background library compiled from
several control and blank runs. Filtering MS/MS queries enhanced the protein identification capacity
when searches lacked spectrum to sequence matching specificity. In sequence-similarity searches it
reduced by, on average, 30-fold the number of orphan hits, which were not explicitly related to
background protein contaminants and required manual validation. Removing high quality background
MS/MS spectra, while preserving in the data set the genuine spectra from target proteins, decreased
the false positive rate of stringent database searches and improved the identification of low-abundance
proteins.
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Introduction

Typical LC-MS/MS experiment, a cornerstone of many
proteomic efforts of today (reviewed in refs 1–3), produces
several thousands tandem mass spectra. Yet, only 5-50% of
them match peptides from database entries and even smaller
fraction of those actually hit target proteins,4–6 even if a majority
of spectra are of good quality and rich in fragment ions.7 The
unmatched spectra fall into three major groups: first, they
might represent peptides originating from target protein(s),
which the search engine, for some reason, failed to match. This
typically includes spectra of peptide precursors with polymor-
phic sequences that are common in organisms having diverse
genetic backgrounds;8,9 peptides with post-translational modi-
fications; peptide products of unspecific protease cleavage;10,11

products of orifice fragmentation of abundant peptide pre-
cursors,4,6 among others. Depending on their quality, these

spectra could be matched to target protein(s) by error-tolerant
searches.12–18

Second, a large, diverse, and poorly defined group of spectra
is often termed as peptide background. They originate from
ubiquitous human and sheep keratin contaminants; from
autolysis products of proteolytic enzymes, such as trypsin,19

which are especially abundant in in-gel protein digests;20,21

from preparation-specific protein contaminants,22,23 such as
proteins from the cell media or expression host organism,
antibodies, GST, TEV and PreScission proteases, among others.
Many of these sequences are either not present in a database
or scattered through a large number of partially redundant
database entries. When abundant, they also give rise to a large
pool of polymorphic sequences, orifice fragmentation products,
sodium adducts, and so forth, as described above. Because of
the organismal diversity of background proteins and redun-
dancy of corresponding database entries, both stringent and
error-tolerant database searches identify corresponding peptide
precursors with very limited efficiency.

A separate subgroup of background MS/MS peptide spectra
is often encountered in shotgun functional proteomics.24 Stable
protein constellations (such as, for example, protein complexes
or organelles) are often coisolated together with a variety of
proteins that, despite weak nonspecific binding to the bait or
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genuine interactors, are found in considerable quantities since
they are highly expressed. Therefore, target bona fide protein
interactors often represent a small fraction of the total protein
content. The composition of coisolated background proteins
is strongly experiment-dependent and they are better recog-
nized by correlating their relative abundances,25,26 rather than
by direct comparison against some generic control.

Tandem mass spectra acquired from precursors of nonpep-
tide origin (detergents, plasticizers, etc.)27 represent the third
major group of unmatched spectra. They are mostly detected
as singly charged ions and, assuming the employed mass
spectrometer offers adequate mass resolution, are readily
recognized in survey scans and, if required, excluded from
subsequent MS/MS experiments. However, they are often co-
selected with genuine multiply charged peptide precursors and
might contaminate MS/MS spectra, since, for better sensitivity,
the width of the isolation window is maintained within the m/z
range of 2-4 Da.28–30

Background spectra represent a significant bottleneck in
protein identification. Large size of search queries requires
substantial computational resources and processing time.
Because of diverse origin of protein background, searches
should be performed against a comprehensive, rather than a
species-restricted, database. Since the expected number of
random hits increases with increasing the size of both the query
and database, higher threshold scores are usually imposed, and
the rate of false negative identifications also increases.

Overpopulating MS/MS queries with background spectra
most severely affects sequence-similarity searches that are
commonly used for the identification of protein from organisms
with unsequenced genomes.31–33 Homology-driven proteomics
relies on relatively weak similarities between redundant, de-
generate, and largely inaccurate peptide sequence candidates,
obtained by automated interpretation of tandem mass spectra,
and protein sequences from often phylogenetically distant
species available in a database.31,34 Larger organismal scope
and the ability to identify unknown (i.e., not available in a
database) proteins come at the price of reduced search
specificity, and therefore, background peptides much stronger
affect the confidence of produced hits, compared to conven-
tional stringent database searches. In particular, human and
sheep keratins (ubiquitous contaminants in almost any protein
preparation) are rich in low complexity sequence stretches, and
therefore, it is not surprising that sequence-similarity searches
retrieve many high scoring protein hits that are, at the first
glance, unrelated to keratins. Sorting them out requires manual
inspection of each produced alignment followed by BLAST
searches with full-length sequences of cross-species protein hits
and thorough consideration of their domain compositions,
which is hardly possible under high-throughput settings.

Therefore, it would be advantageous to remove background
spectra prior to database searches. However, since the abun-
dance of background precursors varies very strongly, the
corresponding MS/MS spectra are poorly reproducible and
often contaminated by chemical noise and fragments of
accidentally coselected precursors.35 Furthermore, MS/MS
spectra of precursors of nonpeptide origin contain only a few
representative peaks and are difficult to recognize by applying
some generic fragmentation rules.

To address this problem, computational methods have been
developed to recognize background spectra by comparison with
a reference library or with spectra from a blank LC-MS/MS
run.35,36 Gentzel et al. found matching the intensity profiles of

fragment ions counterproductive,35 although this approach has
been employed in many mass spectral library search algo-
rithms37–41 and, instead, chose to match solely m/z patterns.
Yates et al. used cross-correlation of Fourier transforms to
match both m/z and intensities of peaks.36 Although these are
robust solutions, they are computationally intense and do not
provide a statistically transparent cross-platform framework
since they derive empirical similarity thresholds directly from
acquired data.

Here, we report an algorithm and its software implementa-
tion for rapid screening of large MS/MS queries, which
recognizes and, subsequently, removes unannotated back-
ground spectra regardless of their precise origin. We demon-
strated that unbiased, sequence database-independent filtering
decreases the rate of background-related false positive hits,
improves the identification confidence of minor protein com-
ponents, and, hence, stands out as the essential element of any
proteomics data mining pipeline.

Materials and Methods

Chemicals. Cleland’s reagent (dithiothreitol, DTT) was ob-
tained from Merck (Darmstadt, Germany) and other chemicals
from Sigma-Aldrich (Munich, Germany). Porcine trypsin (se-
quencing grade modified trypsin, cat. number V5111) was
purchased from Promega (Mannheim, Germany); LC solvents
were from Fisher Scientific (Schwerte, Germany); formic and
trifluoroacetic acids were from Merck (Darmstadt, Germany).

Protein samples from the bug Triatoma infestans and
Brazilian pine Araucaria angustifolia were obtained from
ongoing collaboration projects with the Laboratory of Bio-
chemistry and Protein Chemistry, University of Brasilia, and
Plant Cell Biology Laboratory, University of São Paulo. Spots
were visualized by Coomassie Brilliant Blue R250 or (where
specified) silver staining, excised from two-dimensional poly-
acrylamide gels and in-gel digested with trypsin as described.20,21

Recovered tryptic peptides were dried down in a vacuum
centrifuge and stored at -20 °C until analyzed.

Human protein complexes were isolated from HeLa cells by
immunoaffinity chromatography basically as described by
Gregan et al.42 Briefly, proteins eluted from affinity beads with
50- 200 µL of the buffer containing 100 mM glycine in 100
mM Tris, pH 8.0, were digested in-solution with trypsin at the
enzyme concentration of 16 ng/µL at 39 °C overnight and
tryptic peptides concentrated off-line on a UltraMicroSpin-C18
(The Nest Group, Southborough MA) cartridge.43

Analysis by LC-MS/MS was performed on the Ultimate 3000
nanoLC system (Dionex, Amsterdam, The Netherlands), which
was interfaced to a LTQ Orbitrap hybrid mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany) via a robotic
nanoflow ion source TriVersa (Advion BioSciences Ltd., Ithaca,
NY) equipped with a LC coupler and a chip with the diameter
of electrospray nozzles of 4.1 µm. The TriVersa source was
controlled by Chipsoft 6.4. software (Advion Biosciences) and
operated at the ionization voltage of 1.7 kV and the capillary
transfer temperature was set at 180 °C.

Tryptic peptides were taken up in 10 µL of 0.05% TFA and 4
µL was loaded onto 5 mm × 300 µm i.d. trapping column
packed with C18 PepMAP100 5 µm particles (Dionex) in 0.05%
TFA at the flow rate of 20 µL/min. After a 5 min wash, peptides
were eluted into 15 cm × 75 µm i.d. nanocolumn packed with
C18 PepMAP100 3 µm particles (Dionex) at the flow rate of 200
nL/min and separated using the following mobile phase
gradient: from 5 to 20% of solvent B in 20 min, 20-50% B in
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16 min, 50-100% B in 5 min, 100% B during 10 min, and back
to 5% B in 10 min. Solvent A was 95:5 H2O/acetonitrile (ACN)
(v/v) containing 0.1% formic acid; solvent B was 20:80 H2O/
ACN (v/v) containing 0.1% formic acid.

Protein mixtures isolated by immunoaffinity chromatography
were digested in-solution and analyzed as described above;
however, the elution gradient was from 5 to 20% of solvent B
in 73 min, 20-50% B in 71 min, 50-100% B in 5 min, 100% B
during 10 min, and back to 5% B in 10 min.

LC-MS/MS analysis was performed in data-dependent ac-
quisition (DDA) mode controlled by Xcalibur 2.0 software
(Thermo Fisher Scientific). The automated gain control (AGC)
was set to 5E05 charges for MS scan on the Orbitrap and 5E04
charges for MS/MS on the ion trap analyzers. Typical DDA cycle
consisted of a survey scan within m/z 300-1600 performed at
the Orbitrap analyzer under the target mass resolution of 60 000
(full width at half-maximum) followed by MS/MS fragmenta-
tion of the four most abundant precursor ions under the
normalized collision energy of 35% in the linear trap. Survey
spectra were acquired in one microscan and MS/MS spectra
in three microscans with maximal ion injection time of 100 ms.
Ion selection threshold for triggering MS/MS experiments was
set to 500 counts with the precursor ions isolation width of 4
amu. Activation parameter q ) 0.25 and activation time of 30
ms were applied. Singly charged ions were excluded from MS/
MS experiments, and m/z of fragmented precursor ions were
dynamically excluded for further 90 s; otherwise, no precom-
piled exclusion lists were applied. Spectra were exported as.dta
files using BioWorks 3.1 software (Thermo Fisher Scientific)
under the following settings: peptide mass range, 500-3500 Da;
minimum total ion intensity threshold, 500; minimum number
of fragment ions, 5; minimum signal-to-noise ratio, 3; charge
state recognition enabled. Each.dta file was named according
to the original name of the.raw file, the scan number and the
assumed charge of the precursor ion. Different.dta files could
be related to the same peptide if during LC-MS/MS experiment
either the same precursor ion was fragmented several times,
or detected in different charge states. All.dta files from each
LC-MS/MS run were merged into a single.mgf (MASCOT
generic format) file by a dedicated script.

Protein Identification by Stringent Database Searches.
Where specified, LC-MS/MS runs were searched against the
MSDB database (2 344 227 sequence entries; updated April,
2006) by MASCOT v. 2.1 software (Matrix Science Ltd., London,
U.K.) installed on a local 2 CPU server. Tolerances for precursor
and fragment masses were set at 10 ppm and 0.6 Da, respec-
tively; up to 2 missed cleavages were allowed; instrument
profile, ESI-Trap; fixed modification, carbamidomethyl (cys-
teine); oxidation (methionine) and acetylation of the N-terminal
peptide of protein sequence entry were set as variable
modifications.

MASCOT identifications were considered confident if hits
were produced by matching of at least three MS/MS spectra
each with peptide ions score above 20. For hits matched by
one or two spectra, it was required that at least one spectrum
should be matched with the score of 50 or above.

De novo Peptide Sequencing and Protein Identification by
MS BLAST Searches were performed as described.32 All MS/
MS spectra obtained in each LC-MS/MS experiment were
interpreted de novo by a modified version of PepNovo soft-
ware44 termed PepNovo2MSB (available for free download at
http://peptide.ucsd.edu). The software was set to produce up
to 7 redundant, degenerate, and partially complete and ac-

curate sequence candidates per each interpreted MS/MS
spectrum. For each spectrum, PepNovo reported the expected
confidence of produced sequence candidates by assigning a
quality score, which corresponded to the expected number of
correctly called amino acid residues in the top sequence
proposal. Unless specified otherwise, in de novo sequencing
experiments we only considered sequence candidates having
the score of 6.0 or above. All selected peptide sequence
candidates obtained by PepNovo sequencing of all peptide
precursors were merged into a single MS BLAST query string.12,34

MS BLAST searches were performed against nr database at the
Web-accessible server at http://genetics.bwh.harvard.edu/ms-
blast/ maintained by Sunyaev’s laboratory. Statistical signifi-
cance of hits was evaluated according to MS BLAST scoring
scheme,34 which, however, only considered high scoring seg-
ment pairs (HSPs) with the BLAST scores of 55 or above, as
was specified via LC-MS/MS presets option.32 Other MS BLAST
settings were explained in details in ref.45

EagleEye Spectra Filtering Software: Data Processing
Settings and Web-Based User Interface. The filtering software
here termed EagleEye was programmed in C++ language,
runs at the Linux cluster and is accessible at http://
genetics.bwh.harvard.edu/cgi-bin/msfilter/eagleeye.cgi. A
stand-alone version of EagleEye is available from the authors
upon request.

Basically, EagleEye screens the query of individual MS/MS
spectra packed as a single.mgf (MASCOT generic format) file,
which is used in MASCOT searches of LC-MS/MS data sets,
against a background library. The library typically comprises
spectra combined from multiple control and blank runs.
Acquiring experiment and blank (control) LC-MS/MS runs at
the same or similar instrument under the same settings
increases chances of accurate matching of fragment peak
patterns in individual spectra. EagleEye allows users to select
either one of several default background spectra libraries
maintained at the server, or upload any user-compiled library
(as.mgf file) along with the query. Each spectrum within.mgf
file is separately screened against the same background library
under the same set of user-definable filtering parameters. User-
definable parameters for EagleEye filtering are submitted with
the same input form and include the tolerance for precursor
and fragment masses, as well as the estimate of the fraction of
good-quality query spectra that could be lost because of
random matching (p-value cutoff).

Optionally, EagleEye could produce a low redundancy
background library from highly redundant data sets obtained
by combining spectra from several independent LC-MS/MS
runs. This library, in compressed format, is downloadable via
a Web link and can be further used for spectra filtering as a
user-supplied background library.

EagleEye Web server supports batch mode operation: the
batch query could contain several.mgf files (each representing
complete LC-MS/MS run), which are processed as individual
jobs under the same filtering settings. To improve upload times,
both query and library files should be submitted in a com-
pressed format. Upon submission, the user’s browser receives
a cookie with the unique session identifier, which can be used
to access EagleEye server anytime later from the same or
different networked computer and track filtering progress,
manage individual queries, or view and collect results. Once
the submitted batch is processed, the server provides a link
for downloading a compressed archive, in which for each
submitted.mgf file a separate directory is created. Each direc-
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tory contains two.mgf files with retained (nonbackground) and
background spectra, as well as two text files in tab-separated
format with processing settings and a list of matched spectra
and scores. Filtered.mgf files extracted from the archive can
be directly submitted to MASCOT search or de novo interpreta-
tion. Screening a data set of ca. 2000 MS/MS spectra against a
library of ca. 270 000 background spectra typically takes less
than 10 min.

Library of Background MS/MS Spectra. A library of back-
ground tandem spectra was composed by processing a partially
redundant collection of.dta files obtained in LC-MS/MS runs
of 5 independent in-gel tryptic digests of blank gel pieces.
Digests were analyzed on a new precolumn and analytical
column to reduce the column memory. Each run was separately
checked by MASCOT that only identified peptides from trypsin
and human and (or) sheep keratins. Additionally, we added
1750 trypsin and keratin spectra identified by MASCOT (with
peptide ion scores above 50) or MS BLAST searches (High
Scoring Segment Pair (HSP) score above 55) in separate
analysis. To lower the library redundancy, each of these spectra
was screened against the existing library and added only if no
matching spectrum was recognized. The background library
used in this work comprised, in total, 12 009 unannotated MS/
MS spectra acquired from doubly and triply charged precursor
ions and was further preprocessed by removing low-abundance
fragment peaks (see the definition below) from each spectrum
to reduce computational time and memory requirements.

Results and Discussion

We developed a computational method for filtering back-
ground MS/MS spectra from LC-MS/MS runs on the basis
of their similarity to spectra from a precompiled background
library. Our approach is statistical in nature and does not
rely upon any empirically chosen parameters, such as the
number or percentage of matching peaks. The statistical
model allows transparent control over filtering stringency
and is independent of both the filtered query and back-
ground spectra library.

The library includes a representative set of unannotated
background MS/MS spectra packed into a.mgf file. We
underscore that spectra were collected irrespectively of their
abundance, identity or information content. Hence, filtering
was not intended to substitute spectral quality assessment.7,35

Once a representative background spectra library was com-
piled, filtering could be performed in the framework of the
database similarity search. However, in contrast to traditional
searches, we are less interested here in the identification of
confident matches, but rather of the set of spectra, which match
nothing in the background library and are therefore worth
saving for further analysis.

Generally, a database similarity search consists of three
components: a similarity/dissimilarity measure (in our case,
between two MS/MS spectra with the same precursor m/z
and charge), a search algorithm and a statistical framework
to identify significant matches. Since our search algorithm
is trivial, we focus below on the dissimilarity measure and
on the estimation of its statistical significance.

Measure of Dissimilarity between MS/MS Spectra. Numer-
ous measures of similarity between MS/MS spectra (reviewed
above) were developed specifically for finding sufficient relat-
edness between weakly similar spectra for the purpose of
accurate database searches. Our goal was entirely different, as
we needed to identify whether sufficient nonbackground
information is retained in queried MS/MS spectra. Often,
valuable tandem mass spectra from target peptide precursors
are polluted with only a few background peaks, which affect
neither database searching, nor de novo interpretation.46 Yet,
upon comparison with the corresponding background spectra,
“background signature” warrants their statistically significant
similarity and prompts false elimination of spectra of, other-
wise, uncompromised quality. Also, rapid acquisition of MS/
MS spectra in LC-MS/MS experiments affects ions statistics,
and therefore, it is almost impossible to exactly reproduce both
m/z and relative abundance of fragment ions.35

We therefore defined a measure that depends on the number
of mismatched (rather than matched) peaks and determines if
the two spectra are significantly dissimilar, rather than signifi-
cantly similar. The approach was developed for and tested on
tandem mass spectra acquired on a LTQ Orbitrap instrument.
Survey scans were performed using the high resolution Orbitrap
analyzer, while MS/MS spectra were acquired on the linear ion
trap. Therefore, it was assumed that the charge state of each
precursor ion was accurately determined and no alternative
masses for the same precursor m/z were considered. If m/z
and charge states of precursor ions of queried and library MS/
MS spectra did not match, the spectra were considered

Figure 1. Comparison of a queried MS/MS spectrum (peaks up) and a background spectrum (peaks down) acquired from precursors
with matching m/z and charge state. In the spectra at the left-hand side panel, there are almost no unmatched high-intensity peaks,
and therefore, the queried spectrum is, most likely, background. In the right-hand side panel, the queried spectrum contains meaningful
nonoverlapping fragments, and despite pronounced background signature (ions within m/z 450 - 550 and above m/z 800), it should
not be removed from the data set.
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dissimilar. If, regardless of their abundances, m/z and charge
states of precursor ions matched, we further quantified the
dissimilarity between m/z and abundances of corresponding
fragment ions.

Our measure of dissimilarity between m/z and abundances
of fragment ions is simple and follows a typical spectra
evaluation routine used by an expert scientist. When com-
paring two MS/MS spectra, the expert will first of all notice
any mismatched peaks of high relative abundance. Even if
there are only a few such peaks, while many low-abundance
background peaks match, the expert will have little doubt
that the queried spectrum still possesses valuable information
(Figure 1). We used this simple notion to define a numeric
distance between the two spectra, i and j. In statistical terms,
the distance relies upon the normalized density of mismatched
peaks.

The intensity of each fragment peak was first normalized by
the base peak intensity Imax and peaks with the intensity lower
than 0.05 × Imax were discarded. Often the background and
queried spectra matched only by relatively low-abundance
fragments within the narrow m/z range right below m/z of the
precursor ion, although fragment ions at the higher m/z region
were different. This usually happened when a multiply charged
peptide precursor ion was accidentally coisolated with an
intense singly charged peak of nonpeptide background.47 Upon
collisional fragmentation, background ion produced singly
charged fragments densely populating the low m/z range of
the spectrum, whereas the area above the precursor m/z
remained clean and mostly contained singly charged ions
produced from the multiply charged peptide precursor. There-
fore, in each pair of MS/MS spectra, three m/z ranges were
considered separately: m/z < 0.9 × (m/z)prec; 0.9 × (m/z)prec

< m/z < (m/z)prec; m/z > (m/z)prec; where (m/z)prec stands
for m/z of the precursor ion. These regions are designated with
subscripts A, B, and C, respectively.

Within each region we defined Si,j
unm as the sum of fragment

ion intensities in the spectrum i, which do not match any
fragments in the spectrum j within the selected mass tolerance,
and Si

total as the sum of all peak intensities in the spectrum i.
Accordingly, Sj,i

unm and Sj
total have the same meaning, but in

the spectrum j. The distance Dij between spectra i and j is given
by eq 1:

Dij )
cASA,i,j

unm + cBSB,i,j
unm + cCSC,i,j

unm + cASA,j,i
unm + cBSB,j,i

unm + cCSC,j,i
unm

cASA,i
total + cBSB,i

total + cCSC,i
total + cASA,j

total + cBSB,j
total + cCSC,j

total
(1)

The unmatched and total intensities were summed in all
three regions in both spectra. The coefficients cA, cB, and cC

were selected to maximize the removal of background spectra,
while retaining all high quality target spectra, as was judged
by their peptide ion scores computed by MASCOT. Intuitively,
the largest weight should be given to peak intensities in the
region C, which is almost free from chemical noise, while the
smallest is given to peak intensities in the region B that is often
enriched in background. We ran computational experiments
on a small independent training set and, by optimizing the
coefficients using a simple grid search, arrived at the following
set of best-performing values: cA ) 2; cB ) 1; and cC ) 4.

We underscore that the distance Dij, a spectra dissimilarity
measure, does not rely on pairwise comparison of m/z and
intensities of particular fragment peaks. Comparative compu-
tational experiments described below and in Supporting In-
formation Figure 1S showed that its specificity greatly outper-

formed Pearson’s correlation and spectral angle approaches
and was more robust against both the inherent variability of
MS/MS spectra and random chemical noise.

Statistical Framework To Identify Significant Matches
between MS/MS Spectra. Filtering was only expected to
eliminate spectra that produced statistically significant matches
to spectra from background library. While searching a database,
we are naturally interested in the statistical significance of the
very best match. This, somewhat surprisingly, greatly simplified
the problem. We defined a distance, or a measure of dis-
similarity, between MS/MS spectra regardless of spectra prop-
erties and were interested in the closest background match for
each query spectrum. The statistical properties of the shortest
distance in a sample represent a well-studied “extreme value
problem”, which is often encountered when analyzing statisti-
cal confidence of database searching hits (see refs 48–50 for
representative reviews). Regardless of the samples properties
the extreme values come from, there are only three asymptotic
forms for the probability distribution that are frequently called
Gumbel, Frechet and Weibull distributions.51–53 The Gumbel
and Frechet distributions only apply for values with an
unbounded tail. In our case, dissimilarities between spectra are
bounded by zero; that is, the closest possible match cannot
have the dissimilarity value less than zero. Therefore, the
extreme values of dissimilarities between spectra should follow
the Weibull distribution for any definition of dissimilarity
measure.

Weibull distribution has two parameters and one of the two
should linearly scale with the size of the background library.
We estimated the two parameters from simulations using a set
of 2000 high quality MS/MS spectra, each of which produced
a hit with ions score of 45 or above upon MASCOT searches
against a protein database. Each spectrum was then compared
to a library of 6000 background spectra and the distance to
the closest match was stored. The cumulative distribution of
these distances produced a good fit to the analytical form of
the Weibull extreme value distribution (Figure 2). The two
parameters R ) 1.20 and � ) 8.87 of the distribution were
estimated from this fit (eq 2).

F(Di)) 1- exp(-RDi
�) (2)

Figure 2. Cumulative distribution of scores of best matches of
MS/MS spectra against the background library. Test empirical
distribution for a data set of high-quality MS/MS spectra is
presented as black circles and its Weibull approximation as a
smooth red line. The x-axis represents the shortest distance
obtained for each of the candidate spectra. The y-axis represents
the probability of obtaining equal or a smaller distance at
random.
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By performing simulations using libraries of different sizes,
we learned that the parameter R, indeed, scaled linearly with
the background library size (data not shown). This was expected
because it is related to the mathematical expectation of the
number of hits with the dissimilarity value below a certain
threshold and is directly proportional to the total library size,
even if the library is partially redundant. Note that some library
redundancy was, actually, desired since keeping several, slightly
different, variants of MS/MS spectra acquired from the same
background precursor compensated for systematic drift in the
mass spectrometer settings (such as mass calibration drift or
collision energy fluctuations) without compromising the filter-
ing performance.

Knowing the distribution and its parameters allowed us to
compute the probability that a random spectrum does not have
a close match within the background library. This probability
can be expressed as a p-value threshold, which controls the
expected fraction of genuinely unique spectra falsely removed
by filtering. It is important that this p-value corresponds to the
conditional probability given the match of m/z and charge of
the precursors. For example, if the precursor m/z and z of a
background spectrum matched m/z and z of 10 000 high-
quality spectra of genuine peptides, then we might expect that,
under p-value cutoff of 0.001, approximately 10 of these spectra
will be lost. Note that both spectra acquisition and filtering
routines deliberately targeted only multiply charged precursors.

The Program Workflow. For filtering out background, users
upload a compressed archive of (optionally, several).mgf files,

each of which represents full set of MS/MS spectra produced
in a LC-MS/MS run, and a background library (Figure 3). Users
also specify the precursor mass tolerance, fragment mass
tolerance and p-value threshold. Each spectrum, both in the
query and background library, was preprocessed and fragment
peaks lower than the intensity cutoff (usually, 5% of the base
peak intensity) were removed. Preprocessed spectra were only
used for speeding spectra comparison; however, the intact
spectra were returned to the user once filtering was completed.
The query filtering process started with finding all background
spectra with matching m/z and charge for each queried
spectrum. For these pairs of spectra, the program computed
the dissimilarity measure. Since the p-value is a monotonous
function of the dissimilarity, given the user-defined p-value and
the library size, the program calculated the dissimilarity Dp.
Any two spectra i and j whose pairwise dissimilarity Dij < Dp

were considered matching and the corresponding queried
spectrum was marked as background. The remaining un-
matched spectra were marked as good. Upon filtering comple-
tion, good and background spectra were assembled into
separate.mgf files that could be downloaded from the server
via the provided link.

Upon user’s request, the program can also build a nonre-
dundant background library. EagleEye would cross-compare
a user supplied spectra archive and only retain those with
pairwise distances exceeding a user-defined threshold.

Validation and Performance of the Filtering Method. We
operationally defined as background all spectra acquired while

Figure 3. Workflow for filtering MS/MS spectra against a background library implemented in the EagleEye software. For each spectrum
i out of the submitted pool, the software first identified the spectrum (or spectra) j in the background library, whose precursor masses
(within the specified mass tolerance ∆M) and charges matched. Then, dissimilarity distance Dij was computed between spectra i and
j by considering intensities of unmatched fragment peaks with mass tolerance ∆m. To minimize the contribution of chemical noise,
the unmatched intensities were taken with weights of 2, 1 and 4 for m/z ranges of A, B and C, respectively. Dij was further compared
with the threshold distance Dp computed for the user-defined p-value according to eq 2. If Dij exceeded Dp, the compared spectra i and
j were judged as significantly different and the probed spectrum i was declared nonbackground, even if they comprise some overlapping
fragment peaks. Otherwise, spectrum i was considered as background. Note that the algorithm does not rely on pairwise correlation
of abundances of fragment peaks with overlapping m/z.
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analyzing samples, which certainly do not contain any target
proteins. In the simplest scenario of identification of gel
separated proteins, background library could be reasonably
represented by combining spectra acquired in LC-MS/MS runs
of several in-gel digests of blank gel pieces (Figure 4). A typical
background run produced more than 2000 spectra from
multiply charged precursors, in which trypsin and a variety of
sheep and human keratins were the only identifiable proteins;
however, only a small fraction of these spectra matched
corresponding protein entries upon MASCOT searches (see the
analysis below). In the experience of our and other laboratories,
massive keratin contamination of samples should be and can
be avoided.21 However, despite the best efforts, poorly repro-
ducible protein background is practically unavoidable at the
low femtomole sequencing and its impact on the analysis
depends on the user-defined sensitivity threshold (Figure 4)
and specificity restrictions applied in database searches. Special
care and different experimental strategy should be taken for
the proteomics study of endogenous keratins.

To obtain a representative background library, we combined
(without checking for inherent redundancy) MS/MS spectra

from four independent control runs, which totaled 6415
spectra. To compensate the compositional variability of com-
mon contaminants,47,54 we added spectra from two separate
LC-MS/MS runs of in-solution trypsin autolysates (2183 unique
spectra screened against the above library). Further 1750 trypsin
and keratin spectra that were not, for any reason, removed by
EagleEye software, were hand picked from various analysis.
Here, we deliberately refrained from reducing the library
redundancy, although such option is available in EagleEye
software. In total, the background library used in further
experiments, contained 10 348 unannotated spectra acquired
frommultiplychargedprecursorsofmostcommoncontaminants.

To validate the statistical model and evaluate the filtering
performance of EagleEye, we created an artificial spectra data
set having the precisely known composition. It comprised
another independent control LC-MS/MS run (1659 background
spectra) and the known number of hand-picked MS/MS spectra
of the known quality (estimated by their peptide ion scores)
that unequivocally matched nonbackground proteins upon
MASCOT searches. The entire range of peptide ion scores was
split into 4 bins and the model data set contained 100 MS/MS

Figure 4. Base peak traces of LC-MS/MS runs of a typical control in-gel digest (A) and blank injection of 4 µL of 0.1% TFA (sample
loading buffer) (B). Only multiply charged ions were selected for MS/MS in DDA experiments. The analysis of control in-gel digest
produced 2087 MS/MS spectra, among them, 29 (4+); 357 (3+); 1701 (2+); blank injection, 66 MS/MS spectra; 4 (3+), 62 (2+). The assumed
charges of the precursors are in parenthesis. MASCOT searches only identified trypsin and a variety of keratins.
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spectra for each score bin. The assignment of spectra to
corresponding ions score bins was encoded into their filenames
so that counting of retained and removed spectra did not
require any further database searches.

Experiments with the model data set demonstrated high
filtering efficiency and good accuracy of the estimation of
expected losses of nonbackground spectra (Figure 5A). For
example, under p ) 0.01 EagleEye removed more than 90% of
all background spectra, while losing a single non-background
MS/MS spectrum having a marginal peptide ions score.
Increasing p-values slightly enhanced the filtering efficiency in
terms of the number of removed background spectra, albeit
some losses of target spectra also occurred. Note that, in
principle, setting p ) 1 should result in almost complete loss
of spectra matching specificity. However, it remained condi-
tionally dependent on matching of precursor m/z and charges
and therefore less than 100% of spectra were lost.

EagleEye outperformed spectra filtering approaches based
on Pearson correlation and spectral angle similarity measures
in the series of comparative tests (Supporting Information,
Figure 1S), especially if precursor masses were considered with
typical ion trap ((1 Da) tolerance, while the fragment mass
tolerance was fixed. The observed difference came from the
increased number of compared background and true spectra
(note that their precursor masses should coincide within the
preset tolerance), and therefore, similar losses of filtering
efficiency should be expected when processing large proteom-
ics data sets even under the high mass accuracy settings.

As anticipated, larger precursor mass tolerance (under the
fixed p-value) slightly loosened the matching specificity and
increased both the number of spectra of falsely removed target
peptides and of correctly removed background (Figure 5B).
Importantly, spectra losses also remained acceptable even
under typical ion trap mass accuracy of (1 Da.

Figure 5. Evaluation of the filtering efficiency using a model data set. Bars represent the percentage of removed spectra with a given
peptide ion score and p-value. The exact number of removed spectra is presented at each bar; bars without numbers indicate zero
values. The total number of background spectra in the data set was 1659, and each peptide ion score bin contained 100 spectra. In
panel A, mass tolerance was 0.01 Da for precursor ions and 0.6 Da for fragment ions. In panel B, p-value was fixed at 0.01 and precursor
mass tolerance (in Da) varied, whereas fragment mass tolerance was 0.6 Da.
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We next asked if the filtering performance depends on the
size and compositional properties of the background library.
To this end, we built a much larger library by combining
unannotated MS/MS spectra from 63 shotgun LC-MS/MS runs
of in-solution tryptic digests of immunoaffinity isolations of
various human protein complexes, in which 50-200 individual
proteins were identified by MASCOT in each run (Supporting
Information, Table 1S). To this collection, we added the above
library of in-gel background spectra such that the new library
contained, in total, 256 806 partially redundant unannotated
spectra (Figure 6). Altogether, compared to the library of a
typical in-gel digestion background (used in simulations shown
in Figure 5), the new proteomics library was 25-fold larger and
contained many more high quality peptide spectra from a
variety of human proteins. Specifically for this test, we also
compiled a new model data set essentially as described above,
but, instead, used MS/MS spectra of peptides from various
budding yeast proteins. MASCOT searches did not identify any
yeast proteins in the immunoaffinity isolations used as a source
for building the proteomics background library.

As anticipated (see the discussion above), the statistical
model and p-values were relatively unaffected by both the
library properties and size. Under restrictive p-values of 1 ×
10 -4 to 1 × 10-2, slightly larger losses of target peptides
occurred, yet being generally within the acceptable range, while
the filtering efficiency remained high. Filtering removed slightly
more background spectra (increase from 90% to 92% under p
) 0.01), most likely because of the more complete background
library. Importantly, when this large background library was
uploaded at the server, filtering of the query of 1979 MS/MS
spectra took less than 10 min, including uploading the query
via the Internet. Hence, we concluded that, by means of user-
defined p-values, the employed statistical model offers full
control over the filtering specificity. Filtering efficiency was
relatively unaffected by the database properties and size and

proceeded at high speed, hence, lending itself to high-
throughput data processing.

What Spectra Were Removed by Filtering? We next asked
what fraction of the removed spectra could be attributed to
peptides and if EagleEye filtering, which does not rely on
spectra to sequence matching, would remove more back-
ground spectra, than are recognized by both stringent and
error-tolerant database searches (otherwise, there would be
no need to filter). We note that the precise origin and
information content of a very large number of LC-MS/MS
spectra that match nothing in a database directly have been
extensively debated as one of the major sources of false
positive identifications.4,6,7,55

To this end, we analyzed in a layered manner the back-
ground spectra removed from the model data set (Figure 5A)
under p-value of 0.01, starting from stringent and then error-
tolerant searches by MASCOT and ending up with their de novo
interpretation and MS BLAST database searches32 (Figure 7).
Once certain spectra had been matched to a database entry,
they were removed from the data set and were not considered
in further analysis. In total, only 391 background spectra (26%
of the total) were identifiable by MASCOT, even if enzyme
cleavage specificity restrictions were not applied. Other 152
spectra (10%) were matched to trypsin/keratin entries upon
de novo sequencing and MS BLAST searches. For the remaining
63% spectra, either de novo interpretation produced no quality
peptide candidates (we used the value of 6 as an arbitrary
PepNovo sequence quality score cutoff),32,46 or subsequent MS
BLAST searches produced no confident alignments.34 Taken
together, EagleEye filtering removed 4 times more background
spectra than were recognized by any searches against a protein

Figure 6. Filtering of a model spectra data set against a rich
proteomics background library of 256 806 MS/MS spectra. Bars
represent the percentage of removed spectra with a given
peptide ion score and p-value. The exact number of removed
spectra are presented at each bar; bars without numbers indicate
zero values. The model data set contained 1659 background
spectra from a separate control LC-MS/MS run and 80 nonback-
ground spectra per each peptide ion score bin. The precursor
mass tolerance was 0.01 Da; the fragments mass tolerance was
0.6 Da.

Figure 7. MS/MS spectra removed by EagleEye filtering from the
model data set (Figure 5A) under p-value of 0.01 were analyzed
by several steps of stringent and sequence-similarity database
searches. Data processing started with stringent (MASCOT)
database searches with and without enzyme cleavage specificity
and matched spectra were removed. The remaining spectra were
interpreted de novo and sequence candidates submitted to MS
BLAST search as described.32 MASCOT searches in steps I, II and
III only hit trypsin and keratin peptides. Step IV only accounted
for spectra whose de novo interpretation produced candidate
peptides confidently aligned to trypsin and keratin sequences.
In steps V and VI, candidate sequences were produced by de
novo interpretation yet were not confidently matched by MS
BLAST. PepNovo score less than 6 usually indicates poor quality
sequence predictions. De novo interpretation of spectra at step
VII failed to produce any sequence candidates. The analyzed data
set comprised, in total, 1489 background MS/MS spectra acquired
from multiply charged precursors.
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sequence database. We note that EagleEye would be equally
applicable for subtracting any unannotated spectra (for ex-
ample, originating from proteins with unknown sequences or
modified peptides) and could rapidly and safely rectify large
proteomics data sets for computationally demanding error-
tolerant interpretations.13,55–59

Filtering Improves the Performance of Sequence Similarity
Searches. Experiments with model data sets demonstrated that
filtering dramatically reduced the size of MS/MS spectra queries
and efficiently eliminated trypsin/keratin-related peptide back-
ground, while retaining nonbackground spectra of even mar-
ginal quality. Sequence similarity searches with LC-MS/MS data
sets are hampered by two major factors, which are both related
to protein background.32 Large size of sequence queries
requires huge amount of computational work, most of which
is, in fact, done in vain. However, most importantly, because
of the reasons discussed above, searches usually produce a
large number of statistically confident hits, whose relation to
keratin and trypsin might only be revealed by careful manual
inspection of reported alignments and full-length sequences
of protein hits. Here, we demonstrate that EagleEye filtering
dramatically reduced the negative impact of both factors.

We analyzed in-gel tryptic digests of several 2D spots of
proteins isolated from a blood-sucking bug T. infestans (a vector
of Chagas disease)60 and from Brazilian endemic pine A.
angustifolia. Genomes of both species are unknown and protein
identification heavily relied on sequence similarity searches.
Additionally, as a much simplified test, we analyzed an in-gel
digest of BSA band using de novo sequencing sequence
similarity searches. Among confident and borderline hits,
produced by MS BLAST searches according to the adopted
scoring scheme,34 we counted the number of target protein hits
(also supported by a few peptides matched by MASCOT to
homologous proteins from other species), the number of
apparent trypsin and keratin hits (database entries, explicitly
annotated as trypsin and keratins) and the number of “orphan”
hits, which were not explicitly annotated as trypsin or keratins,
but were also unrelated to the target proteins. Solely for the
evaluation purpose, we deliberately selected examples in which
both MASCOT and MS BLAST searches independently pin-
pointed the same major hit(s) since it would be easier to
distinguish “orphan” and “true” hits. It was therefore not
surprising that many hits were reported since these were highly
conserved proteins and MS BLAST identified their homologues
in a variety of species. Hits were separately counted among
confident and borderline MS BLAST identifications and the
experiments were performed with initial and filtered data sets
under the same search settings. For the sake of analysis
consistency, a low complexity filter was not employed in MS
BLAST searches.

A representative bar diagram of the distribution of MS BLAST
hits before and after EagleEye filtering is shown in Figure 8
and another four case studies are presented in Figure 2S in
Supporting Information.

Figure 8 shows a representative diagram obtained by LC-
MS/MS analysis of a silver stained spot of 42 kDa protein from
A. angustifolia. MASCOT produced cross-species hits to several
plant actins (best hit to Q9SPI7 actin from the spruce Picea
rubens matched by 23 spectra with ions scores above 20). De
novo sequencing followed by MS BLAST search confirmed the
MASCOT hit (top hit P93485 actin from the pea Pisum sativum)
and reported a large number of hits to homologous proteins
from a variety of plant, mammalian, insect and bacteria species.

Besides those, the search produced 470 hits directly related to
trypsin and keratins (as judged by the annotations of database
entries) and 838 orphan hits. We termed these hits orphan
(rather than “false positives”) because they were not false
positives in the statistical sense, albeit many of them (but not
all!) could be traced by full-length BLAST searches to unan-
notated keratin or trypsin sequences or proteins whose se-
quences share with them significant local similarity. Compared
to stringent MASCOT or SEQUEST searches, such analysis is
very laborious and produces many tentative assignments.

EagleEye filtering decreased by 56-fold the number of orphan
hits (down to 15 entries) and by 5-fold the number of trypsin/
keratin (down to 92 entries), while also shortening the search
time by 5-fold (Figure 8). Importantly, in this case, the number
of true hits even slightly increased, apparently because, while
processing the raw data set, BLAST engine falsely engaged a
few candidate sequences into background-related alignments.

Similar tendency toward strong decreasing query sizes and,
most importantly, numbers of trypsin/keratin and orphan hits
was observed in all case studies presented in Supporting
Information Figure 2S and, additionally, corroborated by a
model experiment with the band of BSA standard, in which,
by definition, it was straightforward to distinguish true and
orphan hits. Importantly, in all cases, the number of reported
true hits was practically unchanged, although many of them
were redundant hits to homologous proteins in various species.

Taken together, EagleEye filtering markedly improved the
performance of sequence similarity protein identifications by
reducing the number of background-related orphan hits, while
preserving the vast majority of peptide spectra originating from
target proteins.

Filtering Improves the Identification of Low-Abundance
Gel Separated Proteins. While identifying low-abundance gel
separated proteins by LC-MS/MS, thousands of background
MS/MS spectra (Figure 4) of varying quality and information
content (Figure 7) are typically produced. Therefore, to control
the rate of false positive identifications, higher matching
specificity (and, consequently, higher threshold scores) are

Figure 8. Representative diagram of the distribution of MS BLAST
hits obtained in searches with the raw (unfilled bars) and filtered
(filled bars) queries. In the sample, both MASCOT and MS BLAST
searches produced cross-species hits to actins from various plant
species. True hits bars stand for actin and related entries; K-T
bars, hits annotated as trypsins and keratins from various
species; “Orphan” hits, statistically confident hits, unrelated to
actins and not explicitly annotated as trypsins and keratins. The
unprocessed data set contained 1821 MS/MS spectra, from which
EagleEye filtering under p ) 0.01 removed 1117 spectra. MS
BLAST searches with raw and filtered queries took 38 and 8 min,
respectively.
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required compared to “clean” data sets.61 This, in turn, affects
the identification of bona fide peptides from low abundant
proteins that only produce marginal quality low scoring MS/
MS spectra. We therefore reasoned that rapid removal of the
bulk of unannotated background MS/MS spectra should lower
false positive rate and, hence, rescue borderline (yet genuine)
peptide hits.

We composed a data set of 10 independent LC-MS/MS runs
of in-gel digests of plant proteins selected from a few proteom-
ics projects. We reasoned that in database searches all plant
hits (including cross-species hits) would represent bona fide
target proteins, while hits from other species (like mammals)
might be either background (for example, keratins) or false
positives. Upon EagleEye filtering against in-gel background
database, on average, 62% of acquired MS/MS spectra were
removed (Table 2S in Supporting Information). We then
searched raw and filtered MS/MS queries by MASCOT against
MSDB and decoy databases61 and compared score distributions
of plant hits in MSDB and all hits in decoy database as a
measure of false positives rate.

Filtering did not affect the distribution of scores of matched
plant peptides, while the number of false positive hits in a
decoy database was very strongly reduced, as much as 5-fold
at the marginal peptide ion score of 30 (Figure 9, Supporting

Information Table 2S). In 8 out 10 digests, filtering reduced
the total number of protein hits in decoy searches by 4- to 15-
fold and in 2 digests no decoy protein hits were observed
(Supporting Information Table 2S). In line with these observa-
tions, the number of nonplant hits in the search against MSDB
was greatly reduced (including many borderline hits that might
be pointing to homologous proteins from distantly related
species and therefore requiring careful case-by-case manual
validation), hence, greatly simplifying the accurate interpreta-
tion of full data sets (Supporting Information Figure 3S).

Filtering Improves Confidence of Protein Identification
in Complex Mixtures. Biochemical isolation of protein as-
semblies, such as organelles or protein complexes, is usually
accompanied by copurification of a large number of nonspe-
cifically interacting proteins, which hamper the identification
of genuine transient interactors.22,23,25,62 We hypothesized that
EagleEye filtering would facilitate their identification in complex
mixtures if the experiment design enables compilation of a
representative background spectra library, irrespective of its
internal redundancy and size.

To substantiate this notion, we considered a series of 63
immunoaffinity isolations of human protein complexes that
were performed, with some modifications, as described in ref
42. Eluted proteins were digested in-solution, and tryptic

Figure 9. Cumulative distributions of peptide ion scores obtained in database searches of 10 independent LC-MS/MS runs against
MSDB (A) and decoy (B) databases. Data points indicate the number of matched peptide with the given or lower score before (filled
squares) and after (filled triangles) EagleEye filtering. Panel A presents the distribution of peptides matched to plant protein entries
only. Note that the distribution of genuine hits was only slightly affected at the low scoring end, while at the same scores, decoy hits
were observed in substantially lower numbers because of massive removal of background MS/MS spectra (B).
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peptides were desalted and concentrated on a reversed-phase
cartridge and analyzed by LC-MS/MS. We compiled a pro-
teomics background library out of 256 806 MS/MS spectra as
described above and then selected another 6 immunoaffinity
purifications from unrelated projects in which the tagged baits
were not expected to produce any common interaction partners
with the ones in the library, apart from usual protein back-
ground. Full MS/MS data sets from these immunoaffinity
purifications were filtered against the protein background
library and raw (unprocessed) and filtered data sets were
searched by MASCOT against MSDB and decoy61 databases.

In agreement with Figure 6, we observed that, in many
instances (including all already known genuine interactors,
which served here as positive controls) filtering either removed
no peptide spectra of target proteins, or removed a few spectra
of marginal quality (data not shown). At the same time, the
overall size of the queries was, on average, reduced by 2-fold
by removing 2300-4300 spectra (details on the filtering ef-
ficiency are provided in Supporting Information, Table 1S).
Cumulative distributions of peptide ion scores of decoy data-
base hits obtained by searches with raw and filtered queries
(Figure 10) demonstrated marked improvement of false positive
rate, especially within the range of marginal peptide ions scores.

Lower threshold scores enabled to claim confident matching
of another 1520 spectra representing 814 unique peptides that,
otherwise, should have been discarded.

Hence, we demonstrated that EagleEye filtering of complex
proteomics data sets specifically and efficiently enriched MS/
MS spectra from target proteins, regardless of their origin and
annotation. We caution, however, that the proposed method
is qualitative, rather than quantitative, and will work well only
if screening is intended to enrich for MS/MS spectra that are
completely absent in the control librarysany quantitative
information on the abundance of fragmented precursors is
deliberately neglected.

When and How To Apply EagleEye Filtering? EagleEye
filtering safely and rapidly removes background spectra from
large MS/MS queries of diverse quality and information
content. As demonstrated above, it strongly improved protein
identifications when database searches lacked specificity, either
because of the data set properties (such as overwhelming

number of MS/MS spectra from unrelated proteins), or because
of deliberately relaxed matching requirements in error-tolerant
searches.

Because of the high specificity of stringent database searches,
filtering might not be required for identifying major protein
components hit by several matching peptides. Things, however,
look very different for the protein characterization by sequence
similarity and or error-tolerant searches, because of much
higher sequence search space and lower stringency of spectrum
to sequence matching. Therefore, it is definitely worth filtering
the queries prior to the identification of proteins via de novo
sequencing, or unbiased (nonhypothesis driven) searches for
modified and/or polymorphic peptide sequences, or identifica-
tion of low-abundance components.

Our experience in applying filtering in numerous proteomics
analyses suggests that the actual number of removed spectra
is not an unequivocal merit of its efficiency. The number of
acquired background spectra might vary and, apart from other
factors, depends on the amount and properties of target
proteins. When analyzing in-gel digests, trypsin/keratin pep-
tides might serve as useful markers for troubleshooting Eagle-
Eye performance. It is always expected that filtering should
remove the bulk of trypsin/keratin peptides identifiable by both
conventional and sequence similarity database searches (Fig-
ures 7 and 8, Figure 2S in Supporting Information). Comparison
of outputs of MASCOT searches of raw and filtered queries
provides useful hints for either adjusting the filtering settings
(precursor and fragment mass tolerances, p-value), or indicat-
ing that it might be necessary to compile another library that
better reflects actual background patterns. In our experience,
when building a background library it is important to consider
that (i) MS/MS spectra depend on the instrument type and
applied collision energy, (ii) single LC-MS/MS run does not fully
represent the peptide composition of analyzed digest, and (iii)
EagleEye matching algorithm is not applicable to spectra
acquired from singly charged precursors.

Conclusion and Perspectives

Here, we present an algorithm and its software implementa-
tion that removes background tandem mass spectra from LC
MS/MS data sets. The algorithm is based on the statistical
estimate of spectra dissimilarity and does not rely upon any
presumed peptide fragmentation model or protein sequence
resource. Hence, the approach is, in principle, fully cross-
platform, although, because of the adopted spectra matching
model, it is not applicable for screening MS/MS from singly
charged precursors. Note that the model also does not rely on
pairwise comparison of intensities of matched peaks, which
makes it highly robust toward inherent variability of fragment
ion patterns, which is a well-known limitation of alternative
peak correlation approaches. We demonstrated that filtering
improved both stringent (MASCOT) and sequence similarity
identification of proteins (de novo sequencing followed by MS
BLAST search) by reducing both the computational load and
the rate of false positive and false negative hits. Since EagleEye
software operates with unannotated spectra, it was far more
efficient, rapid and unbiased, compared with methodologies
that, by some means, rely on sequence database searches.

Future developments could combine filtering with some kind
of quality assessment scoring to further reduce the query size,
yet preserving the most valuable spectra. Effectively, we used
the PepNovo sequence quality score to select suitable candidate
sequences for MS BLAST searches; however, rapid and less

Figure 10. Cumulative distribution of peptide ion scores (x-axes)
of decoy database hits (y-axes) before and after filtering of MS/
MS data sets, acquired from immunoaffinity isolation experi-
ments. Filtering was performed against a library of 256 806
tandem mass spectra obtained in 63 independent control experi-
ments using unrelated baits.
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interpretation-biased spectra quality assessment algorithms are
much desired.7,55

We demonstrated that filtering improved the speed, sensitiv-
ity, and statistical confidence of protein identifications and its
performance was practically unaffected by the variations in size
and properties of both queried and library MS/MS data sets.
Computationally, filtering could be organized as a massively
parallel process distributed among several nodes and could be
much faster than a typical stringent database search against a
large protein sequence database. Therefore, we believe it could
be seamlessly integrated into any proteomics data interpreta-
tion pipeline.
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