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Abstract. In this work we present a novel technique we term active
graph matching, which integrates the popular active shape model into a
sparse graph matching problem. In this way we are able to combine the
benefits of a global, statistical deformation model with the benefits of a
local deformation model in form of a second-order random field. Despite
the optimization being NP-hard we present a new iterative, global energy
minimization technique which achieves empirically good results. This
enables us to exceed state-of-the art results for the task of matching
nuclei in 3D microscopic images of C. elegans. Furthermore by adding
an additional pre-processing step in the form of the generalized Hough-
transform, we are able to jointly segment and annotate a large set of
nuclei in a fully automatic fashion for the first time.

1 Introduction and Related Work

A frequently used model organism in developmental biology is the worm C.
elegans.1 Since C. elegans is highly stereotypical it is well suited for comparative
developmental studies. A common and time consuming problem in such studies
is the segmentation and annotation (labeling) of cell nuclei with their unique
biological names in 3-dimensional microscopy images [3,4,5,6].

In this work we present two automated methods to help solve this problem.
The first, semi-automatic method utilizes hand-segmented nuclei and automat-
ically achieves the annotation of each nucleus by matching a statistical atlas
to the given segmentation. The second method goes a step further and solves
the full problem of joint nuclei segmentation and annotation. We are not the
first to work on automatic annotation of hand-segmented nuclei in C. elegans:
Long et al. [5,6] find a one-to-one mapping of a static atlas based on nucleus po-
sition and shape, but their approach is agnostic to covariances between nucleus
movements. To this end, we suggest to use a global point distribution model,
a.k.a. active shape model [7], to capture the global deformations seen in 3D C.
elegans. However, since such global deformation models cannot deal well with
local deformations, we borrow advanced graph matching methods from the com-
puter vision literature [8]. The idea is not only to match individual points but
entire neighborhoods between a source and a target dataset. Technically this is
achieved by matching nodes and edges in adequately built graph models. Match-
ing costs for edges can thereby express various forms of local deformations and
have shown to be practically relevant in many cases, e.g. in [9,10,11]. See [12]
and references therein for an introduction to graph matching.

1 Here we work exclusively with disentangled, straightened images of L1 larvae. Dis-
entangling and straightening are not topics of this paper. See e.g. [1,2]
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Fig. 1. A sketch of the proposed pipeline. First, a statistical atlas is learned from
annotated data. New, straightened images are then segmented automatically. Subse-
quently, the body axes of atlas and segmentation are aligned. Active Shape Matching
then alternate between graph matching and optimization of atlas parameters.

Our goal is to find a matching between nuclei in our atlas and a given target
dataset which is optimal with respect to both a global and a local deformation
model. Our main technical contribution is a strong and global optimization tech-
nique for this problem. We show that the gap between the best solution and a
lower bound is empirically small. To the best of our knowledge there is only one
very recent work [12] which has presented a related idea for combining graph
matching with a global deformation model. However, active shape models are
not considered, and the graph matching is solved differently, without getting
any lower bound. Most importantly, no experimental results show advantages of
combining a global and local deformation model.

To summarize, our main contributions are three-fold: (i) A new model we
term active graph matching with an associated global optimization technique.
(ii) An experimental validation that such a complex model can be optimized
successfully for annotating nuclei in C. elegans L1 larvae (iii) An extension of
this procedure to jointly segment and match nuclei in a fully automatic fashion.
Results show that our semi-automatic method considerably outperforms the
state-of-the-art, and our full pipeline is, to our knowledge the first fully automatic
method ever described for this problem. Finally, a small contribution is the idea
of in-painting missing information into the training set.

2 Method

The pipeline presented in this paper is sketched in Figure 1. It starts with
the training phase. Given manually segmented and annotated datasets (cf. Sec-
tion 2), we build a statistical atlas of C. elegans. Section 2.1 describes the global
and local properties of the worm that we learn from training data. Given the
atlas, the test phase (red part of Figure 1) runs our automatic segmentation
and annotation pipeline on a new image of C. elegans. First, a set of segmen-
tation hypotheses is generated (cf. Section 2.2). Based on these hypotheses, the
body axes of the worm are determined, and aligned with the body axes of the
atlas by means of an affine transformation (cf. Section 2.3). This alignment
serves as initial transformation for Active Graph Matching (cf. Section 2.3). The
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Fig. 2. Two types of local statistical models in our C. elegans atlas. (a) Local point
distribution models per nucleus: Respective covariance matrices C(i, I) represented as
ellipses. (b) Average shape sA(i) of each nucleus in the atlas. Not that the local shape
models also contain the respective covariances. Figures show the in-painted atlas.

best matching hypotheses are determined by minimizing an objective function
that encodes the problem of matching our statistical atlas to the segmentation
hypotheses. We optimize the objective by a novel, iterative closest points (ICP)-
like method that alternates between graph matching and adaptation of global
transformation and deformation parameters. The matching thus selects a subset
of segmentation hypotheses, while simultaneously annotating them with their
biological names.

Datasets. We work on a set of training worms that was also used in [6]1.
One training worm contains manual segmentations of 357 nuclei that can be
distinguished by eye in one individual C. elegans L1 larva in confocal microscopy
image data. All of these nuclei were manually annotated with their biological
names. We refer the reader to [6] for more details on the dataset. We denote the
number of training worms as nW , and the number of annotated nuclei as nA.
Per worm, index i, with 1 ≤ i ≤ nA, represents the i-th of all annotated nuclei.
Nuclei are sorted consistently by their biological names in all training worms.

2.1 Atlas

Our statistical atlas of C. elegans consists of (i) a global point distribution
model [7] that captures modes of variation of the point clouds given by the set
of nuclei center points of each worm (cf. supplementary movie), (ii) local point
distribution models describing the variability of individual nucleus locations (cf.
Figure 2a), (iii) local shape models capturing the variablity of the shape of each
nucleus (cf. Figure 2b), and (iv) local offset distribution models describing the
variablilty of differences of any two individual nucleus locations.

Global point distribution model. From the set of training worms we
extract locations of nuclei center points. We denote the center point location
of nucleus i ≤ nA in training worm w ≤ nW as x(i, w) ∈ R3, the concatena-

tion of all locations of training worm w as xw := (. . . , x(i, w)
T
, . . .)T ∈ R3nA ,

and the matrix assembled from all training vectors as X := (. . . ,xw, . . .). From
the set of corresponding training vectors, {xw ∈ R3nA |1 ≤ w ≤ nW }, we
build a point distribution model [7] of nuclei locations. Therefore we align all
training vectors via Procrustes analysis, and then perform principle compo-
nent analysis, yielding the eigenvectors pk ∈ R3nA of the covariance matrix
(1/(nW − 1))(X − X̄ )(X − X̄ )T , where X̄ denotes a matrix with the average nu-
clei location vector x̄A := (1/nW )

∑
w xw in every column. We denote the matrix

1 We thank Hanchuan Peng, Fuhui Long, Xiao Liu and Stuart Kim for providing the
set of images and training data of C. Elegans L1 larvae from their 2009 work [6].



4 ****** ***********, ******* ***, ******* ******, and **** *****

assembled from the eigenvectors as P := (. . . ,pw, . . .) ∈ R3nA×3min(nW ,nA)−1.
The point distribution model can then be formulated as xA(b, t) := t(x̄A+P ·b)
with b denoting a vector of global shape parameters, and t : R3 → R3 an affine
transformation. t consists of a rotation, scale and shear matrix R ∈ R3×3, and an
offset vector o. Per nucleus i, the model reads xA(i,b, t) := R(x̄A(i)+P (i)·b)+o,
with x̄A(i) denoting the average location of nucleus i, and P (i) denoting rows
3i − 2, 3i − 1 and 3i of the eigenvector matrix P . Each training vector can be
represented by some global shape parameter vector: ∃bw : x̄A + P · bw = xw.
In our global shape model we confine the shape parameters to the min/max
respective values that appear in training data.

Local models. Let X (i) denote the matrix that contains all training loca-
tions of nucleus i, namely x(i, w) for all w ≤ nW , as its columns. Let X̄ (i) denote
the matrix that repeatedly contains the average nucleus location x̄A(i) in nW
columns. Our local point distribution model is then encoded in the covariance
matrix per nucleus location: C(i, R) = (1/nW )R(X (i)−X̄ (i))(X (i)−X̄ (i))TRT ∈
R3×3. This matrix allows us to measure the distance of some point x ∈ R to
location i in an instance of the atlas: locDiff(x, i,b, t) := (x − xA(i,b, t))T ·
C(i, R)−1 · (x− xA(i,b, t)).

We describe the shape of an individual nucleus by means of the radii of an
ellipsoid fit to the nucleus volume, sorted by value. We denote the shape of
nucleus i in training worm w as s(i, w) ∈ R3. From the training data, we derive
the average shape per nucleus, sA(i), as well as the respective covariance matrix
S(i). Thus we can measure the distance of some shape s to the shape of atlas
nucleus i as shapeDiff(s, i) := (s− sA(i))T · S(i)−1 · (s− sA(i)).

In addition to nucleus-individual statistics, we also perform statistics on offset
vectors between any two nuclei: Let d(i, j, w) := x(i, w)−x(j, w) denote a training
offset vector. We retrieve the average offset d̄A(i, j) := (1/nW )

∑
w d(i, j, w) as

well as the respective covariance matrix D(i, j, R). Let dA(i, j,b, R) denote an
offset vector in an instance of the global point distribution model. Then, we
can measure the distance of some offset d w.r.t. nuclei i and j in the atlas:
offsetDiff(d, i, j,b, R) := (d−dA(i, j,b, R))T ·D(i, j, R)−1·(d−dA(i, j,b, R)). The
covariance of offsets furthermore enables us to measure how tightly two nuclei
locations correlate: We use the determinant of the covariance matrix D(i, j, R)
as a respective “neighborhood”-measure. Thus we can define a k-neighborhood
on the atlas, denoted as Nk ⊂ {(i, j)|1 ≤ i, j ≤ nA}.

Inpainting. Nuclei that are “missing” in our 357-nuclei-atlas, mainly in the
brain region, pose a severe challenge to the annotation problem: The atlas region
posterior to the brain can freely match to target nuclei within the brain, taking
the whole posterior body part with them. Therefore we inpaint the missing 201
nuclei into the training worms by taking one complete manual segmentation
as reference and warping it to all the other training point clouds by means of
Thin Plate Spline Warps. This yields synthetically completed point clouds for
all training worms. We inpaint the missing nuclei shapes by assigning the shape
of the closest not-annotated nucleus in the respective manual segmentation.

2.2 Segmentation Hypotheses

Nuclei segmentation is based on the Generalized Hough Transform (GHT) [13].
We use a triangular surface mesh of an ellipsoid as a template. We run GHT



Active Graph Matching 5

multiple times with a range of differently scaled and oriented templates. Each
run returns a score ∈ {0, 1} at each image voxel that measures how well the
template fits the image gradient. We select the highest scoring n positions for
each scale/orientation of the template. A segmentation hypothesis is simply the
template put at the respective position, scale and orientation. To avoid duplicates
we omit positions at which the template overlaps with higher-scoring positions
already selected for this scale/orientation. This procedure results in an over-
segmentation of the image, i.e. more hypotheses than nuclei. Hypotheses from
different GHT runs are, in general, nested. This way we reduce the risk of not
detecting nuclei. Figure 1 shows exemplary segmentation hypotheses.

2.3 Active Graph Matching

Objective. Let nT denote the number of nuclei segmentation hypotheses. An
assignment ai,j ∈ {0, 1} encodes whether atlas index i ≤ nA is assigned to
target index j ≤ nT . We denote the matrix of assignments as A := (ai,j)

nA,nT

i=1,j=1.

A bipartite matching is a matrix A which satisfies ∀i ≤ nA :
∑nT

j=1 ai,j ≤ 1 and

∀j ≤ nT :
∑nA

i=1 ai,j ≤ 1. I.e., an atlas nucleus can be matched to at most one
target nucleus, and vice-versa. We define the energy of matching the atlas to the
target with affine transformation t, shape parameters b, and matching A as

E(A,b, t) :=
∑

i≤nA,j≤nT

φ(i, k,b, t) · ai,k +
∑

(i,j)∈N ,k,l≤nT

ψ(i, j, k, l,b, t) · ai,k · aj,l

(1)
where N is the neighborhood relation we defined on the atlas, cf. Section 2.1.
Unary potentials φ(i, k,b, t) encode the cost per assignment ai,k. We define

φ(i, k,b, t) := λ1·locDiff(xT (k), i,b, t)+λ2·shapeDiff(sT (k), i)+λ3·cost(k)+λ4·c
(2)

where xT (k) ∈ R3 is the center point location of the k-th hypothesis, k ≤ nT ,
sT (k) ∈ R3 is the target shape descriptor, cost(k) is inversely proportional to
the GHT score and hence encodes how well the image data supports the k-th
hypothesis, and c is a negative constant that serves as an incentive to make
matches. Terms get relative weights by positive constants λ. Binary potentials
ψ(i, j, k, l,b, t) encode the cost per pair of assignments, ai,k, aj,l. We define

ψ(i, j, k, l,b, t) := λ5 · offsetDiff(dT (k, l), i, j,b, t) (3)

where dT (k, l) denotes the offset between target nuclei k, l, namely xT (k)−xT (l).
Optimization. Initial Atlas Parameters: The global shape parameters b

are initialized to zero. We automatically determine an initial affine transforma-
tion of the atlas: The first eigenvector of the point cloud given by all segmenta-
tion hypotheses is aligned with the anterior-postierior (AP) axis of the atlas such
that the centers of gravity line up. To determine the correct rotation around the
AP axis we exploit the fact that nuclei are distributed asymmetrically along the
dorso-ventral axis, while symmetrically along the left-right axis.

Optimal Matching: For fixed b, t we minimize (1) w.r.t. the matching A
with the Dual-Decomposition-based method of Torresani et al. [8]. In practice,
considering all entries of A is infeasible. Hence we only consider assignments ai,k
for which locDiff(xT (k), i,b, t) falls below a fixed threshold.
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ActiveGM ActiveIGM ActiveHungarian Long et al.
Synthetic 95/94(7) - 93/88(12) -
SemiAuto 92/90(8) 93/92(7) 79/77(9) */86(*)
Automatic 86/82(12) 86/83(11) 62/60(12) **

Table 1. Evaluation of annotation accuracy on 30 worms. Measures: me-
dian/mean(std), all in %. See text for description of scenarios (rows) and algorithms
(columns). *Results presented as plot in [6], but numbers not given. **Results pre-
sented as plot in [6], but error measure not described and numbers not given.

Optimization of Atlas Parameters: For a fixed matching, the objective is the
sum of squared residuals of an overdetermined system of equations which is linear
in all atlas parameters, as described in the following. The optimal parameters
can then be determined by the standard least squares method. In the objective,
only the terms locDiff and offsetDiff depend on atlas parameters. For locDiff
each matched nucleus i entails three equations, namely

S ·R−1xT (k)− S · x̄A(i)− S · P (i)b + S · o = (0, 0, 0)T (4)

where S satisfies ST ·S = C(i, I)−1. Such an S exists in case C(i, I) is symmetric
and positive definite, which is the case in our practical setting. The equations
are linear in the entries of R−1, b, and o, respectively. For offsetDiff, each pair
of matched neighbors i, j entails the following three equations:

G·R−1(xT (k)−xT (l))−G·(x̄A(i)−x̄A(j))−G·(P (i)−P (j))(b) = (0, 0, 0)T (5)

where G satisfies GT ·G = D(i)−1. Analogous to S, such a G exists in our prac-
tical setting. Overall we have, in practice, far more equations than parameters.
Hence we can solve for R, o and b with the method of least squares.

3 Results and Discussion

We run our method in a leave-one-out fashion on the 30 datasets used for atlas
training (cf. Section 2). We consider three different scenarios. (1, Synthetic): An
idealized scenario, where we match the 357-nuclei atlas to the corresponding
357 target nucleus segmentations. (Therefore the 357 corresponding target nu-
clei have to be selected by hand from the manual segmentation.) (2, SemiAuto):
We match the atlas to manual segmentations of all nuclei present in respective
target datasets. (3, Automatic): We run fully automatic, simultaneous segmen-
tation and annotation as described in Section 2. In each of the scenarios, we run
our algorithm in three different ways: (1, ActiveGM ) with the 357-nuclei atlas,
(2, ActiveIGM ) with the inpainted 558-nuclei atlas, and (3, ActiveHungarian)
without binary potentials. We run ActiveIGM only for the real-world scenarios.
We run ActiveHungarian without in-painting in the synthetic scenario, and with
in-painting in the real-world scenarios.

Parameters of our method are the scalar weights λ1, λ2, λ3, λ4 in (1), the
number m of global deformation parameters in b to consider, and the number of
iterations to perform. For all scenarios and algorithms we set: λ2 := 1, c := −150,
m := 2, and perform three iterations where only R and t are optimized, followed
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Fig. 3. (a) Close-up to matching results in the head of an exemplary worm. Top: in-
painted atlas; bottom: partial atlas. Inpainting leads to better matching performance.
White lines: correct annotation; black lines: inpainted nuclei, no ground truth avail-
able; red lines: annotation errors (fewer on top). (b) Evolution of annotation accuracy
for semi-automatic matching scenario. X-axis: matching iteration. Y-axis: fraction of
correctly annotated nuclei. (c) Evolution of the respective matching energy.

by three iterations where we optimize only b. As for the weight of locDiff, we
set λ1 := 0 for ActiveGM, and λ1 := 1 for ActiveHungarian. As for the weight of
offsetDiff, we set λ4 := 1 for ActiveGM, and λ4 := 0 for ActiveHungarian (since
Hungarian matching cannot take into account binary potentials). As target cost
weight we set λ3 := 0 in all but the fully automatic scenario. Only there we have
a confidence value for each segmentation hypothesis and set λ3 := 10.

Table 3 lists the resulting annotation accuracy in percent for all the scenarios
and algorithms described above. For reference we also include the result of Long
et al. [6]. For the scenarios working on manual segmentations, we count the
fraction of nuclei that are correctly annotated. For the fully automatic scenario,
we count the fraction of matched segmentation hypotheses whose center points
lie within the respective ground truth nucleus, or are at most one average nucleus
radius apart from the respective ground truth center point.

Neglecting location differences in the 2nd order energy, i.e. l1 := 0 for Ac-
tiveGM, yields considerably better annotation accuracy. We argue that this is
due to the respective much more flexible local deformation model. Note that
locDiff = 0 means that the objective is invariant w.r.t. o. However, in practice
we still need o for selecting the assignments we consider in the matching problem
(cf. Section 2.3), hence we always derive it via locDiff.

Discussion. For the task of annotating manual segmentations of nuclei, we
achieve an average annotation rate of 92% with ActiveIGM, thereby considerably
outperforming the result of Long et al. who report an average of 86%. Note that
Long et al. make use of an additional image channel that our method does not
need. For the task of fully automatic segmentation and annotation, we achieve
a median/average annotation rate of 86/83%, which approaches the rate that
Long et al. achieve in the much simpler partly manual scenario.

Employing 2nd order graph matching instead of just the Hungarian algo-
rithm makes a huge difference: ActiveHungarian works relatively well only in
the synthetic scenario, while the inferiority as compared to ActiveGM increases
as the matching problem gets more sophisticated: In the order of complexity of
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the matching problem (top to bottom in Table 3), ActiveGM is on average 6%,
15%, and 23% better than ActiveHungarian, respectively.

The benefit of using the in-painted atlas instead of the 357-nuclei-atlas is
shown in Figure 3(a). The impact of running matching and parameter opti-
mization iteratively is shown in Figure 3(b,c) in terms of the evolution of the
annotation rate and the respective value of the objective. While the matching
problem is solved approximately up to a duality gap of about 2c in the fully au-
tomtatic scenario, lower bounds are tight in the synthetic and the semi-automatic
scenario, i.e. here we find the globally optimal matching.

Conclusion. We have presented active graph matching, a method that com-
bines active shape models with graph matching in one objective and provides an
approach for global optimization. With this method we do not only outperform
the current state of the art in annotating manual segmentations of nuclei in C.
elegans L1 larvae, but furthermore define the state of the art in solving both
segmentation and annotation simultaneously in a fully automatic fashion. We
hypothesize that our method will be highly beneficial for the equally relevant
task of nuclei annotation in later stages of C. elegans development, where nuclei
are more numerous and more densely packed, and hence methods that do not
consider covariances of nuclei locations and offsets are bound to fail.

References
1. TR Raviv, V Ljosa, AL Conery, FM Ausubel, AE Carpenter, P Golland, and
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