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Abstract Many processes in cell biology are connected to the movement of compact
entities: intracellular vesicles and even single molecules. The tracking of individual
objects is important for understanding cellular dynamics. Here we describe the tracking
algorithms which have been developed in the non-biological fields and successfully
applied to object detection and tracking in biological applications. The characteristics
features of the different algorithms are compared.
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1 Introduction

Many processes in cell and developmental biology are connected to the movement
of materials and signals in the form of compact entities: intracellular organelles,
vesicles, and even cells themselves in context of the organism. The regulation of
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these movements, their characteristics, and their physiological meaning are still open
questions. Many mechanisms are involved in the movements mentioned above: mole-
cular motors run over the actin and microtubule cytoskeletons, actin polymerization/
depolymerization forces cell processes to grow, microtubule assembly/disassembly
move and separate chromosomes during cell division. In addition, cell adhesion,
molecular diffusion, and liquid flow all take part in biological trafficking.

For example, in a single cell nutrients and signaling molecules are taken up by small
vesicles and later delivered to intracellular sorting compartments in a molecular motor-
dependent manner. Sorting compartments known as early endosomes are motile and
after a cascade of homotypic fusion/fission events accumulate degradative cargo (e.g.
LDL, EGF, etc.) rather than recycling cargo (e.g. transferrin, etc.). The “mature” early
endosome changes its pattern of motility and undertakes conversion to a late endosome
[54]. Recycling cargo is removed from early endosomes by a set of heterotypic fission
events, where tubules bud off and are passed onto recycling endosomes [45]. The
secretion of signals, hormones, etc. is mediated by active vesicular transport to the
plasma membrane [22,66]. All of the events mentioned above require the movement
of vesicles as an essential part of their function and regulation.

In intracellular microscopy, fluorescent markers allow for objects to be followed that
are much smaller than the diffraction limit of light. With molecular biology it is possible
to genetically incorporate a fluorophore with given spectral characteristics (generally
the Green Fluorescent Protein (GFP) and its derivatives) as a tag for the protein-
of-interest. This is a powerful tool for the visualization of specific compartments in
vivo and allows the researcher to follow them over a relatively long time period.
This is a rich source of information concerning the organization and regulation of
the intracellular vesicular transport machinery. Computerized microscopes are able
to easily generate sequences of thousands of frames with frame rates spanning the
interval from 0.01 to 100 Hz. The quality of the images varies widely and is generally
inversely proportional to the exposure time.

The high information density of live cell recordings makes them barely amenable
to qualitative analysis: only the most drastic alterations of motility patterns can be
scored by eye, for example “movement” or “no movement”, extreme redistribution
of intracellular objects, etc. Uncovering more subtle, but highly informative pheno-
types resulting from alterations in the regulation of organelle movements requires a
quantitative analysis approach.

Manual tracking of vesicles across successive frames of live cell recordings is
the most commonly used approach to provide such data. However, besides being
extremely time-consuming, manual analysis is prone to systematic errors due to the
unconscious pre-selection of vesicles which satisfy the researcher’s non-formalized
criteria of “good data”. This pre-selection is an inevitable step in any manual analysis,
which remains nevertheless restricted to double-digit counts of vesicles over 100–200
frames. These problems can be overcome by the automated simultaneous tracking of
hundreds of vesicles over thousands of frames, encompassing virtually all vesicles
within the image. The resulting data set provides statistically reliable and non-biased
results, such as speed distributions, frequency of changes in directionality, processivity,
sub-diffusion patterns and intracellular positioning along with many other parameters
[34,49,54,58,69].
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This quantitative analysis includes vesicle detection and tracking. These two pro-
cedures can be considered independent in most cases, although some algorithms
use the information from the tracking procedure to guide object detection [85]. For
intracellular fluorescent object detection a low signal-to-noise ratio and a Poisson noise
distribution are typical. The same problem of spot-like object detection in the presence
of Poisson noise originally came about in the fields of astronomy and radar readout
automation. Object tracking algorithms were originally developed by the aerospace
and military sectors to track satellites, aircraft, and ships on the basis of noisy data from
sources such as radars, sonars, and telescopes. Starting from the 1960s a lot of effort
has been put into this field [6,7]. The first algorithms were implemented in the analog
and semi-analog computers of the military tracking equipment of those times. Later,
multi-particle tracking approaches were applied to analyze the movement of marker
particles in hydro- and aerodynamic studies (velocimetry) [20,74]. The development
of new approaches in computer vision, street surveillance systems, facial recognition,
road tracking and other fields currently provide further applications for object tracking
algorithms.

Intracellular live-cell microscopy is a field which has adopted the results and metho-
dology of the above research. Different approaches for the analysis of the movement of
intracellular objects have been developed in the last 20 years [2,16,49,57]. Predictably,
the algorithms that were developed for one application are sub-optimal or even useless
in other applications. Firstly, street surveillance systems are essentially constrained by
models of possible shape changes for the objects of interest [50]. This method is inap-
plicable to the point-like objects produced by sonar/radar systems. Likewise, the shape
of intracellular organelles, e.g. endosomes, often has no known constraints, encompas-
sing point-like vesicles, vacuolar structures, and tubular elements. It is worth mentio-
ning that intracellular object tracking algorithms are less sophisticated than those used
in the radar/sonar tracking field. This can be explained partially by the huge number of
objects that have to be tracked, which makes it hard and sometimes impossible to imple-
ment an algorithm where complexity grows quickly with the number of simultaneously
tracked objects, as is the case with the many thousands of vesicles in the cell interior.

A common feature of satellite/aircraft/ship tracking algorithms is the reliance on
well-defined physical models for the object’s movements (e.g., inertia, minimum
radius of turn, maximal acceleration/deceleration; [7,9,28,33,44]). These models pro-
vide a basis for the branch of filter-like tracking algorithms based on the kinematic
model of movement [14,33]. The kinematic model describes the motion of an object
by the polynomial dependency of time on regulatory parameter(s) (i.e. acceleration),
which is (are) themselves dependent on time in an unknown manner. These regulatory
parameter estimations are updated on the basis of the new (noisy) measurements. The
result of this model is a trajectory that follows a route which is not the encompassing
the noisy measurement points, but closer to the real (unknown) trajectory. This is the
reason why tracking, in this context, is called “filtering” and tracking algorithms are
also known as “filters”. This branch of tracking algorithms is applicable if the uncer-
tainty of the parameter estimations is less than the possible parameter values. In the
case of intracellular organelles, the time interval between two sequential frames is
too large to make any assumptions concerning their possible acceleration, trajectory
smoothness, etc. In addition, the high viscosity of the cytosol , Brownian motion, and
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the unknown mechanisms for switching molecular motors on and off make kinematic
models inapplicable to microscopic objects.

Velocimetry measurements use the high level of correlation between directionality
and the speeds of closely spaced particles to provide an additional support for proba-
bilistic approaches and to follow not individual particles but groups of particles simul-
taneously [1,36,73]. Again, analogous scenarios are rarely observed in the movement
of intracellular organelles.

In this paper I will review the different approaches to small point-like object tracking
and specifically those which were used for intracellular vesicle and single molecule
tracking.

It can be mentioned, that the transition from 2D to 3D compact object detection/
tracking is straightforward in most cases. The additional dimensionality does
not require any fundamental adaptations of the tracking algorithms. Even more
so-especially when compared to tracking of maximum-projected pseudo-3D-data sets,
the additional spatial dimension may decrease the spatial density of targets and thus
improve the tracking quality of almost all tracking algorithms. Likewise, object detec-
tion in 3D is fundamentally similar to 2D object detection. However, the considera-
bly larger size of 3D image sets in comparison with 2D-data of the same resolution
may require implementation on new generation computers with increased memory/
computing capacity. Since almost all algorithms considered in this review were origi-
nally developed for 2D image analysis, I will mostly restrict myself to 2D-scenarios.

In the text, the terms object and target are used interchangeably to denote the real
objects, the signal and alarm denote the result of an object detection algorithm, which
can arise from real objects as false objects.

2 Object detection

The algorithms for intracellular object detection are logically divided into two main
categories: single object searching and multiple object searching. Objects with known
a priori shapes are very common in light microscopy, since this category includes both
objects with known shape and all objects whose size is smaller than the resolution limit
of the microscope. The resolution limit of microscope in lateral direction is defined
by light diffraction and depends on the wavelength and the numerical aperture of the
microscope lens. For many practical reasons, the resolution limit of epifluorescence
microscopy in the XY -image plane can be estimated as 0.6λ

NA , where λ is the wavelength
and NA the numerical aperture. In the case of confocal microscopy, the point-spread
function (PSF) in the focal plane is a convolution of the exciting light PSF and the
PSF of fluorescence emission. As a rule of thumb, the resolution limit of confocal
microscopy can be estimated as 0.4λ

NA . The axial resolution of confocal microscopy in
the limit of small pinhole is FWHMz = 0.64λ(

n−√
n2−N A2

) , where λ is the wavelength,

NA the numerical aperture, and n is the refraction index of immersion liquid.
We will first consider the searching procedure for objects with a known shape. The

known shape of the object is encoded in the “template” image. The correlation between
the template image and the searched image are calculated for all possible shifts of the
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template relative to the analyzed image. The first image in the sequence, a microscope
PSF for a sub-resolution object, or a standard image stored in a database can be used
as a template. When the template matches the object, the correlation peaks. Gelles
et al. have used this algorithm to track plastic beads attached to kinesins and moving
along microtubules in vitro with nanometer accuracy [8,16,30]:

C(x, y)=
w∑

i=−w

h∑
j=−h

I (x + i, y + j) · (T (i + w, j + h) − 〈T 〉) (1)

where I (x, y) is the intensity of image in pixel (x, y), T (x, y) the intensity of template
in pixel (x, y), w and h the characteristic size of template image, and 〈T 〉 is the mean
value of template intensity.

Since shifts of the template are calculated on a discrete pixel grid, the accuracy of
the determination of the object’s position is one pixel. In the original work of Gelles
[30] the pixel size was 54×43 nm. The authors have used some modification of the
“centroid” method to improve the localization accuracy to 1.7 nm. The threshold value
T h was selected and the coordinates of the center of the bead are calculated by the
formula:

xc =
∑x0+w

x=x0−w

∑y0+h
y=y0−h x�(C(x, y) − T h)

∑x0+w
x=x0−w

∑y0+h
y=y0−h �(C(x, y) − T h)

;
(2)

yc =
∑x0+w

x=x0−w

∑y0+h
y=y0−h y�(C(x, y) − T h)

∑x0+w
x=x0−w

∑y0+h
y=y0−h �(C(x, y) − T h)

where

�(x) =
{

x, ∀x >= 0

0, ∀x < 0
,

summation comes over the template size (2w + 1, 2h + 1) around the peak position
(x0, y0) of the covariation image C .

Another way of increasing the accuracy of object localization is an approximation
of the covariation image C by a 2D parabolic function

C (x, y) = ax2 + by2 + dx + ey + f (3)

in the vicinity of its maximum. The maximum of the parabola can be found with
sub-pixel accuracy [16].

It is obvious that formula (1) provides not a correlation but a convolution of the
image with the template. As a result, the brightest part of the non-uniformly illuminated
image will give a global peak on matrix C even if there is poor geometrical similarity
between the matched area and the template. In addition, formula (1) is applicable only
to cases where the background in the image is either uniform or carefully removed.
These conditions hold for the plastic beads used in the in vitro experiments of Gelles
et al., but it is hard to satisfy them in in vivo microscopy. This drawback can be
compensated by calculating normalized correlation coefficients [8,13,16,47,61]:
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C(x,y)=
1

(2w+1)·(2h+1)

∑w
i=−w

∑h
, j=−h I (x+i, y+ j)·T (i +w, j +h)−〈I 〉wh ·〈T 〉

√
D(I )wh ·D(T )

(4)

where I (x, y) is the intensity of image in pixel (x, y), T (x, y) the intensity of template
in pixel (x, y), w and h the dimensions of template image, 〈T 〉 the mean value of
template intensity, 〈I 〉wh the mean value of image intensity in the area overlapping
with the template, D(T ) the variance of template intensity, and D(I )wh is the variance
of image intensity in the area overlapping with the template.

This method can be easily generalized for a multiple object search algorithm by
searching in matrix C for multiple local maxima above some predefined threshold.
If the image noise is known, then the noise variance of matrix C can be calculated.
A reasonable threshold value can be estimated, for example, as 4σ , where σ is one
standard deviation of C. The value of 2σ is generally too small and results in too many
false positive signals, since the probability to overcome this threshold by chance is
high, given the millions of pixels in a typical image. The correlation algorithm in
the form of (3) can be applied to the image without background subtraction. The
only essential limitation of this correlation method is the requirement of a fixed and
known shape of the object being searched for. It is notable that, according to [36],
the relative error of subpixel position detection of the correlation method (Particle
Image Pattern Matching in the terminology of Huang et al.) is almost twofold smaller
than the respective error of the covariation method (Cross-Correlation method in the
terminology of Huang et al.).

A close relative of correlation/covariation algorithms is the method of Sum-Absolute
Differences (SAD). In this method, the sum of absolute differences between the image
and the template is calculated at all possible shifts of the template [8,21,79]:

SAD (x, y) =
w∑

i=−w,

h∑
j=−h

‖I (x + i, y + j) − T (i + w, j + h)‖ (5)

where I (x, y) is the intensity of image in pixel (x, y), T (x, y) the intensity of template
in pixel (x, y), w and h the dimensions of template image.

The minimum of SAD corresponds to the best agreement between the template with
the image. All of the above-mentioned concerns of the correlation method, regarding
accuracy, parabolic interpolation, etc., are applicable to this method too. An additional
drawback of this method, in comparison to the correlation method, is its sensitivity
to intensity scaling of the image and the template. This can cause problems since
the fluorescent marker can bleach during the course of acquisition. Therefore, if the
labeling level (intensity) is point of concern for the process under investigation [54],
this method is not applicable.

Another problem with correlation/covariation methods arise from the simple fact
that the template image is a rectangular matrix and includes pixels which belong to
the tracked object and the background pixels. If the template image is selected from
the same experiment, for example, a region of interest from the first frame of the
sequence, then the peak for the covariation matrix could be the result of correlation of
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background pixels of the template with background pixels of the image under study.
This problem is common for correlation, covariation and SAD methods. Cho and Yun
have introduced “selective attention” for the pixels as a cure for the false peaks. A
weight function is included in the summing to pay more “attention” to the pixels that
presumably belong to the target. If the target has some specific moments of brightness
(mean, variance, etc.), the probability for a given pixel to belong to the target can
be used as a weight. The respective probability can be estimated from the template.
Examples from the military field demonstrate that this is a robust tracking method in
the case of imperfect matching of the template to the image under study [21].

These methods can be used for a search for multiple objects. The threshold is
selected in such a way that peaks in the correlation/covariation image correspond to the
objects of interest [25]. Then an accurate object position is calculated for every peak.

The simplest single object search procedure without a fixed and known shape of
object is the centroid method [13,16]. The direct implementation of this algorithm
calculates the center of mass of an image:

xc =
∑

i
∑

j xi · Ii, j∑
i
∑

j Ii, j
;

(6)

yc =
∑

i
∑

j y j · Ii, j∑
i
∑

j Ii, j

where (xc,yc) is the center position of object and Ii, j is the intensity in the pixel (i, j).
Summing is performed over the whole image. This method is applicable to images

where only one object persists and the background is removed so that the integral of the
background intensity over the whole frame is a small fraction of the integral intensity
of the object of interest. If these conditions are violated, the centroid algorithm is
prone to give the coordinates of the center of the image.

There is a straightforward generalization of this method for application to multi-
object images with background. The image of interest is smoothed to remove high
frequency noise, followed by binarisation by a threshold in such a way that all the
objects of interest are preserved but spaces between them are zeroed. After this, the
centroids are calculated separately for every connected set of non-zeroed pixels and
the resulting values are considered as the centers of the objects of interest [3,13,31,
66,68].

Crocker and Grier used some modifications to this method [25]. After an initial
guess concerning the center of the object, the centroid is calculated by summing
not only in the mask area but also inside the circle with a radius R over the non-
masked image:

xk
0 =

∑
i, j xi · Ii, j∑

i, j Ii, j
;

(7)

yk
0 =

∑
i, j y j · Ii, j∑

i, j Ii, j

where k is the index of iteration.
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Summing is performed over pixels (i, j) which belong to the cycle (xi − xk−1
0 )2 +

(y j − yk−1
0 )2 ≤ R2 centered on the object position on iteration k − 1(xk−1

0 , yk−1
0 ).

If, after calculation, the position of the object shifts more then 0.5 pixels, the iteration
(7) is repeated with the position of the newly found center [25,27,57].

Further modification of this algorithm, which provides the maximum accuracy of
all centroid algorithms, is called the Gaussian mask [70]. Summing in the Gaussian
mask algorithm is performed over the whole image but in convolution with a Gaussian
kernel:

xk
0 =

∑
i, j xi · Ii, j · N k−1

i, j∑
i, j Ii, j · N k−1

i, j

;
(8)

yk
0 =

∑
i, j y j · Ii, j · N k−1

i, j∑
i, j Ii, j · N k−1

i, j

where k is the index of iteration and Ii, j is the intensity of pixel (i, j),

N k−1
i, j =

xi+1∫

xi

y j+1∫

y j

exp

⎛
⎜⎝−

(
x − xk−1

0

)2 +
(

y − yk−1
0

)2

2R2

⎞
⎟⎠dx dy (9)

is an integral of the Gaussian kernel over pixel (i, j) with the kernel centered in the

position
(

xk−1
0 , yk−1

0

)
of previous iteration k − 1.

R is the width of the Gaussian.
As in the case of formula (7), the calculation is repeated iteratively, since the value

N k
i, j has to be recalculated after every adjustment of the object center position. This

iteration is stopped when the correction to the object’s position is below the accuracy
level specified by the user.

Another class of sub-resolution object search procedures is the fitting of image
intensities by an approximation of the PSF. The shape of a microscope PSF is defined
as the Airy disk, but in most cases this is approximated by a Gaussian function [2,12,
16,42,70,76,77,80].

In the absence of noise, the Gaussian center position can be defined by the intensity
of 5 pixels in the vicinity of the peak intensity [12,36]:

xc = x0 + 1

2
· lg (I (x0 − 1, y0)) − lg (I (x0 + 1, y0))

lg (I (x0 − 1, y0)) + lg (I (x0 + 1, y0)) − 2 lg (I (x0, y0))
(10)

yc = y0 + 1

2
· lg (I (x0, y0 − 1)) − lg (I (x0, y0 + 1))

lg (I (x0, y0 − 1)) + lg (I (x0, y0 + 1)) − 2 lg (I (x0, y0))

where (x0, y0) is the coordinates of intensity peak.
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Unfortunately, this simple approach does not work in the case of noisy images. The
robust alternative is a non-linear least square fitting, namely the minimization of:

S =
∑
i, j

(
I (i, j) − A · exp

(
− (xi − x0)

2 + (
y j − y0

)2

2R2

)
− F

)2

(11)

where I (i, j) is the intensity of image, A the amplitude of Gaussian, (x0, y0) the
position of the object, R the width of PSF (suppose to be known in advance), and F
is the background intensity, summing over whole image.

The expansion of (11) to the 3D is straightforward and, beside the additional sum-
mation coefficient, introduces the separate scale parameter Z , to take in account the
different width of PSF in axial direction [84]:

S =
∑
i, j,k

(
I (i, j, k) − A · exp

(
− (xi − x0)

2 + (
y j − y0

)2

2R2 − (zk − z0)
2

2Z2

)
− F

)2

The parameters (x0, y0, A, F) which minimize the squared difference between
the Gaussian function and the image are taken as the features of the object. If the
background was subtracted in advance, then F is considered zero and excluded from
the fitting procedure. As a result of non-linearity, there are only iterative ways to find
the minimum of S. This is computationally expensive, but gives the best accuracy
[16,41,42,65,70,77]. A Gaussian fit approach does have a drawback in that it is
applicable only to objects with a geometrical size smaller than the diffraction limit of
the microscope and with which the intensity distribution can be approximated by one
Gaussian.

As in the case of centroid fitting, the Gaussian fit can be easily generalized to
the multi-object case. The image is preprocessed by subtracting the background and
then by smoothing. Local peaks above the threshold are found as candidate points
of possible object localization and fitting is performed in the local vicinity of every
candidate point.

The advantage of having non-coordinate parameters for fitting is an additional way
in which to filter out false signals, since the intensity characteristics of the correct
signal are either known in advance or can be found by clustering their moments of
intensity distribution [25,57].

Different gradient edge detection and thresholding algorithms [29,39,81,82] are
used to search for objects with sizes above the diffraction limit and of unknown shapes.
They use a variety of ad hoc procedures to verify that selected regions satisfy the criteria
of the object of interest. Both categories can produce a binary mask, which is later
combined with the centroid algorithm. In this case, the function �(x) is a mask (see
formula (2)).

The threshold algorithms are based on the threshold value T h:

B(x, y) =
{

1; I (x, y) > T h
0; I (x, y) ≤ T h

(12)
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The algorithm constructs a binary image on the basis of the original gray-scale
by formula (11). In the simple case of a homogeneous background and high signal-
to-noise ratio, the threshold value can be manually selected by the user by examination
of a single frame [3]. Different ad hoc approaches were invented to determine the
threshold value from the image. For example, Crocker and Grier have used the 30th
percentile of brightness of the entire image as the threshold [25], Ku et al. [39] have
calculated the heuristic

T h = max(Ii, j )

(
std(Ii, j )

max(Ii, j ) − mean(Ii, j )

)
, (13)

where std means standard deviation, and the calculation is done over all pixels of the
image (i, j).

A more solid approach based on probability theory is worth mentioning and uses
maximum entropy as a criterion for threshold selection [43]. In this approach, the
image is considered as a mixture of two sub-images—the sub-image of objects and
sub-image of background. The intensities of both sub-images belong to Gaussian dis-
tributions with different means and variance. The threshold is selected iteratively, with
recalculation of means and variance of distributions, in such a way that it discrimi-
nates the sub-images with maximum entropy. Brink did not make assumptions about
the specific type of sub-image intensity distributions, but the maximum entropy for-
mula includes the local correlation of pixels in the image (gradient distribution) [11].
For homogeneous organelles with the same size and intensities, e.g. secretory granules,
the assumption of samples with a single intensity distribution is reasonable. However,
for early endosomes, with high diversity of sizes and intensities, this is not so clear.

The edge detection algorithm consists of a set of rules which discriminate between
the candidate pixels on the basis of the characteristics of surrounding pixels [81]. After
closed boundaries are formed, another set of rules are used to eliminate false objects
(i.e. the intensity distribution within the boundary has to satisfy some criteria, e.g.
mean value and variance has to fit in a predetermined interval). This approach is quite
complicated and has a less solid basis in comparison with intensity fitting by analytical
functions, but its implementation could be computationally faster.

An object with a known shape, e.g. rod-like bacteria, can be presented as a sum of
blurred segments with constant intensities [78]. In this case the blurring parameters
are fixed, but the length, orientation, position and intensity of segment are now the
parameters requiring fitting.

Similar approach to objects with arbitrary shape and size above the resolution limit
are used by the authors of this work [54]. The objects are fitted by a sum of powered
Lorenzians by minimizing:

χ2 =
∑
i, j

1

σ 2
i j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

I (i, j) −
M∑

k=1

Ak

1 +
⎛
⎜⎝

(
(xi −xk ) cos αk−(y j −yk ) sin αk

wk

)2 +
(

(xi −xk ) sin α+(y j −yl ) cos αk
hk

)2

⎞
⎟⎠

pk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2

(14)
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where (xk, yk, Ak, wk, hk, αk, pk) the parameters of kth Lorenzian, M the number of
Lorenzians, and σi, j is the standard deviation of noise in the pixel (i, j).

Summing is performed over a large enough vicinity of the local maximum.
Any intensity distribution can be presented by a sum of hat-like functions. The

Lorenzian has some advantages because the calculation is less expensive than the
Gaussian. At the same time, the difference between the Airy function and the squared
Lorenzian is small relative to the noise level of typical live cell images. This approach
also has the advantage of accuracy comparable to Gaussian fit algorithms and the ability
to find objects whose size ranges from hundreds of nanometers to a few micrometers.
The elongation of the base function along an arbitrary axis with angle αk to the axis
X decreases the number of base functions required for accurate object deconvolution.
The most probable number of base functions, M , to fit a given object were selected
by calculating the probability P(M |I )—probability to have M functions given image
I [63]:

P(M |I ) = const · M !
V M

·
(4π)M exp

(
−χ2

min
2

)

√
Det

(∇∇χ2
) (15)

where M is the number base functions, χ2
min the minimum value of squared residuals

(13) at given M , and V is the maximum volume of parameter space per one base
function.

The denominator grows fast with the number of base functions and constitutes an
Occam’s razor counterbalance to the trivial fact that increasing the number of base
functions will decrease the residual χ2

min. The P(M |I ) behaves better than the Fisher
criterion. Last is computationally simpler and can be used in case of known in advance
number of possibly overlapped objects [84,85]

The summary of object searching/localization algorithms is presented in the Table 1.

3 Tracking algorithms

Tracking is an assignment procedure. A set of sequential measurements which belong
to the same physical entity have to be assigned to one track. In other words, the track
is a sequence of objects in sequential frames which belong to the same physical entity.

Different scoring systems can be used to determine how good or bad particular
assignment is. Scoring systems include the simple Euclidian distance between objects
on sequential frames [12]:

Score(k) =
M∑

i=1

αi

∥∥∥pk
i − pk−1

i

∥∥∥
2

(16)

where αi is a scaling factor, which compensates for the different units of different
parameters and gives them their respective weight, pk

i the i th parameter value at
frame k, and M is the total number of parameters.
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Table 1 Object detection algorithms

Algorithm purpose Algorithm description References

Search for objects with Covariation with template [8,16,30]
known shape (template Correlation with template [13,16,61,47]
matching) SAD (sum absolute differences) [8,21,79]

Approximate object intensity by [2,12,16,36,42,70,76,77,80,84,85]
Gaussian

Search for single object Centroid [16]
with unknown shape Gradient edge detection and [25,29,39,43,81,82]

thresholding

Search for multiple objects Centroid with threshold-based [3,13,31,66,68]
with unknown shape mask

Approximate object intensity by [34,54]
sum of powered Lorenzian

Localization of object with Waited centroid [16,30]
sub-resolution accuracy Recursive waited centroid [25,37,57]

Gaussian mask [70]
Approximate object intensity by [2,12,16,36,70,76,77,80]

Gaussian
Approximate object intensity by [34,54]

sum of powered Lorenzian

As well as more complex heuristic scores.
Sethi and Jain [19,50,57,59] offered a score function which maps the score to the

interval [0, 1], where zero corresponds to a perfect fit.

Score(k) =
M∑

i=1

wi ·
⎛
⎝1 − 2

√
pk

i · pk−1
i

pk
i + pk−1

i

⎞
⎠ (17)

where wi is a i th parameter weight, pk
i the i th parameter value at frame k, and M is

the total number of parameters.
The score can be a function of object and track state parameters. This means that

it can includes object parameters like position, intensity, size, shape, etc., as well as
track parameters, e.g. velocity, acceleration, trajectory smoothness, etc., or even can
be a function of the track’s entire history.

The score of the position can be calculated on the basis of only the last object
position without calculating track-dependent speeds [56]:

Position Score(k) =
∣∣xk−1x p − xk−1xk

∣∣
√

W 2 + H2
(18)

where xk−1x p is the vector from position at the frame k − 1 to the predicted position
at frame k, xk−1xk the vector from the position at the frame k − 1 to the candidate
position at frame k, and W, H is the width and height of image, respectively.
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The score of trajectory non-smoothness is calculated by:

Smoothness Score(k) = 1 − �vk · �vk−1

|�vk | · |�vk−1| (19)

where vk and vk−1 is the movement of the object between frames k − 2/k − 1 and
k − 1/k.

Other heuristic scores could be found in [18].
The probability of different assignments can also be considered as a score. Anderson

et al. [2] use probability as a score

P ∝ exp

(
−

(
�r

Rd

)2
)

· exp

(
−

(
�I

In

))
(20)

where �r is the shift of the object between two sequential frames, Rd the characteristic
diffusive radius, �I the change of the object’s intensity, and In is the characteristic
intensity.

The algorithm for probability maximization could be easily converted to penalty
minimization by taking–ln(P) as a score.

The probability measure is dependent on the particular value distribution. The dif-
ferent physics of each parameter measurement generates a different error distribution.
In the case of jointly normally distributed errors the probability score is [5]:

P (Xk |Xk−1)= 1

(2π)
M
2 |�| 1

2

exp

(
−1

2
(Xk − Yk(Xk−1))

T ·�−1 ·(Xk − Yk(Xk−1))

)

(21)

where Xk is the vector of parameters at frame k, Yk(Xk) the vector of predicted
parameters at frame k, given Xk−1, � the parameter covariation matrix, and M is the
dimension of parameter vector.

This probability score can be reduced to the Mahalanobis distance [23] by taking

Score(k)=√− ln (P(Xk |Xk−1) ∝
√

1
2 (Xk − Yk(Xk−1))T · �−1 · (Xk − Yk(Xk−1)).

Besides different scores, there are two main approaches for object tracking. The
first approach is adequate for the situation where the measurement error is relatively
small and the measured object parameters are a good approximation of the object state
in the context of the problem under study. For example, when one follows the indivi-
dual endosomes in vivo [54,57,75] or in vitro [4,46], the error of endosome position
definition is nonessential in comparison with endosome size. Another extreme case is
when the accuracy one needs is much higher than the accuracy of single measurement.
This case arises in air/space/ocean surveillance by radar/sonar equipment [5,28,62]
and in nanometer-accuracy light microscopy [30,34,41,60,64]. In last case, one is not
so interested in connecting the measurements in a chain or track, it even can be a situa-
tion where only one measurement exists at every time point (“no-choice” tracking),
but the accuracy of the measurement is increased by averaging the information from
sequential frames. The information from the track history could increase the resolution
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against that of the single frame. These kinds of tracking algorithms are called “filters”.
The mixed case uses both—the accurate prediction of the object state on the next frame
and object-to-track assignment on the basis of a more accurate score [10,24].

3.1 Tracking by measurement assignment

The simplest tracking-by-assignment algorithm is a nearest-neighbor or “no-choice-
tracking” algorithm. This assigns a track to the only object that exists in frame k in the
predefined vicinity of the track end in frame (k − 1). The predefined vicinity is called
the “validation gate,” where the name comes from automated radar tracking systems. If
there is no object in the validation gate or there are multiple objects, the track is broken.
This algorithm was used for intracellular fluorescent object tracking, for instance, in
the works of Goulian and Simon [32]. It is clear that this approach performs well
only in cases of slow-moving, sparse objects without false object signals. There are
some modifications of this algorithm. The first modification uses only information
about the object’s position in the previous frame and the validation gate is centered
on this position. The second modification also takes into account the speed and center
of the validation gate in the predicted position in frame k. The third modification uses
an expanding gate (“box”), the size of which grows until it either finds an object or
reaches the predefined limit.

The straightforward generalization of the “no-choice-tracking” algorithm for multi-
target tracking case is a Greedy algorithm [2,31,74]. If the validation gate includes
many objects the possible assignments are sorted according to a score and the best assi-
gnment is made first. If the subsequent assignment contradicts the previous decisions,
then the second best is chosen, etc. In the end all possible assignments are performed
in a greedy manner. The advantage of these greedy algorithms is the ability to handle
situations of objects disappearing along with temporary occlusions. An upper limit on
the possible score can be introduced by adding a dummy object with a fixed maximum
score. If there is no better choice, the dummy object is assigned to the track and this
causes a track to break. A little more handling is required in order to keep the dummy-
marked track for a predefined number of frames and to handle possible occlusions. The
disadvantage of greedy algorithms is its tendency to fall into the first local minimum
of the search space. If the object density is low and movement is either slow or well
organized, such that the score difference between possible candidates is large, then a
greedy algorithm is a good choice. In the opposite case of dense, fast-moving objects,
the number of errors which are produced by a greedy algorithm becomes unreasonably
large.

The next improvement is a greedy exchange algorithm [56,59,72,73], which
includes the exchange of assignments in an attempt to improve the total score of
the tracks. This iterative process runs as follows: for every track, all possible replace-
ments are determined. If this pair-wise replacement improves the total score, the new
assignment is performed and the process is repeated until no appropriate substitutions
are found. If an exchange that improves the total score is found then the exchange
search is repeated. This procedure is better than a greedy algorithm, but it nevertheless
does not guarantee the detection of the global optimum. Further improvements can
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be achieved by applying dynamic programming for track assignment [37,54,55,71].
The dynamic programming algorithm, in the case of assigning objects to tracks on a
per-frame basis, can be reduced to the classical matrix implementation.

If there are a fixed number of objects, i.e. the restricted case in which no new
objects appears and no objects disappear during the measurements, and there are
no false signals and no non-detected objects, the global optimum can be found in
polynomial time. Given a reasonable scoring for object assignment, the problem of
finding the best object-to-track assignment is reduced to the well-known problem of
optimal resource distribution. The classical Hungarian algorithm provides a solution
[40]. The Hungarian algorithm works on a per-frame basis and provides a global
optimum score assignment of objects to tracks. The initial track seeds, in this case,
are the objects found on the first frame of the sequence.

Unfortunately, the assumption that a fixed number of objects are found in every
given frame is impractical. In microscopy, new objects appear either by the gene-
sis of compartments, vesicles, proteins, fission vesicles, etc, or just by their move-
ment into the field of view. At the same time, existing objects can disappear by
moving out of focus, changing identity, or fusing with other objects. In addition to
the change in the number of real objects, false object recognition is a major pro-
blem in the field. The same scenario is applicable to radar/sonar tracking systems.
The targets can move into the surveillance region or move out of it. In addition,
false objects (clutter) contaminate virtually every measurement. These could be false
targets in radar/sonar measurements or spikes of background noise in fluorescence
microscopy. Starting from the 1960s, probabilistic approaches of proper tracking
(measurement-to-track assignment) were developed to work in these complicated
conditions.

3.2 Predictive tracking

Tracking procedures were originally developed like filters. The main goal was not
the assignment of a sequence of (objects) measurements to a single track, but to find
the “real” track on the basis of noisy measurements. The first tracking systems were
developed in the military fields for the aiming of weapons. The signal from a radar
station identifies a target’s location with error, and at the same time a moving object
has to be targeted with higher accuracy than radar could achieve. The filter algorithm
provides the best estimation of the “real” (unknown) target position. Since the first
computers that controlled weapons were analog, the formulation of the algorithm was
oriented to an analog hardware implementation [38,53]. The simplest case corresponds
to single target tracking. The target is characterized by a state, which includes its
kinematical parameters – position, velocity and acceleration. The predictive filter can
be built on the basis of a motion model, which allows for the prediction of motion
based on previous data.

The state for which the discrete time point k can be calculated on the basis of the
previous state k − 1.

Xk = AXk−1 + Buk + Cηk−1 (22)
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where Xk =
⎛
⎝

�rk

�vk

�ak

⎞
⎠- target state, which is characterized by position �rk , velocity �vk

and acceleration �ak at time point k.
A is a constant transition matrix, which in case of constant acceleration is A =⎡

⎣
1 δτ 1

2δτ 2

0 1 δτ

0 0 1

⎤
⎦ , δτ the time step between sequential measurements, uk the control

parameters, known in advance, B the transition matrix for control parameters, and ηk

a motion model noise (i.e., the atmosphere heterogeneity and turbulence).
In this algorithm, the noise is assumed to be white noise with a mean of zero; this

means that there is no correlation between the noise values at the time point k and
time point k + 1. If ηk has a non-zero mean by nature, it can be included in the control
parameters uk . The covariation matrix of the noise is known (measured in advance)
and equals Rk .

The measured state

Yk = DXk + εk (23)

is linearly dependent on the real state and has additive noise εk . The measurement
noise is white noise with a mean of zero and known covariation matrix Qk .

The simplest case corresponds to the measurement matrix D =
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦; in real

radar/sonar systems, the coordinates Y are non-Cartesian and the measurement matrix
is more complicated.

The use of the linear model of movement and measurement is reasonable for many
practical applications. If we have a set of measurements and a model, we can determine
the model parameters by fitting the model to the measurements. A fitting objective
function could be maximum likelihood, which in the case of Gaussian noise reduces
to the least square of deviations of predicted and measured states. Unfortunately, the
direct fit of all measurements to this model requires increasing computation time and
memory over time. But in the case of Gaussian noise, there is a recursive method for
updating the maximum likelihood parameter estimation [38] with each new measure-
ment:

X̃k+1|k = A · X̃k|k−1 + B · uk + Gk ·
(

Yk − D · X̃k|k−1

)
(24)

Gk = A · �k · DT ·
(

D · �k · DT + Qk

)−1
(25)

�k+1 = A ·
(

�k −�k · DT ·
(

D · �k · DT + Qk

)−1 · D · �k

)
· AT + C · Rk · CT

(26)

where X̃k|k−1 is the predicted target state at time k on the basis of k − 1 measure-

ments, Gk the gain matrix, Gk ·
(

Yk − D · X̃k|k−1

)
gives correction to the model on
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the basis of “innovation”, the discrepancy between predicted and measured values at
time k.

�k = cov(Xk − X̃k|k−1, Xk − X̃k|k−1)- covariation of the state uncertainty, �0
encodes the uncertainty of the initial state of the target.

The beauty of this algorithm is constant memory usage and constant calculation time
which are independent of the number of measurements. The drawback of this algorithm
is that it cannot handle clutter. The obvious solution in a cluttered environment is taking
the measurement which is closest to the predicted state. If the density of false signals
in the validation gate is high and a false signal could be chosen at multiple times in
the sequence, the algorithm will end up far away from the real target. The extension
of the Kalman filter to the case of clutter is the Probabilistic Data Association (PDA)
algorithm by Bar-Shalom [5].

In the PDA algorithm the single value Yk in formula (23) is replaced by

y′ =
Nk∑

i=1

p
(
yk,i |χk,i , Yk−1

) · yk,i (27)

where Nk is the number of measurements in the validation gate at time k, yk,i the i th
measurement at time k, Yk the set of all validated measurements at time k, p(yk,i |χk,i ,

Yk−1) the probability that measurement Yk,i comes from the target, and χk,i is the
event, measurement yk,i comes from target.

In short, instead of the nearest-neighbor, the weighted sum of all measurements
in the validation gate is taken. The probability that the signal is a signal from the
target is used as a weight. The probability is dependent on a model for the clutter
in the measurement. In the case of indistinguishable point-like objects and a Poisson
distribution of false signals with fixed density and normal distribution of measurement
errors, the probability that the i th signal is correct is defined by formula [5]:

p(yk,i |χk,i , Yk−1) = f (yk,i |Yk−1)

bk + ∑mk
i=1 f (yk,i |Yk−1)

(28)

where mk is the number of signals in the validation gate at time k, V the volume of the
validation gate, bk = mk

V
α1+α2−α1α2
(1−α1)(1−α2)

, α1 the probability that a correct measurement is
not in the validation gate, α2 the probability that a correct measurement is not detected,

f (yk,i |Yk) = 1

1 − α1
N (DX̃k|k−1, �k),

N (DX̃k|k−1, �k)- normal distribution with mean DX̃k|k−1 and covariation matrix �k .
The probability that there is no correct signal at time k is:

p
(
yk,0|χk,0, Yk−1

) = bk

bk + ∑mk
i=1 f (yk,i |Yk−1)

(29)
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It was shown that the Kalman filter failed at a clutter density of 0.5–0.75 false
signals in the validation gate. The PDA algorithm is much more robust and continues
to reliably track at a clutter density of 2–3 false signals per validation gate.

The major drawback of PDA is that it works only for a single target. If there are
many targets in the viewfield, but their respective validation gates are not overlapping,
then the problem is equal to the set of independent PDA trackers. If the validation
gates are overlapping, the Joint Probabilistic Data Association (JPDA) is a way to
handle this problem [28]. The JPDA uses a common model PDA, but differs in the
manner with which the association probabilities are computed. The JPDA algorithm is
the root of many derivative algorithms which utilize different methods for calculating
probabilities in order to handle specific circumstances in each case [10,17,26,35].

3.3 Multi-variant tracking

Clutter can complicate the tracking of even a single target. The branch of algorithms
stemming from the “track splitting” algorithm was developed as an alternative to the
PDA/JPDA algorithms [24,48,51,52,67]. Generally a track splitting algorithm creates
a tree of possible track continuations when multiple assignments are feasible. The deci-
sion of which track to keep is postponed to a later stage where the difference in the
quality of the tracks becomes obvious. This track splitting approach has an exponen-
tially growing number of combinations over time, so it must incorporate some pruning
strategy to keep the size of the graph of the tracks reasonable. The Multiple Hypothe-
sis Tracking (MHT) algorithm [24,51,52,67] is a particular branch of track splitting
algorithm. The hypothesis in this context means one possible instantiation of the track.
A set of hypotheses about all measurements, which were done before the current time
point, is used as parents to generate a set of next level hypotheses. Each hypothesis
has a full set of labels for every signal: it can come from a known object, a false
positive, or a new object appearing in the viewfield. Some probability is assigned for
every hypothesis. The probabilities of next-level hypotheses conditioned on the parent
hypotheses can be calculated by the Bayesian rule with parent hypothesis probabilities
as a prior. This generates a recursive method for the calculation of probabilities. Since
the set of hypothesis is exhaustive, the pruning strategy can be based on a threshold
cut-off, i.e., keeping the n-most-probable hypothesis, etc. The conditional probabili-
ties of a hypothesis are formulated in terms of the discrepancy between the predictions
of the parent hypothesis and the hypothesis about the last measurement set. This again
returns to the predefined model of object behavior which was incorporated into the
prediction. In the original work of Reid, the probabilities were calculated on the basis
of a linear object motion model of the form (22) and (23). The same kind of model
with some variation was used in most aircraft tracking programs.

3.4 Tracking intracellular objects

After objects have been detected in each frame of a sequence, tracking is reduced
to connecting the information about the objects into a track. In cases where only a
single object exists in each frame, this task is trivial. But problems arise when there
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are many objects or one real object and many false signals (clutter). In this situation,
the assignment of objects found in different frames to the same track becomes a non-
trivial problem. The main objective is to track objects in the absence of established
models of motion or kinematical restrictions of shape changes for microscopic objects.
These restrictions are essential for surveillance systems [14,15,83], but have almost
no practical application in intracellular object analysis. As in aerospace/ship tracking
and flow velocimetry, in intracellular object tracking the shape of the object is not
predictable, either because of low signal-to-noise ratio along with the limitations of
resolution or because it varies too quickly between two sequential measurements. Due
to this limitation, point tracking algorithms were used in those fields. At the same time
kinematic models like (22) and (23) are not applicable to intracellular microscopy
with low-to-middle frame rates. As a result the motion model-based approaches like
(PDA/JPPA), despite their substantial development over the last 30 years, have little
application to intracellular objects tracking. With MHT, although it is a multi-target
tracking algorithm, the number of simultaneously-tracked objects is very limited. This
is acceptable in the radar/sonar systems, where the number of targets is generally in
the range from 1 to 20. In intracellular microscopy and velocimetry, the number of
objects is in the range of 100–10,000. Therefore, less sophisticated algorithms are
generally used in this field.

The most popular intracellular tracking algorithm is still the greedy algorithm modi-
fied in different ways [29,30,41,57,77]. But in the case of a crowded environment and
a high clutter density, it is impossible to choose the proper assignment on a per-
frame basis. Multi-frame analysis can generate a reasonable increase in accuracy. The
validation gate, which can be selected on the basis of the maximum possible object
velocity, decreases the number of probable track continuations to a manageable value.
In this case, a dynamic programming procedure becomes a feasible method of finding
the global assignment optimum [54,55]. Non-deterministic algorithms, i.e. simulating
annealing, give a possibility to search the global optimum in case when determinis-
tic algorithms becomes non-efficient [86]. The non-deterministic algorithms do not
guarantee the reaching of the global optimum in any given case, but in average they
perform well and allow naturally include many biological events such as a new object
generation, fusion, fission and decay.

The microtubule-dependent movement of intracellular vesicles can be processive
enough to produce the smooth curve-like maximum-intensity projection on a time
dimension. In those cases trajectories of vesicles can be found before tracking either
manually or by fitting the pieces of straight line to the image [87]. After trajectory
was found the 1D+t section of 3D+t image (kymogram) is preformed. The restriction
to the known trajectory (kymogram) dramatically decreases the number of possible
assignments. As result, the simple algorithms, i.e. “no-choice-tracking”, perform well.

The summary of tracking algorithms is presented in Table 2.

4 Conclusion

Much work in cell biology and biophysics has been done in the field of microscopic
fluorescent object tracking. From this work, a wealth of information concerning the
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Table 2 Object tracking algorithms

Algorithm purpose Algorithm description References

Single object tracking in
absence of false signals
(clutter)

Tracking by assignment:
no-choice-assignment

[24]

Single object tracking in
presence of noise (clutter)

Kalman filter (kinematic model has to
be known)

[38,53]

PDA (kinematic model has to be
known)

[5,6]

Fixed number of objects
tracking in absence of false
signals

Hungarian algorithm (method finds the
global optimum of assignment)

[40]

Multiple object tracking in
presence of false and missing
signals, object appearing and
disappearing

JPDA (applicable to the small number
of objects)

[6,7,10,17,26,28,35]

MHT (applicable to the small number
of objects)

[24,51,52,67]

Greedy assignment (method fails to find
the global optimum in case of
crowded environment)

[2,19,29,31,81,74]

Greedy assignment + exchange
(method partially overcome the
problem of Greedy assignment in
crowded environment)

[56,59,72,73]

Simulated annealing (method finds the
global optimum in average)

[86]

Dynamic programming (method finds
the global optimum, including many
frames in simultaneous consideration
increases it complexity)

[37,54,55,71]

underlying mechanisms of the molecular machinery of the cell was extracted. The
physical properties of molecular motors of the kinesin, myosin and dynein superfa-
milies were discovered. Despite this success, the average level of sophistication in
the algorithms used is still lower than that of other fields. This is partially explai-
ned by the more complex input data, where the signal-to-noise ratio is low and the
complexity of system is high. At the same time, kinematical models, which are used
to provide higher tracking quality, are the subject of continuing research. This pre-
cludes the researcher from the use of a model of motion in the tracking algorithm.
High clutter density and essentially non-homogenous backgrounds in live-cell fluores-
cent microscopy have effects, such that, e.g., the number of endosomes which human
beings can see in a movie is much higher than the number of endosomes one can
see in still images. The current state-of-the-art object searching algorithms, which
are based on function fitting procedures, can find virtually all the objects visible on
one frame. However, this is considerably fewer than can be seen in a movie. In the
case of many fast objects in a crowded surrounding, the human eye is still better than
the best software available. Yet lowering the object search threshold can result in an
explosion of clutter density that almost prohibits tracking. The track-before-detecting
approach [37,85], where the object search is performed in the close vicinity of the
predicted track position, can be performed with a much lower threshold, and this looks
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promising. Generally, development of probabilistic predictive algorithms, like MHT
and JPDA, which are appropriate to the movement of biological objects, is fruitful
direction of future research too. Another possible direction is an iterative approach:
the initial tracking is performed by greedy algorithm, than the model of object move-
ment is generated and model-based probabilistic approach is used for tracking. On
base of second tracking model is refined and process is repeated. The demand to the
more reliable tracking of low intensity objects and new development in the micro-
scopy techniques open the wide field for the future research in the intracellular object
tracking filed.
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