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Abstract

Numerical deconvolution of 3D fluorescence microscopy data yields sharper images by reversing the known optical aberrations intro-
duced during the acquisition process. When additional prior information such as the topology and smoothness of the imaged object sur-
face is available, the deconvolution can be performed by fitting a parametric surface directly to the image data. In this work, we
incorporate such additional information into the deconvolution process and focus on a parametric shape description suitable for the
study of organelles, cells and tissues. Such membrane-bound closed biological surfaces are often topologically equivalent to the sphere
and can be parameterized as series expansions in spherical harmonic functions (SH). Because image data are noisy and the SH-param-
eterization is prone to the formation of high curvatures even at low expansion orders, the parametric deconvolution problem is ill-posed
and must be regularized. We use the shape bending energy as a regularizing (smoothing) function, and determine the regularization
parameter graphically with the help of the L-curve method. We demonstrate the complete deconvolution scheme, including the initial
image segmentation, the calculation of a good starting surface and the construction of the L-curve, using real and synthetic image data.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Image deconvolution is a computational process in
which the measured or estimated point spread function
(PSF) of an optical instrument such as a microscope is used
to partially reverse optical distortions (Jansson, 1996; Ver-
veer et al., 1999). It is especially beneficial in three dimen-
sions (3D) where out-of-focus light can lead to pronounced
image degradation. Deconvolution takes advantage of
prior information about the physics of image formation
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in the microscope. However, there is often additional prior
information contained within the images themselves and
that is not generally used in image deconvolution.

Common examples in cell biology of 3D images with
prior information are those of cells and organelles. Cells
and organelles have diverse, often complex shapes for which
there is no ‘‘golden standard”; this makes the accurate mea-
surement of their morphology experimentally and theoreti-
cally challenging. However, we know that (a) the surfaces of
cells and organelles are topologically closed, because of the
exceedingly high energy associated with unsealed mem-
branes, (b) cells and organelles are often topologically
equivalent to the surface of the sphere (they are therefore
binary objects in the sense that each point is either inside,
outside or at the boundary), and (c) the bending stiffness
of the bounding membrane together with its associated
cytoskeleton smoothen the surface. This prior information
is not used in conventional image deconvolution, which
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simply produces a sharper image that must subsequently be
segmented to obtain the surface of interest.

The prior information about the topology of a 3D object
can be utilized by parameterizing the shape mathematically
(Terzopoulos et al., 1988; Staib and Duncan, 1996). The
question then becomes: which surface best fits the mea-
sured image? If a smoothness assumption can be made to
make this inverse problem well posed, then the optimal
set of shape surface parameters would be a solution to
the deconvolution problem that solves both the image-
sharpening and surface-finding problems simultaneously.
We call this type of deconvolution ‘‘parametric deconvolu-
tion”, as opposed to the usual numerical ‘‘non-parametric
deconvolution”. Parametric deconvolution does not pro-
duce a sharper image in the conventional sense, but directly
outputs the most probable underlying mathematical
surface.

In this work, we focus on the common case when the
shapes under study are topologically equivalent to the
sphere. A subset of such surfaces can be parameterized
by spherical curves in which the radial distance is a func-
tion of the longitude and latitude. Such curves can be
represented by a spherical harmonics (SH) series, a three-
dimensional generalization of the Fourier series for line
curves, and affords a natural way to smooth the surfaces
by truncation of the series. However spherical curves only
describe ‘‘stellar” shapes for which there is an internal
point that ‘‘sees” all the points on the surface without
crossing the surface. This limits the applicability of spheri-
cal curves because many cells and organelles of interest are
not stellar. To circumvent this limitation, we use the spher-
ical harmonics parameterization (SHP), developed by Bre-
chbühler et al. (1995) for 3D image analysis. The SHP
represents the surface as spherical harmonics series expan-
sions of the individual x, y and z Cartesian coordinates of
the surface and parameterizes both stellar and non-stellar
surfaces. It has been applied in various contexts by Gerig,
Styner and colleagues (Sezekely et al., 1996; Kelemen et al.,
1999; Gerig et al., 2001; Styner et al., 2005). The SHP has
two additional advantages: it can generate a wide variety of
shapes with a small number of parameters, and it offers
straightforward calculations of the geometrical properties
of a surface such as area, enclosed volume and curvature.
These geometrical properties are important descriptors of
cell morphology. For example, changes in volume and area
are often used to characterize the effects of perturbations or
mutations on cells (e.g. hereditary blood diseases); and the
curvature of the membrane is important because it can
determine which lipids or proteins will partition into it
(McMahon and Gallop, 2005) and the mean-squared cur-
vature is proportional to the energy required to deform
the cell (Lipowsky, 1991). Both the area and curvature
are difficult to measure because they depend on the contour
derivatives. The SHP does suffer from a disadvantage: it
allows for surfaces with regions of high curvature even at
low SH-expansion orders and therefore requires a strong
smoothing constraint to yield realistic surfaces.
In this paper, we describe a method to analyze 3D
microscopy surface images quantitatively using SH-based
parametric deconvolution. The surface is detected either
by using a fluorescent dye that labels the membrane or a
cytoplasmic dye that labels the inside of the cell, although
in this study we only give examples of membrane-labelled
objects. In order to make the surface-determination prob-
lem well defined and exclude surfaces with unrealistic high
curvatures, we used the L-curve method (Hansen, 1997) to
choose the balance between smoothness of the parameter-
ized surface curve and the best fit of this curve to the 3D
image data. We apply the complete method to real and syn-
thetic problems, showing all steps in the process including
the segmentation of image stacks, the polygonal surface
mapping to the sphere, the fitting to SH series expansions
and the calculation of final surface properties. In order to
evaluate the quality of the SHP, we calculate the values
of volume, surface area and mean-square curvature for
synthetic data and compare them with the actual values
as well as the values obtained using other segmentation
methods.
2. Theory

2.1. Spherical harmonics parameterization

The SHs are the 3D equivalent of the Fourier series, and
form a complete basis that allows the description of general
stellar surfaces as functions r of the spherical coordinates
(h,/) in a series expansion,

rðh;/Þ ¼
X1
L¼0

XL

K¼�L

CLKyLKðh;/Þ ð1Þ

where 0 < h < p and 0 < / < 2p. The CLKs are the expan-
sion coefficients, indexed by the integers L and K with
�L 6 K 6 L and 0 6 L 61. yLK (h,/) are the real sym-
metric and anti-symmetric combinations of the spherical
harmonic basis functions given by

yLKðh;/Þ ¼ NLKP L;Kðcos hÞ cosðK/Þ when K P 0; ð2Þ
and

yLKðh;/Þ ¼ NLKP L;Kðcos hÞ sinðjKj/Þ when K < 0; ð3Þ
where PL,K(cosh) are the associated Legendre polynomials
(expressions for calculating them recursively are given in
Appendix A.1) and NLK are normalization constants (Hob-
son, 1955).

In order to describe surfaces regardless of whether they
are stellar or not, we use the SH description in its paramet-
ric form (Duncan and Olson, 1993; Brechbühler et al.,
1995). A surface ~S that is topologically equivalent to the
sphere (i.e. of genus zero), can be represented as
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where X(h,/), Y(h,/) and Z(h,/) are coordinate functions
of h and /.

X ðh;/Þ ¼
X1
L¼0

XL

K¼�L

CX
LKyLKðh;/Þ

Y ðh;/Þ ¼
X1
L¼0

XL

K¼�L

CY
LKyLKðh;/Þ

Zðh;/Þ ¼
X1
L¼0

XL

K¼�L

CZ
LKyLKðh;/Þ

ð5Þ

The three sets of expansion coefficients ðCX
LK ;C

Y
LK ;C

Z
LKÞ

completely define the shape. There are three points we
would like to note here. (a) This spherical harmonics
parameterization is a highly economical way of generating
stellar and non-stellar shapes. (b) The nature of this param-
eterization allows the creation of high curvatures (cusps)
even when using low order harmonics, which can poten-
tially be problematic in the absence of constraints on the
smoothness of the surface. Both these properties can be ex-
plored with an in-house developed program called the
SHAPE explorer (Spherical HArmonics Parameterization
Explorer) which gives the user the ability to vary CLK s

and observe the resulting shapes in an interactive manner.
The program can be downloaded at http://www.mpi-
cbg.de/~khairy/ links.html. And (c), during the numerical
implementation of SH calculations, the basis set has to
be truncated at some maximum L value (Lmax).

Eq. (5) represents spherical harmonic synthesis, in which
the given CLKs can be used to construct the surface. In
spherical harmonic analysis, the CLKs are calculated from
the individual Cartesian coordinate data whose values are
defined on the unit sphere. The CLKs are calculated accord-
ing to

CX
LK ¼

Z 2p

0

Z p

0

X ðh;/ÞyLKðh;/Þ sin hdhd/ ð6Þ

with similar equations for Y(h,/) and Z(h,/).

2.2. Parametric deconvolution

Parametric deconvolution involves refining a starting set
of shape coefficients through direct fitting in image space in
order to find the surface that gives a best fit to the experi-
mental data. Assuming zero background and an amplitude
a for the foreground intensity Ir, (i.e. the surface model)
this could be done by minimizing

v2ð~S; aÞ ¼
XN

i¼1

ðId;i � aðI r;ið~SÞ � UÞÞ2 ð7Þ

where the summation is performed over all voxels
i = 1, . . .,N, with Id,i the intensity of the ith voxel of the
raw data, Ir,i the intensity of the ith voxel of the recon-
structed binary volume based on the surface ~S (see Section
3.3). U is the PSF of the microscope (in our case a theoret-
ical estimate of it), and the symbol � denotes convolution.
However, because image data is in general corrupted by
noise, the minimization of Eq. (7) is an ill-posed problem
and we must add a regularization (smoothing) term, which
renders it well-posed. Regularization is also essential since
the SHP tends to introduce artificial sharp edges, even at
low L, as mentioned above. As a smoothing function we
use the bending energy (Eb) of the surface. So our regular-
ized problem is to minimize a functional GðId;~SÞ given by

Gð~S; aÞ ¼ v2ð~S; aÞ þ kEbð~SÞ ð8Þ
with k the regularization parameter and Eb the normalized
bending energy of the shape given by

Eb ¼
I
~S
ð2HÞ2 dA

� �
=16p ð9Þ

where H is the local mean curvature of the contour, and the
integration is performed over the area (A) of the closed
shape. Eb is comparable to the internal energy commonly
calculated for 2D and 3D snakes (Kass et al., 1988) and
is proportional to the mean-squared mean curvature. k
determines the balance between the amount of smoothing
(minimization of Eb) on the one hand and the closeness
of the fit to the data on the other.

A central problem in inverse problem theory is the deter-
mination of the regularization parameter k. The most pop-
ular methods for automatically determining regularization
parameters are: minimizing the generalized cross-valida-
tion function (Wahba, 1990), minimizing a Bayesian infor-
mation criterion (Akaike, 1980), and the L-curve method
(Hansen, 1997). Generalized cross-validation is too compu-
tationally expensive for our problem, and the Bayesian
information criterion penalizes the complexity of our shape
description rather than accounting for our prior physical
knowledge about the smoothness of the shape. Instead,
we have chosen the L-curve method because it is computa-
tionally practical, and can be used to incorporate smooth-
ness criteria. It depends on finding the point of maximum
curvature on the usually L-shaped curve obtained when
plotting the logarithm of the residual function (first term
in Eq. (8)) vs. the logarithm of the smoothing function
(in our case the bending energy; second term in Eq. (8))
for a series of values of the regularization parameter k,
i.e. every point on the L-curve is obtained from an optimi-
zation of Eq. (8) for a given k. The optimal k is determined
graphically as the one corresponding to the corner of the
resulting L-curve (see arrows in Figs. 4c and 5b). After
minimizing Eq. (8) with the proper k, confidence limits
on the obtained parameters and shape properties can be
determined from the covariance matrix of the estimates
at the solution.

3. Computational methods

In this section we give an outline of our approach
(Fig. 1). In short, the first two steps focus on the important
problem of obtaining a good starting set of CLKs. The 3D
fluorescence image in the form of a stack of sections
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Fig. 1. General scheme for 3D parametric deconvolution. (a) Confocal microscopy sections of a fluorescently membrane-labelled live yeast zygote in
meiosis 1. The raw data are shown. (b) Triangulated surface resulting from step 1. (c) Spherical harmonics parameterization of (b). (d) Parametrically
deconvolved surface: the cell membrane contour corresponds to refined shape parameters which were fitted to the raw data (step 3).
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(Fig. 1a) is non-parametrically deconvolved using commer-
cial software and a theoretically determined (or experimen-
tally measured) PSF and then intensity-thresholded. From
the resulting point-cloud a surface triangulation is gener-
ated (Fig. 1b). This is followed by the critical step of uni-
formly mapping the triangulated surface to a parametric
sphere. The three Cartesian coordinates of the shape, cor-
responding to the mapped vertices, are then expanded in
spherical harmonic functions (Eq. (6)), providing a starting
parametric approximation to the surface (Fig. 1c). To be
able to calculate a measure of match between this shape
and the image data (in our case v2), a complete intensity
volume is constructed and to mimic the original data– con-
volved with the theoretical PSF of the microscope.

Parameter set refinement proceeds by iteratively fitting
the intensity volume corresponding to the surface, to the
raw data by varying the shape coefficients and the ampli-
tude (a) of the foreground intensity (Eq. (8)). Changes to
the coefficients introduced during the fitting are assumed
to be small enough so as not to necessitate a modification
of the initial spherical mapping. The fitting is repeated
for a range of k values and an L-curve is constructed.
Our final surface (Fig. 1d) is the one fitted with the k value
that corresponds to the corner of the L-curve, which we
determine graphically. From that final set of fitted coeffi-
cients the geometrical properties such as area (A), enclosed
volume (V) and curvatures can be calculated (Appendix
A.2). In the remainder of this section we highlight some
details involved in carrying out the above steps.

3.1. Initial segmentation

Even though the fluorescent dye is highly specific in the
ideal case, one often observes nonspecific labeling of other
cellular structures (see Figs. 1a and 5a and Section 4.2.).
This necessitates a segmentation step prior to surface find-
ing. The non-parametrically deconvolved data is threshol-
ded using Laplacian-of-Gaussian (LoG) edge detection
(Marr and Hildreth, 1980) and an isosurface is produced
using the marching cubes algorithm (Lorensen and Cline,
1987). In cases where the signal-to-noise is very low, Gauss-
ian or median filtering prior to the thresholding may be
necessary. Still, depending on the exact implementation
and the quality of the data, the surface may contain holes
and the triangle faces produced may be thin, elongated and
with largely varying surface areas. In such cases, we fit a
surface to the point-cloud data with radial basis functions
(RBFs), using available fast routines (Carr et al., 2001).
The polygonalization of the RBF is performed using a
marching tetrahedra variant that has been optimized for
surface following (Treece et al., 1999). The resulting mesh
is of high quality; triangles are approximately of equal area
and not highly sheared. The radial basis functions can be
reliably used for surface interpolation (hole filling) as well
(Carr et al., 1997). It should be stressed that any other
scheme that results in a proper surface triangulation can
be used here.

3.2. Surface mapping

After obtaining the surface triangulation, each surface
point (x,y,z) is mapped onto a point (h,/) on the surface
of the unit sphere (parameter space). This has to be accom-
plished while maintaining connectivity and nearest neigh-
bors, preserving relative triangle area (triangles in the
original surface mesh should have the same relative area
as the corresponding geodesic triangles in parameter space)
and if necessary minimizing triangle (shear) deformation.

The first step in the topological mapping is the unique
mapping of surface points to the unit sphere. Here, we fol-
low the method of (Brechbühler et al., 1995) modified for
triangulated surfaces. Two poles are chosen in the surface
mesh for the latitude (h) calculation. One is identified as
the ‘‘North pole” (hN) and the second as the ‘‘South pole”
(hS). The exact choice of which points in the mesh to take is
not critical, however it will influence the path taken by the
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uniform mapping optimization later. For a scheme to
choose the poles see (Shen and Makedon, 2004). A Laplace
equation $2h = 0, with Dirichlet conditions hN = 0 and
hS = p is solved for h. This is equivalent to solving the sta-
tionary heat diffusion equation over the surface mesh while
cooling the North Pole and heating the South Pole. To cal-
culate the longitude /, a date line is introduced along
which / is incremented or decremented by 2p. The cyclic
Laplace equation $2/ = 0 is then solved. Each vertex has
then associated with it a unique (h,/) coordinate, and
can be placed on the unit sphere. The Laplace equations
are solved by constructing a sparse linear system of dimen-
sions equal to the number of vertices of the triangulation
(Brechbühler et al., 1995), and then solving the linear prob-
lem using the biconjugate gradients algorithm with precon-
ditioners calculated from an incomplete LU factorization
(Press et al., 1992).

For a proper final shape representation the vertices must
be uniformly distributed on the unit sphere (Brechbühler
et al., 1995; Shen and Makedon, 2006). Throughout this
work we relied on a fine high quality triangulation of the
shape, for which only area preservation needed to be con-
sidered. The problem is to minimize

Xm

i

ap;i

4p
� ao;iP

i
ao;i

0
@

1
A

2

ð10Þ

where ap,i is the geodesic area of triangle i = 1,2, . . .,m, on
the parametric sphere, ao,i is the area of triangle i on the
original object. Let A be the vector of constraints on trian-
gle areas of length m Ai ¼ ap;i=4p� ao;i=

Pm
i ao;i

� �
, and C

represent the current configuration, a vector of length
2 � n of h and / coordinates, where n is the number of ver-
tices, then the problem is to find dC that renders,

AðC þ dCÞ ¼ 0 ð11Þ

To first order, we can write,

AðC þ dCÞ ¼ AðCÞ þ JTðCÞ � dC ð12Þ

where J is the 2n � m Jacobian matrix of the areas given by

J ¼

oA1

oC1
� � � oAm

oC1

..

. . .
. ..

.

oA1

oC2n
� � � oAm

oC2n

2
6664

3
7775 ð13Þ

Using Eqs. (11) and (12), we take Newton steps by itera-
tively solving for dC,

�AðCÞ ¼ JT ðCÞ � dC ð14Þ

and incrementing C with dC. Since, we have more variables
than constraints (2n > m), Eq. (14) has many solutions. We
choose the shortest possible dC, which restricts dC to the
column space of J. So dC can be given by dC = J(C) � dS,
and the final linear system that is iteratively solved is,
JTJdS ¼ �AðCÞ ð15Þ

where we increment C with dJdS at each iteration, d being
a step length that can be determined by a line search. Eq.
(15) forms a large sparse system that we solve using the
GMRES algorithm (Saad and Schulz, 1986). In our imple-
mentation, we made the procedure significantly more CPU
efficient by determining the sparsity pattern of J before-
hand. Iterations proceed until a predetermined tolerance
on A is met. After the uniform mapping the coordinates
are expanded individually in a SH series (Eq. (6)). We
choose the basis set truncation by increasing Lmax until
Eb of the shape increases, marking the onset of ringing.
Criteria for choosing Lmax based on Bayesian statistics also
exist (Sivia and Carlile, 1992).

We show the application of our method on the spherical
parameterization of a surface triangulation of the statue of
Max-Planck’s head (Fig. 2). More surface detail is revealed
with increasing Lmax, as would be expected from a converg-
ing Fourier series. We also tested the convergence of our
method for shapes of known CLKs with increasing mesh
size (Fig. 3). These designed surfaces represent human
red blood cell shapes and are of a level of complexity com-
monly encountered in biology.

3.3. Constructing the intensity volume from a set of shape

parameters

The complete image volume (Ir of Eq. (7)) is simulated
by: (1) initializing an image volume of twice the matrix
dimensions as the raw data with all voxels set to zero, (2)
calculating a shape triangulation, based on the starting
parameters, on a fine mesh (triangles should not span
across more than one voxel when overlaying the surface
with the image volume), (3) assigning the value 1 to voxels
that are intersected by surface triangles, which is possible
since the synthetic volume forms a coordinate system that
can directly be used by the surface, (4) integrating the
intensity volume to obtain the final image size and finally
(5) convolving the (binary) volume by the PSF correspond-
ing to the optical system to obtain the simulated intensity
volume. Since, we exclusively work with image dimensions
that are powers of 2, we use the fast Fourier transform for
the latter step. At each optimization step, Ir is multiplied by
the best fitting foreground intensity amplitude (a in Eq.
(7)).

3.4. Model optimization

For the minimization of the expression in Eq. (8), we use
an unconstrained quasi-Newton nonlinear optimization
algorithm, with the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) scheme for updating the Hessian matrix approxi-
mation (Broyden, 1970). However, BFGS fails to find a
minimum (a) when the starting shape is far from the ‘‘true”
one, in which case the optimization must be performed
within a CPU-expensive hierarchical framework where



Fig. 2. Parameterization of the Max-Planck head obtained by preserving relative triangle areas in the spherical mapping step. (a) Increasing surface detail
by gradually increasing Lmax (Eq. (6)). (b) SHP surfaces at Lmax = 60 and original. At Lmax = 60 there are (Lmax + 1)2 = 3721 coefficients/coordinate for a
total of 11,163 coefficients most of which are negligible. Only 234 of them have a value larger than 0.1% of the largest coefficient.

Fig. 3. Convergence of the surface mapping with increasing mesh size for
three synthetic triangular surfaces that represent typical human RBC
shapes. As a measure of convergence the bending energy was used.
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both the raw and simulated data sets are convolved with
3D Gaussians of gradually decreasing width, and (b) when
the value of k is small to the extent that the problem is not
regularized anymore. The amplitude a is adjusted by linear
least squares at every step.

3.5. Shape correspondence between two SH-parameterized

shapes

A unitless measure of correspondence between two SH-
parameterized shapes a and b can be given by
Ra;b ¼ 1�
P3�ðLmaxþ1Þ2

i¼1 ðCa;i � Cb;iÞ2P3�ðLmaxþ1Þ2
i¼1 ððCa;iÞ2 þ ðCb;iÞ2Þ

ð16Þ

where 3 � (Lmax + 1)2 corresponds to the total number of
coefficients that describe a shape, and the Ca,is and Cb,is
represent the ith corresponding shape coefficients that have
been transformed into their translational and rotational
invariant form (Brechbühler et al., 1995). Ra,b approaches
unity as two shapes approach each other. Thus it is a
measure of the similarity of two shapes. For the reader
to get a feeling for the values of R, we list some here for
the shapes shown in Fig. 3: RStomatocyte,Stomatocyte = 1.0,
RDiscocyte,Stomatocyte = 0.890, RStomatocyte,Echinocyte = 0.871.
Note that the correspondence measure based on Eq. (16)
requires that the spherical mapping be the same for the
two shapes. However, we reasoned that if two different
spherical mappings are both of high quality, then the cor-
respondence measure based on Eq. (16) would still be
meaningful and we sometimes also made this calculation
(two values in Table 1 are from different mappings and this
is indicated in the legend). In our experience the bending
energy of Eq. (9) also serves as a sensitive measure of shape
correspondence.

4. Results and discussion

The proposed scheme for parametric deconvolution is
applied on both synthetic and real fluorescence microscopy
data sets. All equations in this paper have been coded and
executed within the Matlab programming environment and
all surfaces were visualized using the Matlab ‘‘patch” func-
tion. All numerical calculations for shape properties were
performed on surface meshes subjected to the stringent test



Table 1
Geometrical properties for surfaces shown in Figs. 1 and 4

A (lm2)a V (lm3)a Eb
a Ra,b

a

Yeast cell (Fig. 1) Startingb (Fig. 1c) 170.1 132.8
Final (Fig. 1d) 165.2 ± 4.9 128.5 ± 3.8 RFinal,Start = 0.970
Startingc 157.2 136.3
Finalc 161.3 ± 5.1 128.0 ± 3.9 RFinal,Final

c = 0.995

Stomatocyte (Fig. 4) Triangulation 148.2 99.0 2.72 RStart,True = 0.970d

Startingb 141.6 100.1 2.59
Final 140.1 ± 1.3 100.2 ± 1.0 2.58 ± 0.08 RFinal,Start = 0.998
True 139.6 99.7 2.57 RFinal,True = 0.999d

a Area (A), volume (V), normalized bending energy (Eb) and shape-correspondence measure (Ra,b) were calculated using Eqs. (A.9), (A.10), (9) and (16),
respectively. Errors are standard errors of the mean.

b 3D image was non-parametrically deconvolved, segmented using Laplacian-of-Gaussian filter (LoG), mapped to the sphere and SH-parameterized
(with Lmax = 10 for fission yeast, Lmax = 22 for stomatocyte).

c No non-parametric deconvolution. The raw image was segmented using LoG, mapped to the sphere and SH-parameterized (with Lmax = 10).
d The shapes compared are SH-parameterized based on two different spherical mappings.
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that the integral of the Gaussian curvature deviated from
its expected value of 4p (for the spherical topology equa-
tion (A.14)) by less than 0.1%.

4.1. Recovery of a synthetic shape from 3D pseudo image

data

To test our parametric deconvolution scheme we first
used it to recover a shape whose properties we know before-
hand (Fig. 4). We designed a shape corresponding to a
human red blood cell stomatocyte (Fig. 4a inset, also a local
mean curvature color-coded version of this surface can be
seen in Fig. 3 center) of known CLKs (Lmax = 22), and
simulated a corresponding 128 � 128 � 128 voxel intensity
volume (voxel dimensions 0.10 � 0.10 � 0.15 lm3) as
described in Section 3.3, except that Poisson (photon shot)
noise was included prior to convolution with the theoretical
PSF. A Poisson distribution of mean equal to the original
intensity, with a base background intensity of 10% of the
foreground was used to replace the image voxel intensities.
This intensity volume served as a simulation of confocal
microscopy image stacks (our ‘‘raw data”, Id of Eq. (7),
Fig. 4a). The dataset was then analyzed, as described in
Section 3. The starting shape was obtained by optimizing
Fig. 4. Recovery of a simulated stomatocyte surface. (a) Simulated ‘‘raw data”

(minimum of Eq. (8)) for a non-optimal choice of regularization parameter (k =
k values (from 1 � 10�5 to 1 � 104). Numbers next to the data points represent
the mapping using area preservation only and expanding
the shape at Lmax = 22. An L-curve with k values ranging
from 10�5 to 104 was constructed (Fig. 4c). The best value
of k was determined at the L-curve corner graphically
(Fig. 4c, arrow) and found to be equal to 103.15 in this
example. The optimal shape is not separately shown,
because it is almost indistinguishable from the original
(see text and Table 1). Note that at too high values of k,
the optimization is shifted in favor of minimizing the
bending energy, the fitted shape looses sharp features
(Fig. 4b, inset) and its corresponding intensity volume visi-
bly departs from the raw data (Fig. 4b) (the corresponding
surface is shown in the inset; top and perspective views).
The SH-coefficients corresponding to the best k were used
to calculate the shape properties (A, V, Eb) and then were
compared to the properties of the original shape (Table 1).
There was good agreement considering the uncertainties in
the shape properties estimated from the CLKs uncertainties
(determined from the covariance matrix).

4.2. Parametric deconvolution of a real data set

An example of the application of parametric decon-
volution to a real cell is shown in Fig. 5. A fission yeast
stacks based on shape shown in the inset, (b) intensity volume of best fit
3.9), (c) part of an L-curve generated by minimizing Eq. (8) for a range of

log10(k). The optimal k is determined as the corner of the L-curve (arrow).



Fig. 5. Application of parametric deconvolution to a fission yeast cell. (a) Raw intensity data. (b) L-curve generated by minimizing Eq. (8) for a range of k
values (from 1 � 102.7 to 1 � 105.8), inset: cell surface corresponding to k of 1 � 104.1. (c) Simulated intensity volume for the cell shape at optimal
regularization parameter value (k = 4.1). (d) Left and middle: enlarged 128 � 128 image frames corresponding to the white boxes in (a) and (c)
respectively, right: ‘‘probability image” constructed from the deconvolved surface ((b) inset).
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(Schizosaccharomyces pombe) zygote in meiosis I was mem-
brane-labeled with a fluorescent dye so both cell membrane
and round nuclear envelope can clearly be seen in the con-
focal stacks (Fig. 5a). Note that the image is complicated
by uptake of dye into internal membranes, which gives
the impression of there being both membrane and cytoplas-
mic labeling. Furthermore, the dye is incorporated into the
nuclear envelope membrane, so that the spherical nucleus is
also seen. The nucleus was included in constructing Ir of
Eq. (7) as a sphere (Fig. 5c and d), which added four
parameters to the optimization; three for the xyz coordi-
nates of the center and one for radius. The L-curve was
generated for k values ranging from 102.7 to 105.8

(Fig. 5b). Note that the slight oscillations at the upper left
hand corner in Fig. 5b are explained by the low regulariza-
tion parameter value, so the problem is not well-posed in
this regime. Although the output of the parametric decon-
volution is a surface (a set of CLKs with their corresponding
variances), to stress the ‘‘image sharpening” effect of our
deconvolution procedure, we have used the shape corre-
sponding to the optimal set of CLKs (Fig. 5b inset) to con-
struct a ‘‘probability image” that reflects the uncertainties
in the CLKs (Fig. 5d, right). It is constructed by adding
50 images, corresponding to random draws from a Gauss-
ian distribution with the optimal CLKs as mean and width
corresponding to individual CLK standard deviations. (The
variances were obtained from the covariance matrix calcu-
lated at the end of the optimization when k = 104.1). This
probability image shows which ‘‘regions” of the surface
are well determined by the data (sharp lines) as opposed
to the more diffuse parts of the contour.

4.3. Comparison with non-parametric

deconvolution + segmentation and method consistency

One may ask how the above results compare with stan-
dard segmentation methods to find a surface in a 3D
image. Our non-parametric deconvolution followed by
edge detection, which we used to generate a starting shape,
is such a standard segmentation method. We compare the
geometrical properties of the starting and final shapes of
Figs. 1 and 4 in Table 1. In case of the stomatocyte of
Fig. 4, the shape-correspondence measure (Eq. (16))
between the starting parameterized shape and the true
shape was 0.970, as opposed to RFinal,True = 0.999, which
shows that the parametric deconvolution process led to
improvement.

To test the independence of our method on the starting
shape we reanalyzed the fission yeast cell of Fig. 1 leaving
out the initial non-parametric deconvolution. We seg-
mented the image using LoG, triangulated and mapped
the surface to the sphere and then parameterized the sur-
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face, thus deliberately generating a worse starting shape,
which was then used for our parametric deconvolution
and the construction of the L-curve. Reaching a minimum
(for every k value) took significantly longer (due to the lar-
ger departure of the starting guess from the true shape), but
the shape correspondence between the resulting surface and
that when the analysis used non-parametric deconvolution
gave a reassuring shape correspondence value of 0.995.

And finally a note on the computational requirements:
the first significant bottle-neck is the uniform mapping on
the parametric sphere surface (Fig. 1 Step 2), which for
the surface of Fig. 4a (inset) required 9s for 100 GMRES
iterations (+15 s for Jacobian pattern calculation) on a
2.5 GHz dual processor Macintosh with 4 GB RAM and
a mesh size of 3600 vertices. Our termination criterion of
minimum relative decrease in the function to be minimized
of 1% was met within <100 iterations. When both triangle
area and triangle shear were optimized simultaneously, 26
unconstrained Newton optimization iterations (3 min)
were needed for convergence.

The most time-limiting computation is the minimization
of Eq. (8); between �1 h to �20 h depending critically on
the quality of the starting shape, the size of the intensity
volume and the noise level. We need to perform this opti-
mization many times (>20) during the construction of a
satisfactory L-curve.

Though in both these examples the refined shapes are
quite close to the initial triangulated surfaces, our proce-
dure has two advantages that justify its use. The first is that
the area and bending energy calculated from the parame-
terization are significantly better estimated than those from
the surface triangulation, which always lead to overestima-
tions. And the second is that parametric deconvolution
provides uncertainties on all the geometric properties.

5. Summary

In this work, we have introduced a method for the para-
metric deconvolution of 3D microscopy images that
enables the quantitative estimation of geometric properties
when the object under study is topologically equivalent to
the sphere. This applies to organelles, cells and many other
biological and non-biological objects. Keys to our method
are (a) use of the spherical harmonic parameterization rep-
resentation of the object surface which enables us to per-
form (b) parametric 3D deconvolution, and (c) use of the
L-curve graph for finding the proper balance between fit-
ting the data and incorporating our prior knowledge about
the contour. We advocate the use of the SHP and with this
work believe to have increased its accessibility to a broad
base of users.
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Appendix A

A.1. Calculation of PL,Ks and their derivatives

The PL,Ks are calculated using backward recursion rela-
tions (Hobson, 1955). For each integer L P 0 the value of
PL,L (cosh) is evaluated using the relation

P L;LðcosðhÞÞ ¼ ð2LÞ!
L!

1

2
sin h

� �L

ðA:1Þ

The remaining values PL,K�1(cosh) are calculated from
PL,K(cosh) and PL,K+1(cosh) as follows:

ðLþ KÞðL� K þ 1ÞP L;K�1ðcos hÞ
¼ 2K cotðhÞP L;Kðcos hÞ � P L;Kþ1ðcos hÞ ðA:2Þ

where PL,K(cosh) = 0 when K > L. These relations have
been analysed for accuracy and numerical stability (Wig-
gins and Saito, 1971).

The first and second derivatives of the associated Legen-
dre polynomials with respect to hðP 0L;K ¼ dP L;K=dh and
P 00L;K ¼ d2P L;K=dh2Þ, respectively, are needed for the calcula-
tion of the surface vectors to obtain the geometric quanti-
ties (Eqs. (A.9), (A.10), (A.11), (A.12), (A.13), (A.14)). The
following relations were used in this work:

P 0L;Lðcos hÞ ¼ Lð2LÞ!
2L!

1

2
sin h

� �L�1

cos h ðA:3Þ

P 00L;Lðcos hÞ ¼ � Lð2LÞ!
4L!

1

2
sin h

� �L�2

ð1� L cos2 hÞ ðA:4Þ

The derivatives of the remaining terms are given by the
recursion relations,

ðLþKÞðL�Kþ1ÞP 0L;K�1ðcoshÞ
¼ 2K cothP 0L;KðcoshÞ�2Kcsc2hP L;KðcoshÞ�P 0L;Kþ1ðcoshÞ

ðA:5Þ

and

ðLþ KÞðL� K þ 1ÞP 00L;K�1ðcos hÞ
¼ 2K cot hP 00L;Kðcos hÞ � 2csc2hP 0L;Kðcos hÞ þ 2

� cot hcsc2hP L;Kðcos hÞ ðA:6Þ
A.2. Calculation of shape properties from SH-coefficients

The spherical harmonics coefficients encode all surface
properties of the shape. The formulae for calculating these
properties are obtained from results of classical differential
geometry (O’Neill, 1997). The normal vector to the surface
is given by
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~n ¼
~Sh �~S/

j~Sh �~S/j
ðA:7Þ

where ~Sh and ~S/ are 3-vectors,

~Sh ¼

P1
L¼0

PL
K¼�L

CX
LK

oY LK ðh;/Þ
oh

P1
L¼0

PL
K¼�L

CY
LK

oY LK ðh;/Þ
oh

P1
L¼0

PL
K¼�L

CZ
LK

oY LK ðh;/Þ
oh

2
66666664

3
77777775

ðA:8Þ

similarly for ~S/, and the second derivatives.
The total surface area A and volume V are given by,

A ¼
Z 2p

0

Z p

0

j~Sh �~S/jdhd/ ðA:9Þ

V ¼ 1

3

Z 2p

0

Z p

0

ð~S �~nÞj~Sh �~S/jdhd/ ðA:10Þ

The coefficients of the first (E,F,G) and second (L,M,N)
fundamental forms are given in terms of the surface differ-
entials, normals, and derivatives of the normal vector by,

E ¼~Sh �~Sh

F ¼~Sh �~S/

G ¼~S/ �~S/

L ¼ �~Sh �~nh

M ¼ 1

2
ð~Sh �~n/ þ~S/ �~nhÞ

N ¼ �~S/ �~n/

ðA:11Þ

With the above coefficients we can calculate the local mean
curvature H as

H ¼ EN þ GL� 2FM

2ðEG� F 2Þ
ðA:12Þ

which is needed for calculating Eb (Eq. (9)).
As a self-check for the accuracy of our procedure and its

implementation we also calculate the Gaussian curvature
(K)

K ¼ LN �M2

EG� F 2
ðA:13Þ

which when integrated over a closed surface of spherical
topology must satisfy,

k ¼ 1

4p

Z
~S

K dA ¼ 1 ðA:14Þ

Eqs. (9), (A.9), (A.10) and (A.14) are integrated numeri-
cally using Gaussian quadrature (Scarborough, 1966).
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