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A B S T R A C T

We present an autotuning approach for compile-time optimization of numerical discretization methods in
simulations of partial differential equations. Our approach is based on data-driven regression of performance
models for numerical methods. We use these models at compile time to automatically determine the parameters
(e.g., resolution, time step size, etc.) of numerical simulations of continuum spatio-temporal models in order to
optimize the tradeoff between simulation accuracy and runtime. The resulting autotuner is developed for the
compiler of a Domain-Specific Language (DSL) for numerical simulations. The abstractions in the DSL enable
the compiler to automatically determine the performance models and know which discretization parameters
to tune. We demonstrate that this high-level approach can explore a large space of possible simulations, with
simulation runtimes spanning multiple orders of magnitude. We evaluate our approach in two test cases:
the linear diffusion equation and the nonlinear Gray-Scott reaction–diffusion equation. The results show that
our model-based autotuner consistently finds configurations that outperform those found by state-of-the-art
general-purpose autotuners. Specifically, our autotuner yields simulations that are on average 4.2x faster than
those found by the best generic exploration algorithms, while using 16x less tuning time. Compared to manual
tuning by a group of researchers with varying levels of expertise, the autotuner was slower than the best users
by not more than a factor of 2, whereas it was able to significantly outperform half of them.
1. Introduction

Computer simulations are the third pillar of science, alongside
theory and experiment. They allow studying nonlinear theories and
predicting dynamics at scales inaccessible by direct experimentation
(e.g., weather forecasting and astrophysics). Computer simulations are
notoriously computationally intensive and have thus motivated much
research in numerical algorithms, software libraries, compiler optimiza-
tion, programming languages, and computer architecture. Optimiza-
tion, in particular, has the potential to speed up simulations by orders
of magnitude and has thus become a key enabler for scientific progress.

Today, however, the complexity of computer architectures makes it
hard to predict the impact of software optimizations. For this reason,
classic compiler optimizations, based on static information, struggle to
consistently find transformations that lead to significant performance
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improvement. This motivated a large body of research on autotuning
compilers, which iteratively explore the space of implementation vari-
ants by applying transformations and directly measuring their impact.
Most classic autotuners aim to improve performance for specific hard-
ware architectures to achieve performance portability. In numerical
simulations, such systems are well known for linear algebra kernels
and generic matrix and vector operations [1,2] as well as Fourier
transforms [3–5]. While all these approaches achieve improved per-
formance, they operate on a concrete specification of a mathemati-
cal expression, e.g., a concrete matrix shape. More generic autotun-
ing requires higher levels of abstraction, as for example provided by
Domain-Specific Languages (DSLs) for numerical computing.

Modern DSLs offer a unique opportunity to explore such high-
level optimizations. This is especially true in declarative DSLs that
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allow users to express the governing equations of a simulation. In
this paper, we leverage the high-level semantics of the Open Particle
Mesh Environment (OpenPME) [6], a DSL for numerical simulations,
the successor of the Parallel Particle-Mesh Environment (PPME) [7].
This DSL describes the behavior of continuous fields in time and space
according to partial differential equations (PDEs). During compilation,
fields are sampled on discretization points and time is discretized using
a configurable time step. Many typical numerical methods can be ex-
pressed in this language to discretize and numerically solve PDEs. Here,
we exploit the high-level information from this DSL to automatically
configure a numerical discretization method across different PDEs.

Discretization methods are configured by parameters (e.g., reso-
lution, time step size) that collectively determine the accuracy and
runtime of the simulation. Here, we propose a multi-objective auto-
tuning approach to automatically determine these parameters while
balancing simulation runtime and accuracy. Our approach leverages
predictive performance models of numerical discretization methods.
These are calibrated at compile time by regression of theoretically
known error scaling to empirical measurements. We therefore propose
a performance-model-based compiler autotuning strategy that proves
more efficient than generic autotuning algorithms that do not leverage
performance models.

A comparison of our proposed approach with generic optimization
techniques shows that data-driven performance models help find better
configurations faster. Specifically, our approach outperforms state-of-
the-art autotuners by a factor of 4.2 on average, while using 16x
less optimization time. Additionally, we compare with hand-optimized
configurations provided by users. While some of them were able to
find faster configurations by at most a factor of 1.8, our autotuner
outperformed approximately half of the manual results and required
less tuning time. This suggests that model-based autotuning is adept at
finding performant configurations of numerical methods in simulation
codes.

The remainder of the paper is organized as follows: In Section 2,
we provide the background necessary to understand the discretization
methods and the target autotuning environment. Section 3 describes
the autotuning system behind the optimization approach introduced
in Section 3.4. The evaluation of the optimized algorithm and the
obtained results are presented in Section 4. Related work is discussed
in Section 5, followed by conclusions and future work in Section 6.

2. Background

We provide essential background to understand the spatial and
temporal discretization methods considered, and we give an overview
of our autotuning target DSL and its library.

2.1. Discretization methods

Continuous models, such as PDEs, need to be numerically dis-
cretized before they can be simulated on a digital computer. Discretiza-
tion chooses a finite number of representative points in space and
time at which the solution is to be computed. These points are called
discretization points or sampling points. The discretization points are often
chosen to lie on a computational grid, such as a regular Cartesian
mesh or an unstructured triangulation, but they can also be chosen as
arbitrary points in space. We here focus on the latter case and consider
mesh-free discretizations of space [8] with explicit time discretization.

The simplest explicit time discretization method is the explicit
Euler method. It approximates the time derivative of a quantity 𝑦 at
simulation time step 𝑡𝑛 = 𝑛𝛿𝑡 as:

d𝑦(𝑡)
d𝑡

|

|

|

|𝑡=𝑡𝑛
≈

𝑦(𝑡𝑛) − 𝑦(𝑡𝑛−1)
𝛿𝑡

,

where 𝛿𝑡 = 𝑡𝑛 − 𝑡𝑛−1 is the simulation time step size. The smaller 𝛿𝑡,
the more accurate the simulation becomes. The explicit Euler method
2

d

Fig. 1. Illustration of spatial discretization parameters in 1D.

has convergence rate 1, meaning that the simulation error reduces
proportionally with 𝛿𝑡.

Derivatives in space are contained in PDE models as differential
operators

𝐷𝛽 = 𝜕|𝛽|

𝜕𝑥𝛽11 𝜕𝑥𝛽22 ⋯ 𝜕𝑥𝛽𝑑𝑑
,

here 𝑑 is the dimension of the space and 𝛽 is the order of the
erivative. Several classic methods exist to approximate the result of
pplying a differential operator to a continuous field 𝑓 (𝐱) discretized
ver a set of discretization points. Smoothed Particle Hydrodynamics
SPH) [9,10] for instance approximates spatial derivatives as:

𝛽𝑓 (𝐱) ≈
∑

𝑝
𝑓 (𝐱𝐩)[𝐷𝛽𝑊𝜖](𝐱 − 𝐱𝑝),

here 𝑊𝜖 is an analytically known smoothing kernel of width 𝜖 that
ets the spatial resolution of the simulation. The error convergence
ate depends on the smoothing kernel. A popular choice is to use
aussian kernels, leading to a convergence rate of 2, meaning that the

imulation error reduces with the square of the spatial resolution 𝜖.
hroughout this paper, we use Gaussian kernels. Since Gaussians have

nfinite support, the kernels are truncated at distances |𝐱 − 𝐱𝑝| > 𝑟𝑐 with
user-defined cutoff radius 𝑟𝑐 . The method parameters are illustrated

n Fig. 1 for evenly spaced particles (inter-particle distance ℎ) in 1D.
An alternative to SPH is Particle Strength Exchange (PSE) [11,12].

n PSE, the approximation is:

𝛽𝑓 (𝐱) ≈ 1
𝜖|𝛽|

∑

𝑝
(𝑓 (𝐱𝑝) ± 𝑓 (𝐱))𝜂𝛽𝜖 (𝐱 − 𝐱𝑝),

here the negative sign is used for odd derivatives (i.e., odd |𝛽|,
.g., first derivative and third derivative), and the plus sign for even
erivatives. PSE uses a different kernel 𝜂𝛽𝜖 for every differential oper-
tor. Unlike SPH, PSE is symmetric, meaning that it exactly conserves
he total amount of 𝑓 in the simulation. This may be desired in physics
imulations if 𝑓 models the density of a conserved quantity, such as
ass, energy, or charge.

A third alternative is Discretization-Corrected PSE (DC-PSE) [13].
his method achieves higher accuracy than PSE, but requires com-
uting a separate kernel 𝜂 for each particle at each simulation time
tep, hence incurring a higher computational cost per particle. The ap-
roximation formula of DC-PSE is identical with the above formula for
SE, but with these particle-specific kernels. Finite-difference methods
nd other collocation schemes are special cases of DC-PSE when the

iscretization points are on a grid [13].
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Fig. 2. Excerpt from the OpenPME code for the Gray-Scott simulation test case.
ndefined parameters are autotuned.

.2. OpenPME and the OpenFPM library

The OpenPME is a Problem Solving Environment [6] for particle-
mesh simulations, which extends over the DSL in [7]. OpenPME pro-
vides a DSL as intermediate layer between application developers and
the OpenFPM C++ library designed to implement scalable particle,
mesh, and hybrid particle-mesh simulations on parallel computers.
OpenFPM makes heavy use of C++ templates and template meta-
programming (TMP) to provide arbitrary-dimensional and data-type-
agnostic abstractions for domain decomposition, dynamic load balanc-
ing, inter-processor communication, GPU computing, and file I/O [14].

OpenPME allows users to focus on the numerical methods and
the models to be simulated. It provides high-level domain-specific
abstractions to express simulation applications. The DSL is based on
a metamodel [6] covering domain-specific abstractions using particles,
meshes, and hybrid (particles and meshes) methods to simulate both
discrete and continuous models. An OpenPME program contains three
phases: initialization, simulation, and visualization. The initialization
phase defines all parameters for the simulation, such as the space
dimension, the domain size, the boundary conditions, the numerical
methods to be used, the space and time resolution. The simulation
phase contains the main time loop, where the spatially discretized fields
re evolved according to the temporal discretization scheme chosen.
n the visualization phase, the results are stored in VTK files for

visualization.
Fig. 2 exemplarily shows an excerpt of the OpenPME main time loop

for the Gray-Scott reaction–diffusion simulation [15] used here as one
of the test cases. As can be seen from the example, OpenPME affords a
high level of abstraction and is therefore well suited for autotuning. In
the code, the discretization methods are specified by the programmer,
here explicit_euler and DC-PSE. The discretization parameters
here: 𝛿𝑡, ℎ, 𝜖, and 𝑟𝑐) are not defined by the user in this example,
ndicating to the compiler that they shall be autotuned.

. Autotuning of numerical discretization

Building an autotuning system requires (i) defining the search space
f possible configurations, (ii) ranking the configurations by a directly
easurable or composed objective, (iii) designing measurements to

valuate the objectives for a given configuration, and (iv) devising a
earch algorithm that finds high-ranking configurations by measuring
nly a small subset of all configurations from the search space. These
re described in the following subsections.

.1. Search space

For simplicity, and to ensure consistency of all tested methods,
e place the discretization points on a regular Cartesian mesh. The
esh spacing ℎ > 0 then directly controls the spatial sampling. Other

imulation parameters are the time step size 𝛿𝑡 > 0, smoothing kernel
width 𝜖 > 0, and the cutoff radius 𝑟𝑐 > 0 (see Section 2.1). This defines

one-sided, infinite 4D continuous search space. For autotuning, this
earch space needs to be bounded and discretized. For the test cases
resented here, this is done as shown in Table 2, yielding discrete
3

earch spaces containing 184 320 to 307 200 configurations. i
3.2. Ranking of configurations

Simulation accuracy and runtime are two conflicting objectives.
The optimization goal therefore has to be defined as a combination
of both. This can be done by searching for tradeoff-optimal solutions,
or by combining the objectives to a single one [16]. Tradeoff-optimal
solutions, also called Pareto optimal, are configurations that are not
outperformed by any other configuration in all objectives. This yields a
Pareto front of multiple tradeoff-optimal configurations from which the
user has to choose. Since we integrate our approach into the OpenPME
compiler, we are interested in one single configuration and therefore
have to define a preference function. In numerical simulations, this
is usually done by letting the user define an error threshold. This is
naturally understood by users. Among the configurations yielding a
simulation accuracy below this threshold, one then aims to find the
configuration with minimal runtime. Similarly, a runtime threshold
would be possible, but more subjective to the execution environment.
Other typical approaches, such as a combined score using a weighted
sum, should be avoided since the choice of weights is not intuitive to
the user.

3.3. Measurements

Given the optimization objectives, the autotuner needs to measure
the runtime and the numerical accuracy of every configuration it tries.
While the former is easy to measure, evaluating the accuracy would
require knowing the exact solution of the PDEs, which is usually not
available in simulations.

Instead of the unknown exact solution, we therefore use a highly
accurate reference simulation. This reference simulation is computed
once in the beginning using a higher space and time resolution than
any configuration in the search space. Using this reference simulation,
we measure accuracy of a given test configuration as the 𝐿2 norm

𝐿2 =

√

√

√

√

√

1
𝑁

𝑁
∑

𝑝=1

(

𝑓reference(𝐱𝑝) − 𝑓test(𝐱𝑝)
)2.

he 𝐿2 norm is the mean squared error over all 𝑁 discretization points,
here 𝑓 (𝐱𝑝) is the value of a field 𝑓 at point 𝐱𝑝, either in the reference

imulation or the specific numerical configuration tested. Other error
orms, such as 𝐿∞, could be used instead.

The drawback of this approach is that evaluating the reference
imulation requires considerable runtime. To evaluate the runtime and
ccuracy of a test configuration, however, it is sufficient to perform a
ew simulation time steps. This allows the use of reference simulations,
hat could not feasibly be executed for the entire simulation length.
his is significant, since requiring the full execution of a more accurate
imulation would render the tuning pointless.

.4. Model-based search algorithm

It is challenging to effectively explore large search spaces by sam-
ling only a few configurations. Moreover, the time it takes to measure
configuration varies greatly across the search space. Some config-

rations can be measured in seconds, whereas others require tens of
inutes. For this reason it is desirable to avoid measuring slow config-
rations altogether. To achieve this, we leverage predictive data-driven
erformance models of the numerical methods.

The overall strategy is illustrated in Fig. 3. Based on the domain
nowledge of the theoretical convergence rates (here: linear for ex-
licit Euler and quadratic for the space discretizations considered),
he autotuner performs three steps (1) Prediction of the time step
ize 𝛿𝑡 using a calibrated performance model. (2) Model-based search
or the space resolution ℎ that achieves an accuracy above the user-
rovided threshold with minimal runtime for the given 𝛿𝑡. This search
s guided by iteratively re-fitting the performance model for the spatial
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Fig. 3. Autotuning based on regression over predictive performance models.
discretization. (3) Bisection search over all remaining parameters, for
which no performance models are available. These three steps yield the
discretization parameters that the compiler then uses to translate the
continuous simulation description in the OpenPME program to a dis-
cretized simulation code for OpenFPM. The translation from OpenPME
to OpenFPM takes place in the ‘‘OpenPME Code Generator’’, where
multiple model-to-model transformations are performed. A model is a
graph-like representation with a spanning tree equivalent to an abstract
syntax tree (AST). In a model-to-model transformation, an input graph
is mapped to an output graph in order to lower the program to an
intermediate representation, followed by a final text-generation phase
that produces the C++ output code [6].

For numerical discretization methods, the accuracy performance
models required for steps (1) and (2) are naturally available, since the
convergence rates of the numerical errors are theoretically known. This
means that it is known (‘‘domain knowledge’’) how simulation accuracy
scales with space and time resolution ℎ and 𝛿𝑡, respectively.

This is illustrated in Fig. 4 for the example of the Gray-Scott
reaction–diffusion simulation. For the second-order accurate space dis-
cretization methods considered here, we expect a slope of −2 on these
doubly logarithmic plots, as indicated by the dashed black lines.

The actual measurements, however, deviate from the ideal the-
oretical line, because the theoretical rates assume otherwise perfect
conditions, like infinite 𝑟𝑐 , unbounded simulation domain, and arbi-
trarily high floating-point precision. In addition, the theoretical models
predict the slope, but not the absolute values of the errors, which also
depend on other simulation parameters and on the specific equation
being simulated. If either 1∕𝛿𝑡 or 𝑟𝑐 is not chosen sufficiently large,
the error does not converge with the expected rate, irrespective of
the value of ℎ. This phenomenon is known as numerical instability. A
precise threshold for when a simulation becomes numerically unstable
is problem-specific and cannot be predicted in general. For these two
reasons, a predictive performance model for accuracy can only be
learned from measured data. Due to the theoretically known scaling
laws, however, only few measured configurations are required to fit
the regression model.

Our autotuner determines these data-driven performance models
automatically from the configurations it tests. The theoretical conver-
gence rates are known from the DSL, where the user specifies the
numerical methods to be used. This knowledge is integrated in a
three-step model-based search method as given in Algorithm 1:

Step 1: The autotuner fixes all parameters but 𝛿𝑡 (here: ℎ = 1∕400,
𝜖 = ℎ, and 𝑟𝑐 the maximum allowed value). Then, it measures con-
figurations for three different values of 𝛿𝑡 (here: 𝛿𝑡 ∈ {1, 1 , 1 }). The
4

16 32
accuracy model for time discretization (here: explicit Euler, error = 𝑎𝛿𝑡)
is fitted through these three points using linear least-squares regression.
This model is then used to predict the 𝛿𝑡 that just provides the target
accuracy. This 𝛿𝑡 is then reduced by a factor of 1.5 in order to provide
margin for optimizing the remaining parameters. The concrete numbers
shown here are the hyperparameters used in this paper.

Step 2: Using the 𝛿𝑡 predicted in Step 1, the autotuner iteratively
searches for ℎ, while keeping all other parameters fixed. The search
is assisted by the accuracy model for spatial discretization. This is
illustrated in Fig. 5 for the first four iterations of Algorithm 1 on
the quadratic regression model error = 𝑎ℎ2 for numerical methods
with a spatial convergence order of 2. The algorithm starts from the
largest possible value of ℎ (Fig. 5a), as this will have the shortest
runtime. Fitting the parameter 𝑎 in the model through this point and
the point (1∕ℎ, 1∕error) = (0, 0) results in a first prediction for the ℎ
required to reach the accuracy threshold (dashed line). This predicted
configuration is measured subsequently, yielding a measured error that
does not necessarily match the prediction. The model is thus re-fitted
using all data points, yielding a new prediction (Fig. 5b). This process
is iterated until a configuration slightly above the accuracy threshold
is found (Fig. 5d) for which ℎ matches the predicted ℎ in the discrete
search space.

Step 3: Parameters for which no performance model is available,
here 𝑟𝑐 and 𝜖, are optimized using bisection search with ℎ fixed at the
value found in Step 2. The time step size 𝛿𝑡 is also included again in
bisection search to fine-tune it. Bisection search considers the part of
the search space between the current value of each parameter and the
search space boundary with minimal runtime (i.e., minimal 𝑟𝑐 , maximal
𝛿𝑡). Since the runtime behavior with 𝜖 is not monotone, the entire
search space is considered in this dimension. The search stops when
it has found the minimum-runtime configuration.

The two main advantages of this algorithm over general-purpose
optimization are (i) the use of known convergence orders to assist
the search and (ii) the awareness of configuration evaluation times
avoiding measuring slow configurations (small ℎ and 𝛿𝑡). The approach
also essentially optimizes the parameters individually. This has shown
to be very effective when done as described. This simple approach,
however, is still coarse and may miss potentially beneficial fine-tuning
of the parameters and parameter correlations. This could potentially
be improved by a subsequent local search. But as shown in the bench-
marks below, the simple algorithm presented here already performs
remarkably well.
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Fig. 4. Measured error in Gray-Scott reaction–diffusion simulations of different spatial resolutions 1∕ℎ for 𝜖 = ℎ. The dashed line shows the theoretical slope of −2 of second-order
accurate discretizations.
Fig. 5. Illustration of the first four model-based search iterations to find ℎ for a second-order accurate discretization method.
4. Evaluation

We empirically evaluate and benchmark the proposed approach
against general-purpose autotuners as implemented in the OpenTuner
framework [17]. The available optimization techniques in OpenTuner
do not exploit domain knowledge and consider the search space as a
5

black-box. This allows us to quantify the effect of including model-
based information.

For the evaluation, we consider two test cases: the linear diffusion
equation and the nonlinear Gray-Scott reaction–diffusion equation.
Each of these PDEs is discretized with three discretization methods:
SPH, PSE, and DC-PSE (see Section 2.1) all using explicit Euler time

discretization. For each combination, different autotuners are used to
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Algorithm 1: Model-based search
Result: Optimized configuration
// Define initial configuration c
Set 𝑐.𝑟𝑐 to maximum value
Set 𝑐.𝛿𝑡 to predicted value
Set 𝑐. 𝜖ℎ to 1
Set 𝑐.ℎ to maximum value in the search space ℎmax
Set 𝐶 = ∅
// Optimize h
repeat

Measure configuration 𝑐 and place in set 𝐶
Use linear regression on C to estimate 𝑎 in 𝑒 = 𝑎 ⋅ ℎ2

Use ℎ =
√

𝑒
𝑎 to estimate ℎestimate for 𝑒threshold

𝑐.ℎ ∶= max(ℎestimate, ℎmin)
until 𝑐 ∈ 𝐶 and 𝑒(𝑐) ≤ 𝑒threshold;
// Optimize 𝜖, 𝑟𝑐, and 𝛿𝑡
Use bisection search to find the smallest 𝜖 that does not change
𝑒 significantly

Use bisection search to find the largest 𝛿𝑡 that does not change
𝑒 significantly

Use bisection search to find the smallest 𝑟𝑐 that does not
change 𝑒 significantly

find the parameters ℎ, 𝜖, 𝑟𝑐 , and 𝛿𝑡 for two error levels: 10−5 and
0−6. We tune the normalized ratios 𝑟𝑐∕ℎ and 𝜖∕ℎ rather than 𝑟𝑐 , ℎ,
nd 𝜖 separately. This removes correlations with ℎ in the search space,
ence improving the performance of general-purpose tuners, which are
therwise unaware of this correlation. Each experiment is repeated 10
imes. Additionally, we evaluate a subset of the experiments against
and-optimized configurations found by 11 users.

.1. Experimental setup

We compare all methods listed in Table 1. For the comparison meth-
ds, we use three different maximum optimization timeouts: 1-fold,
-fold, and 16-fold the time used by our model-based approach. The
earch space is bounded and discretized as given in Table 2. The value
anges of the tuning parameters are manually chosen based on prior
nowledge. These hyperparameters are provided by the user to the
uner by means of descriptor files. For this evaluation, the parameter
anges are chosen wide enough to cover a large variety of behaviors.
e use the same search space throughout all benchmarks. It contains

07 200 configurations for SPH and PSE and 184 320 for DC-PSE. The
uning runs could take as long as the final simulation itself and some-
imes even longer. That is why only a fraction of the configurations
re measured to keep the tuning time reasonable. The measurements
f individual configurations were done at 𝑇 = 2 and took between a
ew milliseconds and over 10 min depending on the parameters. The
esulting final configurations were remeasured at 𝑇 = 100 for more
table results.1 As reference simulation for accuracy measurement (see
ection 3.3), we use particle strength exchange (PSE) with a Gaussian
ernel of width 𝜖 = 0.8ℎ with ℎ = 1∕1600, 𝛿𝑡 = 1∕1024, and 𝑟𝑐 = 9ℎ in

all cases (model-based search, generic optimization algorithms, manual
tuning). This reference simulation is about four times more accurate
than the most accurate configuration in the search space. Computing
this reference simulation takes 2 and 5 h for diffusion and Gray-Scott,
respectively, and is not included in the search time since it is the same
for all approaches and we mainly focus on the optimization time.

1 Full simulations can be expected to use final simulation times of 𝑇 = 5000.
or Gray Scott, the characteristic patterns stabilize around that point in time.
uch a high value of 𝑇 for our experiments would require a prohibitively large
omputational time, without adding insight into our results analysis.
6

able 1
ist of compared methods.
Method Abbr.

model-based search (ours) ModS
OpenTuner default AUC
Differential Evolution DE
Genetic Algorithm GA
Uniform Greedy Mutation UniGM
Gaussian Greedy Mutation NormGM
Regular Nelder Mead RegNM
Multi-Nelder Mead MulNM
Particle Swarm Optimizer PSO
Random search Rand

Table 2
Search space for autotuning. All simulations use Gaussian smoothing kernels and
explicit Euler time discretization.

Param. Values

1∕ℎ {50, 100, 150,… , 800}
1∕𝛿𝑡 {1, 2, 3, 4,… , 256}
𝜖∕ℎ {0.6, 0.7.0.8,… , 2.0}
𝑟𝑐∕ℎ {5, 6, 7, 8, 9} (SPH, PSE)
𝑟𝑐∕ℎ {2, 3, 4} (DC-PSE)

All measurements are conducted on the taurus HPC system of TU
Dresden on Intel Haswell nodes equipped with two Intel Xeon E5-
2680v3 CPUs, each with 12 cores at 2.50 GHz. The 24-core nodes have
64 GB of RAM available and are connected via an Infiniband network
with 40 Gb/s bandwidth. Each benchmark was run in parallel on 22
cores using OpenFPM v.2.0.0 and OpenMPI v.3.1.1 on Red Hat Enter-
prise Linux 7.9. We use 22 cores instead of all 24 in order to reduce
measurement standard deviation from background load fluctuations of
the operating system, leaving 2 cores for the operating system.

The first test case considers numerical simulations of the diffusion
of a continuous smooth field 𝑢(𝐱, 𝑡) in space 𝐱 and time 𝑡 as governed
by the isotropic homogeneous diffusion equation
𝜕𝑢
𝜕𝑡

= 𝐷∇2𝑢,

here 𝐷 is the diffusion constant and ∇2 is the Laplace operator,
.e., the sum of all second derivatives of 𝑢 with respect to all space
oordinates. We numerically simulate the space–time dynamics of 𝑢 for
= 10−4 by solving this equation on the 2D unit square with initial

ondition 𝑢(𝐱, 0) = 1
0.16𝜋 exp

(

|𝐱−𝐜|
0.16

)

with 𝐜⊤ = [0.5, 0.5] and periodic
boundary conditions on all four sides.

The second test case considers the Gray-Scott reaction–diffusion equa-
tion [15], which models nonlinear spatio-temporal patterns emerging
from the interaction of two diffusing and reacting chemicals. It is
described by the PDEs (cf. Fig. 2)
𝜕𝑢
𝜕𝑡

= 𝐷𝑢∇2𝑢 − 𝑢𝑣2 + 𝐹 (1 − 𝑢) , 𝜕𝑣
𝜕𝑡

= 𝐷𝑣∇2𝑣 + 𝑢𝑣2 − (𝐹 + 𝑘)𝑣,

where 𝐷𝑢 and 𝐷𝑣 are the diffusion constants of the two chemicals
ith concentration fields 𝑢(𝐱, 𝑡) and 𝑣(𝐱, 𝑡). The scalar constants 𝐹 and
define the reaction rates. We numerically simulate the space–time

ynamics of 𝑢 and 𝑣 for 𝐷𝑢 = 4 ⋅ 10−5, 𝐷𝑣 = 2 ⋅ 10−5, 𝐾 = 0.055,
= 0.03 by solving these coupled equations on the 2D unit square

ith initial conditions 𝑢(𝐱, 0) = 1 − 0.5∕
(

(𝑥1−0.5)4+(𝑥2−0.5)4

0.154 + 1
)

, 𝑣(𝐱, 0) =

0.25∕
(

(𝑥1−0.5)4+(𝑥2−0.5)4

0.154 + 1
)

and periodic boundary conditions on all
four sides.

4.2. Autotuning results

Fig. 6 shows the measured runtimes for the diffusion simulation
after autotuning with a target error threshold of 10−5. The present
model-based autotuner finds configurations that generally outperform
(in the median and reliability) those found by any comparison method,
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Fig. 6. Autotuning results for the diffusion benchmark with an error threshold of 10−5. Bars display the median runtime of the best configuration found over 10 tunings on a
logarithmic scale. Error bars show the quartiles over the 10 runs. The percentage within each bar tells how often any configuration below the error threshold was found (success
rate).
Fig. 7. Autotuning results for the diffusion benchmark with an error threshold of 10−6.
even when the general-purpose tuners were given 16 times as much
time as required by our model-based method (ModS). When given the
same amount of tuning time, no algorithm but ours managed to find
a configuration below the error threshold in every trial. The quartiles
for the model-based search show the background runtime variations in
the HPC system, since this autotuner is deterministic and always finds
the same configuration in all of the 10 runs. The results for a target
error threshold of 10−6 are shown in Fig. 7. While RegNM appears to
perform well in the reduced diagram, it shall be noted, that its success
rate for the longest tuning time only amounted to 10%, 50% and 70%
for SPH, PSE and DC-PSE respectively.

In all cases, the model-based search required few iterations and
avoided measuring slow configurations. Our model-based autotuner
required between 2 and 4 min of tuning time for each case. Predicting
7

𝛿𝑡 requires at least three measurements by construction. The actual
search measured between 7 and 11 configurations, depending on the
discretization method and target error.

Fig. 8 shows the results for the Gray-Scott simulation with a target
error of 10−5. Our model-based autotuner outperforms all other meth-
ods within the same tuning time. When allowed 16-fold more tuning
time, the GA and NormGM sometimes find equivalent or slightly better
configurations, but especially in case of NormGM with less consistency.
This is expected for the nonlinear Gray-Scott problem, where the com-
putational cost of evaluating a single configuration can be high. While
our approach takes approximately the same amount of optimization
steps, the total tuning time increases. This also increases the avail-
able tuning time (16x higher) for the other algorithms, resulting in a
larger number of measured configurations and better final results. This
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Fig. 8. Autotuning results for the Gray-Scott benchmark with an error threshold of 10−5.
Fig. 9. Autotuning results for the Gray-Scott benchmark with an error threshold of
10−6. No valid configurations for DC-PSE were found, although they exist.

hypothesis is confirmed when lowering the error threshold to 10−6,
as shown in Fig. 9. Our model-based approach is then outperformed
by the general-purpose black-box autotuners when they are given 16x
the tuning time. For DC-PSE, no valid configurations have been found
by our model-based approach, which is why that plot is omitted. Our
model-based autotuner required approximately 8 min of tuning time to
reach an error threshold of 10−5 and between 1 and 3 h to reach 10−6.

Over all experiments, the simulations optimized by our model-
based autotuner outperformed valid configurations found by the best
comparison algorithm by a factor of 4.2 on average (geometric mean)
if the comparison algorithms were given 16x the tuning time.

To provide an indication of how much room is left for further
optimization, we also compare our model-based autotuner with near-
optimum results. To this end, we selected the three most performant
techniques over all experiments, namely RegNM, GA, and NormGM and
8

let them run for longer time to pick up the best found configurations.
In the case of diffusion with error thresholds of 10−5 and 10−6 and
Gray-Scott with error threshold of 10−5, the best configurations found
by the general-purpose techniques were on average 3.3x faster than our
model-based tuner’s when given 128x the tuning time. For Gray-Scott
with an error threshold of 10−6, the general-purpose techniques were
given 32x our tuning time. The best configurations found performed on
average 2.9x better than our results. These results indicate that there
is still potential for future work on better heuristic searches.

4.3. Comparison with manual tuning

We also compare the performance of our model-based autotuner
with manual optimizations done by users of varying expertise ranging
from graduate students to professionals with over 20 years of experi-
ence. For this user study, 11 researchers from the field of computational
science were provided with the same measurement interface, search
space specification, and optimization goal as the autotuner. The mea-
surement interface allowed them to specify and test configurations from
a text-based user interface without manually editing, recompiling, and
submitting the code. Due to time restrictions, the experiment was only
done for PSE and an error threshold of 10−6. The available time for the
experiment, excluding setup and instructions, was limited to 90 min.

For the diffusion simulation, 6 users were able to find configurations
that performed equally or up to a factor of 1.8x better than our model-
based autotuner. The other 5 users were outperformed by the autotuner
by factors between 5 and 1377 with one person unable to find any
configuration fulfilling the accuracy requirement.

In the experiment with the Gray-Scott simulation, 5 users outper-
formed the tuner with up to 1.8x faster configurations. The tuner
outperformed 3 users by factors between 2.8 and 13, and 3 users did not
have enough time to find any configuration within the error tolerance.

Summarizing, this small-scale user study suggests that experienced
users are able to outperform our autotuner by about 2-fold. Many users,
however, could significantly benefit from our autotuner.
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5. Related work

To assist programmers in bypassing manual optimizations of their
code, many successful autotuning systems have been proposed to auto-
mate the search for the best implementation and improve performance.

ATLAS [2] is one of the earliest an autotuning systems for linear
algebra libraries. It applies optimization strategies for loop unrolling,
latency hiding, blocking factors, etc, based on machine architecture
specifics. ATLAS explores possible implementations in a generated
search space, independently tuning each parameter while the others
are fixed. Another well-known example is the FFTW [3,4] C library
for autotuning fast Fourier transforms. FFTW uses a planner that takes
as input a description of the input data structure and the hardware
features, decomposes the tuning problem into sub-problems, and selects
the fastest variant.

OSKI [1] provides a collection of low-level primitives for libraries
and applications to automatically tune sparse-matrix kernels for specific
hardware. The tuning process in OSKI is done at runtime, as the matrix
is unknown beforehand. Another autotuning framework for computa-
tional kernels is CHiLL [1]. It evaluates at compile time the interaction
between multiple parameters in a search space to generate a set of
kernel mappings to an architecture and choose the best-performing
implementation.

Orio [18] is an annotation-based tuning system that takes as input
an annotated code to generate multiple tuned versions and trigger
low-level performance optimizations either specific to a certain hard-
ware architecture, or independent of it. Orio provides different search
heuristics to reduce the number of explored configurations in the
search space. OpenABL [19] is a tuning framework assuring portability
of generated code from DSLs across multiple large-scale systems. It
provides a DSL for agent-based simulations and a source-to-source
compiler that generates code through pluggable backends that lever-
age the AST-based intermediate representation exposing parallelism,
locality, and synchronization at the agent level. In [20], the authors
propose a portable autotuning framework for stencil computations.
The autotuning approach uses a domain-specific transformation and
code generation, combined with automated search, to transform an
annotated sequential Fortran stencil expression into tuned parallel
implementations for different architectures.

The authors of [21] integrate an autotuning methodology for nu-
merical multigrid solvers into the PetaBricks language. The autotuner
can tune algorithmic choices in multigrid solvers to optimize the depth
and traversal strategy of the grid levels. This autotuner also exploits
theoretically known convergence rates to produce a tuned multigrid
solver that achieves high performance across a variety of platforms.

In a similar idea to our model-based search, the authors in [22]
proposed an autotuning framework based on a performance model
to improve parallel I/O operations in HPC applications. They explore
the I/O parameters and use empirical predictive models to reduce the
search space. The autotuning process starts with a prediction of tunable
parameters, selects the best and refits the performance model with the
newly collected write time data.

In [23], the autotuning potential of time-discretization methods is
investigated. The authors explore whether offline or online autotuning
is better for a specific method. Also targeting PDE discretization, two
parameters are considered for autotuning: the grid size and the number
of processors used.

In [24], the authors presented ATF (Auto-Tuning Framework),
a generic framework for automatic program optimization offering
a choice of interdependent tuning parameters in high-performance
applications. The autotuning process in ATF starts by efficiently ex-
ploiting tuning parameter constraints in order to generate the search
space, which is stored in memory using a chain-of-trees structure.
A multi-dimensional search technique is then used on these tree-
like representations to explore the search space. ATF demonstrated
9

improvements in every autotuning phase by generating and exploring
search spaces faster and requiring less memory to store them.

The authors of [25] introduced KTT (Kernel Tuning Toolkit), an au-
totuning framework for accelerator kernels implemented in OpenCL or
CUDA. Besides offline autotuning, KTT supports dynamic tuning of code
optimization parameters when the input data change. KTT has been
demonstrated to generate kernels that reach peak performance with an
acceptable overhead when searching the tuning space at runtime.

Another GPU kernel tuning framework is Kernel Tuner [26]. It offers
several different search and optimization algorithms to accelerate the
tuning process. Kernel Tuner was used in different application scenarios
and showed considerable reductions in tuning time when compared
with brute force search.

OpenTuner [17] is a framework for building domain-specific multi-
objective autotuners. It provides multiple search techniques and pre-
defined data types to support complex tuner representations. In Open-
Tuner, autotuning techniques share results through a database so that
improvements found by one technique can benefit also other tech-
niques. OpenTuner has been successfully used for building autotuners
in a variety of distinct projects, demonstrating considerable speedups.
In our work, we used a number of methods provided by OpenTuner as
baselines in the benchmarks.

mARGOT [27] is a dynamic autotuning framework where the user
specifies high-level goals while the application software-knobs are
tuned accordingly to provide a suitable configuration. Moreover, mAR-
GOT identifies optimization opportunities in a reactive and proactive
way at runtime. The framework has been evaluated in applications
ranging from embedded systems to HPC, demonstrating how changes
in the execution environment can be leveraged to realize optimizations
opportunities.

HyperMapper [28] introduced a new tuning methodology that uses
guided search based on active learning for handling multi-objective
optimizations, unknown feasibility constraints, and categorical vari-
ables. HyperMapper has been originally designed for tuning hardware
accelerators in a compiler pass within the Spatial DSL [29]. There, it
was able to find better Pareto fronts than state-of-art heuristic random
search, and with significantly fewer samples.

To the best of our knowledge, there are no other model-based
optimization techniques for the simulation parameters considered in
our approach. We thus compare with general-purpose optimization
techniques as provided by OpenTuner.

6. Conclusion

We presented an autotuning approach to determine parameters of
numerical discretization schemes in simulations of PDEs, such that a
user-provided accuracy threshold is met within a short exploration
time. Our approach uses predictive performance models for the accu-
racy of discretization schemes, which are calibrated by linear regression
using measurements gathered at compile time by the autotuner. This
data-driven approach is more general than using fully analytical per-
formance models. While analytical models would be faster to evaluate,
they are only available for specific PDEs, such as the diffusion equa-
tion [30]. Our approach, in contrast, is problem-agnostic and works
for any simulated PDE. The domain knowledge required for this can be
directly extracted by the compiler from the simulation DSL for which
the presented autotuner was developed. This provides a high level of
abstraction, rendering the autotuner intuitive to users.

We proposed a novel optimization strategy to search the large
design space for good configurations. Our search combines model-
based prediction with iterative model-assisted search, and finally uses
bisection search for parameters for which no performance model exists.
Empirically, we showed that this algorithm is able to find valid con-
figurations by performing around 10 measurements in a search space
containing hundreds of thousands of possible configurations. Tuning
times ranged from a minute for the fast linear diffusion simulation to
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3 h for the slow nonlinear Gray-Scott simulation. In all benchmarks, the
performance of the simulations found by our autotuner were orders of
magnitude faster than those found by a host of general-purpose auto-
tuners when given the same tuning time. Even with a 16-fold shorter
tuning time, our technique was superior by a factor of 4.2 on average
over all experiments. In comparison with manual tuning by domain
users, the presented model-based autotuner produced simulations that
ran at most 2 times slower than those found by the best users and
outperformed about half of them. Moreover, a deterministic autotuner
makes simulations more reproducible by eliminating the subjective and
often arbitrary step of manual parameter selection.

In future work, we will extend our approach to other numerical
methods and investigate ways of accelerating the reference simulation
for accuracy measurement. Currently, performing the reference simula-
tion takes several hours (2 to 5 h in the tests presented here), which is
the bottleneck of our method. We will also explore how the principles of
model-based autotuning transfer to simulations of discrete models, such
as molecular dynamics or discrete element simulations, which can also
be expressed in the OpenPME DSL. More benchmarks from different
domains will help further evaluate the scalability of our autotuning
approach with increasing search space size and dimensionality. Finally,
it remains to be explored what the best syntax is for the user of the DSL
to interact with the autotuner and to inspect and extract tuning results
for later reuse. The present implementation will be made available as
open source at the time of publication.
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