
trast to the leaky vasculature that is induced
by overexpression of single vasculogenic
growth factors such as VEGF (32–34), the
HIF-induced vascular bed is stable (31). The
more substantive neovascularization resulting
from constitutive HIF-1a expression may re-
flect the fact that this transcription factor
activates not only VEGF gene expression but
also other genes important for the formation
of new blood vessels [reviewed in (35)]. Se-
lective inhibitors of the HPH enzymes may
therefore merit investigation as new drugs for
therapeutic angiogenesis.
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Reconstitution of Physiological
Microtubule Dynamics Using

Purified Components
Kazuhisa Kinoshita,1* Isabelle Arnal,1,2† Arshad Desai,1

David N. Drechsel,1 Anthony A. Hyman1*

Microtubules are dynamically unstable polymers that interconvert stochasti-
cally between polymerization and depolymerization. Compared with microtu-
bules assembled from purified tubulin, microtubules in a physiological envi-
ronment polymerize faster and transit more frequently between polymerization
and depolymerization. These dynamic properties are essential for the func-
tions of the microtubule cytoskeleton during diverse cellular processes.
Here, we have reconstituted the essential features of physiological micro-
tubule dynamics by mixing three purified components: tubulin; a microtu-
bule-stabilizing protein, XMAP215; and a microtubule-destabilizing kinesin,
XKCM1. This represents an essential first step in the reconstitution of
complex microtubule dynamics– dependent processes, such as chromosome
segregation, from purified components.

Microtubules polymerize and depolymerize
by the addition and loss of ab-tubulin dimer
subunits from their ends (1). Polymerizing
and depolymerizing microtubules coexist and
infrequently interconvert between these two
states, a behavior known as dynamic instabil-
ity (2). The transition of a polymerizing mi-
crotubule to a depolymerizing state is re-
ferred to as a catastrophe, and the converse
transition is referred to as a rescue (3). Mi-

crotubules exhibit dynamic instability when
assembled from purified tubulin (3, 4) and in
a physiological cytoplasmic environment (5–
10), but there are notable differences between
the two. In a physiological environment, mi-
crotubules polymerize about fourfold faster
than a similar concentration of purified tubu-
lin. At the polymerization rates observed in
physiological conditions, purified tubulin has
a near-zero rate of catastrophe. In contrast,
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microtubules in cells and in cytoplasmic ex-
tracts have a high catastrophe rate despite
their high polymerization rate.

Clues to the dynamic behavior of microtu-
bules in physiological conditions have come
from the identification of proteins that modulate
microtubule dynamics. Microtubule-associated
proteins (MAPs) increase the polymerization
rate of microtubules, whereas destabilizing pro-
teins increase the rate of catastrophe. In Xeno-
pus egg extracts, the dominant stabilizing MAP
appears to be XMAP215, a member of an evo-
lutionary conserved protein family (11, 12).
Depleting XMAP215 prevents microtubule
growth, whereas depletion of other MAPs has
so far had little effect (12, 13). The dominant
catastrophe factor in Xenopus extracts is
XKCM1 (14, 15), a member of the KinI sub-
family of kinesins (16). Depletion of XKCM1
markedly stabilizes microtubules, whereas de-
pletion of other catastrophe factors have to date
had more modest effects (14, 17).

Depletion experiments suggest that these
two factors oppose each other to determine the
stability of the microtubule lattice in Xeno-
pus extracts. Depletion of XMAP215 desta-
bilizes microtubules, and subsequent inhibi-
tion of XKCM1 causes the microtubules in
XMAP215-depleted extracts to become stable
again (12). These results suggest that the
coordinate action of only these two proteins
on tubulin may explain why microtubules
in cells can both polymerize rapidly and
exhibit high catastrophe rates. We tested

this hypothesis by combining these two
factors with purified tubulin in vitro and
examining the behavior of microtubules.
We first produced full-length recombinant
His6-tagged XMAP215 and XKCM1 (18).
As expected, XKCM1 reduced microtubule
length whereas XMAP215 increased micro-
tubule length (Fig. 1) (15, 18–20). Howev-
er, when added together, XMAP215 op-
posed the ability of XKCM1 to decrease the
average length of microtubules (Fig. 1)
(18). Therefore, we conclude that the rela-
tive activities of XMAP215 and XKCM1
can determine the steady-state length of
microtubules assembled from purified tu-
bulin in the absence of other factors.

In Xenopus extracts, XMAP215 suppress-
es the ability of XKCM1 to induce microtu-
bule catastrophe (12). To test if this suppres-
sion can be observed with purified proteins,
we set up a real-time assay in which the
behavior of individual microtubules was
monitored by video-enhanced differential in-
terference contrast (VE-DIC) microscopy
(21). Briefly, purified centrosomes were ad-
sorbed to the surface of a perfusion chamber,
and tubulin was perfused into the chamber
and allowed to polymerize (18). Different
combinations of factors with tubulin were
then perfused into the chamber, and the num-
ber of microtubules transiting from polymer-
ization to depolymerization after perfusion
was quantified (18). After perfusion of 150
nM XKCM1 together with tubulin, 60 to 70%
of the microtubules transited to depolymer-
ization (Fig. 2). Adding XMAP215 together
with 150 nM XKCM1 and tubulin suppressed
the number of microtubules transiting to de-
polymerization in an XMAP215 concentra-
tion–dependent manner (Fig. 2). This result
with three purified components leads us to
conclude that the suppression of XKCM1-
induced catastrophes by XMAP215 in cyto-

plasmic extracts is a direct consequence of
the action of these two proteins at microtu-
bule ends.

The above results suggested that poten-
tially a steady-state mixture of tubulin,
XMAP215, and XKCM1 could reconstitute
the two characteristic physiological features
of dynamic instability: rapid polymerization
and high catastrophe rates (Table 1). To ex-
plore this idea, we developed conditions in
which the dynamic behavior of these micro-
tubules could be directly observed by DIC
microscopy (22). The concentrations of these
proteins in Xenopus extracts have been esti-
mated to be 25 mM (tubulin) (23), 60 nM
(XKCM1) (14), and 0.6 mM (XMAP215)
(12). Using a mixture of 25 mM tubulin, 0.2
mM XKCM1, and 0.8 mM XMAP215, we
were able to reconstitute physiological pa-
rameters of dynamic instability (18). A typi-
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Fig. 1. XMAP215 op-
poses XKCM1 in the
regulation of micro-
tubule length in vitro.
(A and B) XKCM1
(62.5 nM, 1XKCM1)
or control buffer
(2XKCM1) was mixed
with 15 mM tubulin
and centrosomes in
the absence (A) or
presence (B) of 125
nM XMAP215. Micro-
tubule asters are
shown after 5 min of
incubation at 37°C
(20). Bars, 25 mm. (C)
Quantification of mi-
crotubule length in (A)
(2XMAP; open col-
umns) and (B)
(1XMAP; solid col-
umns). Arrowheads indicate the average length of microtubules (2XMAP, open arrowheads; 1
XMAP, solid arrowheads).

Fig. 2. XMAP215 inhibits catastrophes induced
by XKCM1. (A) Images of microtubules before
and 4 min after perfusion (21). Microtubules
were polymerized from centrosomes with 33
mM tubulin (left). Perfusion chambers were per-
fused with tubulin (33 mM) and control buffer
(i), 0.15 mM XKCM1 (ii), or 0.15 mM XKCM1 1
1.2 mM XMAP215 (iii). Bar, 10 mm. (B) The
percentage of shrinking microtubules after per-
fusion of XKCM1 (0.15 mM) 1 XMAP215 (0,
0.6, or 1.2 mM) was plotted versus the concen-
tration of XMAP215.
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cal aster growing under these conditions is
shown in Fig. 3. Quantification of microtu-
bule dynamics revealed that this simple three-
component mixture recapitulated the essen-
tial features of physiological microtubule dy-
namic instability (Table 1).

Why does the three-component mixture
reconstitute physiological dynamic instabili-
ty? XMAP215 alone accounts for the ob-
served fast polymerization rate, whereas
XKCM1 alone prevents any assembly of mi-
crotubules, presumably as a consequence of
inducing a catastrophe rate that is too high
(Table 1) (18). In the three-component mix-
ture, XMAP215 must partially suppress the
catastrophe-promoting activity of XKCM1 in
order to generate the combination of fast

polymerization and high catastrophe rates.
This partial suppression of XKCM1-induced
catastrophes by XMAP215 (Fig. 2) without
influencing the polymerization rate (Table 1)
is central to understanding why the three-
component mixture reconstitutes the combi-
nation of fast polymerization and high catas-
trophe rates.

Taken together with the results in Xeno-
pus extracts (12, 14), we believe that the
essential features of dynamic instability in
Xenopus egg extracts are derived from the
sole action of these two factors on tubulin.
These factors are conserved from yeast
through mammals (24–31), and at least in
Saccharomyces cerevisiae, orthologous fac-
tors oppose each other in the control of mi-

crotubule length in vivo (31). Thus, this
three-component system may represent a
conserved module that generates the charac-
teristic behavior of physiological microtu-
bules. The simple mixture we describe here
will serve as a starting point for analyzing the
effect of other microtubule regulators, such as
XMAP230 and Op18 (13, 17), in a recon-
struction-type approach. Furthermore, it rep-
resents an important step in the pursuit of the
eventual reconstitution of complex dynamic
microtubule assemblies, such as the mitotic
spindle, from purified components.
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A Phosphatase Associated with
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To gain insights into the molecular basis for metastasis, we compared the global
gene expression profile of metastatic colorectal cancer with that of primary can-
cers, benign colorectal tumors, and normal colorectal epithelium. Among the genes
identified, the PRL-3 protein tyrosine phosphatase gene was of particular interest.
It was expressed at high levels in each of 18 cancer metastases studied but at lower
levels in nonmetastatic tumors and normal colorectal epithelium. In 3 of 12
metastases examined, multiple copies of the PRL-3 gene were found within a small
amplicon located at chromosome 8q24.3. These data suggest that the PRL-3 gene
is important for colorectal cancer metastasis and provide a new therapeutic target
for these intractable lesions.

Metastasis is the neoplastic process responsi-
ble for most deaths from cancer because the
primary tumors can usually be surgically re-
moved. Metastatic cells undergo cytoskeletal
changes, loss of adhesion, and enhanced mo-
tility and express proteolytic enzymes that
degrade the basement membrane (1–3). How-
ever, much remains to be learned about this
lethal process, and further progress is contin-
gent upon identifying novel genes and path-
ways that are consistently and specifically
altered in metastatic lesions.

In the case of colorectal tumorigenesis,
the genes associated with initiation and pro-
gression to the invasive (cancerous) stage are
well known (4). However, no gene has been
shown to be consistently and specifically ac-
tivated in liver metastases, the lesions that are

usually responsible for the deaths of colorec-
tal cancer patients. To learn which genes
might be involved in this process, we per-

formed global gene expression profiles of
liver metastases using serial analysis of gene
expression (SAGE) technology (5). We first
prepared a SAGE library from microdis-
sected metastases (6). Surprisingly, we found
that many of the transcripts identified in these
libraries were characteristic of normal hepatic
or inflammatory cells, precluding quantita-
tive analysis (7). To produce a more specific
profile of metastatic epithelial cells, we de-
veloped an immunoaffinity fractionation pro-
cedure to purify colorectal epithelial cells
from contaminating stromal and hepatic cells
(8). A SAGE library was prepared from cells
purified in this manner, yielding ;95,000
tags representing at least 17,324 transcripts
(6). These tags were compared with ;4 mil-
lion tags derived from diverse SAGE librar-
ies, particularly those from normal and ma-
lignant (but nonmetastatic) colorectal epithe-
lium (9). One hundred and forty-four tran-
scripts were represented at significantly
higher levels in the metastasis library than in
the other libraries, while 79 transcripts were
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Fig. 1. PRL-3 expression in hu-
man colorectal tumors of dif-
ferent stage. The expression of
PRL-3 was evaluated by real-
time PCR (8) and compared
with that of the b-amyloid
precursor protein (APP) gene,
shown previously to be ex-
pressed at nearly identical lev-
els in normal and neoplastic
colorectal tissues (9). The me-
tastases analyzed in this exper-
iment were derived from pa-
tients other than the ones from
whom the normal epithelium
and other lesions were derived.
Epithelial cells were purified as
described (8). (A) Gel of RT-
PCR products from normal
colorectal epithelium (N1 to
N3), adenomas (A1 to A3), pri-
mary cancers (C1 to C3), and metastases (M1 to M3). Real-time PCR was performed for 24 cycles,
when RT-PCR products from the metastases were evident but before signals from the other lesions
had appeared. Arrow indicates the PRL-3 RT-PCR product of 198 bp. Lane M, molecular size markers.
(B) Results are expressed as the ratio between PRL-3 and APP expression and are normalized to the
average expression in adenomas. Duplicates are shown for each analysis.
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