Super-Pattern Matching*

James R. Knight*
Eugene W. Myers'

TR 92-29

Revised April 26, 1996

Abstract

Some recognition problems are either too complex or too ambiguous to be expressed as a simple

pattern matching problem using a sequence or regular expression pattern. In these cases, a richer
environment is needed to describe the “patterns’ and recognition techniques used to perform the
recognition. Some researchers haveturned to artificial intelligencetechniquesand multi-step match-
ing approaches for the problems of gene recognition [5, 7, 18], protein structure recognition [13]
and on-line character recognition [6]. This paper presentsaclass of problemswhich involvefinding
matches to “patterns of patterns’ or super-patter ns, given solutionsto the lower-level patterns. The
expressiveness of this problem classrivalsthat of traditiona artifical intelligence characterizations,
and yet polynomial time algorithms are described for each problem in the class.

! Department of Computer Science
University of Arizona
Tucson, AZ 85721
{j rkni ght, gene}@s. ari zona. edu

Keywords Computational biology, gene finding, pattern recognition

Thiswork issupportedin part by the National Institute of Health under Grant RO1 L M 04960, by the NSF under Grant
CCR-9002351 and by the Aspen Center for Physics.

Super-Pattern Matching

1 Introduction

Super-pattern matching forms a domain of discrete pattern matching, akin to that of approximate
pattern matching over sequences, where the input consists not of a sequence and a pattern of sym-
bols, but of (1) afinite number of types of features, (2) for each feature, aset of intervalsidentifying
the substrings of an underlying sequence having the feature, and (3) a super-patternthat is a pattern
of features types. The objectiveisto find a sequence of adjacent feature intervals over the underly-
ing sequence such that the corresponding sequence of feature types matches the super-pattern. The
string spanned by the sequence of feature intervalsisthen identified as a match to the super-pattern.
Such meta-pattern problems, i.e. a pattern of patterns, have traditionally been categorized in the
realm of artificia intelligenceand been solved using Al techniques such as backtracking and branch-
and-bound search. Super-pattern matching's characterization is such that the dynamic programming
techniques of discrete pattern matching can be used to derive practically efficient and worst-case
polynomia time algorithms.

The concepts behind super-pattern matching were originally motivated by the gene recognition
problem, now of great importance to molecular biologists because of the advent of rapid DNA se-
guencing methods. The prablemisto find regionsof newly sequenced DNA that codefor protein or
RNA products, andisbasically a pattern recognition problem over thefour | etter alphabet {«, ¢, g,}.
Molecular biologists[14] have devel oped abasic picture of a gene encoding structure, illustrated in
Figure 1. Such aregion consists of a collection of basic features or “signas’, constrained to be in
certain positional relationshipswith each other. Animportant aspect is that the features are not lin-
early ordered, but frequently coincide or overlap each other. Referring to the figure, a sequence of
exons and introns form the main components of agene encoding. It isthe sequence appearing in the
exons, between the start and stop codons, that actually encodes the relevant protein or RNA struc-
ture. Theintrons, whose functionis not currently known, are interspersed regions which don’t con-
tribute directly to the gene product. Overlapping these major componentsare smaller signalswhich
(1) distinguish exon/intron boundaries (3' and 5’ splice sites), (2) determine endpoints of the actual
gene sequence (the start and stop codons) or the encoding structure (the CAAT and TATA boxesand
POLY-A site), and (3) play significant rolesin gene transcription (the lariat points). Thisview is by
no means a compl ete description, and is still devel oping as biologistslearn more.

At the current time, much work has been done on building recognizersfor individual features us-
ing, for example, regular expressions[2], consensus matrices[19], and neural nets[12]. Librariesof
these component recognizers are currently being used to recognize either pieces of gene encodings
or compl ete encodings. One gene recognition system, GM [5], uses eighteen “modules’ inits gene
recognition procedure. Lesswork has been done on integrating these subrecognizersinto an over-
all gene recognizer. The current methods involve hand coded search procedures [5], backtracking
tree-search algorithms [7], and context-sensitive, definite clause grammars [18]. These techniques
either lack sufficient expressivenessor contain potentially exponential computations. Super-pattern
matching attempts to provide the expressiveness needed to search for these patterns while keeping
within polynomial time boundsin the worst case and being efficient in practice.

This multi-step approach to pattern matching has aso appeared for such problems as protein
structure prediction [13] and on-line character recognition[6]. In general terms, the matching proce-

DNA sequence

Pictorial pattern:

0 or moretimes

exon

——

intron

exon

intron

exon

P

P

Signals:
CAAT/TATA box:

exon intron exon intron exon

Exon/Intron Seq.:

CAP/Poly-a Sites:

Start/Stop Codon: [| |

5'/3 Splice Sites: ‘ , ‘ ‘ . ‘ !

@

Lariat Points:

Pattern Expression:

CAAT <0,300> TATA <0,30> (Exon & (CAP <0,*> Start <0,*> 5's3))
[(Intron & (5'ss <0,*> Lariat <12,40> 3'ss)) (Exon & (3'ss <0,*> 5'sg)) |*
(Intron & (5'ss <0,*> Lariat <12,40> 3'ss)) (Exon & (3'ss <0,*> Stop <0,*> Poly-A))

Figure1l Basic geneencoding structure.

dureforms arecognition hierarchy, asdepicted in Figure 2, where successively larger “patterns’ are
matched at higher and higher levelsin the hierarchy. Super-pattern matching characterizes an iso-
lated recognition problemin ageneral recognition hierarchy. The basic super-pattern matching prob-
lem definition (Section 2) presents an input and output interface facilitating such hierarchical recog-
nition constructions and defines the meaning of a “match” under this interface. Section 2 also de-
scribes severa problem variationswith different super-pattern expressionsand output requirements.
Section 3 then expands this basic problem into a problem class through a series of extensions, rang-
ing from allowing flexible matches using spacing specifications to introducing scoring mechanisms
and the notion of an approximate match.

Sections 4 and 5 describe solutions for each problem in the class. These solutions are set in
a common matching-graph/dynamic-programming framework, similar to the edit-graph/dynamic-
programming framework underlying theal gorithmsfor approximate pattern matching over sequences.
Theworst-case time complexity of the algorithmsconsidered hereisO (N> M), giveninterms of the
sizes of the underlying sequence (/V) and the super-pattern (M). However, tighter input-dependent
bounds of O((N + I)M L) to O((N + I)M Llog N) are dso derived, where [is the size of the
largest interval set and 1. isthelength of thelongest match to a prefix of the super-pattern. For practi-
cal recognition problemswith reasonably accurate recogni zers and with small or rare super-patterns,
the algorithms' performance is significantly better than the cubic-time worst-case behavior.

2 Basic Problem

Theinput to abasic super-pattern matching problem consists of the following:

e A one-dimensional space, [0..V].

an SPM problem

,
¢

]/[%J

TEXT SEQUENCE

Figure 2 Pictoria description of arecognition hierarchy.

e Anaphabet ¥ = {a,b, ¢, ...} of interval types.
e Aninterval set I, for eachinterval typea € 3. I, issomesubsetof {[7,7]| 0 <7 < j < N}.

e Super-pattern P. A sequence, regular expression or extended regul ar expression defined over
3.

For a substring search solving a gene recognition problem, the one-dimensiona space represents
the underlying DNA sequence A = aqas .. .ay, and theinterval typesin X identify the recogniz-
ers of exons, introns, etc. providing input to the super-pattern search. Each of the recognizers con-
structs an interval set consisting of the intervals, [7, j], that correspond to the recognized substrings
a; 41042 - . . a;. Finaly, the super-pattern describes the gene encoding structure using the interval
typesidentifying the recognizers.

The actual matching occurs between the sub-intervalsof [0, V] and sub-expressionsof the super-
pattern. A set of recursive matching rules (similar to those of [3] for pattern matching over se-
guences) definestheinterval smatching an expression P interms of matchesto P’s sub-expressions.
Formally, an interval [, j] matches P if and only if

. If P =awherea € X, then |z, 5] € 1,.
. If P = ¢ (the empty string), then i = j.

1
2
3. If P = R S (concatenation), then3 7 < k < j : [4, k] matches R & [k, j] matches S.
4. If P = R | S (elternation), then either [z, j] matches R or [, j] matches S.

5

. If P = R* (Kleene closure), then either i = jor3i < k£ < j : [i,k] matchesR &
[k, j] matches R*.

o

If P = R & S (intersection), then [7, j] matches R and [, j] matches S.

7. If P = R — S (difference), then [4, j] matches R, but does not match S

Theintervals matching an expression P are called the matching intervalsof P. And the set of ianﬁ
intervals used in the match between interva [i, j] and P is caled the interval sequence matching
[7,] and P.

Note that this recursive definition differs from a strict set-theoretic definition of a match, asis
used in approximate pattern matching over sequences. There, a match of sequence A and pattern P
consistsof an alignment between A and aspecific sequence B € L(P), where L(PP) thelanguagede-
fined by pattern P. The corresponding set-theoretic definition of asuper-pattern match between [i, 5]
and P pairsasequence of intervals <[i, 1], [#1, t2], - - -, [ix, j]> Withasequence B = b1 by .. . by4q
in L(P) using rule 1 above. The recursiverulesfor the intersection and difference operators (rules
6 and 7) fail to maintain this definition as the matches of [,] with R and .S are not required to use a
common B in L(R) and L(S). Thus, the*interval sequence” matching an interval and super-pattern
may not necessarily be a sequence of intervals, but could contain overlapping “interval sequences’
matching each intersection sub-expression of P.

We use the recursive definition of a matching interval for two reasons, one practica and one
computational. First, extended regular expressions under the recursive definition provide a natu-
ral method for specifying overlapping signals, one not permitted under the set-theoretic definition.
Given a super-pattern ABA & AC and intervas|[0, 10], [40, 50] € 14, [10,40] € I and [10, 50] €
I, theinterval [0, 50] matchesboth A BA and AC' and so can bereported asamatchto ABA & AC
under the recursive definition. The set-theoretic definition of a match does not permit this, sincethe
language described by ABA & AC' contains no common sequences. Figure 1 presents a more po-
tent use of thisrecursively-defined intersection operator. The second reason is that polynomial time
algorithms exist, under the recursive definition, for the problems of approximate extended regular
expression pattern matching over sequences and super-pattern matching with an extended regular
expression. The recursive definition, super-pattern matching algorithm is presented in Section 4.
The best known a gorithms under the set-theoretic definition take time exponential in the size of the
extended regular expression.

The default type of output for the basic problem isthe super-pattern’s set of matching intervals.
With thistype of output, hierarchical recognition problems can be constructed by connecting thein-
puts and outputs of isolated super-pattern matching problems. Oftentimes however, different types
of output are desired for truly isolated problems, particularly when the output can affect the com-
plexity of the algorithms. We consider four levels of output, characterized by the following four
problems. The output to the decision problem consistsof ayes or no answer asto whether any inter-
val in[0, N] matches the super-pattern. In the optimization problem, the output reports the matching
interval which best fits some criteria, such aslongest, shortest or best scoring interval. The scanning
problem requires the optimal matching intervals ending at each position 7, for 0 < j < N. Finaly,
the instantiation problem asks for the complete set of matching intervals.

3 Problem Domain

The domain of super-pattern matching problems extends from the basic problem in anumber of di-
rections, two of which have aready been discussed (varying the super-pattern and required output).
The other extensionsintroduce a positional flexibility in theinterval matching and account for errors
occuring in the input. Specifically, the five extensionsare 1) explicit spacing in the super-pattern to
model context free substrings occuring between recognized signas, 2) implicit spacing associated
with input intervals which corrects for errors in the reported endpoints, 3) interval scoresto repre-
sent significance levels of the lower-level recognition, 4) repair intervalsused to construct interval
sequencesin the presence of incompleteinput interval setsand 5) affine scoring schemesto morere-

alistically model endpoint reporting errors and missinginput intervals. Therest of thissection detai R
the effect of each extension on the basic problem.

3.1 Explicit Spacing

Explicit spacingintroducesspacer patternelements, or simply spacers, into the super-pattern to model
unrecognizable substrings of a certain size occurring between recognized signals. Theonly interest-
ing property of these substringsis their size, and often their sole purposeis to separate the signals.
Oneinteresting example of thisisthe“space” of size 12 to 40 occuring between the lariat point and
the 3’ splicesiteof eachintron. After acopy of the DNA contai ning the gene has been made, eachin-
tronisthen edited out of that copy. Thisediting processinvolvesRNA molecul eswhich attach at the
5 splicesite, 3 splicesiteand lariat point of the copy and which then splicetheintron out, connect-
ing the ends of the surrounding exons. One requirement of this processis that the RNA molecules
attached to thelariat point and 3’ splice site must also attach to each other. Since these molecule are
of acertain size, the distance of the corresponding attachment points on the DNA (and thuson its
copy) must also be of a certain size. Hence, the 12 to 40 spacing distance between those elementsin
the gene encoding structure.

The super-pattern in Figure 1 illustrates the two forms of the spacer considered here, bounded
(<12, 40>) and unbounded (<0, x>) spacers. Each spacer specifies a size range of intervalswhich
match the spacer. In terms of the recursive definition from Section 2, the following additional rules
capture this property:

8. IfP=<lh>thenl<j—1<h
9 If P=<l+>,thenl <j—1

This paper only considers spacers whose lower and upper bounds are non-negative, i.e. [> 0. Al-
lowing the use of negative spacers such as <—20, —5> involves the redefinition of an interval to
include intervals of negative length, such as [100,97]. The algorithms for regular expression and
extended regular expression super-patterns depend heavily on the property that al intervals have a
non-negative length. The introduction of negative length intervals requires additional algorithmic
support beyond the scope of this paper.

3.2 Implicit Spacing

Implicit spacing defines neighborhoods around the reported endpoints of each input interval which
can be used in matchesto the super-pattern. Some recognition al gorithmscan identify the presence or
absenceof afeature, but have difficulty pinpointingthe exact endpointsof thefeature. Anexample of
thisoccursin gene recognition. Exonic DNA regionsareidentified by dliding afixed-width window
along the DNA and feeding each window’s sequence to atrained neural net ([12]). The raw output
of this recognizer is a sequence of values, each between 0 and 1, giving a likelihood measure that
the sequence in each window is an exon:

1 s

05 J/\A I

This output can be transformed into a set of intervals by thresholding the raw values and treatin@
contiguous regions above the threshold as recognized intervals. In doing so, the general areas of
exons are accurately predicted, but the endpoints of those intervals typically do not match the true
ends of the exons. The use of implicit spacing, in combination with an accurate exon boundary rec-
ogni zer, transforms this from an exonic region recognizer to an exon recognizer while still limiting
the number of reported intervals.

We consider threetypes of implicit spacing, afixed or proportional space specified for aninterval
type ¢ and applied to the intervalsin I,,, or a per-interval space reported for each input interval.
Each type defines the neighborhoods of allowed matches around each input intervals' left and right
endpoints, <i + Imin,i 4+ [maz> and <j + rmin, j + rmaz> for intervd [7, j]. The fixed and
per-interval spacing specify absolute imin, Imax, rmin and rmax valuesfor aninterval type a or
aparticular input interval [i, 5], respectively. The proportional spacing defines two factors, [prop,
and rprop, for interval type a, which are multiplied with the length of each interva in I, to get the
desired ranges.

In terms of the recursive matching rules, rule 1 (for P = «) now becomes the following for (1)
fixed, (2) proportional or (3) per-interval spacing:

1. If P=a,then3 [,] € I, suchthat
Q) 7' +Imin, <1 <i +lmaz, & 7'+ rmin, < 7 < j' + rmaz,
(2)i" — ldist < i <7 + ldist & j' — rdist < j < j' + rdist,
where ldist = (j' — i') x Iprop, and rdist = (j' — i') * rprop,
(3) i/ —|— lmZTL[Zldl] S 1 S i/ —|— lma.r[i/J/] & j/ + T‘ml"fb[ild‘l] S] S j/ —|— TTIZ(L.’?[Z'IJ‘/]

Negativevauesfor Imin, Imaz, rmin and rmaz are permitted herewith therestrictionthat thetwo
neighborhoodsof any input interval cannot overlap, i.e. foral [, j'] € I,,i" +Imaz < j'+ rmin.
Thereasons for this are the same as given for negative-length explicit spacers.

3.3 Interval Scoring

Associating scoreswith input interval s provides a method for modeling errors and uncertainty at the
lower-level recognizers. The scores can give asignificance or likelihood measure about the validity

of aninterval, such asthe mean neural net value occurring in each interval reported by the neural net
exonic recognizer. The use of these scores changesthe matching problem from one of finding match-

ing intervalsof a super-pattern to that of finding the best scoring matching intervals. The agorithms
presented in this paper assume that all scores are non-negative and that the best scoring matching
interval isthe one with minimal score, except as described below for intersections and differences.

They could be altered to allow negative scores and to solve maximization problems.

Therecursiverulesdefining amatch between [z, 7]and P now becomerulesinafunctionscore([i, 5], P)

which computes the best score of a match between [7, j] and P. Specificaly, score([i, 7], P) is

o if[i, 7] € I, withscoreo

oo otherwise

0 ifi=j

oo ifi#j

3.1f P= R S, then score([t, 7], RS) = m1n {score([z k], R) + score([k, 7],9)}.
4.1f P = R| S, then score([z, 7], = mln{score([z jl, R), score([i, j],5)}.

1. If P = a, then score([t, 5],a) = {

2.1f P = ¢, then score(i, j],) = {

)

* if 1 = i

5.1f P = I, then score(Ir}clg {score([i, k], R) + score([k, j], R*)} ifi#j
1< <1

6. If P = R & S,thenscore([i, j], R& S) = Fres(score([i, j], R), score([t, 5], 5)) 7
where Fr¢ s can be a genera function (see below).

7.1f P= R — S, thenscore([i, j], R— S) = Fr_s(score([i, j], R), score([t, j],5))
where Fr_s can be a genera function (see below).

For sequence and regular expressi on super-patterns, thisfunction simply sumsthe scoresof theinter-
valsin the best scoring interval sequence. The extended regular expression scoring rules allow any
functions Frg. s and Fr_ s to determine the score of the extended regular expression. More complex
scoring methods are needed, because the concept of “minimal isoptimal” is not expressive enough
to capture the meaning of intersection and differencein the realm of approximate matching. Scoring
schemes such as taking the minimal, maximal or average score can give amore realistic score of the
matchto R & .S, under the assumption that finite or threshol ded scoresfor both R and .S exist. For an
expression R — S, the scoring scheme which most preserves the essence of the difference operation
uses a decision function returning the score of the match to R if the score of S’s match is above a
threshold. Otherwise, it returnsinfinity. Note that these examples do not always compute the min-
imal score resulting from evaluating F over the whole range of possible scores for i and S. The
genera functionsalowed here permit awide range of scoring schemes, and in particular include all
of the example schemes cited above.

The scoring of interval sequences changes the output requirementsfor the four problems of Sec-
tion 2 and the specification of explicit and implicit spacing. The decision problem becomes that
of reporting the best score of a matching interval, rather than the existence of a matching interval.
For the other three problems, the scores of matching intervals are reported a ong with the intervals
themselves, either the matching interval with the best score (the optimization problem) or the set of
matching intervalsand their best scores (the instantiation problem). The use of explicit and implicit
spacing again require new rules 8 and 9 and the rewriting of rule 1, respectively. Some fixed cost
¢ > 0isnow incorporated into those rules and either reported as the score of an explicit spacer’s
match or added to the score for each input interval when computing score([z, 7], a).

34 Repair Intervals

Repair intervalsare amechanism for insertingintervals, not appearing in theinput, into the construc-
tion of interval sequences. Few recognition algorithms for complex features can correctly identify
every “true” instance of that feature in a sequence. Even using interval scores to report possible
matches, many recognizers are designed to achieve a balance between sensitivity and specificity.
They alow afew true intervalsto be missed (a sensitivity rate close to, but under, 100%) so that the
number of falseintervals reported does not explode (thus keeping the specificity rate high). These
missed intervals, however, can disrupt the match to an entireinterval sequence in the super-pattern
matching problems described so far. Repair intervalsare used to complete the construction of inter-
val sequencesin the face of small numbers of missing intervals.

A repair interval specification is given for an interval type. It consists of a non-negative size
range, [to h, and a fixed cost ¢ for using a repair interval in an interval sequence. Given such a
specification for interva type a, each instance of « in the super-pattern can be matched with any
interval [i, j] where! < j — ¢ < h. That match then contributes an additional cost ¢ to the score of
theresultinginterval sequence. In terms of the recursive definition, thisresultsin thefollowing new
rulefor P = a:

o if[i, 7] € I, withscore o
1.If P = a, then score([i, j],a) = mins ¢ ifi<j—i<h
oo otherwise

assuming here that interval scores are being used and that no implicit spacing has been defined fdp
theintervalsin 1,.

3.5 Affine Scoring Schemes

The fixed range implicit spacing, explicit spacing and repair intervals often provide an unrealistic
measure of the size distribution of endpoint errors, missing intervals and context free spaces. For
some recognizers, amajority of the incorrectly reported endpoints may differ only slightly from the
true endpoints, while a small but significant number are off by greater distances. Other times, no
fixed bounds can be computed for either the endpoint errors or sizes of missing intervals. In these
cases, afixed cost, bounded range scoring scheme does not correctly model the distributionsof sizes
or error distancesin the input. Affine scoring schemes for implicit spacing, explicit spacing and
repair interval sare distance-based model swhereamatch’sscore growsasthedistancefrom adesired
range grows, whether the distanceis from areported endpoint’s position or an interval’s size.

In its most complex form, the affine specification for an interval type’'s implicit spacing con-
sists of the five-tuples <lcl,, Iming,, lcy, Imaz,, ler,> and <recl,, rming, req, rmaz,, rer,> for
the left and right endpoints of intervalsin 7,,, plus a boundary proportion bprop, used to separate
the left and right endpoint neighborhoods. The graphical representation of the scoring scheme is
shown in Figure 3a. For theleft endpoint, the values of imin, and imax, specify afixed sizerange
inwhich the cost of implicit spacing withinthat neighborhoodisic,. Thevauesof /cl, andlcr, give
the incremental cost for extending the implicit spacing to the left and right of the fixed space range.
The right endpoint scoring is similar. The boundary between the two neighborhoodsis given as a
proportion on thelength of eachinterva in I,,, and is necessary to avoid introducing negative-length
intervals.

The score of amatch between interval [, 7] and the expression P = « isthe minimum, over al
intervals[i', j'] € I, of the score associated with [#/, ;'] (assuming interval scores are being used),
plusthe cost of theimplicit spacing at the two endpoints. In terms of the matching rules, thisresults
in thefollowing for P = a:

score([t, j], a) = min{left; . + o +rightp; . | [i',7] € I, scoresa}

where
leg + lely x (7 4+ Iming) — i) ifi <’ 4+ Imin,
le, if i/ +imin, <1<
left; ;p =1 0 if i =4
leg if i/ <1<+ Imax,
leg + lerg * (i — (¢ 4+ lmaz,)) it +Imaz, < i<+ (5" — 1) *bprop,
req +rely x (57 4+ rming) — j) if i 4 (37 =) x bprop, < j < j 4 rmin,
re, if 7'+ rmin, <j<j
I’Ight[zlm] = 0 |f] = j/
re, if i/ < j<j +rmaz,

req +rerg x (5 — (5 + rmazy)) ifj > j' 4 rmaz,

Thisassumes no repair interval specificationsfor a.

The &ffine specification for bounded spacers and repair intervalsis athree part curve defined for
sizevaluess > 0 and isshown in Figure 3b. The numerical information consists of asimilar five-
tuple <el,, min,, cq, maz,, cr,> With a (now non-negative) size range min, to max,,, fixed cost

cost | cost 9
: cost

]
I I) I L .
i+Imin { i+lmax © j+rmin |j+rmax distance . .
| :

bprop* (j-i)
(a) (b)

Figure 3 Affine scoring of @) implicit spacing for interval [7, 7] and b) bounded spacers/repair intervals.

¢, for that sizerange, and incremental costs ¢/, and cr, for extending to the left and right of thesize
range. The cost of using arepair interval is computed from the size of that interval, asfollows:

o if [¢, j] € 1, with score o
Cq if ming < j—1 < mazx,
Co + cly % (ming — (7 — 1)) ifj—i < min,
Co ey x ((j — 1) — maz,) ifj—1i>maz,

score([t, j],a) = min

where no implicit spacing is defined here. Including both affine implicit spacing and affine repair
intervals simply requires combining the above two rules. The rule for computing an affine scored
spacer uses the bottommost three terms of the repair interval rule.

4 Solvingthe Basic Problem

The solutionsto each of the super-pattern matching problemsemploy aframework similar to that de-
vel oped for sequence-based approximate pattern matching of sequences[16, 17, 20] and regular ex-
pressions[15, 21]. Theframework for super-pattern matching involvesfour major stepscommon for
all of the algorithmic solutions. Thefirst step isto construct a state machine equiva ent to the super-
pattern, i.e. amachine which acceptsthe samelanguage as the super-pattern expression. Second, the
matching problemisrecast as a graph traversal problem by constructing a matching graph from the
state machine. The construction is such that the graph edges correspond to input intervals and paths
through the graph correspond to interval sequences matching the super-pattern’s sub-expressions.
The third step isto derive dynamic programming recurrences which compute the paths (and hence
the interval/sub-expression matches) to each vertex in the graph. Finally, algorithms solving these
recurrences are given.

The sub-sections that follow present the four steps describing the algorithms for the scanning
and instantiation problems with interva scoring and with a 1) sequence, 2) regular expression and
3) extended regular expression super-pattern. Theinclusion of interval scoring resultsin moreinter-
esting algorithms, since the the graph traversal problem changes from one of finding the existence
of pathsto one of finding the shortest paths through the matching graph. The solutionsto problems
with no interval scoring or for the decision and optimization problems are simple variations of the
algorithms presented bel ow.

10

Final Construction Step

Inductive Construction Steps

Figure4 Inductive state machine construction rulesfor RE'sand ERE's.

4.1 Sequencesand Regular Expressions

The state machines constructed from sequence and regular expression super-patterns are determin-
istic or non-deterministic finite automata, hereafter referred to as NFA's. The finite automata used
in this paper are the state-label ed automata used by Myers and Miller [15] for approximate regul ar
expression pattern matching over sequences. Formally, anNFA F =<V, F, A, 6, ¢> consistsof: (1)
aset V of vertices, called states; (2) aset F of directed edges between states; (3) afunction A assign-
inga“label”, \; € ¥ U {c}, to each state s; (4) adesignated “source” state ¢; and (5) a designated
“sink” state ¢. Intuitively, I is a vertex-labeled directed graph with distinguished source and sink
vertices. A directed path through F' spells the sequence obtained by concatenating the non-¢ state
labelsalong the path. L7 (s), thelanguage accepted at s € V, is the set of sequences spelled on all
pathsfrom 6 to s. The language accepted by I is Lr(¢).

Any sequence or regular expression i can be converted into an equivalent NFA I’ using the
inductiveconstruction depictedin Figure 4, ignoring for themoment F'rg s and Fr_g. For example,
the figure shows that Frs is obtained by constructing F'r and Fs, adding an edge from ¢r to 6,
and designating fr and ¢¢ as its source and sink states. After inductively constructing Fr, an e-
labeled start state is added as shown in the figure to arrive at F’. This|last step guarantees that the
word spelled by apath is the sequence of symbols at the head of each edge, and is essentia for the
proper construction of the forthcoming matching graphs.

Note that for a sequence super-pattern P = pyps ... pas, the construction of F' uses only the
construction rules F,, and Frg, resulting in a deterministic NFA containing arow of M + 1 states.
Successive statesin F' are labeled with successive symbols of P. Thisisillustratedin Figure 5 for
P = aba. For the full regular expressions, a straightforward induction (given in [15]) shows that
automata constructed by the above process have the following properties: (1) thein-degreeof 4 is0;
(2) the out-degree of ¢ is0; (3) every state has an in-degree and an out-degree of 2 or less; and (4)

@=—=

©

0 1 2
a.&
b
a @@ @O e O

la={[02],[1.2],[25], [3,3], [56] }
Ib :{ [0’1]’ [1!1]’ [2!3]’ [3’5]! [4’6] }

®

oL

aba

Figure5 The NFA and matching graph for super-pattern P = aba and 1-d space [0, 6].

|V| < 2|P|,i.e thenumber of statesin I islessthan twice P°’slength. In addition, the structure of
cyclesin the graph <V, F> of F has a special property. Term those edges introduced from ¢ to
fr inthediagram of F'r« asback edges, and term therest DAG edges. Note that the graph restricted
to the set of DAG edgesis acyclic. Moreover, it can be shown that any cycle-free pathin F’ has at
most one back edge. Graphswith this property are commonly referred to as being reducible [1] or
as having aloop connectedness parameter of 1 [8]. In summary, the key observationsarethat 1) for
any sequence P of size M thereisan acyclic NFA containing M + 1 states and 2) for any regular
expression P of size M thereisan NFA whose graph is reducible and whose size, measured in either
vertices or edges, isO(M).

Thematching graphs for these super-patternsconsist of N+ 1 copiesof the NFA for P, where N
isthe size of the one-dimensional space defined in the matching problem. Examplesfor a sequence
and regular expression are shownin Figures5 and 6. In thismatrix-structured graph, theverticesare
denotedusingpairs (s, j) wheres € V andj € [0, N]. Weighted edgesare added in arow-dependent
manner, considering the vertices (s, 0), (s, 1),..., (s, N) asa“row.” For avertex (s, j), if thelabel
of state s, A5, issomesymbol ¢ € 3, incoming edges are added from each vertex (¢, i) wheret — s
isanedgein F and [, j] € I,,. The weights on those edges equal the scores associated with the
correspondingintervalsin I ,. This models the matches of symbol A, totheintervalsin 7, .. When
As ise, vertex (s, j) hasincoming edges with weight O from each vertex (¢, j) wheret — s. These
edges model the match between the ¢ symbol and the zero-length interval [7, j]. A straightforward
induction, using the recursive matching rules from Section 2, shows the correspondence between
paths and matching intervals.

For the scanning problem with interval scoring, the dynamic programming recurrences compute
the shortest pathsfrom row 6 to row ¢ in the graph, where the shortest path isthe one whose sum of
edge weightsis minimal. The recurrence for sequences and regular expressionsis

C@,j = <07.]>
- min{(c+o,k) |t - s & [i,j] € I, scoreso & (¢, k) € Cy;} if Ay € X
2] min{Cy; |t — s} if \s =¢

12

®
@ (b)
O
@)
©)
F |a:{ [O’O]’ [1v3]v [3’4] }
(alb) & b ={102], 23], [24] }

Figure6 The state machine and matching graph for P = (a | b) a* and N = 4.

Thisrecurrence findsthe position pairs(c, k) for each vertex (s, j), such that ¢ isthe best score of a
match between interval [k, j] and thepathin ' from 6 tos. The“min” operation returnsthe position
pair with the minimal score ¢, breaking ties by taking either the smallest or largest £. Thus, theC ;
values give the score and left endpoint position for the best scoring matching interval whose right
endpoint is .

The recurrence for the instantiation problem is very similar, except that each s ; valueis a set
of these position pairs, as follows:

Co,; =1(0,5)}
o =) Uninllet o k)|t = s&lijlely scoreso & (e, k) € Cri} iTA €%
o Umin{CtJ | t— S} if)\5 =&

The“U,.;," Operation computesthe best scoring matches to each interva [, 7] by unioningthe min-
imum scoring position pairsfor each position £ from 0 to j, i.e. U, (S) = {{c, k) | (¢, k) e S & /
(k"Y€ Sk =k & ¢ > '}. Theset of matching intervals output for the instantiation problem
is{[k, j]scoringec |0 < j < N & (c, k) € Cy;}.

A naive dynamic programming a gorithm can solve the recurrences for sequence super-patterns,
sincethematching graphisacyclic. Thedecision, scanning and optimizationsolutionsrunin O ((N +
I)M) time where [is the size of the largest /,, because there are O (N M) vertices and O (1 M)
edges. The following solvestheinstantiation problem, using 0.. M to reference statesin ' and | | to
denote ordered lists:

for j < 0to N do
{ Co,; « [{0,7)]
for m « 1to M do
{ Comj <[]
for i,o < [i,j] € I, scoreso do
Cp j + Merge(C, ;, Add(Clrie1 4, 0))

} 13
}

Operation Mergeimplementsthe| J,,,;,, operation for two ordered listsby merging thelistsaccording
toleft endpoint position k£ and by removing any non-optimal positionpairs. Add(/.,v) producesanew
ordered listin which v isadded to each position pair in .. Thetime complexity for thisalgorithmis
O((N 4+ I)M L), where L isthelength of the longest matching interval to any prefix of . A more
practical, and stricter, bound for 7. isthe number of differently sized matching intervalsto any prefix
of P (which more closely reflects the C,, ; sizes). But the longest matching interval bound gives a
cleaner definition to the complexity measure. In the worst case where [isO(N?) and L isO(N),
thistime complexity isO(N3M).

The regular expression algorithm is more complex as cyclic dependencies can occur in the dy-
namic programming recurrences, mirroring cycles in the matching graph. However, these cycles
occur when the edges corresponding to zero-length input intervals and c-labeled stateslink the ver-
tices of Kleene closure sub-automatain a column’s copy of /. Since no negative length intervals
(or extensionsresulting in negative lengthintervals) are permitted, these cycles can occur only down
columns of the graph. Furthermore, the matching graph isacyclic except for the cycles aong partic-
ular columnsof the graph. Those cycles are reducible because of the structure of cyclesin F (which
forms the sub-graph a ong each column). Thisisuseful because the recurrences aboveinvolvecom-
puting the shortest paths to a particular graph vertex, so only acyclic paths need to be considered.
By the reducibility of F' and as proved in [15] for a similar graph, it follows that any acyclic path
through the matching graph contains at most one back edge from each column’s copy of F.

These observations led Myers and Miller [15] to a column-based, two “sweeps’ per column,
dynamic programming algorithm for the approximate regul ar expression pattern matching problem
over sequences. Their algorithm, applied here to the matching graph, sweeps the 5% column twice
in topological order, computing the relevant terms of the recurrence in each sweep. That suffices to
correctly compute the recurrence values for the % column, because any acyclic path to a vertex in
the % column involves at most one back edge in column 5. So, any path to a vertex (s, j) which
enters column j at some other state, say ¢, consists of DAG edgesto some vertex (v, j), aback edge
to (w, 7) and DAG edgesto (s, j). Thea gorithm’sfirst sweep correctly computesthevalueat (v, j),
and the second sweep correctly computes the value at (w, 7) and consequently at (s, 7).

The agorithm bel ow implements this approach for the instantiation problem:

for j « 0to N do
{ Co; < [(0,7)]
for s # 6 do
Csj <[]
for sweep + 1to 2do
{ for s intopological order of DAG edgesdo
if \s # ¢ then
for t,4, 0 wheret — s and [i, j] € I, scoreso do
Cs,; < Merge(Cs ;, Add(CY 4, 0))
else
for t wheret — s do
CSJ‘ — MEI’QE(CSJ,CW‘)
}
}

Since F restricted to the DAG edges is acyclic, atopological order of the states exists. The com-
plexity of the agorithmis O((N + I) M L), since the recurrence is computed twice for each graph

vertex and there are at most 2 I M edgesin the graph. 14

4.2 Extended Regular Expressions

For extended regular expression super-patterns, we introduce a new machine, called an extended
NFA or ENFA, which accepts languages denoted by extended regular expressions. There have been
two previous solutionsto this problem of recognizing ERE’s, one by Hopcroft and Ullman [10] and
one by Hirst [9]. The Hopcroft and Ullman agorithm is a naive dynamic programming solution
taking Q2(V?) time for any expression containing a Kleene closure operator. Hirst's algorithm, on
the other hand, is essentially equivalent to the algorithm below in both complexity and algorithmic
structure. However, the algorithm’s details differ greatly from the framework of pattern matching
over sequences, using the expression’sparse tree instead of a state machine simulation, and it solves
only the language acceptance problem, i.e. isagivenstring w in L(P). Theextended NFA provides
a solution which can be explained as an extension to the NFA simulation and can be easily recast
as a super-pattern matching algorithm. In fact, the ENFA state simulation is reminiscent of Earley’s
algorithm [4] for context-free grammar parsing, and it is a sparse, scanning version of the Hopcroft
and Ullman’s naive dynamic programming algorithm analogously to the way Earley’s algorithmis
asparse, scanning version of the CYK algorithm[11, 22]. Thissection first presentsthe ENFA con-
struction and its state simulation, and then devel ops the super-pattern matching algorithm from the
state simulation.

For any extended regular expression i, an ENFA I’ formally consists of the same five-tuple
<V, FE,\8,¢>asan NFA, and it uses the inductive construction rules depicted in Figure 4 (now
including Fre.s and Fr_g). In addition, the language accepted at s € V', L (s) isthe set of se-
quencesspelled on all “paths’ from 6 to s, and L (¢) definesthelanguage accepted by /. However,
anew definition of a“path” isrequired, more than simply a sequence of edgesthrough F’, to main-
tain the equivalence between L (¢) and the language specified by R, L(R). Thisnew definitionis
recursive, using the following cases (where the quoted “ path” refers to the new definition):

1. Any sequence of edgesin F which does not pass through both the start and final state of an
Frg s or Fr_ s sub-automatonisconsidereda* path”. Thus, when no such sub-automataoccur
in I, thenew “paths’ through F' are simply theold pathsthrough £ asdefined for NFA's. Note
that this case includes sequence of edges which pass through F'rg, s and Fr_ s start states but
do not pass through the corresponding final states.

2. For asub-graph Frgs, a“path” from fgrg s t0 ¢pre.s consistsof apair of “paths,” rgs —
ORi>¢R—>¢R&S andfrg s —0s i>g55—>¢R&5,WhiChSpE” thesamesequence. LFR&5(¢R&S)
issimply the set of sequences for which these* path” pairsexist. Thisisequivaent to the lan-
guage restriction that asequencein L(R & S) must occur inboth L(R) and L(S).

3. For asub-graph Fr_g, the“paths’ through Fr_s arethe“paths’ 8r_s — 0r = ¢r — PR_s
for which no “ path” spelling the same sequence existsthrough F's. This satisfiesthe language
restriction that asequencein L(R — S) mustbein L(R) butnotin L(S).

4. Finaly, in genera, the“paths’ from 4 to a state s consist of the sequence of edges outside any
nested F'rg s OF Fr_g sub-automaton combined with the“ paths” through those nested Frg s
and F'r_ g sub-automata.

Lr(s), then, isthe set of sequences spelled on “paths’ from 6 to s, and L (¢) is the language ac-
cepted by F. From this point on, we drop the quotes from the term path, and so path now refers

to thisnew recursive definition. Also, let the phrase sub-machinesin F denote the set of Frgs aha
Fr_s sub-automataoccurring in F.

Additional computation, beyond the NFA state simulation, is required to support this new def-
inition of a path. Given an input string w = wyws . .. wy, the recurrences below define the state
simulation computation at position ; and state s. They satisfy the new path definition by maintain-
ing partial path information for the sub-machinesin F. A partial path for a sub-machine is a path
which passesthrough the sub-machine' sstart stateand ends at astate“inside” the sub-machine. This
information takesthe form of thefirst position, in w, of the substringsof w being spelled on the par-
tial paths from each frg, s and 8r_ g to s. Thus, as the simulation progresses and partia paths are
extended to include a ¢re. s [#r_s] State, only those pairs of paths which spell the same sequence
from frg.s [fr_s] through Fr and [not] through Fs are extended. Because the state simulationis
solving the language acceptance problem, the sequence being spelled on all pathsin the simulation
isw. Thus, it sufficesto extend those pairs of pathswhosefirst positionvaluesfor the corresponding
Ores [OR—S] state are equal

Different recurrences are defined for different states, based on afive-part partitionof V. Thefirst
subset of V' contains only the start state of F, 6. Its computation is as follows:

QD) s=86:
g :{ {0} ifi=0

1] otherwise

The second subset, denoted V..., containsall states except # and the start and fina states of the sub-
machinesin F'. These are the states introduced into F' by the regular expression construction rules
from Figure 4.

() s € V,.:
U{Sis |t — s} if \g =¢
Sis=1< U{Sicit|t—=s} ifAs#e,i>0and A, = w;
0 if \s # ¢ andeitheri =0or \; # w;

The values contained in these S; ; setsconsist of the beginning positions % in w of matches between
W41 Wk2 - . - w; and the partia path through the innermost enclosing sub-machine of s. Theinner-
most enclosing sub-machineof astate s isthe most deeply nested Frg. s Or Fr_ s sub-automaton for
which s € Vgg s (OI’ S € VR—S)-

Thepartia path information for the other enclosing sub-machinesare kept in a series of mapping
tablesassociated with each frg. s and s state. These tables are used to perform the mapping be-
tween thevalid pathsin g s’sor 6r_ s’s sub-machine and their innermost encl osing sub-machine.
Thethird state set, denoted Vj, contains the start states of each sub-machine, and itsrecurrences are
the following:

() s € Ve
U{Sis|t—s} ifr,=¢
Ti,s: U{Si_17t|t—>8} if)\s#e,i>0andA5:wi
0 if \; # e andeitheri = 0 or \, # w;

o [T, 0
BTV T, =0

TheT; values, the mapping table for state s, collects and stores the first positions £ of the matches
between w1 w42 . . . w; and thepartial path from theinnermost enclosing sub-machine sstart state

to s. These tables are retained throughout the computation and are used at the corresponding sulf
machine final states when matches between the nested sub-machine and astring w; 1 w;4o . . . w; IS
found. Thevalueof S; ; hereiseither empty or containsthe singleposition ¢, depending on whether
amatch between aprefix of w;w;42 . .. wxy and the nested sub-machine could result in an overall
match between w and .

Thefourth and fifth subsetsof V', Vg, and V_, contain thefinal statesof the I'rg, 5 and I'g_ 5 Sub-
automata, respectively. At one of these final states, s € Vg [V_], the simulation determines those
first positions & in the nested sub-machine, Frgs [Fr_s], for which paths exist through Fr and
[not] through F's spelling w41 wk42 . .. w;. It then unionsthe T}, ; sets, wheret = frgs5[0Rr-s]
corresponding to s, to extend the partial path information for the enclosing sub-machine. Thus, the
partia path informationfor frg. s [fr_s] isextended to ¢re.s [$r_s] using thevalid pathsthrough
Frgs [Fr-s].-

(4) s € Vg:
Sis=UATk: |k €Sin &k € Sipn}
fortl — s,t2 — sandt = fpg s corresponding to s = ¢re 5.
(5)se V_:
Sis=U{Tkt| k€ Sin&k &Sin}
fortl — 5,12 - sandt = fr_g correspondingto s = ¢r_g.

The simulation acceptsif Sy, = {0} and rgjectsif Sy 4 = 0.

Theactual algorithm performing the statesimul ation usesthetwo-sweep techniqueover thestates
of . Since F isreducible, the same arguments given for the regular expression matching hold here.
For aninput string w of size N and an extended regular expression P of size M, thetime complexity
isO(N3M) intheworst case. However, thiscomplexity dependson thestructure of P, and atighter
bound of O((N+1)M L) timecan also bederived. Inthiscase, I denotesthe largest number of sub-
strings of w which match an intersection or difference sub-expression of P. I., asin super-pattern
matching, refers to the longest substring of w which matches a prefix of a string in the language de-
noted by P. This complexity bounds the running time, because the size of the S; ; and T; ; setsis
bounded by L, and O (1 L) boundsthe time needed to unionthe T; 4, . Setsat each ¢ry 5 State (or
similarly at each ¢r_g state). Note that for an extended regular expression containing no Kleene
closure operations, the values of / and L arelimited to O(N M) and O (M) respectively, giving a
complexity bound of O (N M?).

Returning to the super-pattern matching problem, the matching graphs consistsof NV + 1 copies
of ENFA F'. Thegraph edgesare added asdescribed for regular expressions, asif theintersectionand
difference sub-automatawere alternation sub-automata. The dynamic programming recurrences in-
corporate the more complex state machine simulation. The recurrences for theinstantiation problem
use the same five subsets of V/, starting with the set containing just and the set V..

Co,; = {(0,5)}
o =) Uninl(et o, k) |1 = s &i,jle I, scoreso & (e, k) € Gy} if A €2
o Umin{CtJ | t— S} if As =€

The computation at the sub-machine start states, s € Vjp, use similar mapping tables 7’ to hold the
partia path information for the enclosing sub-machine:

7~ Unin{(cto k) [t = s&ijle], scoreso & (¢, k) € Cyi} if A €1
o Umin{ctyj | t— S} if A\, =¢

oY T 0 o
STV 0 T, =0

And finally, the sub-machinefina statesin V¢, and V_ use those mapping tables to extend matches
across the nested sub-machine:

057]‘ = Umin{<c+ fR&S(Cl,CQ), k> | <C7 k> € Tm & <Cl7 Z> € CtlJ & <CQ, Z> € CtQJ}
wheretl — s,t2 — sandt = frg s COITES. 10 s = PRes
057]‘ = Umin{<c+ fR_S(Cl,CQ), k> | <C7 k> € Tm & <Cl7 Z> € CtlJ &
c2' if (c2')i) € Cya 5
=N s if (2,d) ¢ Cra

wheretl — 5,12 — sandt — fr_g COITES. t0 s — Ppr_s

Aswith theinstantiation problems for sequences and regular expressions, thevaluesin Cy ; for 0 <
j < N givetheleft endpoints of the matching intervalsof P.

The algorithm computing these recurrences is another column-based, two-sweeps per column
agorithm, since the matching graph is again reducible. The time complexity isO((N +)M L),
where [is defined here as the size of either the largest input interval set or the largest number of
different intervals matching an intersection or difference sub-expression of P.

5 Extension Algorithms

The four extensions described in Section 3, 1) explicit spacing, 2) implicit spacing, 3) repair inter-
valsand 4) affine scoring, can be solved using extensionsto the algorithms presented in the previous
section. In addition, these algorithmic extensionsrequire no major changesto the previous section’s
algorithms and are independent of the super-pattern language, i.e. whether the super-patternisa se-
guence, regular expression or extended regular expression. This occurs because the effects on the
matching graphs from the extensionsbelow can be thought of as “horizontal” changes to along par-
ticular graph rows. Whereasthea gorithmsof the previoussection affect only the“vertical” structure
along each column of the graph. Because of thisfact, the extensions can be individually presented
for arepresentative row of the matching graph. The overall agorithm for any combination of super-
pattern and set of extensions is developed by starting with one of the base algorithms given in the
previous section, and then applying the appropriate a gorithmic extension to the relevant rows of the
matching graph.

The descriptions that follow concentrate on the three additiona agorithms used to solve these
extensions. The first sub-section gives the application of a sliding window algorithm to bounded
spacers, fixed rangeimplicit spacing and fixed range repair intervals. The next sub-section describes
arangequery tree/inverted skylinesol utionfor the proportional and per-interval implicit spacing. Fi-
nally, the third subsection presents a solution to the affine scoring schemes which employs minimum
envel opes to efficiently model the contributions of the affine curves along a row. The unbounded
spacer solution is not given as it can be solved using a running minimum as the overall algorithm
progresses along row s where A, = <[, x>.

The description in each of the sub-sections isolates a particular row s of the matching graph,
appropriately labeled, and solves the decision problem with interval scoring for that row. Also, it
assumes that state s islabeled A\, = «, unless otherwise noted, and has only one predecessor state
t in . The solutionsto the other problems, and states with two predecessors, are straightforward
variations of the algorithms bel ow.

5.1 Sliding Windows 18

The bounded spacers, implicit spacing and repair intervals al involve the computation of valuesin
fixed width windows, whether aong the predecessor row of vertices or associated with the input
intervals. Treating the bounded spacers <!, h> first, the spacer is considered as an a phabet symbol
in the construction of the state machine, resultingin onestates € V where A, = </, h>. Theedges
from row ¢ to row s in the graph connect each vertex (¢, ¢), where0 < i < N — [, to the vertices
(s,i4+1),(s,t4+14+1),...,(s,max{N, i+ h}). These edges model the match between intervals
whosesizeisbetween [and and the spacer. Looking at theincoming edgesto avertex (s, j) results
in the following recurrence:

Cs; = min{C%; |t - s & max{0,j — h} < ¢ <max{0,j —(}}

where“min” hereisthetraditional minimum operation. Fromthispointon, the*max{0, .. .}" bound-
ary conditions are omitted and assumed in the equations and a gorithms bel ow.

Similar edges are added for fixed range repair intervals, but these edges are included in addition
tothe normal edgescorrespondingto inputintervals. These new edgesgivethefollowingrecurrence,
where the second term in the minimum reflects the repair intervals:

Cs,; = min{ min{Cy; + o | [},5] € I, scoreso}, min{Cir+c,|j—he <k <j—1,}}

In each of thetwo cases above, thevalue of C ; isthe minimum over awindow of ~ — I C; ; values.

Thefixed implicit spacing is more complex, because the fixed width windows are the neighbor-
hoodsoccuring at both endsof each inputinterval. Alongrow s of the matching graph, the edges cor-
responding to each input interval [z, 5] € I, arereplaced with (1) anew vertex (s, [z, j]) representing
theinterval, (2) edges connectingvertices (¢, i+/min,), (¢, i+Imin,+1), ..., (t,i+Imaz,) tover-
tex (s, [7, 7]) and (3) edges connecting vertex (s, [z, j]) tovertices (s, j+rmin,), (s, j+rming+1),
v (8,7 + rmaz,). The edges model the implicit spacing defined for each endpoint of [z, 5], and
the additional vertex is needed to keep the number of edges proportiona to the size of theimplicit
spacing. These changes result in the following two recurrences for the C; ; values:

Colig] = min{Ct; + o | [i,7] € I, scoreso & i + Imin, < k < i+ Imaz,}}
Cs,j = min{CS’[ilﬂ [[, 7] € I, & 7'+ rmin, < j < j 4+ rmax,}

assuming no repair intervals have been specified for interval type a. These recurrences present two
different algorithmic problems, the “front end” problem of computing each ' ; ;; from the array of
scores along row ¢, and the “ back end” problem of computing therow of C'; ; valuesastheminimum
of the applicable C |/ ;) values.

Naivedynamic programming a gorithmscomputing these recurrences al ong agraph row s havea
complexity of O (N W) for explicit spacersor repair intervals, where W = h—{, and acomplexity of
((N+1)W) forimplicitspacing, where W = max{lmaz,—Imin,+1, rmaz,—rmin,+1}. More
efficient agorithms use a* diding window” technique for computing the sequence of minimumsin
O(N)and O(N +1) time. Thistechniquecomputesarecurrencesuchas D; = min;_,<;<;{F;} by
incrementally constructingalist of indices (i, i, . . ., ix] for each j. Index ¢; denotesthe minimum
value in the current window, index iy denotes the minimum value to theright of 7, index i3 gives
the minimum to the right of 75, and so on until 75, which always denotes the rightmost value in the
window. The formal algorithmisas follows:

L+ []
for j < 0to N do
{ifL; <j—wthen

L + DéeteHead(L) 19
while Sze(1.) > 0 and ELSZQ(L) > E; do
L « DeleteTail(L)
L «+ Append(L, [])
D]‘ — EL1
}

using basic list operations DeleteHead, DeleteTail, Sze and Append. Thelist isupdated as the win-
dow advances by 1) removing the head of thelist if the window has slid past its value, 2) removing
successive vaues from thetail of thelist if the new valuein the window is smaller and 3) inserting
the new valueat thetail of thelist. The complexity of thisisO(V), sincethe valuefor each position
7 isinserted and deleted once from the list.

Thisalgorithmdirectly appliestotheexplicit spacing and repair interval recurrences above, since
the recurrence computing C' ; is simply a shifted version of the recurrence for D. The implicit
spacing’s front end problem can be solved by using the sliding window a gorithm to precompute
min{Cy | i + Imin, < k < i+ Imaz,} for each position0 < 7 < N. Then, C, |; ;; equasthe
precomputed value at i plusthe score associated with [z, j]. Notethat the precomputed val ue needed
by C ; ; 9enerally is not available when the overall algorithmisat position ¢, since the window for
¢ cannot be computed until C ; 11,44, iSavailable. But, sincetheimplicit spacing rangesfor theleft
and right endpoints cannot overlap, C, |; 5 can be safely computed anytime between i + lmaz, and
7+ rmin,.

Theapplicationto theimplicit spacing’sback end problemisnot asdirect. Inthiscase, thereare
possibly overlapping windowsof sizermaz, — rmin, + 1 where particular values hold, and the ob-
jectisto find the minimum of theval ues holding at each position j. Thiscan be solved using thedata
structure employed by the sliding window technique. As the overal agorithm progresses to each
vertex (s, j), thevauesof each C, ;. where 5’ + rmin, = j areinserted into the sliding window
data structure. They are deleted either when dominated by another value or when j + rmaz, = j.
The neighborhood for each C; (;; . is the same size, so a dominated value can be safely removed
from thelist sinceit can never again contributeto afuture C'; ; value. With thisa gorithm, the value
needed for each C'; ; always appears at the head of the sliding window’slist at ;.

The use of thisdliding window technique resultsin bounded spacer and repair interval computa
tionstaking O(N) time per graph row and in implicit spacing computationstaking O (N + I) time
per graph row.

5.2 RangeQuery Treesand Inverted Skylines

The sliding window a gorithms cannot be applied to proportiona and per-interval implicit spacing
because neighborhood widths vary between the input intervalsin /,. The matching graph changes
and recurrences are similar to that of fixed width spacing:

Cypij) = min{Cyx + o | [i,j] scoreso & i + Imin < k < i+ lmaz}
Cs,; = min{Cy i | [/,7 € I, & j' + rmin < j < j' 4+ rmaz}

where Imin, Imazx, rmin and rmax henceforth generically denote the neighborhoodsfor the rele-
vant input interval. Again, there are the “front end” and “back end” problems of computing C'; [; 4
from the values along row ¢ and computing each ' ; as the minimum of the applicable C'; ;..
For the front end problem, the algorithm computing the C, |; ; values must be able to satisfy
genera range queries over the valuesaong row ¢. These range queries ask for the minimum score
over anarbitrary range z toy, or min{C% ;, C¢ z41, . . ., Ct , }. Thesolutionisto buildarange query

Level 3: 20

Level 2:

Level 1:
stack of unfinished
sub-trees

Level O:

Co Ci1 Co GCz Ciy Cis Cip

Figure7 View of apartially constructed range query tree (dashed and dotted lines are |p and rp pointers).

tree from the values along row ¢ and use it to answer the queries. A range query treeisabinary tree
with N leaves, corresponding to the C; ; values, and with additional pointers pointing up the tree,
illustrated in Figure 7. Each node X in the tree contains seven values, denoted X.I, X.h, X.value,
Xleft, X.right, X.Ip and X.rp. Thefirst three values specify X’srange and the minimum value over
thet range, i.e. X.value = min{C x 1, Ct x.1+1, - - -, Ct.x.1}. Xleft and Xright point to the left and
right children of X inthebinary tree. X.Ip and X.rp point to ancestorsin the tree. Specifically, Y.rp
= Xand Y.Ip= Xlpforaleft childY of X, and ZIp= Xand Zrp = X.rpfor aright child 7 of X.
Thelp and rp pointers are used to answer the range queries z, y, as follows:

X ¢ Leaf, X ¢« Leaf,
v; + X.value v, + X.value
while X.rp # ni | and X.rp.h < y do while X.Ip # ni | and XIp.l > z do
{ X « Xrp { X «Xlp
v « min{vy, Xright.value} v, < min{v,, X.|eft.value}
} }
“min{v, v, } istheminimal valueof Cy ., Ct p41,...,Ct "

where Leaf, isthe leaf of the tree containing C; .. Thetwo traversals begin at Leaf,, and Leaf, and
move up thetree, using successiverp and I p pointers, to the nodewhich istheleast common ancestor
of the two leaves. The first traversal computes the minimum of the C; ;s from = to the midpoint
of the LCA'srange. The second traversal computes the minimum from the LCA’s midpoint to .
This can be shown in asimpleinductive proof, not given here, whose core argument usesthelemma
bel ow to show that each move up an Ip or rp pointer extends the range of the minimum computation
contiguously to the left or right, resp., of the current range.

Thetime taken by the query isO(log W), where W = y — =, sincethe range of X.Ip and X.rp
is at least twice as large as the range of each node X in the traversal and the range of the LCA is
< 2 W. Thus, arbitrary range queries can be satisfied in time logarithmic to the width of the range.

LEMMA 1. For anode X inarange query tree, 1) if X.Ip # ni | , then X.Ip.left.h =X —1 and 2)
if Xorp# ni |, then Xirpright.l = Xh41.

Proof. We give only the proof for X.Ip. There are two cases. First, if X.Ip.right = X (X isthe
right child of X.Ip), then X.Ip.left and X must bethetwo children of X.Ip. Then, X.Ip.left.hn must equal
X.l -1, sincethetwo children of anode dividethat node' srange in half. Second, if X.Ip.right # X
(implying that X.rp.left = X), then applying this proof inductively to X.rp yieldsthat X.rp.Ip.lefth=

Xrp.l —1. But X.Ip = X.rp.Ip by therange query tree definition. And X.I = X.rp.l, since X isthe &}
child of X.rp and so the leftmost leaf in both their subtrees must be the same node. Thus, X.Ip.left.h

=XI-1.[]
The construction of the range query tree occurs incrementally as the overall matching algorithm
producesvaluesof C; ;. It usesastack of (node,level) pairsto hold the roots of unfinished trees and

their levelsin the tree. Figure 7 showsthe state of the construction for ¢ = 6. The construction step
fori > 0is

Z + New() ; Zvalue «+ C;
(A, L) + Pop(Stack)
if L > 1then # The new leaf isaleft child, so create and push its parent
{ X < New(); Xleft — 7 ; X.Ip «+ Top (Stack).node
Zrp+ X ; Zlp+ Xlp
Push(Stack, (4, L)) ; Push(Stack, (X, 1))
}
else # I, = 1 and the new leaf isaright child, so find the root of the largest
now finished sub-tree, create and push its parent, and then set the
rp pointersfor the rightmost nodes of the finished sub-tree
{ Aright+ 7 ;ZIlp+ A
Z— A # In the loop, Z pointsto thefinished sub-trees’ roots
while Sze (Stack) > 0 and Top (Stack).level = L + 1 do
{ (A, L") «+ Pop (Stack)
Avalue + min{A.left.value, Aright.value}
Al « Aleftl ; Ah«+ Aright.h
Aright« 7 ;Zlp+ A
Z— AL«
}
X < New() # The new unfinished sub-tree root
Zrp+ X ; Xleft« 7
if Sze (Stack) > 0 then X.Ip « Top (Stack).node
Push(Stack, (X, L + 1))
for i+ L — 1downtoldo
{ Z « Zright; Zrp + Zlp.rp }
}

Operations Push, Pop, Top and Sze are the basi ¢ stack operationsand New creates a new tree node.
The constructionat « = 0 isequivalent to the case above where the new leaf isaleft child.

Whenthenew leaf storing C' ; isaleft childinthetree, it suffices to construct its parent and push
the unfinished parent on the stack. When the new leaf is aright child, the construction is finished
for theroots Ry, Ry, . . ., Ry of each sub-tree whose rightmost leaf isthe new leaf. The completion
involvesfirst an upwards pass through these roots, setting the pointersand minimum vauesfor each
R;. After the root of the new sub-tree whoseleft childis R, has been created, an downward passis
made setting each of therp pointersto that new root. ThisconstructiontakesO (V) timefor matching
graph row ¢, sincethe size of thetreeis2 N — 1.

The back end problem for proportiona and per-interval spacing takes the form of an inverted
skyline problem and can be solved using a binary search tree. If the possible C'; [;+ ;1 values which
can contribute to various C'; ; are plotted graphically, the picture takes the form of Figure 8. Each
horizontal line represents the contribution of one C [;» i, to the C; ; values (the values of j form

infinity — I e . — , 22
L e
S N I T |
R B s
I S ————— | |
L ' '
0 :
0 N

Figure8 Aninverted skyline.

the z-axis of the figure). The actual values of the C; ; are those found on the lowest line at each
position 7 in 0..N. The solutionisto keep a balanced binary search tree, ordered by score, holding
theC [;7 values applicableat each position j. Thusat j, C; ; istheminimal vaueinthetree. The
valueof each € ;» ;) isinserted and deleted from thetree at j* + rmin and j' 4+ rmaz, respectively.

By applying one efficiency “trick,” thetime taken by thisalgorithm can be bounded by O((N +
I)log W), where IV isthewidth of thewidest neighborhood. Thetrick isthat whenavaueC ;1
is being inserted into the tree, a query is made for any vaue in the tree which is to be removed at
7"+ rmaz. If no such value exists, the new value is inserted into the tree. If such a value exists,
only the lower scoring value is kept in the tree, since the higher score cannot contribute to a future
(s ;. Theuseof thistrick boundsthe size of the tree at 1 nodes. Thus, all queries, insertions and
deletionstake O (log W) time.

Theresult of thea gorithmsdescribed in thissection isthat proportional and per-interva implicit
spacing can be computed O ((N + 1) log W) time, where W isthe size of the widest input interval’s
nei ghborhood.

5.3 Minimum Envelopesand Affine Curves

In this section, we consider only the linear extension sections of the affine implicit spacing, bounded
spacersand repair intervals. Thefixed range sections of these affine scoring schemes can be handled
separately by the algorithms of Sections 5.1 and 5.2. For explicit spacers and repair intervals, extra
incoming edges must be added to vertex (s, j) from vertices (¢,0), (¢,1), ..., (¢, — maz — 1) and
from (¢,7 — min+1), (¢, j — min+2),..., (¢, 7). Thefollowing two recurrences capture the new
computationsrequired for those edges.

Ls;=min{Cyr+cl* (k— (j —min))|j—min <k <j}
R ; =min{Cip+cr* ((j —maz) — k) |0 < k < j—maz}

With these recurrences for an explicit spacer, C, ; = min{L,; + ¢, R, ; + ¢, .. the fixed range
recurrence. . .} where ¢ is the fixed range spacer cost. The repair interval case is similar, except the
recurrences dealing with the input intervals must also be included.

The extra edges for affine scored implicit spacing correspond to the the four affine curves given
in the specification and can be derived from the following four recurrences:

LLg ;5= min{Cy .+ lely + ((i + Imin) — k) |0 < k < i+ [min}

57[i7j

LR [; = min{Cyp + lery x (k — (14 Imaz)) | i+ lmaz < k < b} 23
RLs; = min{Cy [i 4 rely ((F" 4+ rmin) —5) | [(',j] € 1. &b < j<j +rmin}
RR, j = min{C\ y in +rerg + (j — (5" + rmaz)) | [, §'] € I, & '+ rmaz < j < N}

where Imin, Imax, rmin, rmaz and b genericaly denote the neighborhoods and boundary point
for an interval. With these recurrences, the computations for implicit spacing become

Cypij) = min{LLg; q+leq +0, LR, [; j+ lc, + o, .. .thefixed range computation. . .}
Cs; =min{RL; ; + rc,, RR,; 4 rec,, ...thefixed range computation. . .}

wherelc, and re, are the base implicit spacing costs and o isthe score associated for input interval
[i, 4]-

Therest of this section presents the algorithmsfor the six recurrences above by grouping them
intothreesets, 1) R, L.L and RR, 2) L and L R and 3) R L., based on the a gorithms used to compute
the recurrences. For each group, abstract forms of the recurrences are constructed which simplifies
the recurrences and better illustrates their commonality. Then, the solution for one representative
abstract form (per group) is presented, along with the complexity for the resulting algorithm. The
mapping back to the original recurrences is straightforward, and so not explicitly described.

The R, L L and RR recurrences can be abstracted as D1; = ming<p<;{Ex + c* (i — k) } for R
and LL and D2; = min{ Er jq+cx(i—k) | k = j'+rmaz < i} for RR. Inthisabstract form, each
D; isthe minimum of the candidates, f(m) = e, + ¢ * (m — k) from each position k& < ¢, that are
evaluated at ;. The difference between the two formsis that multiple candidates can occur with the
same k valuein the second form. All of the candidatesinvolvedinthe D1; (or D2;) equationshave
the same slope ¢. Because lines with different origins and the same slope must intersect either zero
or an infinite number of times, the minimum candidate at aposition: must remain minimum over the
candidatesfromk < i atevery ' > i. Therefore, only the current minimum at : isneeded to compute
future D, values, and therecurrence for each D can berewrittenas D1; = min{D;_; + ¢, F;} and
D2; = min{D;_1 + ¢, min{Epy ;n | j' + rmaz = i}}. These recurrences can be computed in
O(N)andO(N + I) timefor0 <i < N.

The L and LR recurrences take the abstract forms D; = minj<p<;{Er + ¢+ (k — [)} and
Dy; jy = mingcp<p{ Epi jy+ex (k—=1) |l = i+Imin & b = (j—1) xbprop,}. The D; formisaspecia
caseof Dy; ;;, where only onevalueisneeded for any position (rather than valuesfor each [4, 5]) and
where dl of thewidths: — [are of equal size (instead of the varying b — [). Only the solutionto the
more complicated Dy; ;) is presented here. Each Dy; ;; isthe minimum, at position /, of candidates,
f(m) = y+ c* (z — m), whose origin on the z-axis is somewhere between [and b. Considering
the Dy, ;; recurrence from the viewpoint of a particular position b, multiple Dy; ;) values might be
required at b, each with (5 —) x bprop = b and with differing [values. The solution isto construct
a data structure at each position b which storesV0 < m < b : ming,<p<p{Er + ¢ * (k — m)}.
Graphically, thisis illustrated in Figure 9 as the minimum envelope of the candidate linesfor 0 <
m < b. Thevalueof Dy, ;) isthen computed by searching the datastructureat b = (j — @) * bprop
for theminimal valueat m = i + [min.

The data structure constructed at each position b is an ordered list of the candidatesin the mini-
mum envelope and the sub-ranges of 0..6 in which each candidateis minimal. Since the candidates
ordered by their minimal sub-ranges are also ordered by their origin positions £ and since each can-
didateisminimal over acontiguousregion of 0..b by the zero or infinite intersection property, con-
structingthelistat b+ 1 fromthelist at b involves 1) removing candidates at thetail of thelist which
are eliminated by the new candidate with origin position at &6 + 1 and 2) inserting the new candi-
date at the tail of the list. Implementing the list with a balanced search tree yieldsan O(N log N)
construction agorithm and O (log V) searchesfor the I Dy; ; values.

24

dotted line indicates
minimum envelope

Figure9 Fivecandidate linesand their minimum envel ope.

The solution to the R L recurrence is essentially the inverse of the 1. R algorithm. The abstract
RI recurrence takes theform of D; = min{Ey jq + cx (h —j) | [/',j'] € I, whereb < j < h =
j'+rmin}. Graphicaly, the picturelookslikethat of Figure9 except that therangeisj.. N, not0..b,
and theinterva sare not evenly distributed at each position, but occur according to theindividual '+
rmin values. The agorithmisthe inverse of the previous agorithm for the following two reasons.
First, only thevalueat : must beretrieved fromthe datastructureconstructed at +, unlikethe previous
algorithm in which queries could vary over the range 0..b. Second, new candidates t j, i.e. the
candidatesfromeachinterval [¢’, j'] where (j'— ") xbprop = j, canhaveoriginpositions, j'+rmin,
anywhere from j to N. So, those candidates can be inserted anywhere into the minimum envel ope
of . Theconstruction of thelist at j + 1 fromthelistat j inthiscaseinvolves1) removing the head
of thelist if that candidate’s origin position j' + rmin = 7, 2) inserting the new candidates (where
(3" = ") xbprop = j+ 1) which will now appear in the minimum envelopeat j + 1 and 3) removing
the candidates from thelist at j which are eliminated from the minimum envel ope by the insertion
of the new candidates at j + 1. Steps 2 and 3 are equivalent to the procedure described in the last
paragraph for inserting new candidatesinto the LR data structure, except that theinsertion uses only
the sub-list of the current envelope which isminimal from 5 + 1 to 5/ + rmin, instead of the whole
list, and the candidate currently minimal at j' + rmin is not necessarily removed from thelist, as
it may still be minimal to theright of j' + rmin. Implementing this using a balanced binary search
treegivesan O((N + I) log N') time complexity to the algorithm, since the three construction steps
use a constant number of list operations.

Taken together, these four algorithms compute the linear extensionsto the affine scored explicit
spacers, implicit spacers and repair intervalsin O ((V + I) log V) time per matching graph row.

6 Conclusions

The domain of discrete pattern matching over sequences has matured to the point where an outline
for the problemsin that domain has been devel oped and a unifying framework, using edit graphsand
dynamic programming, for the solutionsto the problem domain has appeared. This paper presentsa
problem class forming the core of a discrete pattern matching domain over something more than just
sequences, namely intervals and interval sets. The characterization is such that 1) practical applica-
tions can be solved under this problem class, 2) a similar framework can be constructed for these
problems, and 3) theoretical differences from the edit-graph/dynamic-programming framework and
interesting algorithms appear at the edges of this domain.

Despitethe range of problems presented in this paper, some limitswere imposed on the problem
class. The effects of introducing negative length intervals are not considered. Distance-based scor-

ing schemes with concave or convex curves have been proposed as arealistic model for representi ﬁé
errors, yet thisextensionisnot explored. Finaly, thispaper concentrates on the algorithmsand com-
plexity for isolated super-pattern matching problems, and does not consider the overall agorithms
or overall complexitiesof recognition hierarchies.

References

[1]
(2]

(3]
[4]
(3]

6]

[7]

8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

Allen, F. E. “Control Flow Anaysis.” SSGPLAN Notices 5 (1970), 1-19.

Arbarbanel, R. M., P R. Wieneke, E. Mansfield, D. A. Jaffe, and D. L. Brutlag “Rapid searches
for complex patternsin biological molecules.” Nucleic Acids Research 12,1 (1984), 263-280.

Brzozowski, J. A. “Derivatives of Regular Expressions.” J. ACM 11 (1964), 481-494.
Earley, J. “An Efficient Context-Free Parsing Algorithm.” C. ACM 13,2 (1970), 94-102.

Fields, C. and C. A. Soderlund “gm: A Practical Tool for Automating DNA Sequence Analy-
sis” CABIOS6 (1990), 263-270.

Fujisaki, T., T. E. Chefaas, J. Kim, C. C. Tappert and C. G. Wolf *“Online Run-On Charac-
ter Recognition: Design and Performance.” International Journal of Pattern Recognition and
Artificial Intelligence 5 (1991), 123-137.

Guigd, R., S. Knudsen, N. Drakeand T. Smith “Prediction of Gene Structure.” J. of Molecular
Biology 226 (1992), 141-157.

Hecht, M. S. and J. D. Ullman “A Simple Algorithmfor Global Dataflow AnalysisPrograms.”
S AM J. Computing 4,4 (1975), 519-532.

Hirst, S. C. “A New Algorithm Solving Membership of Extended Regular Expressions.” draft.

Hopcroft, J. E. and J. D. Ullman Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Mass. (1979), Chapter 2.

Kasami, T. “An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free Lan-
guages.” AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, Mass. (1965).

Lapedes, A., C. Barnes, C. Burks, R. Farber and K. Sirotkin “Application of Neural Networks
and Other Machine Learning Algorithmsto DNA Sequence Analysis.” Computersand DNA,
SFI Sudiesinthe Sciencesof Complexity, vol. VI (Eds. G. Bell and T. Marr). Addison-Wesl ey,
Redwood City, CA. (1989).

Lathrop, R. H., T. A. Webster and T. F. Smith “Ariadne: Pattern-Directed Inference and Hier-
archical Abstractionin Protein Structure Recognition.” C. ACM 30,11 (1987), 909-921.

Lectures and discussions. Workshop on Recoghizing Genes. Aspen Center for Physics (May-
June, 1990).

Myers, E. W. and W. Miller “Approximate Matching of Regular Expressions.” Bull. Math.
Biology 51,1 (1989), 5-37.

Needleman, S. B. and C. D. Wunsch “A Genera Method Applicableto the Search for Similar-
itiesinthe Amino Acid Sequence of Two Proteins.” J. Molecular Biology 48 (1970), 443-453.

[17]

[18]

[19]

[20]

[21]

[22]

Sankoff, D. “Matching Sequences Under Deletion/InsertionConstraints.” Proc. Nat. Acad. %P
U. S A 69 (1972), 4-6.

Searls, D. “Investigating the Linguistics of DNA with Definite Clause Grammars.” Proc. of
the N. American Conf. on Logic Programming, Vol. 1 (1989), 189-208.

Stormo, G. “Computer Methodsfor Analyzing Sequence Recognition of Nucleic Acids.” Rev.
Biophys. Chem. 17 (1988), 241-263.

Wagner, R. A. and M. J. Fischer “The String-to-String Correction Problem.” J. ACM 21,1
(1974), 168-173.

Wagner, R. A. and J. |. Seiferas “Correcting Counter-Automaton-Recognizable Languages.”
S AM J. Computing 7,3 (1978), 357-375.

Younger, D. H. “Recognition and Parsing of Context-Free Languagesin Timen3.” Information
and Control 10,2 (1967), 189-208.

