
Photoreceptor morphogenesis and retinal degeneration:
lessons from Drosophila
Elisabeth Knust
Cells exhibit an amazingly wide range of different forms, and in

most cases the shape of a cell is crucial for performing its

specific function(s). But how does a cell obtain its particular

shape during development, how can the shape be adapted to

different environmental conditions, and what are the

consequences if morphogenesis is impaired? An ideal cell type

to study these questions is the photoreceptor cell, a

photosensitive cell present in most metazoa, highly specialised

to transform the energy from the light into a visual response. In

the last few years, studies in the Drosophila eye have led to a

considerable increase in understanding of the genetic control

of photoreceptor morphogenesis; lessons, which may apply to

other cell types as well. Most of the genes involved have been

conserved during evolution, and mutations in several of them

result in retinal degeneration, both in flies and humans. This

makes the fly eye an attractive model to unravel the genetic,

molecular and cell biological basis of the mechanisms that

prevent retinal dystrophies.
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The development of Drosophila photoreceptor
cells
The photoreceptor cells (PRCs) of Drosophila develop

from the eye imaginal disc, a single layered epithelium,

the cells of which exhibit a pronounced apico-basal

polarity and are closely connected by the zonula adherens

(ZA), an adhesive belt-like structure encircling the apex

of the cell. Specification of photoreceptor cells depends

on several signalling pathways [1], and ultimately results

in the formation of about 800 units, the ommatidia. Each

ommatidium is composed of eight PRCs, which are

associated with pigment and cone cells, and together

form the compound eye of the fly (Figure 1a and b).
www.sciencedirect.com
During pupal development, PRCs, which are still part of

the single-layered epithelium of the imaginal disc,

undergo a remarkable cell shape change. During this

process, the apical poles of the epithelial cells turn

through 908, such that the apical membranes of all eight

PRCs of each ommatium come to face each other. In

addition, the apical membrane becomes subdivided into

two distinct regions: the central, most apical part develops

into the rhabdomere, a highly pleated array of microvilli,

which forms the light-sensing organelle, and the subapi-

cal stalk membrane, which connects the rhabdomere with

the ZA. The formation of the rhabdomere is associated

with a conspicuous deepening of the retina, resulting in

an increase in depth from about 20–100 mm [2]. During

this process, the rhabdomeres of the PRCs of one omma-

tidium, which are initially attached to each other, separ-

ate. Concomitantly, a central lumen is formed, into which

the rhabdomeres protrude (Figure 2a and b).

One of the prominent features of PRC development is a

tremendous increase of the plasma membrane during

pupal development, in particular an expansion of the apical

surface to accommodate the huge amount of rhodopsin and

other components involved in phototransduction. The

increase of the apical surface is manifested by the for-

mation of about 50 000 microvilli, each of which is�1.5 mm

in length and only 50 nm wide. Actin filaments, associated

with Myosin III, extend the entire length of each micro-

villus [3]. Any defect in the biogenesis and differentiation

of the rhabdomere has an impact on the shape of the whole

cell. To dissect this process, several questions can be

addressed: (i) What determines apical membrane identity

of PRCs and the subdivisions of the apical membrane into

stalk and rhabdomere? (ii) Which mechanisms are respon-

sible for the delivery of a huge amount of membrane to

allow the formation of the rhabdomere? (iii) How do the

rhabdomeres become separated from each other, that is

how is the lumen in each ommatidium formed?

Differentiation of the apical membrane of
photoreceptor cells
During the first half of pupal development, components

marking the apical membrane of PRCs, such as actin or

members of the Crumbs-complex, that is Crumbs, Star-

dust and DPATJ, co-localise apical to the adherens junc-

tions. Specification of the apical membrane depends on

bazooka, the fly homologue of Par-3 [4]. Bazooka encodes

a scaffolding protein with three PDZ-domains and in

some cells it can interact with DPar-6 and an atypical

protein kinase C (DaPKC) to form the Par-complex.
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Figure 1

The Drosophila compound eye. (a) (i) Scanning electronmicrographs of an eye of the adult fly (a’ higher magnification). The eye is composed of

about 800 ommatidia, covered by lenses with a typical hexagonal shape. In every other vertex a bristle is formed. (b) A horizontal section through a

wildtype eye. In each ommatidium seven photoreceptor cells can be distinguished by their dark rhabdomeres, which are arranged in a stereotype

trapezoid pattern. The ommatidia are separated from each other by pigment cells. (Both pictures kindly provided by F. Grawe, Düsseldorf).
Bazooka localises to the ZA in early pupal PRCs, and to

the rhabdomere in the second half of pupal development.

In ommatidia lacking bazooka actin staining is fragmented

and randomly positioned. Armadillo, a marker of the ZA,

is disrupted and the stalk membrane marker DPATJ is

absent or randomised. This points to an essential function

of bazooka for polarisation of the PRC, and parallels its

function in other cell types, such as the embryonic

epithelium [5]. In epithelial cells of the follicle, the

Ser/Thr-kinase Par-1 is required to exclude Bazooka from

the baso-lateral side, thereby restricting it to the apical

membrane [6]. In pupal eye discs, Par-1 does not affect

apico-basal polarity, but rather seems to have a function in

proper elongation of the ZA [7].

Once the apical membrane has been specified, it becomes

subdivided into two functional domains, the most apical

(rhabdomeric) and the subapical (stalk) domain. This

subdivision is initiated at about 50% of pupal develop-

ment by the segregation of apical markers, so that actin

now highlights the most apical part of the membrane, the

incipient rhabdomere, and the members of the Crumbs

complex demarcate the stalk membrane (Figure 2c). The

subdivision requires the recruitment of PTEN, a lipid

phosphatase, to the ZA. This is mediated by Bazooka,

which can directly interact with PTEN [8��,9��]. PTEN,

in turn, is known to regulate the balance between phos-

phatidylinositol(3,4,5)-trisphosphate [PtdIns(3,4,5)P3]

and PtdIns(4,5)P2 by promoting PtdIns(3,4,5)P3 degra-

dation, and hence has an influence on its controlled

accumulation on the entire apical surface. Loss of PTEN

from PRCs results in enhanced accumulation of the Ser/

Thr kinase Akt1 on the apical surface. As a result, about

50% of PRCs lack the apical membrane, and 20% show

split rhabdomeres, in which the interrupted membrane is
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positive for stalk-specific components, such as Crumbs or

DPATJ [9��]. The results indicate that the fine-tuned

regulation of phosphoinositide levels is crucial for the

proper differentiation of the apical membrane. This

seems to be a conserved mechanism, which has been

implicated in the migration of Dictyostelium cells [10,11]

and during polarisation of epithelial cells in culture [12].

After separation of the rhabdomere and the stalk, growth

of these two membrane domains, in particular the rhab-

domere, takes place. Mutant PRCs lacking the transmem-

brane protein Crumbs or the scaffolding proteins Stardust

or DPATJ show two phenotypic traits: (i) a �50%

reduction in the length of the stalk membrane and (ii)

a failure to properly elongate the rhadomere

[4,13,14,15��]. As demonstrated by the investigation of

different stardust alleles [15��] and a structure-function

analysis of crumbs (M. Richard and E. Knust, unpub-

lished), these two processes can be functionally separated

and are likely to depend on different interacting partners

of the complex. In wildtype PRCs, the members of the

Crumbs complex form a protein scaffold localised at the

stalk membrane, the activity of which must be tightly

regulated. This is mediated by Yurt, a FERM (4.1-ezrin-

radixin-moesin) protein [16��]. Yurt is initially localised at

the baso-lateral membrane of developing PRCs, but is

recruited to the apical stalk membrane at the end of pupal

development, a process that depends on crumbs. Yurt can

bind via its FERM domain to the cytoplasmic domain of

Crumbs, which contains a conserved FERM-binding

motif. Loss of yurt results in an expansion of the stalk

membrane, a phenotype similar to that observed upon

overexpression of Crumbs [13] and opposite to that of loss

of crumbs or stardust. Drosophila yurt is the orthologue of

zebrafish mosaic eyes, which is necessary for the normal
www.sciencedirect.com
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Figure 2

Development and structure of the Drosophila compound eye. (a)

Schematic representation of photoreceptor cells at 45% and 70% pupal

development and in the adult. Green: ZA, blue: rhabdomere, red: stalk.

In late pupal stages and in the adult eye the rhabdomeres are separated

by a central lumen (dark grey), the interrhabdomeral space. (b) Cross-

section through an ommatidium of an adult wildtype fly. (Kindly provided

by F. Grawe, Düsseldorf). (c) Optical cross section through an

ommatidium of an adult wildtype fly, stained with Armadillo (green), to

highlight the ZA, actin (blue) to stain the rhabdomere and Stardust (red)

to label the stalk membrane. (Kindly provided by N. A. Bulgakova,

Dresden). (d) Schematic representation of an adult ommatidium,

indicating the different domains discussed in the text. The localisation of

the different proteins are indicated by the corresponding colour.
lamination of the retina [17��]. Zebrafish rod photo-

receptors lacking mosaic eyes exhibit an expanded outer

segment, which is part of the apical membrane and

functionally equivalent to the rhabdomere of the fly’s

eye. As in Drosophila, the mosaic eyes phenotype is oppo-

site to that of eyes mutant for crb2a, one of the zebrafish

crumbs genes. Similarly, in PRCs lacking crb2b function

the inner segments, which constitute part of the apical

membrane, are significantly shorter [18]. This further
www.sciencedirect.com
highlights the conserved function of the Crumbs complex

and its regulators in the differentiation of apical mem-

branes from flies to vertebrates.

The Crumbs complex is also required for the proper

elongation of the rhabdomere [4,13,14,15��,19–21].

Recent results on stardust provide evidence that the

elongation of the rhabdomere and the length of stalk

are independently controlled: one stardust allele, sdtN5,

which expresses lower amount of proteins, shows a

reduced length of the stalk membrane, but normal

elongation and shape of the rhabdomeres [15��]. stardust
encodes scaffolding proteins of the membrane-associated

guanylate kinase (MAGUK)-family of proteins. They

recruit the transmembrane protein Crumbs and the scaf-

folding protein DPATJ and DLin-7 into a complex, which

is localised at the stalk membrane (Figure 2c).

The cytoskeleton and trafficking control
morphogenesis of the rhabdomere
Elongation of the rhabdomere requires an elaborate actin-

based cytoskeleton to sustain the constraints acting on the

apical pole. The rhabdomere terminal web (RTW) defines

the PRC cytoplasmic region next to the base of the

rhabdomere. A fusion protein composed of GFP and the

actin-binding site of Moesin highlights the RTW as

bundled microfilaments that expand from the rhabdomere

base deep into the PRC [22]. The RTW is comparable to

the terminal web of other epithelia, for example, that of the

intestine, underlying the microvilli. One of its organisers is

Drosophila Rac1 (DRac1), a monomeric GTPase. Expres-

sion of a dominant negative form of DRac1 impairs the size

and organisation of the rhabdomere and reduces the num-

ber of microvilli formed [22]. In addition, the rhabdomere

base is not formed. The rhabdomere base (see Figure 2d) is

a specialised, highly dynamic region of the rhabdomere

adjacent to the cytoplasm [23], and is a site of cytoskeletal

organisation and membrane traffic (see below). One of the

proteins associated with the rhabdomere base is Moesin, a

member of the FERM (4.1-ezrin-radixin-moesin)-protein

family. These proteins have been shown to act as cross-

linkers between the actin cytoskeleton and the apical

plasma membrane, in particular in epithelial cells, and

thus play a structural role by anchoring the actin filaments.

In PRCs, Moesin is localised to the rhabdomere base

immediately adjacent to the base of the rhabdomere.

Loss of Moesin severely disrupts the apical organisation

of PRCs, including the structure of the membrane cytos-

keleton and the microvilli, but does not alter the integrity

of the junctions [24].

In addition to its function in dynamic reorganisation of

the actin cytoskeleton, the RTW is also the site of intense

membrane trafficking. Rhodopsin is abundantly synthes-

ised in PRCs, in particular during the end of pupal de-

velopment, when the rhabdomere forms. The small

GTPase Rab11 localises to the trans-Golgi network and
Current Opinion in Neurobiology 2007, 17:541–547



544 Neuronal And Glial Cell Biology
the base of the rhabdomere. Inhibiting Rab11 function

results in defects in rhodopsin delivery to the apical

membrane and its accumulation in the cytosol [25]. As

a consequence morphogenesis of the rhabdomere is

impaired, which is consistent with the notion that Rho-

dopsin, besides its function in light reception, plays an

essential structural role during PRC morphogenesis [23].

Rab11 forms a complex with dRip11 (Drosophila Rab11

family interacting protein) and myosin V (MyoV). Redu-

cing the function of either of these genes impairs rho-

dopsin transport to the apical membrane and leads to its

accumulation in the cytoplasm. Reduced function of
Table 1

Summary of Drosophila proteins discussed in the text

The colours indicate the major sites where these proteins are localised in

Current Opinion in Neurobiology 2007, 17:541–547
MyoV additionally results in defective apico-basal

polarity, manifested by the formation of supernumerary

rhabdomeres at the lateral membrane of PRCs. This

phenotype has been suggested to be the result of an

impaired function of MyoV in pulling post-Golgi

secretory vesicles, containing rhodopsin and other

proteins, along polarised microfilaments through the api-

cal RTW, thus delivering them to exocytic targeting

patches at the base of the rhabdomere [25,26�].

Morphogenesis of rhabdomeres is also compromised in

mutant eyes with reduced function of Sec6. Sec6 is a
the adult eye and refer to those shown in Figure 1d.

www.sciencedirect.com
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component of the exocyst. In late pupal stages and in the

adult eye it is co-localised in the rhabdomere together

with Sec 5 and Sec8, two other components of the exocyst

complex, which has been implicated in apical exocytosis

in many different cell types. Strikingly, Sec6 only affects

transport of rhodopsin, which is targeted to the most

apical region, the rhabdomere, but has no affect on

proteins targeted to the subapical stalk or to the basolat-

eral membrane [27].

Formation of the interrhabdomeral space
During pupal development, the apical membranes of the

eight PRCs of each ommatidium, which are juxtaposed,

are initially in close contact with each other. As pupal

development proceeds and the rhabdomeres are formed,

they become separated, thus forming a lumen, called the

interrhabdomeral space (IRS). Flies mutant in spacemaker
(spam)/eyes shut (eys) or prominin ( prom) fail to form the

IRS, and eyes of adult flies exhibit fused rhabdomeres

and lack the central lumen [28��,29��]. spam encodes a

secreted protein related to the proteoglycans agrin and

perlecan, with 14 EGF-like and 4 Laminin G-like

domains, and is secreted into the IRS. prom encodes a

pentaspan membrane glycoprotein, similar to the mam-

malian prominin, and is localised on the stalk membrane

and the apical portions of the microvilli. When expressed

in cultured cells, secreted Spam can bind Prom localised

on the plasma membrane. Spam and Prom have been

suggested to counteract the adhesive forces between

rhabdomeres, mediated by the GPI-linked protein

Chaoptin, thus allowing the formation of the IRS.

The fly eye as a model for retinal degeneration
in human
Most of the genes described above (Table 1), which

are required for PRC morphogenesis of the Drosophila
eye, have mammalian orthologues. Strikingly, some of

the genes mentioned are required in the fly to prevent

degeneration of PRCs, and perform a similar function

in the mammalian eye. For example, loss of Drosophila
crumbs, DPATJ, stardust (some alleles) and yurt
leads to progressive light-induced PRC degeneration

[14,15��,16��,20]. Similarly, mutations in mammalian

Crb1 result in retinal degeneration in the mouse and

RP12- and LCA-related blindness in human [30–33].

Mice lacking ezrin exhibit a delay in the development

of the PRCs. This is because of severe defects in the

microvilli of Müller glia cells and cells of the retinal

pigment epithelium, both of which are essential for the

health of the PRCs [34]. Finally, Prominin-1 (CD133) is

associated with plasma membrane protrusions in many

mammalian cells, for example, in apical microvilli of

epithelial cells and the base of the rod outer segment

of the PRC. Mutations in PROMININ-1 cause autosomal

recessive retinal degeneration in human [35] and the

knockout of mouse prominin-1 results in the complete

loss of PRCs in older animals [36].
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In addition, mutations in many of the components necess-

ary for the signal transduction itself, such as the light

receptor, Rhodopsin, the trimeric G-protein activated by

it or components required for signal transduction in the

cell, such as phospholipase C, also lead to retinal degener-

ation in the fly, (see [37��] for a recent review on photo-

transduction and retinal degeneration in the fly). In some of

the mutants, light-induced degeneration is likely to be

caused by the endocytosis of a stable Rhodopsin/arrestin

complex. In wildtype eyes, the light-induced signal trans-

duction cascade is turned off by the formation of a complex

between metarhodopsin, the activated form of rhodopsin,

and arrestin2. The metarhodopsin-arrestin2 complex in

turn dissociates upon further modification of its com-

ponents. In a subset of retinal degeneration mutants, such

as arr2, norpA, rdgB or rdgC, the metarhodopsin-arrestin2

complex is abnormally stable, and its endocytosis induces

apoptosis of the cells by a still unknown mechanism

[38,39]. Light-induced retinal degeneration in these

mutants can be rescued by feeding larvae with a vitamin

A-depleted medium [38,39], which reduces rhodopsin

levels by over 95% [40]. Similarly, light-induced retinal

degeneration in crumbs, stardust and DPATJ mutant eyes

can be rescued by vitamin A depletion [14,15��,20].

The high degree of conservation of genes preventing

retinal degeneration in flies and mammals is striking, in

particular when considering the differences with respect to

the development and the organisation of the eye in flies

and mammals as well as the physiological differences

during light-induced signal transduction. At the same time

they suggest that these genes affect fundamental cell

biological processes conserved between arthropods and

vertebrates. Using the fly eye as a model will enhance

our understanding of the cell biological, genetic and mol-

ecular basis of these processes and certainly will have a

major impact on understanding the origin of the human

diseases resulting from defects in the conserved genes.
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