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Automatic alignment (registration) of 3D images of adult fruit fly brains is often influenced by the signif-
icant displacement of the relative locations of the two optic lobes (OLs) and the center brain (CB). In one
of our ongoing efforts to produce a better image alignment pipeline of adult fruit fly brains, we consider
separating CB and OLs and align them independently. This paper reports our automatic method to seg-
regate CB and OLs, in particular under conditions where the signal to noise ratio (SNR) is low, the varia-
tion of the image intensity is big, and the relative displacement of OLs and CB is substantial.

We design an algorithm to find a minimum-cost 3D surface in a 3D image stack to best separate an OL
(of one side, either left or right) from CB. This surface is defined as an aggregation of the respective min-
imum-cost curves detected in each individual 2D image slice. Each curve is defined by a list of control
points that best segregate OL and CB. To obtain the locations of these control points, we derive an energy
function that includes an image energy term defined by local pixel intensities and two internal energy
terms that constrain the curve’s smoothness and length. Gradient descent method is used to optimize this
energy function. To improve both the speed and robustness of the method, for each stack, the locations of
optimized control points in a slice are taken as the initialization prior for the next slice. We have tested
this approach on simulated and real 3D fly brain image stacks and demonstrated that this method can
reasonably segregate OLs from CBs despite the aforementioned difficulties.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The GAL4-enhancer trap technique, which can block or enhance
selected populations of neurons in a nervous system, is very pow-
erful to study the neuronal circuits in a fruit fly (Drosophila melano-
gaster) brain [1–4]. It has become increasingly common to use
confocal and multi-photon laser scanning microscopy to directly
acquire three-dimensional (3D) image stacks of the entire brain
of a fly of a GAL4 line, and thus to study its structures and functions
[5]. Automated alignment (registration) of 3D images of fruit fly
brains is a critical technique for high-throughput analysis of neuro-
nal patterns [6]. However, as shown in Fig. 1, the two optic lobes
(OLs) are loosely connected with the center region of the fly brain
via the neuronal bundles. This loose articulation of the two OLs and
the center brain (CB) significantly changes the local context at the
boundary between OLs and CB from brain to brain. Such variations
present difficulties to our automated registration technique. This
paper reports an automatic method to segregate CB and OLs, espe-
cially for the situation where the signal to noise ratio (SNR) is low,
ll rights reserved.
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the variation of the image intensity is big, and the relative displace-
ment of OLs and CB is substantial.

Previous neuro-anatomatical studies have relied on manual or
semi-automated methods to identify and delineate brain struc-
tures [7–9]. However, these manual methods are tedious and error
prone. There are many existing studies on segmentation of brain
regions from 3D Magnetic Resonance (MR), Computed Tomogra-
phy (CT) images and microscopy. Xu et al. [10], Pham et al. [11],
Shapiro and Stockman [12], and Kolmogorov and Rother [13] pro-
vide comprehensive reviews on segmentation using different
methods. There are also a few reports on segmenting brain struc-
tures for display from microscopy images [14,15]. Nevertheless,
these methods do not fit our purpose. For example, one of the most
prominent level set based techniques from Chan and Vese [16]
could only work up to a certain extent. One of the best results
we obtained using Chan–Vese method is through initialization
for which we placed circles of 30 pixels radii one by one next to
each other over the whole image as initialization (Fig. 2a) and set-
ting the smoothness parameter as 0.1 on the slice shown in Fig. 1.
The respective Chan–Vese segmentation result is shown in Fig. 2b.
While the Chan–Vese method could generate reasonable segmen-
tation result for OL for this image, it can be noticed that the
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Fig. 1. Tri-view of a fruit fly brain and the 3D segmentation surface detected using
our deformable model. Painted in blue regions are the segmented optic lobes. The
remaining is the center brain. Top-left panel: frontal plane; top-right: sagittal
plane; bottom-left: horizontal plane.

64 S.C.B. Lam et al. / Methods 50 (2010) 63–69
segmentation of CB is broken into several separate regions (over-
segmentation). The problem still exists after morphological hole-
filling procedure. Thus further image region grouping algorithms
have to be developed to merge the broken regions. Differently,
the work presented in this paper gives the first attempt to success-
fully automate the segmentation of articulated structures in an
insect’s brain image.
2. Image data

In this study we consider fruit fly GAL4 lines produced in the
labs of Julie Simpson and Gerald Rubin. The synaptic neuropiles
Fig. 2. (a) Initialization of Chan–Vese level set algorithm on the slice shown in
Fig. 1. Circles of 30 pixels radii are placed one by one next to each other over the
whole image as initialization. Smoothness parameter is 0.1. (b) Segmentation result
on the slice shown in Fig. 1 using Chan–Vese level set algorithm after 500 iterations
followed by morphological hole-filling procedure. The center brain is segmented as
several sub-regions.
in the brain tissue are stained using monoclonal antibody nc82
[17], which in turn visualizes the entire shape of a brain. This
nc82 neuropile stain is used as the reference channel in our Janelia
3D Brain Aligner (JBA) pipeline (Peng, et al., unpublished work).
Since in this study we do not use other fluorescent channels in
these data, the irrelevant specimen preparation details are skipped.

Whole-mount fly brains are scanned with a Zeiss 510 confocal
laser scanning microscope with a Plan Apochromat� 20� NA 0.75
lens. Frontal series of entire brains are taken, with a typical optical
voxel resolution 0.6 � 0.6 � 1 lm3. With these settings, image
stacks of 200 ± 20 slices are obtained from complete scanning of
whole-mount brains. Fluorochrome excitation of the nc82 stain is
set to 568 nm; the respective emitted fluorescence signal is de-
tected in the range of 607–701 nm.

All the images were first globally aligned to a ‘‘standard” target
brain to have an ‘‘up-right” orientation (similar to Fig. 1) and a
‘‘standard” size of 1019 � 601 � 216 voxels, using the automatic
global affine alignment module in JBA. This global alignment step
facilitates the following segmentation procedure to be fully
automated.
3. Methods

3.1. Overview

In our method, segmentation is operated based on the analysis
of the background (dark regions in-between OL and CB), because
this region is usually homogenous throughout all slices. The objec-
tive is to find a minimum-cost 3D surface in this region that best
separates an OL (either left or right) and CB. In the following we
consider two methods, namely deformable model method and
shortest path method.

Note in Fig. 1 that the separating surface/curve is optimized to
go to the darkest image region but not to the bright part. To avoid
possible confusion of the formulation below, we define a concept
of ‘‘negative image”, which is to replace an 8-bit image voxel inten-
sity value I using 255-I. Thus for the negative image, the separating
surface/curve goes to the bright image region.

3.2. Deformable model method

Given an input image f(x, y, z), the segmentation problem is for-
mulated as finding a deformable cutting surface defined in a 3D
mesh, which is defined by a number of control points in the 3D
coordinate system. Since the brain structures change gradually
from one slice to another, the optimized control point locations
in the present slice are taken as the prior for the next for initializa-
tion. This sequential operation reduces the optimization over a sur-
face to a curve. The K control points of the deformable curve in
each z-slice are defined as ck(xk, yk), k = 1,2, . . ., K.

Let’s consider separating one OL from CB at one time. For each
slice, the segmenting curve is a collection of control points having
the minimum energy defined by the energy function below:

E ¼ aEimage þ bElength þ cEsmoothness; ð1Þ

where Eimage is the external energy term, and Elength and Esmoothness

are the two internal energy terms. The coefficients a, b, and c are
weighting parameters which control the relative contributions of
the various energy terms to the final curve. Eimage drives the control
points to the region where the intensity is the minimum (i.e. max-
imum in the ‘‘negative image”), Elength constrains that the deform-
able curve is least bended, and Esmoothness constrains the
deformable curve to be smooth. The deformable curve evolves from
the initialization curve devised from the previous slice. Fig. 3 illus-
trates the algorithm. Since a segmentation curve is obtained for



Fig. 3. Illustration of deformable model algorithm. The control points ck (red circles) inside the blue box in (a) are magnified and shown in (b) as pointed by the green arrow.
For each control point, the respective image energy and internal energy terms are defined (see main text for details).
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each slice and the z resolution is high (e.g. 0.6 lm), aggregation of
these curves forms a smooth 3D segmentation surface. Note that
this deformable model is modified from our earlier deformable
curve model defined for straightening elongated and curved image
objects [18]. The differences are explained in the following.

First, Eimage is computed as

Eimage ¼
XK

k¼1

kck �mkk2
; ð2Þ

where mk ¼ ðmkx;mkyÞ is center of mass of the squared pixel inten-
sity in the window, calculated as mk ¼

P
i2WðckÞf

2
i ri=

P
i2WðckÞf

2
i . fi is

the image intensity at pixel (xi, yi) and ri ¼ ðrix; riyÞ is the offset be-
tween (xi, yi) and the origin of the coordinate system. A rectangular
window W(ck) of size 41 � 21 (width � height) in each slice is set
for each ck to calculate mk. Different from [18], which considers
Delaunay triangulation to define a local window around each con-
trol point, here we always consider a local rectangular window,
and also constrain the control points to move horizontally.

Since we are considering a curve in 2D, the length constraint is
formulated such that it favors small lengths between adjacent con-
trol points. Therefore, an energy term Elength is defined in Eq. (3) be-
low, which is the sum of the squared distances between all
consecutive pairs of control points.

Elength ¼
XK�1

k¼1

kck � ckþ1k2
: ð3Þ

Regarding the smoothness constraint, the energy term Esmoothness

is defined as

Esmoothness ¼
XK�1

k¼2

kck �
1
2
ðck�1 þ ckþ1Þk2

; ð4Þ

which favors evenly spaced control points as Esmoothness is 0 when
ck = (ck�1 + ck+1)/2 for every k.
Since the intensity profile inside W changes during every itera-
tion of the minimization process, it is difficult to formulate the
minimization as in classic snake/active contour [19,20]. Instead,
we adopted the formulation described in [18] where, if E is mini-
mal, the respective derivatives at the locations of control points
must be 0:

@E
@ck
¼ a

@Eimage

@ck
þ b

@Elength

@ck
þ c

@Esmoothness

@ck
¼ 0: ð5Þ

Substituting the energy terms defined in Eqs. (2)–(4) into Eq.
(5), it gives for any k 2 {3, . . ., K � 2},

0 ¼ aðck �mkÞ þ bð2ck � ck�1 � ckþ1Þ þ cð2ck �
3
2

ck�1 �
3
2

ckþ1

þ 1
2

ckþ2 þ
1
2

ck�2Þ: ð6Þ

Equation (6) suggests one way to minimize the objective func-
tion in Eq. (1) is to iteratively adjust the locations of the control
points by solving Eq. (6) for ck:

cnew
k  

amk þ bðck�1 þ ckþ1Þ þ cð32 ck�1 þ 3
2 ckþ1 � 1

2 ck�2 � 1
2 ckþ2Þ

aþ 2bþ 2c
:

ð7Þ

For the boundary cases k 2 {1, 2, K � 1, K}, we just state the
equations below as their derivation is straightforward:

cnew
k  

m1 for k ¼ 1
am2þbðc1þc3Þ

aþ2b for k ¼ 2
amK�1þbðcK�2þcK Þ

aþ2b for k ¼ K � 1

mK for k ¼ K

:

8>>>><
>>>>:

ð8Þ

To improve the robustness of the algorithm, we further con-
strain a control point to move only along the direction of the first
principal axis (i.e. left–right axis) of the brain. For brains that have



Fig. 4. Slice snapshots of a correctly segregated fly brain by (A) deformable model – green line, and (B) shortest path method – red line. Deformable model method correctly
segments the OL and CB in all slices while shortest path method gives incorrect result in Slice 68.

Fig. 5. Cutting surface in 3D obtained from deformable model method.
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been globally aligned so that the left–right axis is horizontal as
shown in Fig. 1, we only need to adjust the x coordinate of ck. This
further simplifies the algorithm.

The algorithm starts from initialization of the deformable curve
as a straight line, with control points evenly space in every 10 pix-
els in y-direction in the first slice of a 3D stack. Once the optimized
curve for each slice is obtained, linear interpolation is carried out
for each pair of control points (ck and ck+1) in the curve. For each
y value, the corresponding x value is calculated as

x ¼ ykþ1 � y
ykþ1 � yk

xk þ
y� yk

ykþ1 � yk
xkþ1: ð9Þ

Fig. 4 shows the segmentation results of several 2D slices ex-
tracted from a 3D image. Green lines represent the resulting curves
in extracted slices using deformable model method, while the red
lines represent the results from shortest path method. The surface
generated by aggregating all these curves is shown in Fig. 5.

We note that in the formulation of Eq. (1), a ‘‘prior energy” term
can also be added to incorporate the prior information of how the
deformable curve should look like.
3.3. Shortest path method

We also formulate another method to find the cutting curve
based on the graph theory. An undirected graph is computed for
each 2D slice, in which each pixel is a vertex v = (x, y) and every
pair of spatially adjacent pixels form an edge. The weight (x) of
each edge is defined as the product of the Euclidean distance, d, be-
tween its two vertices (vi and vj) and the square of the sum of their
intensity values I(vi) and I(vj) as in Eq. (10),

Eðv i; v jÞ ¼ xðv i; v jÞ ¼ ðIðv iÞ þ Iðv jÞÞ2 � d ð10Þ

We then use Dijkstra’s algorithm [21] to find the lowest-weight
path in the graph, which represents the curve that separates OL
and CB. An example result is shown as the red lines in Fig. 4.
4. Experiments

Several experiments were done to test the accuracy and robust-
ness of the proposed methods.
4.1. Response to brain surface–shape irregularity

In order to quantitatively assess the performance of the algo-
rithms, we produced a simulated brain (400 � 350 � 140 voxels)
which encapsulates most of the characteristic features of a real
adult fruit fly brain which include shape peak, sandal regions,
and surface with slow varying irregularity. Fig. 6a shows the 3D
volume rendering of this simulated brain generated from a combi-
nation of predefined ellipsoids. Uniformly distributed random
noises were added to the surface of these ellipsoids to simulate
local shape irregularities. Noises of different levels (s =
{0, 0.1, 0.3, 0.5}) were applied. Furthermore, zero-mean Gaussian
image noise with variance of 0.1 was added to deteriorate the
image quality of every image.

Fig. 6b shows a slice (slice 71) selected from the 3D volume in
Fig. 6a, with different shape and image noises added. The areas
covered by blue masks indicate the OL segmented by deformable
model method with a = 1, b = c = 0.3. With shape noise of different
levels added, the zoom-in figures of the region indicated by a yel-
low square in Fig. 6b are shown in Fig. 6c to illustrate the effect of
different noise levels (s). The surface becomes fuzzier as s in-
creases. Fig. 6d shows the results with different b values towards
different levels of shape noises. The diamonds ‘‘ ” and crosses
‘‘ ”, respectively, denote correct segmentations and major errors,
determined by visual inspection of the results of various noise lev-



Fig. 6. Simulation study with different surface shape noise levels. (a) Simulated fly brain in 3D. (b) Slice 71 taken from (a). (c) Zoom in of (b) with different levels of shape
surface noise (s) added (from top to bottom: s = 0, 0.1, 0.3, 0.5). Zero-mean Gaussian image noise with variance of 0.1 is added to all images. (d) Segmentation result of brains
of different shape noise level using deformable model method with different b values and shortest path method. Diamonds ‘‘ ” denote correctly segmented result and
crosses ‘‘ ” denote major segmentations errors found at the corresponding noise level and b value by visual inspection. (e) A major segmentation error is found at the tip of
the right OL as indicated by the white arrow.
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els and b values. The deformable model method could successfully
segment the OL up to shape noise level equaled to 0.3 with most b
values. The maximum time to complete a segmentation of a 3D im-
age was 60 s. When b increases to 0.4 and 0.5, image with s = 0.5
was also successfully segmented. However, the time required
was much longer (>10 min). Fig. 6e shows a typical example of ma-
jor error defined by our assessment criteria. The right OL was
slightly wrongly segmented at the tip, indicated by a white arrow.
Compared to the shortest path method that fails to produce correct
Fig. 7. Examples of major and minor errors. (a) Major error was found on the right sid
several control points were trapped in the local minima in previous slices. (b) Minor erro
indicated by the red arrow. The error arises because CB is blurry and the gap between O
segmentation in all cases, the deformable model method is signif-
icantly more reliable. The shortest path method is also much
slower: on average it took 400 s to process an image.

4.2. Response to variation in OL–CB distance and image noise

The area of the dark region between OL and CB varies from one
brain to another. In order to test the robustness of the methods, an-
other synthetic model having different simulated distances be-
e. The green curve cut into a significant region of the right OL. It occurred because
r was found on the left side. The green curve cut on a small region belonged to CB as

L and CB is very small.



Fig. 8. Segmentation of model fruit fly brain of various image noise variances (r2) and distance between OL and CB. Results from deformable model method with different b
values and shortest path method are presented. Diamonds ‘‘ ” denote correctly segmented results and crosses ‘‘ ” denote major segmentation errors found from the
corresponding OL and CB separation, noise level and b value by visual inspection. Blue masks in the left column represent the segmented regions.

Table 1
Segmentation results of real adult fruit fly brain images with different parameters.

a 1 1 1 1
b and c 0 0.1 0.3 0.5

Accuracy (%) 36 69 92 76
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tween OL and CB was made from a real adult fruit fly brain. We
generated these 3D volume images by adjusting the spacing be-
tween OL and CB to 10, 20, 30, 40, and 60 pixels. Zero-mean Gauss-
ian image noise of different variances (r2 = 0, 0.1, 0.2, 0.3) was
added to test the tolerance of the segmentation methods towards
different image noise levels.

We visually inspected the segmentation results, and catego-
rized them into three classes, correct, major error, and minor error.
Major and minor errors were defined as the segmentation curve
indicated in green, which cut into a large (right OL in Fig. 7a) and
a small (left OL in Fig. 7b, arrow) region, respectively. A major error
arose when control points were trapped into the local minimums
where the pixel intensity was lower than that of the gap between
the OL and CB. These major errors usually propagated from one
slice to another. A minor error was usually due to blurry structures
and extraordinary small gap between OL and CB.

Fig. 8 summarizes the results. Diamonds ‘‘ ” and crosses ‘‘ ”
denote correctly segmented results and major segmentation errors
found in the corresponding OL and CB separation, noise levels and
b values. We say a brain has a segmentation error when an error
was found from any one slice of the 3D image. For each simulated
separation distance, a 2D slice extracted from the segmented 3D
image is shown in the left column of Fig. 8. The noise level (r2)
is shown at the lower-right corner of each figure. All these figures
were obtained by deformable model method with b = 0.3. The seg-
regated OLs are covered with blue masks. The deformable model
method yielded errors when the separation between OL and CB
is small (10 and 20 pixels) and image noise level was high
(r2 = 0.2, 0.3). It provided correct segmentation in all other cases.
On the contrary, the shortest path method failed to perform the
segmentation in every case.
The processing of a 3D image stack using the deformable model
method increased from 40 to 900 s with various b values. The aver-
age time to process an image with b = 0.3 was 50 s. The optimiza-
tion took much longer to converge for larger b. For the shortest
path method, the average processing time for an image was 500 s.
4.3. Segmenting real adult fruit fly brain images

We performed two sets of experiments for real brains. First,
eight slices taken from 100 3D real fruit fly brain images (total
8 � 100 = 800 2D images) of various image qualities were selected
to identify the best parameter set for the deformable model meth-
od. The accuracy was determined based on the complete correct-
ness of segmentation of both the left and right OLs in an image.
As shown in Table 1, the combination of a = 1 and b = c = 0.3 re-
sulted in the highest accuracy, about 92%.

Then, based on the result in Table 1, we took a = 1 and b = c =
0.3 for the deformable model method to compare the performance
with shortest path method in the real adult fruit fly brain data. We
first tested the two methods with real fly brain data produced in
two different labs (100 brains from each). We categorized the seg-
mentation results according to the errors that occur during the seg-
mentation described in Fig. 7 and scored each of them by visual



Table 2
Comparison of the deformable model and the shortest path methods using real adult fruit fly brain images from two different labs. The segmentation results were regarded as
having an error if any single slice in the whole 3D stack has an error.

N = 100 Whole brain
correctly segmented

1 Minor error More than 1 minor error 1 Or more major errors,
or more than 3 minor errors

Simpson lab data Deformable model 91 4 2 3
Shortest path 56 4 7 33

Rubin lab data Deformable model 80 0 0 20
Shortest path 79 0 0 21
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inspection. Table 2 shows the results obtained from the two meth-
ods. For the data set from the Simpson Lab, the deformable model
method could achieve 91% correctness while the shortest path
could only achieve 56%. For the Rubin Lab data, the deformable
model method could achieve 80% of the brains correctly seg-
mented. The shortest path could achieve 79% correctness. The
errors normally happen when a brain is very dark.

The average computation time for a 3D volume image stack
using the deformable model method (a = 1, b = c = 0.3) was 50 s,
while the shortest path method took an average of 530 s to process.
(image read/write time = 70 s for both methods).
5. Discussions and conclusions

This paper describes an accurate and robust scheme to segment
the optic lobes from adult fruit fly brains. This approach provides a
good pre-processing step for our ongoing high-throughput 3D vol-
ume registration pipeline. Based on the real adult fruit fly brain
images segmentation results, the overall accuracy of the deform-
able model method is 85.5%. The majority of failure cases are found
in poorly imaged or dissected brains which would not be further
processed. An average computation time for a 3D volume image
stack of a real brain using deformable model method
(a = 1, b = c = 0.3) is about 50 s (on a Mac Pro with 2.8 GHz Intel
Xeon CPU and Leopard operating system), showing that the speed
is reasonable as an automated pre-processing step. When b and c
are small (<0.2), the contribution of length and smoothness con-
straint are less significant. The energy function is primarily driven
by image intensity and thus more sensitive to noise. It explains
why poorer results were obtained in these cases.

The deformable model method is a local searching method
which can achieve good results for well-dissected and imaged
brains. However, control points might be trapped into local mini-
mum occasionally. Control points initialization plays an important
role in this method as the accuracy of the result relies on it. Global
alignment places every brain into a standard position so that the
initialization can be fully automated. Local optimization signifi-
cantly reduces the computation time. A prior model usually offers
a good initialization for fast convergence but may also lead to
incorrect result because of incorrect direction of convergence.
However, it is rare in our dataset.

In contrast, the shortest path method can achieve a global min-
imum path for this formulation theoretically. Unfortunately, our
experiments show that it is very sensitive to noise as it takes every
pixel into account. In this case, the global minimum does not nec-
essarily correspond to biologically meaningful results when this
method was used, it resulted in lower overall accuracy (67.5%)
and took a much longer time to process.

The deformable-model based optic lobe segmentation method
has been added as a function in the brain registration module of
our image analysis platform V3D software [22].

Future work will require developing energy functions which
incorporate the advantages of the two methods. We also anticipate
that our current method will be applicable for the segmentation of
other brain regions-of-interest in 3D volume images such as mush-
room bodies, antennal lobes, protocerebrum, etc. These appropri-
ate initialization models can be developed by experienced
anatomists.
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