Two Algorithms for LCS Consecutive Suffix
Alignment

Gad M. Landau®? *, Eugene Myers®, and Michal Ziv-Ukelson* **

! Dept. of Computer Science, Haifa University, Haifa 31905, Israel
landau@cs.haifa.ac.il
2 Department of Computer and Information Science, Polytechnic University, Six
MetroTech Center, Brooklyn, NY 11201-3840, USA
landau@poly.edu
3 Div. of Computer Science, UC Berkeley, Berkeley, CA 94720-1776, USA
gene@eecs.berkeley.edu
4 Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000,
Israel
michalz@cs.technion.ac.il

Abstract. The problem of aligning two sequences A and B to determine
their similarity is one of the fundamental problems in pattern matching.
A challenging, basic variation of the sequence similarity problem is the
incremental string comparison problem, denoted Consecutive Suffix
Alignment, which is, given two strings A and B, to compute the align-
ment solution of each suffix of A versus B.

Here, we present two solutions to the Consecutive Suffix Alignment Prob-
lem under the LCS metric. The first solution is an O(nL) time and space
algorithm for constant alphabets, where n is the size of the compared
strings and L < n denotes the size of the LCS of A and B.

The second solution is an O(nL + nlog|X|) time and O(L) space algo-
rithm for general alphabets, where X' denotes the alphabet of the com-
pared strings. (Note that |X| < n.)

1 Introduction

The problem of comparing two sequences A of size n and B of size m to deter-
mine their similarity is one of the fundamental problems in pattern matching.
Standard dynamic programming sequence comparison algorithms compute an
(m+ 1) x (n + 1) matrix DP, where entry DP][i, j] is set to the best score for
the problem of comparing A* with B7, and A? is the prefix, a;,as,...,a; of A.
However, there are various applications, such as Cyclic String Comparison [8,

* Research supported in part by NSF grant CCR-0104307, by NATO Science Pro-
gramme grant PST.CLG.977017, by the Israel Science Foundation grant 282/01, by
the FIRST Foundation of the Israel Academy of Science and Humanities, and by
IBM Faculty Partnership Award.

** Research supported in part by the Aly Kaufman Post Doctoral Fellowship and by
the Bar-Nir Bergreen Software Technology Center of Excellence.

14], Common Substring Alignment Encoding [9-11], Approximate Overlap for
DNA Sequencing [8] and more, which require the computation of the solution
for the comparison of B with progressively longer suffixes of A, as defined below.

Definition 1. The Consecutive Suffix Alignment Problem is, given two
strings A and B, to compute the alignment solution of each suffix of A versus
B.

By solution we mean some encoding of a relevant portion of the DP matrix
computed in comparing A and B. As will be seen in detail later, the data-
dependencies of the fundamental recurrence, used to compute an entry D PJi, j],
is such that it is easy to extend DP to a matrix DP' for B versus Aa by
computing an additional column. However, efficiently computing a solution for
B versus aA given DP is much more difficult, in essence requiring one to work
against the ”"grain” of these data-dependencies. The further observation that
the matrix for B versus A, and the matrix for B versus aA can differ in O(n?)
entries suggests that the relationship between such adjacent problems is non-
trivial. One might immediately suggest that by comparing the reverse of A and
B, prepending symbols becomes equivalent to appending symbols, and so the
problem, as stated, is trivial. But in this case, we would ask for the delivery of a
solution for B versus Aa. To simplify matters, we will focus on the core problem
of computing a solution for B versus aA, given a ”forward” solution for B versus
A. A 7forward” solution of the problem contains an encoding of the comparison
of all (relevant) prefixes of B with all (relevant) prefixes of A. It turns out that
the ability to efficiently prepend a symbol to A when given all the information
contained in a ”forward” solution allows one to solve the applications mentioned
above with greater asymptotic efficiency then heretofore possible.

There are known solutions to the Consecutive Suffix Alignment problem for
various string comparison metrics. For the LCS and Levenshtein distance met-
rics, the best previously published algorithm [8] for incremental string compar-
ison computes all suffix comparisons in O(nk) time, provided the number of
differences in the alignment is bounded by parameter k. When the number of
differences in the best alignment is not bounded, one could use the O(n(n +m))
results for incremental Levenshtein distance computation described in [8,7].
Schmidt [14] describes an O(nm) incremental comparison algorithm for met-
rics whose scoring table values are restricted to the interval [—S, M]. Here, we
will focus on incremental alignment algorithms for the LCS metric.

The simplest form of sequence alignment is the problem of computing the
Longest Common Subsequence (LCS) between strings A and B [1]. A subse-
quence of a string is any string obtained by deleting zero or more symbols from
the given string. A Common Subsequence of A and B is a subsequence of both,
and an LCS is one of greatest length. Longest Common Subsequences have many
applications, including sequence comparison in molecular biology as well as the
widely used diff file comparison program. The LCS problem can be solved in
O(mn) time, where m and n are the lengths of strings A and B, using dynamic
programming [5]. More efficient LCS algorithms, which are based on the obser-
vation that the LCS solution space is highly redundant, try to limit the compu-

tation only to those entries of the DP table which convey essential information,
and exploit in various ways the sparsity inherent to the LCS problem. Spar-
sity allows us to relate algorithmic performances to parameters other than the
lengths of the input strings. Most LCS algorithms that exploit sparsity have their
natural predecessors in either Hirshberg [5] or Hunt-Szymanski [6]. All Sparse
LCS algorithms are preceded by an O(nlog|X|) preprocessing [1]. The Hirsh-
berg algorithm uses L = |LCS[A, B]| as a parameter, and achieves an O(nL)
complexity. The Hunt-Szymanski algorithm utilizes as parameter the number of
matches between A and B, denoted r, and achieves an O(rlog L) complexity.
Apostolico and Guerra [2] achieve an O(L - m - min(log | ¥|, logm, log(2n/m))
algorithm, where m < n denotes the size of the shortest string among A and
B, and another O(mlogn + dlog(nm/d)) algorithm, where d < r is the number
of dominant matches (as defined by Hirschberg [5]). This algorithm can also be
implemented in time O(dloglogmin(d,nm/d)) [4]. Note that in the worst case
both d and r are £2(n?), while L is always bounded by n.

Note that the algorithms mentioned in the above paragraph compute the
LCS between two strings A and B, however the objective of this paper is to
compute all LCS solutions for each of the n suffixes of A versus B, according to
Definition 1.

1.1 Results

In this paper we present two solutions to the Consecutive Suffix Alignment
Problem under the LCS metric. The first solution (Section 3) is an O(nL) time
and space algorithm for constant alphabets, where n is the size of A, m is the size
of B and L < n denotes the size of the LCS of A and B. This algorithm computes
a representation of the Dynamic Programming matrix for the alignment of each
suffix of A with B.

The second solution (Section 4) is an O(nL+n log|X|) time, O(L) space incre-
mental algorithm for general alphabets, that computes the comparison solutions
to O(n) ”consecutive” problems in the same asymptotic time as its standard
counterpart [5] solves a single problem. This algorithm computes a represen-
tation of the last row of each of the Dynamic Programming matrices that are
computed during the alignment of each suffix of A with B.

Both algorithms are extremely simple and practical, and use the most naive
data structures.

Note that, due to lack of space, all proofs are omitted. A full version of the
paper, including proofs to all lemmas, can be found in:

http : | Jwww.cs.technion.ac.il]/ ~ michalz [lcscsa.pdf

2 Preliminaries

An LCS graph [14] for A and B is a directed, acyclic, weighted graph containing
(|A]+1)(|B] + 1) nodes, each labeled with a distinct pair (z,y)(0 < z < |A],0 <

y < |B|). The nodes are organized in a matrix of (|A| + 1) rows and (|B| + 1)
columns. An index pair (z,y) in the graph where A[z] = B[y] is called a match.
The LCS graph contains a directed edge with a weight of zero from each node
(z,y) to each of the nodes (z,y+1), (x+1,y). Node (z,y) will contain a diagonal
edge with a weight of one to node (z + 1,y + 1), if (+ 1,y + 1) is a match.

Maximal-score paths in the LCS graph represent optimal alignments of A
and B, and can be computed in O(n?) time and space complexity using dynamic
programming. Alternatively, the LCS graph of A versus B can be viewed as a
sparse graph of matches, and the alignment problem as that of finding highest
scoring paths in a sparse graph of matches. Therefore, paths in the LCS Graph
can be viewed as chains of matches.

Definition 2. A k-sized chain is a path of score k in the LCS graph, going
through a sequence of k matches (x1,y1)(%2,Y2) ... (Tk,Yr), such that x; < ;41
and y; < yj+1 for successive matches (z;,y;) and (Tjy1,Yj41)-

Both algorithms suggested in this paper will execute a series of n iterations
numbered from n down to 1. At each iteration, an increased sized suffix of string
A will be compared with the full string B. Increasing the suffix of A by one
character corresponds to the extension of the LCS graph to the left by adding
one column. Therefore, we define the growing LCS graph in terms of generations,
as follows (see Figure 2).

Definition 3. Generation k (G for short) denotes the LCS graph for com-
paring B with A}. Correspondingly, Ly denotes LCS[B, A}], and reflects the
size of the longest chain in Gy.

We define two data structures, to be constructed during a preprocessing stage,
that will be used by the consecutive suffix alignment algorithms for the incre-
mental construction and navigation of the representation of the LCS graph for
each generation (see Figure 1).

Definition 4. MatchList(j) stores the list of indices of match points in column
j of DP, sorted in increasing row index order.

MatchLists can be computed in O(nlog|X|) preprocessing time.

Definition 5. NextMatch(i, A[j]) denotes a function which returns the index
of the next match point in column j of DP with row index greater than ¢, if such
a match point exists. If no such match point exists, the function returns NULL.

A NexztMatchl[i, o] table, for all & € X, can be constructed in O(n|X|) time and
space. When the alphabet is constant, a NextM atch table can be constructed
in O(n) time and space.

3 The First Algorithm

The first algorithm consists of a preprocessing stage that is followed by a main
stage. During the preprocessing stage, the NextMatch table for strings A and
B is constructed.

MatchList: A B C D B< B C B A,D.B D C D

- o1 — —»—»8 2
.0
‘null‘l‘2‘4‘ B G3
* * * 1 T
3 nul ol C
null B
3 . ="= =‘L> i
D
NextMatch: A B C D L Y
4 Yt —
O | nun| 1 2 4
B
. B B A DB D C D
1 |nul| 3] 21 4 B{o 1 ng»g 4.5 6 7 8 9
C L0
B G2 ¢ l
2 | 3 | nun| 4 . w1 .Y Y Y .Y Ly Y
B c O\
3 | null [null | nult | 4 2 > - =‘L>4>—>V
D B
4 null | null | null | null 3 T VV =V —‘LP—b
PRI TTREY
4 T et et - —

Fig.1. The MatchList and Fig.2. The LCS Graphs Gs and G»

NextMatch data structures. for the comparison of strings A =
»BCBADBCDC” versus B = "BCBD”.

Grey octagons denote match points. A
chain of size 3 is demonstrated in Gs,

corresponding to the common subsequence
” BCDU .

During the main stage, the first algorithm will interpret the LCS graph for each
generation as a dynamic programming graph, where node [i, j] in Gy, stores the
value of the longest chain from the upper, leftmost corner of the graph up to
node [i,j]. Therefore, we will formally define the graph which corresponds to
each generation, as follows (see Figure 3).

Definition 6. DP* denotes the dynamic programming table for comparing string
B with string A}, such that DP*[i,j], for i = 1...m, j = k...m, stores
LCS[B{,A?;]. DP* corresponds to G* as follows. DP*[i,] = v if v is the size
of the longest chain that starts in some match in the upper, left corner of G*
and ends in some match with row index < i and column index < j.

Using Definition 5, the objective of the first Consecutive Alignments algorithm
could be formally defined as follows: compute DP* for each k € [1,n].
Applying the dynamic programming algorithm to each of the n problems
gives an O(n?) algorithm. It would be better if one could improve efficiency by
incrementally computing DP* from either DP*~1 or D P¥+!. At first glance this
appears impossible, since computing DP* from DP*+! may require recomput-
ing every value. Thus, attempting to compute the DP table for each problem
incrementally appears doomed because the absolute value of as many as O(n?)
elements can change between successive problem instances. However, based on
the observation that each column of the LCS DP is a monotone staircase with

W
on
W w
>

D‘.ﬂ
wo
o~
O®
oo©

AL B cBBADSBODCOD value:
o~ 1
B l
1 o o 1 1 1
C 2
BZ o o 1 h @ 2 G4
3 0 0 1 i 2 2 3
D4 ; o . @2 @ Generation 4
value:
5 | O e 0 00 0000
C
BZ 1 1 1 1 1 @ 2 G3 2 é ’é 9 e e
3 1 1 1 @ 2 |2 2] 3 o 0
D 4
4 1 1 @2 @ 3 T
7

1 2 3 4 5 6 8 9 Generation 3

Fig. 4. The implemen-
tation of the partition-
point data structure
as a doubly-linked list.
The grey circles rep-

Fig. 3. The update operations applied by the first Con-
secutive Alignments algorithm, during the computation of
the partition points of generation G3 from the partition
points of generation G4. Partition points are indicated as
rectangles and hexagons, and the numbers inside stand for resent the new parti-
their value. The hexagons represent partition points that tion points in genera-
are both partition points and match points. The grey rect- tion Gs.

angles and hexagons represent the new partition points in

generation G3s.

unit-steps, we will apply partition encoding [5] to the DP table, and represent
each column of DP* by its O(L) partition points (steps), defined as follows (see
Figure 4).

Definition 7. P* denotes the set of partition points of DP*, where partition
point P¥[j,v], for k=1...n,j =k...n,v =0... Ly, denotes the first entry in
column j of DP* which bears the value of v.

In terms of chains in the LCS graph, P¥[j,v] =i if i is the lowest row index to
end a chain that is contained in the first j columns of G. It is now clear that
instead of computing DP* it suffices to compute P* for k =n...1.

3.1 Computing P* from P+

The consecutive alignments algorithm consists of n stages. The LCS graph for
comparing strings B and A is grown from right to left in n stages. At stage
k, column % is appended to the considered LCS graph. Correspondingly, P*
is obtained by inheriting the partition points of P*¥*! and updating them as
follows. The first, newly appended column of P* has only one partition point -
which is the first match point [i, k] in column & (see column 3 of G3 in Figure 3).
This match point corresponds to a chain of size 1, and indicates the index ¢ such
that all entries in column k of DP* of row index smaller than i are zero, and all
entries from index ¢ and up are one. Therefore, stage k of the algorithm starts by
computing, creating and appending the one partition point, which corresponds
to the newly appended column k, to the partition points of P¥.

Then, the columns inherited from P**! are traversed in a left-to-right order,
and updated with new partition points.

We will use two important observations in simplifying the update process.
First, in each traversed column of P¥, at most one additional partition point is
inserted, as will be shown in Lemma 2. We will show how to efficiently compute
this new partition point. The second observation, which will be asserted in Con-
clusion 1, is that once the leftmost column j is encountered, such that no new
partition point is inserted to column j of P*, the update work for stage k of the
algorithm is complete. Therefore, the algorithm will quit the column traversal
and exit stage k when it hits the first, leftmost column j in P* that is identical
to column j of P*+1,

The incremental approach applied in the first algorithm is based in the follow-
ing lemma, which analyzes the differences in a given column from one generation
of DP to the next.

Lemma 1. Column j of DP* is column j of DP*t except that all elements
that start in some row I; are greater by one. Formally, for column j of DP*
there is an index I; such that DP¥[i, j] = DP*+1[i, j] for i < I; and DP*[i,j] =
DP i, §] + 1 for i > I;.

The next Lemma immediately follows.

Lemma 2. Column j in P* consists of all the partition points which appear in
column j of P*t', plus at most one new partition point. The new partition point
is the smallest row index I, such that delta[l;] = DP¥[I;, j]— DP*1[I;, 4] = 1.

Claim 3. For any two rectangles in a DP table, given that the values of the
entries in vertices in the upper and left border of the rectangles are the same
and that the underlying LCS subgraphs for the rectangles are identical - the
internal values of entries in the rectangles will be the same. Furthermore, adding
a constant ¢ to each entry of the left and top borders of a given rectangle in the
DP table would result in an increment by ¢ of the value of each entry internal
to the rectangle.

Conclusion 1: If column j of DP* is identical to column j of DP**+1, then all
columns greater than j of DP* are also identical to the corresponding columns
of DP*+1,

The correctness of Conclusion 1 is immediate from Claim 3. Given that the
structure of the LCS graph in column j + 1 does not change from DP*! to
DP*, that the value of the first entry in the column remains zero, and that all
values in its left border (column j of DP*) remain the same as in DPF+! it
is clear that the dynamic programming algorithm will compute the exact same
values for column j + 1 of DP*+! and for column j + 1 of DP*. The same claim
follows inductively when computing the values of column j 4+ 2 of DP* from the
values of column j + 1, and so on.

The suggested algorithm will traverse the columns of P* from left to right.
In each of the traversed columns it will either insert a new partition point or
halt according to Conclusion 1.

CASEL Columnj-1 Column j = a partition point

in Generation k

P IV] - PiM

= a partition point
in Generation

K k+1
= the new partition

P‘J‘_l[v+1] point in
Generation k

CASE 2:) .
Column j-1 Column j

match point 222 X

P v+) PRIV PY [v+1]22? Y

Fig. 5. The three possible scenarios to be considered when computing
the new partition point of column j in generation G.

P41 [V]

3.2 Computing the New Partition Points of Column j of P*

In this section we will show how to compute the new partition points of any
column j > k of P*, using the partition points of column j of P¥+1, the partition
points of column j — 1 of P*, and the match points of column j of P¥. We start
by constraining the range of row indices of column j in which the new partition
point will be searched.

Lemma 3. Let I; | = Pﬁl[v] denote the mew partition point in column j — 1
of P*, and let I; denote the index of the new partition point in column j of P*.
ij—1[v] <I; < ij—l[v +1].

We will next show that there are two possible cases to consider when computing
the new partition point of column j, as specified in the lemma below (see Figure
5).

Lemma 4. Let I;_y = P} ,[v] denote the row index of the new partition point
in column j —1 of P*. Let I; denote the row index of the new partition point in

column j of P*. I can assume one of two values, according to the following two
cases.

case 1. I;_y = P} ,[v] < Pf*{v], in which case I; = PF[v] = I;_;.

case 2. I;_1 = P} ,[v] > Pf*'[v], in which case

I = Pf[v +1] = min{Pf_l[v + 1], NextMatch(I; 1 = Pf_l[v],j)}

Conclusion 2: At each of the columns traversed by the algorithm, during the
computation of P* from the partition points of P*t1, except for the last column
that is considered for update, a single partition point is inserted. As for the
last column considered in generation Gy, the algorithm quits the update of P*,
following Conclusion 1, upon realizing that there is no partition point to insert
to this column, and it is therefore similar to the previous column.

Conclusion 3: The new partition point in column j of P*, if such exists, is one
of four options:

1. The new partition point of column j — 1.

2. The partition point that immediately follows the new partition point of col-
umn j — 1.

3. Some match point at an index that falls between the new partition point of
column j — 1 and the match point that immediately follows in column j.

4. Some match point at an index that falls between the last partition point of
column j — 1 and index m + 1.

3.3 An efficient Implementation of the First Algorithm

An efficient algorithm for the consecutive suffix alignments problem requires a
data structure modelling the current partition that can be quickly updated in
accordance with Lemma 4. To insert new partition points in O(1) time suggests
modelling each column partition with a singly-linked list of partition points.
However, it is also desired that successive insertion locations be accessed in O(1)
time. Fortunately, by Conclusion 3, the update position in the current column
is either the update position in the previous column or one greater than this
position, and the update position in the first column in each generation is the
first position. Thus, it suffices to add a pointer from the i-th cell in a column
partition to the i-th cell in the next column (see Figure 4). Therefore, each cell in
the mesh which represents the partition points of a given generation is annotated
with its index, as well as with two pointers, one pointing to the next partition
point in the same column and the other set to the cell for the partition point
of the same value in the next column. Furthermore, it is easy to show, following
Lemma, 4, that the pointer updates which result from each new partition-point
insertion can be correctly completed in O(1) time.

Time and Space Complexity of the First Algorithm.

During the preprocessing stage, the NextMatch table for strings A and B is
constructed in O(n|X|) time and space.

By conclusion 2, the number of times the algorithm needs to compute and
insert a new partition point is linear with the final number of partition points
in P'. Given the NextMatch table which was prepared in the preprocessing
stage, the computation of the next partition point, according to Lemma 4, can
be executed in constant time. Navigation and insertion of a new partition point
can also be done in constant time according to Conclusion 3 (see Figure 4).

This yields an O(nL) time and space complexity algorithm for constant al-
phabets.

4 The Second Algorithm

The second algorithm takes advantage of the fact that many of the Consecutive
Suffix Alignment applications we have in mind, such as Cyclic String Comparison
[8,14], Common Substring Alignment Encoding [9-11], Approximate Overlap for
DNA Sequencing [8] and more, actually require the computation of the last row
of the LCS graph for the comparison of each suffix of A with B. Therefore,
the objective of the second algorithm is to compute the partition encoding of
the last row of the LCS graph for each generation. This allows to compress
the space requirement to O(L). Similarly to the first algorithm, the second al-
gorithm also consists of a preprocessing stage and a main stage. This second
algorithm performs better than the first algorithm when the alphabet size is not
constant. This advantage is achieved by a main stage that allows the replacement
of the NextMatch table with a MatchList data structure (see Figure 1). The
MatchList for strings A and B is constructed during the preprocessing stage.

4.1 An O(Lg) Size TAILS Encoding of the Solution for Gy

In this section we will examine the solution that is constructed from all the
partition-point encodings of the last rows of DP*, for k =n...1. We will apply
some definitions and point out some observations which lead to the conclusion
that the changes in the encoded solution, from one generation to the next, are
constant. The main output of the second algorithm will be a table, denoted
TAILS, that is defined as follows.

Definition 8. T AILS[k, j] is the column index of the j-th partition point in the
last row of Gy,. In other words, TAILS[k,j] =t if t is the smallest column index
such that LCS[B, AL] = j.

Correspondingly, the term tail is defined as follows.
Definition 9. Let t denote the value at entry j of row k of TAILS.

1. t is considered a tail in generation Gy (see Figures 6, 7).
2. The value of tail t in generation Gy, denoted valy, is j. That is, LCS[A}, B] =

]

It is easy to see that, in a given generation, tails are ordered in left to right
column order and increasing size.

In the next lemma we analyze the changes in the set of values from row k41
to row k of TAILS, and show that this change is O(1).

Lemma 5. If column k of the LCS graph contains at least one match, then the
following changes are observed when comparing row k + 1 of TAILS to row k
of TAILS:

1. TAILS[k,1] = k.
2. All other entries from row k + 1 are inherited by row k, except for at most
one entry which could be lost:

Case 1. All entries are passed from row k + 1 to row k of tails and shifted

by one index to the right. In this case LCS[B, A}] = LCS[B, A}, ,] +1.

Case 2. One entry value, which appeared in row k + 1 disappears in row k.

In this case LCS[B, A}] = LCS[B, A} ,].

— All values from row k+1 of TAILS up to the disappearing entry are
shifted by one indez to the right in row k of TAILS.

— All values from row k + 1 of TAILS which are greater than the
disappearing entry remain intact in row k of TAILS.

From the above lemma we conclude that, in order to compute row k of TAILS),
it is sufficient to find out whether or not column k of G contains at least one
match point, and if so to compute the entry which disappeared from row k + 1
of TAILS. Hence, from now on the algorithm will focus only on columns where
there is at least one match point and on discovering, for these columns, which
entry (if at all) disappears in the corresponding row of TAILS.

From now on we will focus on the work necessary for updating the set of Ly
values from row k41 of TAILS to row k of TAILS. Therefore, we simplify the
notation to focus on the L; values in row k of TAILS. We note that these L
values denote column indices of leftmost-ending chains of sizes 1... Ly in Gy.
We will refer to these values from now on as the set of tails of generation Gj.

4.2 The O(L?) Active Chains in a Given Generation

In this section we will describe the new data structure which is the core of our
algorithm. Note that TAILS[k,j] = t if ¢t is the index of the smallest column
index to end a j-sized chain in G. So, in essence, in iteration k of the algorithm
we seek all leftmost-ending chains of sizes 1... Ly in the LCS graph Gy.

Recall that, in addition to the output computation for Gy, we have to pre-
pare the relevant information for the output computation in future generations.
Therefore, in addition to the O(Ly) leftmost ending chains we also wish to keep
track of chains which have the potential to become leftmost chains in some future
generation. Note that a leftmost chain of size j in a given generation does not
necessarily evolve from a leftmost chain of size j — 1 in some previous generation
(see Figure 6). This fact brings up the need to carefully define the minimal set
of chains which need to be maintained as candidates to become leftmost chains
in some future generation.

By definition, each chain starts in a match (the match of smallest row index
and leftmost column index in the chain) and ends in a match. At this stage
it is already clear that an earlier (left) last-match is an advantage in a chain,
according to the tail definition. It is quite intuitive that a lower first-match is
an advantage as well, since it will be easier to extend it by matches in future
columns. Hence, a chain of size k is redundant if there exists another chain of size
k that starts lower and ends to its left. Therefore, we will maintain as candidates
for expansion only the non-redundant chains, defined as follows.

Fig. 6. The evolution of leftmost chains from chains that are not necessarily
leftmost. For each generation, the dark circles around column indices directly
below the bottom row of the graph mark active tails.

Definition 10. A chain ¢; of size j is an active chain in generation Gy, if
there does not exist another chain co of size j in Gy, such that both conditions
below hold:

1. ¢ starts lower than c;.
2. ¢co ends earlier than c;.

For the purpose of tail computation, it is sufficient to maintain the row index
of the first match in each chain and the column index of the last match in each
chain.
-The row number of the first match in an active chain is denoted a head.
-The column index of a last match in an active chain is denoted an end-point.
Note that two or more different chains could share the same head in a given
generation. For example, match m7, corresponding to a head of row index 3, is
the origin of active chains of sizes 2—3 in generation G of Figure 6. Based on this
observation, we decided to count the number of different matches which serve as
heads and end-points in a given generation. To our surprise, we discovered that
in a given generation Gy, the number of distinct heads is only Ly, (see Conclusion
4), and the number of distinct end-points in Gy, is only Ly (see Lemma 6 which
comes up next). This observation is the key to the efficient state encoding in our
algorithm.

Lemma 6. Fach active chain ends in a tail.

We have shown in Lemma 6 that each end-point is a tail. Therefore, from now
on we will use the term tail when referring to end-points of active chains. We
consider two active chains of identical sizes which have the same head and the
same tail as one.

4.3 An O(Lx) HEADS Representation of the State Information
for Gy,

In this section we will show that the number of distinct heads in generation Gy,
is exactly L. In order to count the distinct heads, we associate with each tail a
set of relevant heads, as follows.

Definition 11. H; denotes the set of heads of active chains that end in tail t.

The active heads in GG, are counted as follows. The tails are traversed left to
right, in increasing size and index, and the new heads contributed by each tail
are noted (a head h is contributed by tail ¢t if h € H; and h ¢ Hy, for any t; < t).
The counting of the active heads which are contributed by each tail ¢ will be
based on the following two observed properties of Hy. These properties, given
below, will be proven in the rest of this section.

Property 1 of H;. Let j denote the size of the smallest chain in Hy. The chains
headed by H; form a consecutive span, ordered by increasing head height
and increasing chain size, starting with the lowest head which is the origin
of the j-chain of H;, and ending with the highest head which is the origin of
the val;~chain which ends in ¢ (see Figure 7).

Property 2 of H;. The head which is the origin of the smallest chain (size j)
of H; is the one and only new head in H;. All other heads are included in
H;, for some t; < t.

The following Lemmas 7 to 9 formally assert the two observed properties of Hy.

Lemma 7. The heads of H; are ordered in increasing height and increasing
chain size.

Lemma 8. For any tail t, the sizes of active chains which correspond to the
heads in H; form a consecutive span.

Lemma 9. The head hy of the smallest chain in Hy is new. That is, there is no
active chain that originates in hy and ends in some tail to the left of t.

Conclusion 4: From Lemmas 8 and 9 we conclude that as we scan the tails for
generation Gy from left to right, each tail contributes exactly one new head to
the expanding list of active heads. Therefore, there are exactly Ly, different row
indices which serve as active heads (to one or more active chains) in generation
G-

The new head that is contributed by each tail ¢ is a key value which will
represent the full H; set for tail ¢ in our algorithm, and therefore it is formally
defined and named below.

F

w
O
@]

O»

\\
Q-
4

ompPpoOwmmPplo m>|/>

O

i

@)
tailindex:1 (%) ©) ©) 5 (© 7

tail value:

Fig. 7. The set of chains H7 for the tail with value 5 and index 7 in generation
G2 of the consecutive suffix alignment of strings A = "BCBADBCDC” versus
B ="BCBD”. The head which is new~ is highlighted with a thicker border, and
the corresponding shortest chain of size 2 is dotted. The dark circles around column
indices directly below the bottom row of the graph mark the active tails in Ga.

Definition 12. new; is the head of the smallest chain in Hy.

We have found one more property of H; which will be relevant to our algorithm,
as proven in the next lemma.

Lemma 10. H; includes all heads that are higher than new; and start at least
one active chain which ends in some tail t3 < t.

Up till now we have analyzed the set H; of heads that start all active chains
which end in tail ¢. Next, we will symmetrically analyze the set of tails that end
chains which originate in a given active head h.

We associate with each head a set of relevant tails, as follows.

Definition 13. T}, denotes the set of tails of active chains that start in head h.

Lemma 11. For any head h, the sizes of active chains which correspond to the
tails in Ty form a consecutive span.

4.4 Changes in HEADS and TAILS from One Generation to the
Next

In this section we discuss the changes in the sets of active heads and tails as the
poset of matches for generation Gy1 is extended with the matches of column k.
Following the update, some changes are observed in the set of active heads, in
the set of active tails, and in the head-to-tail correspondence which was analyzed
in the previous section. (When we say head-to-tail correspondence, we mean the
pairing of head h; with a tail ¢; such that h; = newy,).

Throughout the algorithm, the relevant state information will be represented
by a dynamic list HEADS of active heads, which is modified in each generation
G, based on the match points in column & of DP.

Definition 14. HEADS), denotes the set of active heads in generation Gy,
maintained as a list which is sorted in increasing height (decreasing row indez).
Each head hyirse € HEADS), is annotated with two values. One is its height,
and the second is the tail t such that hyiyrs = newy.

In iteration k of the algorithm, two objectives will be addressed.

1. The first and main objective is to compute the tail that dies in G. In Lemma
12 we will show that, for any tail ¢ that was active in Gt1, the size of Hy
can only decrease by one in G. Therefore, the tail to disappear in Gy, is the
tail ¢ such that the size of H; decreases from one to zero in G.

2. The second objective is to update the state information (HEAD Sy, list)
so it is ready for the upcoming computations of Gy_1 (HEADS, list).

In this section we will show that both of the objectives above can be achieved
by first merging HEADSy 1 with the heights of matches in column k, and
then traversing the list of heads once, in a bottom-up order, and modifying, in
constant time, the head-to-tail association between active tails and their new
head representative, if such an association indeed changes in Gj. (That is, if a
given head h was new; for some tail ¢ in Gg41 and h is no longer new; in Gy).

Lemma 12. From one generation to the next, the number of active heads in
H; can only decrease by one. Furthermore, of all the chains that start in some
head in Hy and end in t, only the shortest chain, the one headed by new; in
G411, could be de-activated in Gy, without being replaced by a lower head of a
stmilar-sized active chain to t.

From this we conclude that the tail to disappear from row k& of TAILS is the
tail ¢ such that the number of heads in H; went down from one to zero in
generation G. It remains to show how this dying tail ¢ can be identified during
the single, bottom up traversal of the list HEADS} 1, following the merge with
the matches of column k.

We are now ready to address the merging of the match points from column
k with HEADSj1. The discussion of how the matches that are merged with
HEADS} 41 affect its transformation into HEADSy will be partitioned into
four cases. First we discuss the first (lowest) match and the heads which fall
below it. We then explain what happens to two consecutive matches with no
head in between. The third case deals with the matches above the highest head
in HEADS}41, if such exist. The fourth and main part of our discussion, deals
with the changes to the "slice” of heads in HEAD S}, which fall either between
two consecutive new matches in column %, or above the highest match in column
k.

Case 1: The lowest match in column k. The first match in column & is
a new head. It is the first chain, of size 1, of the tail k, and therefore is newy.
All heads below this match are unaffected, since no new chain that starts lower
than these heads could have possibly been created in Gy.

mp+l Qe=-e-e-- L
hiast @ K%
hi+v1 Q- _J+1§ "\‘
h5 °"'- .eq .‘\\ =~ ~
______ . ~
~~~~~ . N
ha @---- Q... e, N
.......... DR
RN
J ", .:"\\
h3 @--ceecenn. ) Q e}

trast i+t t7 t6 i t5 t4 trirst (3

Fig. 8. The HEADS list traversal in increasing height during its update with the
match points of column k in generation Gj. The modified heads, as well as their
corresponding tails and new chains are highlighted in black.

Case 2: Two consecutive matches with no heads in between. For
any sequence of consecutive matches in column k with no head in between, all
match points, except for the lowest match point in the sequence, are redundant.

Case 3. Matches above the highest head in HEADSy ;. The lowest
match in column k which is above the highest active head in HEADSy44, if
such a match exists, becomes a new head. Consider the longest chain in G4,
of size L41, that ends in tail L. Clearly, this chain’s head is the highest head
in the list. This chain will be extended by the new match to a lowest, leftmost
Ly, = Lyy1 + 1 chain, and therefore this match is a new head.

Case 4. The series of heads that fall between two consecutive
matches. This case, which includes the series of remaining heads above the
highest match in column k, is the most complex case and covers the identifica-
tion of the disappearing tail. It will therefore be discussed in detail in the next
subsection.

4.5 Heads that Fall Between Two Matchpoints in Column k

Throughout this subsection we will use the following notation, as demonstrated
in Figure 8.

— Let mp, mpy1 denote two consecutive matches in column &, such that m,4q
is higher than m,.



— Let hyirst denote the first head in HEAD Sy 1 which is higher than or equal
to m, and lower than my1.

— Let UPDATED,,,, denote the series of heads h; = hyirst - - - hiast Which
fall between m, and m,41 and whose head-to-tail association changed in
generation k, ordered in increasing height. Let ¢; = tfips¢ - . - tiast denote the
series of corresponding tails.

— Let h;j;11 and h; denote any pair of consecutive heads in UPDATED,,, , .

Consider the set of heads from HEADS),, that fall between m, and mp4q. In
this subsection we will show that some of the heads in this set remain unmodified
in HEADSy1 (see, for example, heads hg, hs and hs in Figure 8) while others
change (see, heads hyirst, hi, hiv1 and hyqse in Figure 8).

Lemma 14 shows that all heads in HEADS; that fall between m, and
mp41 and are not in UPDAT ED,y,, , remain unchanged in G. Lemma 13 claims
that hyirst € UPDATED,y,, ,, since it dies in generation G and is replaced
with mp. In Conclusion 8 we assert that all heads in UPDATED,,, , , except
for hyirst, remain active in G, and survive the transformation of HEADSy; to
HEADS}. Additional characteristics of the heads in the set UPDATED,, , are
then investigated. In Lemma 14 we learn that the heads in UPDATED,,, » and
their corresponding tails form a series of increasing head heights and decreasing
tail column indices, such that the new chains from any two consecutive heads in
the series must cross. (See the dark chains in Figure 8). The challenge of mod-
ifying the head-to-tail association of the heads in UPDATED,,, , is addressed
in Lemma 16, and an interesting chain-reaction is observed. We show that, for
any two consecutive heads h;, hiy1 € UPDATED,y,, ,, head h;y1 replaces h; as
the new newy, in Gy.

Next, we consider the tails that are active in G1 in order to try and find the
tail which becomes extinct in Gy,. Clearly, for some of these tails (see, for example
te in Figure 8), the corresponding new head falls above m,11 and therefore the
decision as to whether or not they survive the transition to G} is delayed till
later when the corresponding span is traversed and analyzed. For others (see,
for example t7 in Figure 8), the corresponding new head falls below m, and
therefore it has already been treated during the analysis of some previous span.
For some tails (such as t3, t4 and t5), the corresponding new heads indeed fall
between m, and m,; but are not included in UPDATED,,, ,, and therefore
these tails keep their shortest chain as is, and will also survive the transition to
Gy. In Conclusion 8 we assert that the tails which correspond to all heads in
UPDATED,,,,, except for t,s, are kept alive in G. As for #j,5, this is the
only candidate for extinction in Gy, and in Lemma 17 we show that in the last
span of traversed heads, if the highest match in column k falls below the highest
head in HEADS}, 1, then tj,5 of this last span will finally be identified as the
dying tail in G.

Lemma 13. hyire 45 no longer an active head in Gy. Instead, the height of
match my replaces hyirsy in HEADS),.

We have shown that hy.s dies in generation G, and is replaced with the height
of mp in HEADSy. From this we conclude that hjie is the first head in



UPDATED,,,,. The next lemma will help further separate the heads which
participate in UPDATED,,,, from the heads that remain unmodified from
HEADS+1 to HEADS.

Lemma 14. Consider two heads hi,ho € HEADS 1, such that hy is higher
than hy, and given that there is no match point in column k which falls between
h1 and hy. Let hy = newg, and hy = newy,. If t1 < t2, then the chain from hs
to to remains active in Gy,.

The above Lemma immediately leads to the following conclusion.

Conclusion 5 The heads in UPDATED,,, ;. and their corresponding tails form
a series of increasing head heights and decreasing tail column indices.

We have shown that all heads which are not in UPDAT ED,,, j, remain unmodi-
fied. We will next show that all heads in UPDATED,,, x, even though modified,
survive the transformation from HEADSy 1 to HEADS. In order to do so we
first prove the following two lemmas, which lead to the conclusion that the mod-
ifications in the head-to-tail associations of heads in UPDAT ED,,, ;. consist of
a chain reaction in which each head is re-labelled with the tail of the head below.

Lemma 15. Let h; and h;y1 denote two heads in HEADSy 1, such that h; =
newy,, hiy1 = newy, ., and hiy1 is the first head above h; such that its corre-
sponding new tail t;y1 falls to the left of t;. Let j denote the size of the chain
from h; to t;. If the chain from h; to t; becomes de-activated in Gy, then all
chains that originate in h;y; and are of sizes smaller than or equal to j will be
de-activated in Gy,.

The following conclusion is immediate from the above Lemma 15 and the defi-
nition of UPDATEDy,, k-

Conclusion 6. Let h; and h;y1 denote two heads in HEADSy,1, such h; =
newy,;, hiy1 = newy, ., and hiy1 is the first head above h; such that its corre-
sponding new tail tiy1 falls to the left of t;. If hy € UPDATEDy,, , then it
follows that hiyy € UPDATED,, .

Observation 1.

For any tail t;, if the new chain from newy, tot; becomes de-activated in Gy, and
let j denote the size of the active chain from newy, to t; in Gry1. In generation
G Hi, will no longer include any head of a j-sized chain to t;.

The above observation is correct since, by definition, an active chain to a given
tail can only evolve in G}, by extending a chain shorter by one to the same tail,
a chain that was active in Gg41, with a new match from column k. However the
fact that the j-sized chain to ¢; was the new chain of Hy, in Gg41 implies, by
definition, that there was no shorter active chain to ¢; in Ggt1. Therefore, Hy,
no longer includes any head of a j-sized chain to ¢; in Gy.



Lemma 16. [Chain Reaction.] For any two consecutive heads h;, hiy1 € UPD-
ATED,,, i, such that h; = newy, in Ggy1. In generation Gy, hiy1 becomes
news, .

The above lemma implies that, for any two consecutive heads h;, h;y1 € UPD-
ATED,y,, i, there is, in Gy, an active chain from ¢; to h;y1. Since all it takes is
one active chain per generation to keep the head that starts this chain and the
tail that ends this chain alive, this leads to the the following conclusion.

Conclusion 7.

— The heads hyirsit1 ... hiast € UPDATED,y,, i remain active in G,
— The corresponding tails tirst - . . tigst—1 remain active in Gy.

The only two critical indices in any UPDAT ED series, which are not included
in the above lists of heads and tails that remain active in Gy, are hyis¢ and tqs¢-
Since we already know, by Lemma 13, that any head that serves as h ;5 to some
UPDATED series becomes extinct in G, and is replaced with the height of the
highest match point below, the only remaining issue to settle is what happens
to tails that serve as t;45; in G- This is done in the next Lemma, which claims
that all tails that serve as t;,5; for some UPDAT ED series between two match
points remain active in G, and the tail that serves as ¢;,5+ for the last span of
heads in HEADSy41, if there is indeed no match point in column k above the
highest head in this span, is the tail that becomes extinct in Gy.

Lemma 17. The tail to disappear from row k of TAILS, i.e. the tail which
becomes inactive in generation Gy, is the tjus of the last UPDATED series of
HEADSk41.

The second algorithm computes the rows of T AILS incrementally, in decreasing
row order. Row &k of TAILS will be computed from row k + 1 of TAILS by
inserting the new tail k, (if such exists) and by removing the ”disappearing”
tail (if such exists). The algorithm maintains a dynamic list HEADS of active
heads. Each head is annotated with two fields: its height and a label associating
it with one of the active tails ¢ for which it is new;. Upon the advancement of the
computation from row k + 1 of the TAILS table to row k, the poset of matches
is extended by one column to the left to include the matches of column k of
the LCS graph for A versus B. Given the list HEADSy 1, sorted by increasing
height, the algorithm computes the new list H EAD S}, obtained by merging and
applying the matches of column k to HEAD Sy, 1, and the ”disappearing entry”
for row k of TAILS is finally realized.

Lemma 18. r < nlL

Time and Space Complexity of the Second Algorithm.

Since r < nL, the total cost of merging r matches with n lists of size L each
is O(nL). In iteration k, up to Ljy1 new head height values may be updated,



and up to one new head created. The linked list of L1 heads is then traversed
once, and for each item on the list up to one, constant time, swap operation
is executed. Therefore, the total work for n iterations is O(nL). There is an
additional O(nlog|X|) preprocessing term for the construction of Match Lists.
(Note that we only need to create match lists for characters appearing in B, and
that |X| < m). Thus, the second algorithm runs in O(nL + nlog|X|) time, and
requires O(L) space.

References

1. A. Apostolico, String editing and longest common subsequences. In G. Rozenberg
and A. Salomaa, editors, Handbook of Formal Languages, Vol. 2, 361-398, Berlin,
1997. Springer Verlag.

2. Apostolico A., and C. Guerra, The longest common subsequence problem revisited.
Algorithmica, 2, 315-336 (1987).

3. Carmel, D.N. Efraty , G.M. Landau, Y.S. Maarek and Y. Mass, An Extension of
the Vector Space Model for Querying XML Documents via XML Fragments, ACM
SIGIR’2002 Workshop on XML and IR, Tampere, Finland, Aug 2002.

4. Eppstein, D., Z. Galil, R. Giancarlo, and G.F. Italiano, Sparse Dynamic Program-
ming I: Linear Cost Functions, JACM, 39, 546-567 (1992).

5. Hirshberg, D.S.,” Algorithms for the longest common subsequence problem”, JACM,
24(4), 664-675 (1977).

6. Hunt, J. W. and T. G. Szymanski. ” A fast algorithm for computing longest common
subsequences.” Communications of the ACM , 20 350-353 (1977).

7. Kim, S.; and K. Park, ” A Dynamic Edit Distance Table.”, Proc. 11th Annual Sym-
posium On Combinatorial Pattern Matching, 60-68 (2000).

8. Landau, G.M., EEW. Myers and J.P. Schmidt, Incremental string comparison, STAM
J. Comput., 27, 2, 557-582 (1998).

9. Landau, G.M. and M. Ziv-Ukelson, On the Shared Substring Alignment Problem,
Proc. Symposium On Discrete Algorithms, 804-814 (2000).

10. Landau, G.M., and M. Ziv-Ukelson, On the Common Substring Alignment Prob-
lem, Journal of Algorithms, 41(2), 338-359 (2001)

11. G. M. Landau, B. Schieber and M. Ziv-Ukelson, Sparse LCS Common Substring
Alignment, CPM 2003, 225-236

12. Myers, E. W., "Incremental Alignment Algorithms and their Applications,” Tech.
Rep. 86-22, Dept. of Computer Science, U. of Arizona. (1986).

13. Myers, E. W., 7 An O(ND) Difference Algorithm and its Variants,” Algorithmica,
1(2): 251-266 (1986).

14. Schmidt, J.P., All Highest Scoring Paths In Weighted Grid Graphs and Their
Application To Finding All Approximate Repeats In Strings, SIAM J. Comput,
27(4), 972-992 (1998).

15. Sim, J.S., C.S. Iliopoulos and K. Park, ” Approximate Periods of Strings.” Proc.
10th Annual Symposium On Combinatorial Pattern Matching, 132-137 (1999).



