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SUMMARY

During mouse embryonic development, neural
progenitors lengthen the G1 phase of the cell cycle
and this has been suggested to be a cause, rather
than a consequence, of neurogenesis. To investigate
whether G1 lengthening alone may cause the switch
of cortical progenitors from proliferation to neurogen-
esis, we manipulated the expression of cdk/cyclin
complexes and found that cdk4/cyclinD1 overex-
pression prevents G1 lengthening without affecting
cell growth, cleavage plane, or cell cycle synchrony
with interkinetic nuclear migration. Specifically, over-
expression of cdk4/cyclinD1 inhibited neurogenesis
while increasing the generation and expansion of
basal (intermediate) progenitors, resulting in a thicker
subventricular zone and larger surface area of the
postnatal cortex originating from cdk4/cyclinD1-
transfected progenitors. Conversely, lengthening of
G1 by cdk4/cyclinD1-RNAi displayed the opposite
effects. Thus, G1 lengthening is necessary and suffi-
cient to switch neural progenitors to neurogenesis,
and overexpression of cdk4/cyclinD1 can be used
to increase progenitor expansion and, perhaps,
cortical surface area.

INTRODUCTION

During mouse embryonic development, an increasing proportion

of neural progenitors switch from divisions that generate two

progenitors (proliferative divisions) to divisions that generate at

least one neuron (neurogenic divisions). Specifically, with the

onset of telencephalic neurogenesis at embryonic day 11

(E11), neuroepithelial cells forming the ventricular zone (VZ) start

to switch from symmetric proliferative to asymmetric neurogenic

division (Caviness et al., 1995; McConnell, 1995; Rakic, 1995). In

addition, neuroepithelial and, later in development, radial glial

cells, here referred together as apical progenitors (APs), asym-

metrically generate a second progenitor type, the basal (or inter-

mediate) progenitor (BP), that at mid-corticogenesis (E14)

becomes the predominant neurogenic cell type (Haubensak
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et al., 2004; Miyata et al., 2004; Noctor et al., 2004). BPs lose

polarity, migrate basally to form the subventricular zone (SVZ),

and, in contrast to APs, undergo symmetric divisions that are

only either proliferative or neurogenic (Attardo et al., 2008;

Noctor et al., 2008). Importantly, the temporal and spatial control

of the switch from proliferation to asymmetric and later

symmetric neurogenesis regulates the balance between expan-

sion, self-renewal, and consumption of the progenitor pool, ulti-

mately establishing the size of the adult brain (Götz and Huttner,

2005; Kriegstein et al., 2006; Pontious et al., 2008).

Key to understand the mechanisms controlling the expansion

versus differentiation of neural progenitors is the study of their

cell cycle regulation (Bally-Cuif and Hammerschmidt, 2003;

Dehay and Kennedy, 2007; Ohnuma and Harris, 2003). In partic-

ular, in respect to their cell cycle length, it has been observed that

G1 increases as development proceeds (Takahashi et al., 1995)

and that cortical regions with a higher proportion of neurogenic

divisions are characterized by progenitors with a longer G1

(Lukaszewicz et al., 2005). Finally, population analyses have

shown that at any given stage of development, neurogenic

progenitors are characterized by a longer G1 than coexisting

proliferative progenitors (Calegari et al., 2005).

In fact, several groups have reported a tight correlation

between inhibition of cell cycle and neurogenesis showing, for

example, that (1) cell cycle inhibitors are markers of neurogenic

progenitors (Georgopoulou et al., 2006; Iacopetti et al., 1999),

(2) overexpression (or knockout) of antiproliferative genes

promotes (or inhibits) neurogenesis (Canzoniere et al., 2004;

Ohnuma et al., 1999; Politis et al., 2007; Regad et al., 2009),

and (3) secreted factors that inhibit cell cycle induce neurogene-

sis whereas, conversely, factors promoting cell cycle decrease it

(Hodge et al., 2004; Lukaszewicz et al., 2002).

This correlation being evident, the fundamental question

remains as to whether lengthening of the cell cycle is a cause

or, alternatively, a consequence of neurogenesis. Remarkably,

despite major efforts, the answer to this question remains elusive

because most studies focused on trophic or transcription factors

that, in addition to the cell cycle, may as well influence differen-

tiation as also shown for cell cycle inhibitors such as p27kip1

(Nguyen et al., 2006).

In support to a causal role of cell cycle length on neurogenesis,

it has been observed that lengthening of G1 by inhibition of the

cdk2/cyclinE1 complex, whose only characterized function is

to control cell cycle progression, is sufficient to trigger premature
nc.
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Figure 1. Experimental Approach

(A) Scheme of GFP (left) and RFPnls (right) vectors

for cdk or cyclin, respectively. Note the use of

similarly strong promoters for reporters (SV40)

and cell cycle regulators (CMV).

(B) Drawing of the mouse brain in the rostral-left,

caudal-right orientation after sectioning at the

level of field 40 and removal of the rostral part.

Positioning of the electrodes and DNA injection

are indicated.

(C) Drawing exemplifying the cytoarchitecture of

the developing brain with (1) bipolar APs in the

VZ (bottom), (2) multipolar BPs (rhombuses) in

the SVZ (middle), and neurons (deltoids) in the

IZ/CP (top). Left and right represent the cortex

either soon or few days after electroporation with

GFP (green) and RFPnls (yellow, as merge with

green) plasmids. Note the change in distribution

of green/yellow cells from the VZ (left) to the VZ,

SVZ, and IZ/CP (right) resulting from division of

transfected progenitors (arrows). Pial endfeet of

radial glia are not portrayed for clarity.

(D) Fluorescence pictures of a mouse brain 24 hr

after electroporation at E13.5 with control plas-

mids showing the distribution of fluorescent cells

in the VZ, SVZ, and IZ (dashed lines indicate

boundaries of each). Note the almost complete

colocalization of the reporters (merge; including

DAPI) (white line, apical surface; scale bar repre-

sents 50 mm).
neurogenesis (Calegari and Huttner, 2003). Thus, a model was

proposed, referred to as the cell cycle length hypothesis, ac-

cording to which a cell fate determinant(s) may, or may not,

induce a cell fate change of neural progenitors depending on

whether or not the length of G1 provides enough time for the

cell fate determinant-produced effect(s) to become effective. In

essence, time may be a key limiting factor for cell fate change

to occur and a relatively long G1 may allow the switch to neuro-

genesis while a short G1 may not (Calegari and Huttner, 2003).

However, validation of this hypothesis still awaits demonstra-

tion that shortening G1 prevents neurogenesis while increasing

proliferative divisions. Importantly, in contrast to studies report-

ing induction of neurogenesis and depletion of the progenitor

pool, a delay of neurogenesis should allow greater progenitor

expansion resulting in increased brain size.

To address these possibilities, we manipulated the expression

of genes whose only characterized function is to promote G1 or

G1-to-S transition, e.g., the cdk4/cyclinD1 and cdk2/cyclinE1

complexes (referred to as 4D and 2E), respectively (Ekholm

and Reed, 2000; Sherr, 1994), and investigated the effect of

this manipulation on cell cycle length and cell fate change of

neural progenitors during mouse corticogenesis.

RESULTS

Experimental Approach
To overexpress 4D or 2E and directly identify cdk/cyclin-overex-

pressing cells, we cloned cdk4 or cdk2 into a vector also encod-

ing for GFP, and cyclinD1 or cyclinE1 into a vector also encoding

for RFP (Figure 1A). Cytoplasmic GFP and a nuclear-localized

RFP (RFPnls) were used to simultaneously identify shape and

nuclei of transfected cells, which are important parameters to
Ce
distinguish the boundary between the VZ and the SVZ by their

different cytoarchitecture (Figures 1C and 1D) and to count cells

reliably.

Immunofluorescence and western blot analyses on HeLa cells

revealed that each cell cycle regulator was coexpressed with its

fluorescent reporter and could form catalytically active com-

plexes that triggered hyperphosphorylation of retinoblastoma,

a primary target of G1-cdk/cyclins (Supplemental Data and

Figure S1 available online). When electroporated in the E13.5

lateral cortex (Figure 1B), both GFP/RFPnls (referred to as

control) and cdk/cyclin plasmids showed 24 hr later an almost

complete (>95%) coexpression in transfected cells (Figure 1D).

Importantly, reproducibility of the region and number of cells

transfected by in utero electroporation is limited. Thus, we

analyzed only brains targeted in field 40 of the dorso-lateral

cortex (Figure 1B) because of its ease of transfection and exten-

sive characterization with regard to cell cycle length and cell fate

change of neural progenitors and expressed numbers of tar-

geted cells in each cortical zone, i.e., VZ, SVZ, intermediate

zone (IZ), and cortical plate (CP), as a percentage of all trans-

fected cells, which allows to quantify differentiation and

neuronal output of a pool of targeted progenitors as a function

of time (Figure 1C, left versus right; additional details in Supple-

mental Data).

Overexpression of 4D, but Not 2E, Shortens G1
To investigate whether overexpression of 4D or 2E accelerates

the cell cycle of cortical progenitors, we electroporated E13.5

embryos with either (1) control, (2) 4D, or (3) 2E plasmids

followed 24 hr later by cumulative BrdU labeling (Takahashi

et al., 1995) and quantification of BrdU+ cells in the VZ (Figures

2A and 2B).
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We first measured the percentage of BrdU+ cells (referred to

as BrdU labeling index, with an index of 1.0 being equivalent to

100% of labeled cells) at 3 and 9 hr, which were found to be

essentially identical in untransfected or control transfected cells

(0.41 ± 0.02 versus 0.42 ± 0.04 at 3 hr and 0.80 ± 0.02 versus

0.78 ± 0.09 at 9 hr, respectively; Figure 2C). These values are

similar to previous studies on unmanipulated embryos (Calegari

et al., 2005; Takahashi et al., 1995), indicating that neither elec-

troporation nor GFP/RFPnls expression affect the cell cycle of

neural progenitors.

Figure 2. Cell Cycle Length Analyses

(A) Time course of cumulative BrdU labeling with

electroporation performed at E13.5 (left; arrow-

head) and BrdU injections (arrows) starting at

E14.5 with 3 hr intervals. Mice were sacrificed 2,

3, 6, 9, or 12 hr after the first BrdU injection

(crosses).

(B) Fluorescence pictures of a 2-mm-thick confocal

optical section of the VZ and SVZ after electropo-

ration with control plasmids and 2 hr BrdU ex-

posure indicating RFPnls+ (arrowheads) and

RFPnls� (arrows) nuclei being scores as BrdU+

(white arrowheads and arrows) or BrdU� (black

arrowheads and arrows).

(C) BrdU labeling indices of VZ, untransfected cells

(white), or cells transfected with control (light gray),

4D (black), or 2E (dark gray) plasmids after 3 (left)

or 9 (right) hr BrdU exposure.

(D) Cumulative BrdU labeling curves of control

(gray squares) or 4D-transfected (black circles)

cells. Dashed lines indicate growth fractions.

(E) Mitotic BrdU labeling indices of control (gray) or

4D-transfected (black) cells after 2 (left) or 3 (right)

hr BrdU exposure.

(F) Fluorescence pictures as in (B) of a Tis21GFP

embryo electroporated with GFP-lacking 4D plas-

mids followed by 6 hr BrdU exposure showing

RFPnls+/Tis21+ (arrowheads) or RFPnls+/Tis21�

(arrows) nuclei being scored as BrdU+ (white) or

BrdU� (black).

(G) 6 hr BrdU labeling indices of untransfected

(white) or 4D-transfected (black) cells among

Tis21+ (left) or Tis21� (middle) cells or being pulled

together (total; right). Note the higher effect in the

Tis21+ than in the Tis21� population.

Lines in (B) and (F) indicate boundaries of the VZ.

Scale bars represent 20 mm.

(C–E and G) Labeling index 1.0 = all nuclei stained.

Data are the mean of three (12 hr: two) litters; error

bars indicate SD (12 hr: SEM); cells counted in (D):

6858; *p < 0.05; **p < 0.005.

In contrast, a higher proportion of 4D-

transfected cells had incorporated BrdU

at 3 (0.56 ± 0.02) and 9 (0.89 ± 0.07) hr

(Figure 2C). In particular, the labeling

index at 9 hr almost reached 1.0, sug-

gesting labeling of the entire population

of cycling cells already before 9 hr. In

contrast, the labeling indices of 2E-trans-

fected cells were indistinguishable from

controls after 3 (0.42 ± 0.06) and 9

(0.80 ± 0.04) hr (Figure 2C), suggesting an acceleration of the

cell cycle by 4D, but not 2E, overexpression.

To measure cell cycle phases after 4D overexpression, we

combined cumulative and mitotic BrdU labeling index anal-

yses, which allow us to calculate (1) S and total cell cycle

length and (2) G2+M by the increase in BrdU labeling index

as a function of time in interphase or mitotic cells, respectively

(Takahashi et al., 1995). Cumulative BrdU labeling was per-

formed for a total of 12 hr (Figures 2A and 2D), and mitotic cells

at 2 and 3 hr (Figure 2E) were identified by chromatin
322 Cell Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier Inc.
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condensation and diffusion of RFPnls to the cytoplasm (see

example in Figure 3A).

We found that 4D-transfected progenitors had a 10% shorter

cell cycle than control progenitors (13.1 versus 14.5 hr) (data

given for 4D and control, respectively) and that the proportion

of cycling cells was similar in both conditions (0.90 ± 0.03 versus

0.88 ± 0.05) (Figure 2D). It should be noticed that the effect of 4D

on the total cell cycle occurred despite an increase of S by 35%

(4.7 versus 3.5 hr) and of G2+M by 25% (2.5 versus 2.0 hr)

(Figures 2D and 2E; Table S1). In fact, the G1 of 4D overexpress-

ing progenitors was 30% shorter than that of control progenitors

(5.9 versus 9.0 hr) (Table S1).

With the Tis21GFP knockin mouse line, which allows us to iden-

tify neurogenic cells by the expression of GFPnls (Haubensak

et al., 2004), it has been shown that proliferative Tis21� progen-

itors have a shorter G1 than neurogenic Tis21+ progenitors

(Calegari et al., 2005). Thus, to investigate whether 4D overex-

pression preferentially shortens the G1 of one progenitor

subtype, we performed similar experiments in the Tis21GFP line.

Figure 3. Analysis of Cell Size, Cleavage

Plane Angle, and S Phase Entry or Exit

(A) Fluorescence pictures of 1-mm-thick confocal

optical sections of untransfected (left) or 4D-trans-

fected (right) mitotic AP after immunolabeling for

cadherin (middle) and DAPI counterstaining

(bottom). Dashed circles and lines (bottom) indi-

cate the cadherin-outlined cell boundary and

cleavage plane, respectively.

(B and C) Untransfected (left) or 4D-transfected

(right) mitotic progenitors identified as in (A) were

distributed in (1) five 0.4 mm intervals (from <3.4

to >5.0 mm) according to their radius (B) or (2)

five 18� intervals according to their cleavage plane

angle relative to the apical membrane (C).

(D) Fluorescence pictures of 2-mm-thick confocal

optical sections through nuclei of progenitors

exposed to BrdU for 90 min, with EdU being added

during the last 45 min. Note the punctated versus

homogeneous BrdU (left) and/or EdU (right)

labeling indicating entry into (top), persistence

through (middle), or exit from (bottom) S phase.

(E and F) Nuclei of untransfected (left) or 4D-trans-

fected (right) progenitors entering (E) or exiting (F)

S phase were distributed in six equidistant bins

through the VZ.

Scale bars represent 3 mm.

E13.5 Tis21GFP embryos were electro-

porated with GFP-lacking 4D plasmids

and exposed to BrdU for 6 hr at E14.5.

When BrdU incorporation was compared

(Figure 2F), the increase in labeling index

was more substantial among the Tis21+

(60% increase) (0.42 ± 0.08 RFPnls�

versus 0.68 ± 0.06 RFPnls+) than the

Tis21� (25% increase) (0.62 ± 0.03

RFPnls� versus 0.78 ± 0.03 RFPnls+) pop-

ulation (Figure 2G), indicating a stronger

effect of 4D overexpression on progeni-

tors committed to lengthen G1.

Finally, for better understanding the molecular mechanism

triggering the lengthening of G1 in neurogenic progenitors, or

its shortening upon 4D overexpression, we investigated whether

Tis21+ progenitors specifically downregulated cyclinD1. Quanti-

fication of cyclinD1 immunoreactivity in nuclei of E14.5 Tis21�

and Tis21+ cells in the VZ revealed that this was the case

because neurogenic progenitors displayed lower cyclinD1

immunoreactivity by 30% (Supplemental Data and Figure S2).

A Shorter G1 Does Not Affect Cell Growth,
Cleavage Plane Angle, or Cell Cycle Synchrony
with Interkinetic Nuclear Migration
Prior to studying the effect of 4D on neurogenesis, we consid-

ered it important to investigate whether a shorter G1 affects

key features of neural progenitors, such as growth, cleavage

plane angle, or interkinetic nuclear migration, parameters that

may influence neurogenesis.

Thus, we electroporated E13.5 embryos with 4D plasmids, and

1 day (i.e., two cell cycles) later, we measured the size of targeted
Cell Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier Inc. 323
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Figure 4. A Shorter G1 Inhibits Neuro-

genesis

(A and C) Fluorescence pictures of the mouse

cortex after electroporation with control (left) or

4D (right) plasmids followed by 24 (A) or 48 (C) hr

of development (GFP and RFPnls shown as

merge) (DAPI and Tbr2 fluorescence not shown

for clarity). Note the almost complete absence of

fluorescent cells in the IZ at 24 hr and in the CP

at 48 hr after electroporation with 4D. (Lines indi-

cate apical and pial boundaries of the cortex;

dashed lines indicate boundaries between cortical

zones.) Scale bars indicate 50 mm.

(B, B0, D, and D0) Percentage of fluorescent cells in

cortical zones 24 (B and B0) or 48 (D and D0 ) hr after

electroporation with control (white; gray in B for

electroporations at E12.5) or 4D (black) plasmids.

(B0 and D0 ) Neuronal output calculated considering

all IZ and CP fluorescent cells (control = 100%).

Data are the mean of three litters; error bars

indicate SD; cells counted: 12,574; *p < 0.05;

**p < 0.005.
and coexisting, untransfected mitotic APs on consecutive optical

sections (1 mm intervals) after immunolabeling for the membrane

marker cadherin to define cell boundary (Figure 3A). This showed

that a shorter G1 did not affect growth because, assuming a

spherical shape, the radius of untransfected and 4D-targeted

APs was essentially identical (r = 4.55 ± 0.31 versus 4.46 ± 0.45

mm, respectively;�380 fl volume) (Figures 3A and 3B). In addition,

these analyses gave us the opportunity to measure cleavage

plane angle of mitotic APs, which was also unaffected because

most were vertical in either condition (Figure 3C).

Moreover, interkinetic nuclear migration is a hallmark of APs

synchronizing cell cycle with nuclear movement. Nuclei of APs

migrate basally during G1 and invert migration in S to undergo

apical mitosis, so an artificially shorter G1 may induce S entry

to occur closer to the apical surface.

To investigate this, we performed a 90 min BrdU labeling, with

the BrdU analog EdU being added during the last 45 min, and

analyzed BrdU/EdU incorporation in 4D-targeted and untrans-

fected cells. In fact, a short (<30 min) exposure to the S-phase

tracers results in a punctated labeling because of incorporation

only at replication forks. Thus, we reasoned, equally punctated

BrdU+/EdU+ staining will identify cells that have just entered S

at the end of the double labeling whereas punctated BrdU+,

but EdU�, nuclei will identify cells having left S during the first

30 min of BrdU exposure, i.e., 60 min prior to fixation (details in

Supplemental Data and Figure S3; Figure 3D).

This revealed that the position of nuclei of 4D-overexpressing

progenitors entering S or in the first hour of G2 was essentially

identical to that of untransfected cells (Figures 3E and 3F), which

suggests that a manipulation of the length of cell cycle phases

induces a speeding up, or slowing down, of nuclear migration

to maintain its synchrony with cell cycle progression.

Overexpression of 4D Inhibits Neurogenesis
Having excluded an effect of 4D on growth, cleavage plane

angle, and interkinetic nuclear migration, we investigated
324 Cell Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier In
whether shortening of G1 induced a cell fate change of neural

progenitors, specifically, neurogenesis.

Embryos were electroporated with either control, 4D, or 2E

plasmids at E13.5 and were collected 24 or 48 hr later. Bound-

aries between each cortical zone (i.e., VZ, SVZ, IZ, and CP) of

the targeted area were identified on cryosections by (1) immuno-

reactivity for Tbr2, a marker of BPs and the SVZ (Englund et al.,

2005), (2) morphology of GFP+ cells, and (3) an abrupt increase in

the density of DAPI-labeled nuclei between IZ and CP. Finally,

RFPnls+ nuclei in each zone were expressed as a percentage

of all RFPnls+ nuclei.

Analyses 24 hr after electroporation with control plasmids

showed a distribution of RFPnls+ cells in the VZ, SVZ, and IZ in

line with the expected values at this developmental stage

(58.1% ± 3.5%, 20.0% ± 2.4%, and 21.9% ± 2.5%, respectively).

Also, no cell was observed in the CP, because neurons generated

in the previous 24 hr presumably did not yet complete their migra-

tion toward it (Figures 4A and 4B).

In contrast, the proportion of RFPnls+, 4D-targeted cells

showed an increase by 10% and 30% in the VZ and SVZ with

a reduction by 60% in the IZ (64.6% ± 0.4%, 26.4% ± 2.0%,

9.0% ± 2.0%, respectively) (Figures 4A, 4B, and 4B0). Interest-

ingly, this distribution resembled that of the E13.5 cortex electro-

porated with control plasmids at E12.5 (71.5% ± 1.3%, 21.7% ±

1.8%, 6.7% ± 2.7% in the VZ, SVZ, and IZ, respectively)

(Figure 4B), suggesting that 4D overexpression inhibits the

switch from proliferation to neurogenesis between E13.5 and

E14.5.

Electroporation with 2E plasmids showed a similar trend

(60.2% ± 3.5%, 21.9% ± 3.1%, 17.9% ± 2.8% in the VZ, SVZ,

and IZ, respectively) though the change was small and not signif-

icant (not shown). Thus, no further investigation on 2E was

performed.

Importantly, the reduced proportion of RFPnls+ cells in the IZ

after 4D electroporation was not due to mortality of neurons

nor to a defected migration. In fact, a similarly negligible number
c.
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Figure 5. A Shorter G1 Increases the Gener-

ation and Expansion of BPs

(A) Fluorescence pictures of the mouse cortex

after electroporation with control (left) or 4D (right)

plasmids, 24 hr of development and Tbr2 immuno-

reactivity (white; merged with RFP).

(B) Quantification of APs, BPs, and neurons (N) as

in (A).

(C) Quantification of Tbr2+ cells and their distribu-

tion in the VZ or SVZ.

(D) Merged fluorescence pictures after electropo-

ration of a Tis21GFP embryo with GFP-lacking 4D

plasmids and Tbr2 immunolabeling.

(D0) Magnification of the dashed box in (D) showing

individual RFPnls, Tis21GFP, and Tbr2 channels

and Tbr2+/Tis21�cells being scored in the RFPnls+

(dotted lines) or RFPnls� (lines) population.

(E) Quantification of Tbr2+/Tis21� cells in the SVZ.

Each symbol represents quantification within the

same optical field from five brains.

(F) Fluorescence pictures as in (A) but at 48 hr after

electroporation with 4D plasmids.

(F0 ) Magnification of the dashed box in (F) showing

individual Tbr2 staining (top) and the area being

considered as SVZ (area between red lines;

bottom). Note the abrupt increase in thickness of

the SVZ (x versus x0) at the border of the RFPnls+

area (red arrow).

(G) Quantification of the effect shown in (F0 ) for

three cortices with �50% electroporation effi-

ciency.

(A, D, F) Lines indicate boundaries of the cortex;

scale bars represent 50 mm. (A) Dashed lines indi-

cate boundaries between cortical zones. Data are

the mean of three litters (E: five embryos from

three litters); error bars indicate SD; cells counted

in (B) and (E): 3765 and 1065, respectively;

*p < 0.05; **p < 0.005.
of apoptotic cells, identified by pycnotic nuclei or caspase-3

immunoreactivity, and b-III-tubulin+ cells in the VZ or SVZ were

found in cortices electroporated with control or 4D plasmids or

in unelectroporated cortices (Figure S4 and data not shown).

Thus, these experiments indicate that a shortening of G1 inhibits

neurogenesis.

Additional experiments confirmed this conclusion. Electropo-

ration followed by a longer survival time (48 hr), which allows

migrating neurons to reach the CP, again showed a change in

the proportion of cells in the VZ, SVZ, IZ, and CP after targeting

with control (23.4% ± 4.3%, 17.3% ± 4.7%, 47.1% ± 7.8%, and

12.2% ± 3.4%, respectively) as compared to 4D (24.8% ± 2.9%,

25.0% ± 2.9%, 43.8% ± 7.2%, and 6.3% ± 2.6%, respectively)

plasmids with a reduction of neurons in the IZ and CP by 20%

and an increase in progenitors in the SVZ by 45% (Figures 4C,

4D, and 4D0).

In conclusion, shortening G1 by 4D overexpression inhibited

neurogenesis and increased the proportion of progenitors in

the SVZ (Figures 4B and 4D). Intriguingly, because most neurons

are thought to be generated by BPs in the SVZ (Haubensak et al.,

2004; Pontious et al., 2008), it may be expected that 48 hr after

4D overexpression, the proportion of neurons should be

increased. Yet, this proportion was decreased (Figure 4D0), sug-

gesting that shortening of G1 induces BPs to undergo prolifera-

tive rather than neurogenic division.
Ce
Overexpression of 4D Increases the Generation
and Expansion of BPs
We then analyzed whether the increased proportion of progeni-

tors at the expense of neurons was due to a cell fate change of

APs, BPs, or both by analyzing the expression of the BP marker

Tbr2 (Englund et al., 2005) in RFPnls+ cells 24 hr after electro-

poration at E13.5 with either control or 4D plasmids (Figure 5A).

Specifically, RFPnls+ cells were divided in three groups: (1)

Tbr2� cells in the VZ, (2) Tbr2+ cells in the VZ or SVZ, and (3)

Tbr2� cells in the SVZ and cells in the IZ or CP irrespective

of Tbr2 expression, representing APs, BPs, and neurons,

respectively.

The proportions of APs, BPs, and neurons after targeting with

control (46.7% ± 2.7%, 31.4% ± 0.6%, and 21.9% ± 2.6%,

respectively) or 4D plasmids (47.7% ± 2.2%, 43.3% ± 3.0%,

9.0% ± 2.1%, respectively) showed a similar amount of APs

but an increase in BPs by 40% (Figure 5B). In addition, the

increase in BPs was found to occur not only in the SVZ but

also, and to a similar extent, in the VZ (Figure 5C), indicating an

increased generation of BPs.

We then used the Tis21GFP line and investigated whether a

higher proportion of BPs in the SVZ underwent proliferative,

rather than neurogenic, division upon 4D overexpression. The

percentage of proliferating Tbr2+/Tis21� BPs in the SVZ was

calculated in the two subpopulations of RFPnls+ and coexisting
ll Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier Inc. 325
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RFPnls� cells 24 hr after electroporation of E13.5 Tis21GFP mice

with GFP-lacking 4D plasmids, which showed a 2-fold increase

in the proportion of proliferating BPs in the RFPnls+ population

(24.3% ± 7.9% versus 12.4% ± 7.2%) (Figures 5D, 5D0, and

5E). Moreover, consistent with an increased expansion of BPs,

48 hr after electroporation with 4D, we found a 40% thickening

of the SVZ containing RFPnls+ BPs as compared to the adjacent

SVZ within the same optical field (76.2 ± 2.9 versus 54.2 ± 5.3

mm, for the RFPnls+ and RFPnls� area, respectively) (Figures

5F, 5F0, and 5G).

Finally, we investigated whether 4D overexpression may also

influence the switch from neurogenesis to gliogenesis by electro-

poration at E15.5 (i.e., at the onset of gliogenesis) and analyses at

E18.5 (i.e., 1 day after the end of cortical neurogenesis). After

electroporation with control or 4D plasmids, expression of

markers of radial glia (BLBP), proliferation (PCNA), or gliogenic

transition (Olig2 and CD44) was determined. In brief, these exper-

iments showed no change with regard to the (1) abundance and

distribution of BLBP+ or PCNA+ cells, essentially all restricted to

germinal zones, (2) proportion of Olig2+ cells, and (3) premature

expression of CD44, which was detected only postnatal (details

in Supplemental Data), suggesting that 4D overexpression

does not influence the switch from neurogenesis to gliogenesis.

4D RNAi Induces the Converse Effects
of 4D Overexpression
Overexpression of 4D shortens G1, inhibits neurogenesis, and

increases the generation and expansion of BPs, so we investi-

gated whether 4D knockdown by RNAi via in utero electropora-

tion (Calegari et al., 2004) induced the opposite effects.

Embryos were electroporated at E13.5 with two plasmids

coexpressing GFP and a shRNA against either cdk4 (SA-Biosci-

ences) or cyclinD1 (Peng et al., 2006) (referred to as 4- and

D-shRNA, or 4D-shRNA if pulled together), which 48 hr after

transfection reduced cdk4 levels by western blot analysis in

NIH 3T3 by 60% (Figures 6A and 6B) and cyclinD1 immunoreac-

tivity in the cortex by 40% (Figures 6C and 6D), respectively

(details in Supplemental Data). Electroporation with 4D-shRNA

and RFPnls plasmids was performed at E13.5 followed 48 hr

later by quantification of BrdU+ or Tbr2+ cells and their distribu-

tion in cortical zones.

4D RNAi reduced BrdU labeling indices both at 3 and 9 hr

(0.42 ± 0.05 versus 0.32 ± 0.02 at 3 hr and 0.72 ± 0.09 versus

0.57 ± 0.06 at 9 hr for untransfected and 4D-shRNA targeted

cells, respectively) (Figure 6E) without a significant change in

the proportion of cycling cells (0.92% ± 0.03% versus 0.87% ±

0.01%) (data not shown), suggesting a lengthening of G1 by

2.4 hr. Moreover, the 9 hr cumulative BrdU labeling was also

used as neuronal birthdating experiment to measure the propor-

tion of BrdU+ neurons in the IZ generated from untransfected or

4D-shRNA-targeted progenitors during the 9 hr prior to sacrifice

at E15.5, i.e., when an effect on G1 length could be ascertained

(details in Supplemental Data). This revealed a 40% increase in

neurons from 4D-shRNA-targeted progenitors as compared to

untransfected progenitors (19.2% ± 3.3% versus 13.6% ±

3.9%, respectively) (Figure 6F) and thus induction of neurogene-

sis upon lengthening of G1.

Finally, APs and BPs in the VZ or SVZ were identified by Tbr2

and expressed as percentage of all progenitors 48 hr after elec-
326 Cell Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier In
troporation at E13.5 with (1) control, (2) 4D, or (3) 4D-shRNA

plasmids. This revealed that the effect of 4D overexpression

was conversely mirrored by 4D RNAi (Figure 6G). Specifically,

after 4D overexpression, APs, BPs in the VZ, or BPs in the SVZ

had changed relative to control by �30%, +25%, and +15%,

respectively (AP, 37.7% ± 2.6% versus 25.4% ± 5.3%; BP in

the VZ, 23.9% ± 3.0% versus 29.8% ± 3.3%; BP in the SVZ,

38.4% ± 2.1% versus 44.8% ± 2.9% for control or 4D plasmids,

respectively). (The decrease in APs at E15.5 is not in contradic-

tion with their unchanged proportion at E14.5 [Figure 5B]

because neurons are included in the latter but not in the former

calculation.) Conversely, after 4D RNAi, APs, BPs in the VZ,

and BPs in the SVZ had changed relative to control by +30%,

�20%, and �20% (49.7% ± 6.0%, 19.7% ± 3.3%, and

30.6% ± 4.0%, respectively) (Figure 6G).

Altogether, conversely to 4D overexpression, 4D RNAi

lengthens G1, induces neurogenesis, and inhibits the generation

and expansion of BPs. Importantly, no effect by 4D-shRNA was

observed with regard to (1) interkinetic nuclear migration (judged

by the distribution of BrdU+ cells), (2) cell size and shape (judged

by the area and profile of GFP+ cells), or (3) migration (judged by

the distribution of cell types in cortical zones) (data not shown).

Neurons Generated by 4D-Targeted Progenitors
Occupy a Wider Cortical Area
BPs are thought to be the major source of neurons in the cortex,

and an increase in their proportion during evolution has been

proposed to underlie cortical expansion (Abdel-Mannan et al.,

2008; Fish et al., 2008; Kriegstein et al., 2006; Pontious et al.,

2008).

We therefore investigated whether a higher generation and

expansion of BPs correlated with an increased cortical surface

area by electroporation at E13.5 with either control or 4D plas-

mids and analysis at birth (P0). However, a limitation of our

method was the difficulty to directly measure the area of the

VZ being originally targeted. As a feasible approach, we sought

to retrospectively infer the size of the VZ targeted at E13.5 by

measuring the area that at P0 still contained residual GFP/

RFPnls+ cells and to assume that this area would be a reliable

indicator of that originally targeted. Thus, we performed serial

consecutive vibratome sections (50 mm thick) through the entire

rostral-to-caudal axis of the P0 brains and measured, in each of

them, the surface area of the apical VZ and the pial CP that con-

tained RFPnls+ cells, regardless on their abundance (Figures 7A,

7B, and 7B0).

Individual electroporations with either control or 4D plasmids

showed a high degree of variability with regard to apical and

pial surface area containing RFPnls+ cells (e.g., pial area control

from 1 to 4 mm2), which reflects the variable efficiency of this

technique. Remarkably, however, when we sought to normalize

for this variability and expressed the pial surface area as a propor-

tion of the apical one, we observed that the ratio of pial-to-apical

surface area was highly reproducible with a value of 6.3 ± 1.0 for

control plasmids (Figure 7C), which is consistent with stereolog-

ical analyses on unmanipulated brains (Popken et al., 2004) and,

thus, suggests the suitability of our methodology.

Electroporations with 4D plasmids showed an increase in the

ratio of pial-to-apical surface area from 6.3 ± 1.0 to 15.5 ± 3.3

(Figure 7C). Thus, progenitors transfected with 4D at E13.5
c.
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Figure 6. 4D RNAi Has the Converse Effect of 4D Overexpression

(A) Western blots for cdk4 and a-tubulin (tub.) 48 hr after transfection of NIH 3T3 with 4- or scrambled-shRNA and FAC sorting of GFP+ cells.

(B) Quantification of cdk4 after tubulin normalization (3.5 = scrambled-shRNA; n = 2; error bars indicate SEM).

(C) Fluorescence pictures of the E15.5 VZ and SVZ after electroporation at E13.5 with D-shRNA, cyclinD1 immunolabeling, and DAPI staining. Note that high

cyclinD1 immunoreactivity was found only within GFP progenitors (dotted circles) (continuous and dashed line indicate apical and basal boundary of the VZ,

respectively).

(D) Quantification (a.u.) of cyclinD1 immunoreactivity in 48 GFP� (white) or GFP+ (black) nuclei randomly chosen within the VZ (bars indicate mean; p < 0.05; U-test

used because of nonnormal distribution; scale not comparable to Figure S2B).

(E) BrdU labeling indices of untransfected (white) or GFP+/RFPnls+-targeted (gray) cells 48 hr after electroporation at E13.5 with 4D-shRNAs and 3 or 9 hr BrdU

exposure.

(F) 9 hr neuronal birthdating calculated as proportion of GFP�/RFPnls�/BrdU+ (white) or GFP+/RFPnls+/BrdU+ cells in the IZ relative to all GFP�/RFPnls� or

GFP+/RFPnls+ progenitors present in the same cortical region of embryos treated as in (E).

(G) Percentage of APs, BPs in the VZ (BPVZ), or BPs in the SVZ (BPSVZ) 48 hr after coelectroporation at E13.5 with control (white), 4D (black), or 4D-shRNA (gray)

plasmids. Note the converse effect of RNAi as compared to overexpression.

(E, F, and G) n R 3; error bars indicate SD; *p < 0.05.
contributed to an almost 3-fold wider cortical surface area at P0

than progenitors transfected with control plasmids, which

suggests increased cortical expansion.

This conclusion was corroborated by immunohistochemistry

for a neuronal marker of late-born upper layer II-IV, neurons,

Brn-2 (Figures 7D and 7E; McEvilly et al., 2002), which showed

at P0 an increase by almost 30% in the proportion of Brn-2+

neurons within the RFPnls+ population upon electroporation

with 4D at E13.5 as compared to control plasmids (61.6% ±

5.5% versus 78.1% ± 3.1%) (Figure 7F). Importantly, the distri-

bution of Brn-2+/RFPnls+ cells in the ventricular-to-pial axis of

the CP was essentially identical upon electroporation with

control or 4D plasmids (data not shown), suggesting that the

observed effect on expansion of RFPnls+ cortical surface area

is not due to an altered migration of neurons.
Cel
DISCUSSION

We showed that 4D overexpression in neural progenitors of the

developing mouse brain shortens G1, inhibits neurogenesis,

and increases the generation and expansion of BPs whereas

4D RNAi induces the opposite effects. Three aspects of our

work deserve particular attention.

First, this is to our knowledge the first manipulation of G1

length by a cdk/cyclin complex in vertebrates, because similar

manipulations in whole animals have been reported only in flies.

Consistent with our results, overexpression of cdk/cyclin

complexes in Drosophila can accelerate G1 or G2 while inducing

a compensatory lengthening of the other respective phase of the

cell cycle (Reis and Edgar, 2004). It should be noticed, however,

that in our experiments a shorter G1 was more likely achieved by
l Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier Inc. 327
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preventing its physiological lengthening, rather than by acceler-

ating it. This is supported by the fact that (1) overexpressed 4D

was more effective on Tis21+ progenitors, which lengthen G1

more than Tis21� progenitors (Calegari et al., 2005) and (2) the

G1 of E14.5 4D-transfected cells was essentially identical to

that of E13.5 progenitors (Takahashi et al., 1995) (Table S1). In

essence, high levels of 4D may just have prevented the length-

ening of G1 normally occurring from E13.5 to E14.5, instead of

accelerating G1 at E14.5. Moreover, 4D overexpression in flies

has been found to increase cell size, and a similar effect by its

human ortholog has been taken as evidence for a growth-

specific function of 4D that is conserved from arthropods to

mammals (Datar et al., 2006). However, overexpression of

mouse 4D did not increase, nor decrease, the size of mouse

neural progenitors, which may add new insights into the long-

debated relationship between cell growth and cell cycle progres-

sion of mammalian cells (Jorgensen and Tyers, 2004; Tapon

et al., 2001).

Figure 7. 4D Overexpression Increases

RFPnls+ Pial-to-Apical Surface Area at P0

(A) Representation of the analyses performed at

P0 after serial sectioning through the RFPnls+

area (red area; left) and examples of fluorescence

fields at its rostral (r.), medial (m.), or caudal (c.)

portion (right) used to 3D-reconstruct the volume

containing red fluorescence.

(B) Fluorescence pictures of 50-mm-thick vibra-

tome sections after targeting with control (top) or

4D (bottom) plasmids at E13.5 (line indicates

portion containing RFPnls+ cells; dashed line indi-

cates cortical boundaries); scale bar represents

500 mm.

(B0) Magnification of the dashed box in (B) showing

the apical portion of the VZ being judged to

contain RFPnls+ cells (space between white lines).

(C) Ratio of pial-to-apical surface area after elec-

troporation with control (white) or 4D (black) plas-

mids. Each symbol represents quantification of an

individual brain from at least three litters (hori-

zontal lines indicate mean).

(D and E) Fluorescence pictures of the P0 CP after

electroporation at E13.5 with either control (D) or

4D (E) plasmids and Brn-2 immunostaining.

(F) Proportion of Brn-2+/RFPnls+ cells as in (D)

(white) or (E) (black), respectively (error bars indi-

cate SD).

*p < 0.05; **p < 0.005.

Second, shortening the G1 of neural

progenitors inhibited the switch from

proliferation to differentiation whereas

lengthening G1 promoted it.

In line with our data, previous studies

on trophic factors have shown a correla-

tion between faster cell cycles and a delay

of neurogenesis (Hodge et al., 2004; Lu-

kaszewicz et al., 2002; Maric et al.,

2007). However, in these studies, it has

been difficult to conclude that cell cycle

length had a direct causal role on differ-

entiation because of the multiple and

complex effects triggered by the factors themselves. In this

context, cyclinD1 alone has also been found to bind in a cdk-

independent manner several transcription factors and transcrip-

tional coregulators, which may influence differentiation (Fu et al.,

2004). However, such cell-cycle-independent roles of cyclinD1

on differentiation of neural progenitors can here be excluded

because electroporation of cyclinD1 alone was less, rather

than more, effective in inhibiting neurogenesis than electropora-

tion of 4D (data not shown).

Importantly, inhibition of neurogenesis by overexpression of

4D was accompanied by an increased proportion of BPs in the

VZ without any change in the proportion of APs. If we consider

that APs generate BPs by asymmetric division (Haubensak

et al., 2004; Miyata et al., 2004; Noctor et al., 2004), and if we

exclude the possibility that 4D may induce a change from asym-

metric to symmetric division, which is supported by our analysis

of cleavage plane angle of mitotic APs, our data are consistent

with a model in which a shorter G1 induces neurogenic APs to
328 Cell Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier Inc.
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undergo asymmetric division that generates one AP and one BP

instead of one AP and one neuron with, in addition, a higher

proportion of BPs remaining (or becoming) proliferative (Fig-

ure S5), thereby increasing the thickness of the SVZ.

Because the only reported function of 4D in vertebrates is to

control G1 progression, we conclude that a shorter G1 is the

primary cause of the inhibition of neurogenesis and increased

proliferation of neural progenitors. Consistent with this conclu-

sion, 4D overexpression in proliferating APs did not change their

fate as these progenitors already have, in relative terms, the

shortest G1 (Calegari et al., 2005) and the highest proliferative

potential. Conversely, a pharmacological lengthening of G1 of

proliferating APs was shown to induce their premature switch

to neurogenesis (Calegari and Huttner, 2003), and similarly, 4D

knockdown by RNAi lengthened G1, increased neurogenesis,

and decreased the proportion of BPs. Thus, we conclude that

lengthening of G1 is both necessary and sufficient to induce

the switch of neural progenitors from proliferation to neurogene-

sis and, as such, should be considered as a primary cause, and

not a consequence, of neurogenesis.

Third, a higher proportion of BPs during development corre-

lated at birth with an increased cortical surface area contributed

by 4D-targeted progenitors.

Specifically, we found that a 40% increase in the proportion of

BPs 24 hr after electroporation with 4D was followed by a similar

increase in SVZ thickness the subsequent day (with less than half

of all BPs being transfected) and at P0 by a 3-fold increase in the

pial-to-apical surface area containing RFPnls+ neurons. This is

fundamentally different from the effect of b-catenin in APs

(Chenn and Walsh, 2002), which induces expansion of APs but

not BPs leading to decreased, rather than increased, pial-to-

apical surface area.

It may seem paradoxical that inhibition of neurogenesis leads to

an increased cortical surface area. However, electroporation is

a transient transfectionsysteminwhich plasmidsare exponentially

diluted as a result of cell division leading, in particular for gene

products with a very short half-life such as cyclins, to the rapid

termination of the overexpression effect. For example, with a cell

cycle of 14 hr, 4D plasmids electroporated at E13.5 will be diluted

at E15.5 by more than a 10-fold factor, likely sufficient to allow

progenitors to resume physiological corticogenesis. However,

because of the increased progenitor expansion between E13.5

and E15.5, neuronal output will ultimately also increase.

We find it unlikely that 4D overexpression may influence

neuronal migration because the distribution of upper layer II-IV

Brn-2+ neurons at P0 was essentially identical to that of controls.

Therefore, the wider cortical surface area containing neurons

derived from 4D-targeted progenitors, together with the in-

creased proportion of Brn-2+ neurons, strongly suggests that

an increase in BPs during development can cause cortical

expansion. This, importantly, is fully consistent with the hypoth-

esis that an increased proportion of BPs in higher mammals is

a principal cause for cortical expansion during evolution (Ab-

del-Mannan et al., 2008; Fish et al., 2008; Kriegstein et al.,

2006; Pontious et al., 2008). Thus, our study may provide the first

experimental evidence for a manipulation of BP expansion in

support to their suggested role in evolution.

In conclusion, our work contributes novel data for better

understanding cell cycle control, expansion versus differentia-
Ce
tion of neural stem and progenitor cells, and perhaps, regulation

of brain size in a developmental and evolutionary perspective.

Finally, we find it likely that time (G1 length) may have a similar

role in controlling the expansion versus differentiation of adult

neural and perhaps any other somatic, stem, or progenitor cell,

which may be key toward novel approaches of regenerative ther-

apies.

EXPERIMENTAL PROCEDURES

Cloning

Full-length cDNAs of mouse cdk2, cdk4, and cyclinE1 were purchased

from the FANTOM consortium (RIKEN, Japan). CyclinD1 was provided by

Dr. Charles J. Sherr. Cdks and cyclins were subcloned into pCMS-EGFP

(Clontech) or pDSV-mRFPnls (De Pietri Tonelli et al., 2006), respectively. Plas-

mids encoding D- or 4-shRNA were kindly provided by Dr. Pumin Zhang or

purchased from SA-Biosciences, respectively (details in Supplemental Data).

In Utero Electroporation

In utero electroporation was performed as previously described (De Pietri

Tonelli et al., 2006). In brief, C57BL/6J mice (defined as 0.5 day of gestation

the morning of vaginal plug) were anesthetized with isofluorane and their uteri

exposed. Via a glass capillary, 1–3 ml of PBS containing 1–3 mg/ml of plasmids

were injected into the lumen of the embryonic telencephalon, and 6 pulses

of 30 V, 50 ms each at 1 s intervals were delivered through platinum electrodes

(1 mm diameter) with a BTX-830 electroporator (Genetronics). The uterus was

then relocated into the peritoneal cavity and the abdomen sutured. Mice, even-

tually subjected to BrdU(/EdU) injection, were allowed to complete gestation

or sacrificed at different times after surgery to collect embryos.

S Phase Labeling

Cumulative BrdU labeling was carried out by repeated intraperitoneal injec-

tions of 1 mg BrdU (Sigma) at 3 hr intervals for a total of 2, 3, 6, 9, or 12 hr.

For determination of S phase entry or exit, BrdU injection was followed after

45 min by injection of 0.1 mg EdU (Invitrogen) and sacrifice 45 min later.

Microscopy

Brains were analyzed with a fluorescence stereomicroscope (Olympus SXZ16)

and those targeted in the lateral cortex were fixed overnight at 4�C in 4% PFA

followed by equilibration in 30% sucrose and embedding in Tissue-Tek. Immu-

nolabeling on 10 mm thick cryosections was performed after permeabilization

with 0.3% Triton X-100, quenching with 0.1 M glycine-Tris (pH 7.4) and, even-

tually, treatment with 2 M HCl for BrdU detection (see Supplemental Data and

Table S2 for antibodies and conditions). EdU was detected according to

manufacturer’s instructions (Invitrogen). Sections were analyzed with a

conventional (Olympus BX61) or confocal (Zeiss LSM510 Axiovert 200M) fluo-

rescence microscope as indicated in figure legends. Images were acquired

with IP Lab 4.0 (BD Biosciences) or ZEISS LSM 4.2 (Carl Zeiss) and processed

with ImageJ 1.33 (Wayne Rasband) or Photoshop CS3 (Adobe).

Calculation of Cell Cycle Phases

Calculation was performed within the VZ by nonlinear regression analysis of

cumulative and mitotic BrdU labeling indices (Excel spreadsheet kindly

provided by Dr. Richard S. Nowakowski) (Takahashi et al., 1995) (1.0 labeling

index = 100%). In brief, the intercepts of the best nonlinear fit with the abscissa

(y) and the time (z) needed to reach the maximum labeling index (growth frac-

tion = GF) correspond to the (1) length of S (TS) relative to the cell cycle (TC) and

(2) TC � TS, respectively, allowing us to solve the equations
Tc� Ts = z
ðTs=TcÞGF = y

�
.

Length of G2+M corresponded to the time required to label all mitotic cells.

Determination of Pial-to-Apical Surface Area

P0 brains were fixed, embedded in 3% low-melting agarose, and cut through

the rostral-to-caudal axis in 50-mm-thick sections with a vibratome Leica

VT1200 (Leica). Sections were analyzed with a fluorescence stereomicro-

scope (Olympus SXZ16) and length of pial and apical surfaces containing

RFPnls+ cells was measured with the Olympus Cell* program. Pial and apical
ll Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier Inc. 329
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surface areas were calculated as the sum of the lengths of each section (in total

20–40) times its thickness.

Statistical Analysis

Statistical analyses were performed by pulling together the counts from 1–4

cryosections or brains (>200 cells total), considering at least 3 litters for calcu-

lation of mean and standard deviation. Significance was evaluated by

Student’s t test.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Results and Discussion, Supple-

mental Experimental Procedures, five figures, and two tables and can be found

with this article online at http://www.cell.com/cell-stem-cell/supplemental/

S1934-5909(09)00284-7.

ACKNOWLEDGMENTS

We thank Dr. Charles J. Sherr and Dr. Pumin Zhang for cyclinD1 and cyclinD1-

shRNA plasmids, respectively; Ina Nüsslein, Christiane Rubbert, and the staff

of the MPI-CBG animal house for excellent support; and Jeremy N. Pulvers for

discussions. Animal experiments were approved by local authorities

(249168.11-9-2007-1/2). C.L. and F.C. were supported by the DFG-funded

Center for Regenerative Therapies and Medical Faculty of the Technical

University, Dresden. Authors’ contribution is as follows (C.L.-W.B.H.-F.C.):

planning experiments 30%-5%-65%; performing experiments 95%-0%-5%;

data analyses 45%-5%-50%, preparation of the manuscript 15%-5%-80%.

Authors have no financial interest related to this work.

Received: January 12, 2009

Revised: April 23, 2009

Accepted: May 29, 2009

Published: September 3, 2009

REFERENCES

Abdel-Mannan, O., Cheung, A.F., and Molnar, Z. (2008). Evolution of cortical

neurogenesis. Brain Res. Bull. 75, 398–404.

Attardo, A., Calegari, F., Haubensak, W., Wilsch-Brauninger, M., and Huttner,

W.B. (2008). Live imaging at the onset of cortical neurogenesis reveals differ-

ential appearance of the neuronal phenotype in apical versus basal progenitor

progeny. PLoS ONE 3, e2388.

Bally-Cuif, L., and Hammerschmidt, M. (2003). Induction and patterning of

neuronal development, and its connection to cell cycle control. Curr. Opin.

Neurobiol. 13, 16–25.

Calegari, F., and Huttner, W.B. (2003). An inhibition of cyclin-dependent

kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces

premature neurogenesis. J. Cell Sci. 116, 4947–4955.

Calegari, F., Marzesco, A.M., Kittler, R., Buchholz, F., and Huttner, W.B.

(2004). Tissue-specific RNA interference in post-implantation mouse embryos

using directional electroporation and whole embryo culture. Differentiation 72,

92–102.

Calegari, F., Haubensak, W., Haffner, C., and Huttner, W.B. (2005). Selective

lengthening of the cell cycle in the neurogenic subpopulation of neural progen-

itor cells during mouse brain development. J. Neurosci. 25, 6533–6538.

Canzoniere, D., Farioli-Vecchioli, S., Conti, F., Ciotti, M.T., Tata, A.M., Augusti-

Tocco, G., Mattei, E., Lakshmana, M.K., Krizhanovsky, V., Reeves, S.A., et al.

(2004). Dual control of neurogenesis by PC3 through cell cycle inhibition and

induction of Math1. J. Neurosci. 24, 3355–3369.

Caviness, V.S., Jr., Takahashi, T., and Nowakowski, R.S. (1995). Numbers,

time and neocortical neuronogenesis: A general developmental and evolu-

tionary model. Trends Neurosci. 18, 379–383.

Chenn, A., and Walsh, C.A. (2002). Regulation of cerebral cortical size by

control of cell cycle exit in neural precursors. Science 297, 365–369.
330 Cell Stem Cell 5, 320–331, September 4, 2009 ª2009 Elsevier In
Datar, S.A., Galloni, M., de la Cruz, A., Marti, M., Edgar, B.A., and Frei, C.

(2006). Mammalian cyclin D1/Cdk4 complexes induce cell growth in

Drosophila. Cell Cycle 5, 647–652.

De Pietri Tonelli, D., Calegari, F., Fei, J.F., Nomura, T., Osumi, N., Heisenberg,

C.P., and Huttner, W.B. (2006). Single-cell detection of microRNAs in devel-

oping vertebrate embryos after acute administration of a dual-fluorescence

reporter/sensor plasmid. Biotechniques 41, 727–732.

Dehay, C., and Kennedy, H. (2007). Cell-cycle control and cortical develop-

ment. Nat. Rev. Neurosci. 8, 438–450.

Ekholm, S.V., and Reed, S.I. (2000). Regulation of G(1) cyclin-dependent

kinases in the mammalian cell cycle. Curr. Opin. Cell Biol. 12, 676–684.

Englund, C., Fink, A., Lau, C., Pham, D., Daza, R.A., Bulfone, A., Kowalczyk, T.,

and Hevner, R.F. (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by

radial glia, intermediate progenitor cells, and postmitotic neurons in devel-

oping neocortex. J. Neurosci. 25, 247–251.

Fish, J.L., Dehay, C., Kennedy, H., and Huttner, W.B. (2008). Making bigger

brains—The evolution of neural-progenitor-cell division. J. Cell Sci. 121,

2783–2793.

Fu, M., Wang, C., Li, Z., Sakamaki, T., and Pestell, R.G. (2004). Minireview:

Cyclin D1: Normal and abnormal functions. Endocrinology 45, 5439–5447.

Georgopoulou, N., Hurel, C., Politis, P.K., Gaitanou, M., Matsas, R., and

Thomaidou, D. (2006). BM88 is a dual function molecule inducing cell cycle

exit and neuronal differentiation of neuroblastoma cells via cyclin D1 down-

regulation and retinoblastoma protein hypophosphorylation. J. Biol. Chem.

281, 33606–33620.
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