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Abstract

Elucidating the genomic determinants of morphological differences between species is key to understanding how mor-
phological diversity evolved. While differences in cis-regulatory elements are an important genetic source for morpho-
logical evolution, it remains challenging to identify regulatory elements involved in phenotypic differences. Here, we
present Regulatory Element forward genomics (REforge), a computational approach that detects associations between
transcription factor binding site divergence in putative regulatory elements and phenotypic differences between species.
By simulating regulatory element evolution in silico, we show that this approach has substantial power to detect such
associations. To validate REforge on real data, we used known binding motifs for eye-related transcription factors and
identified significant binding site divergence in vision-impaired subterranean mammals in 1% of all conserved noncoding
elements. We show that these genomic regions are significantly enriched in regulatory elements that are specifically
active in mouse eye tissues, and that several of them are located near genes, which are required for eye development and
photoreceptor function and are implicated in human eye disorders. Thus, our genome-wide screen detects widespread
divergence of eye-regulatory elements and highlights regulatory regions that likely contributed to eye degeneration in
subterranean mammals. REforge has broad applicability to detect regulatory elements that could be involved in many
other phenotypes, which will help to reveal the genomic basis of morphological diversity.
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Introduction
Due to advances in sequencing technology, the number of
sequenced genomes is rapidly increasing. This wealth of ge-
nomic data provides unprecedented opportunities to identify
the genomic changes that underlie particular phenotypic dif-
ferences between the sequenced species, which is an impor-
tant challenge in genomics and evolutionary biology. In
particular, numerous sequenced genomes make it possible
to extend association-based approaches, which were instru-
mental in discovering intraspecies genotype–phenotype asso-
ciations (MacArthur et al. 2017), to cross-species
comparisons.

One such approach to link genomic differences between
species to phenotypes is the Forward Genomics framework
(Hiller et al. 2012; Prudent et al. 2016). This approach relies on
two concepts. First, genomic information that is necessary for
a particular phenotype should be largely conserved in species
where this phenotype is present and under selection. In con-
trast, this genomic information should evolve under relaxed
selection or neutrally in species that have lost this phenotype.
Second, the repeated loss of a phenotype in independent
lineages is expected to result in a specific signature, where

the genomic regions uniquely necessary for this phenotype
are preferentially diverged in those species that lack the phe-
notype. The focus on phenotypes that have repeatedly
changed is key to obtaining specificity in a genome-wide
search (Hiller et al. 2012). By systematically investigating all
genomic regions that are overall conserved among the con-
sidered species, Forward Genomics screens for a match be-
tween the repeated sequence divergence signature and the
repeated phenotypic change. To measure sequence diver-
gence on a per-species basis, the original Forward Genomics
method requires a phylogenetic tree and a multiple align-
ment of an individual genomic region, and uses Maximum
Likelihood to reconstruct the sequence of the common an-
cestor. Then, it calculates sequence divergence as the percent
of nucleotide changes that happened between the ancestral
sequence and the sequence of an extant species, considering
both substitutions and insertions/deletions (Hiller et al. 2012).
Since Forward Genomics only requires genomic sequence
data and a phylogeny, it can be applied to many phenotypes
that repeatedly changed in species with sequenced genomes.

The reliance on “plain nucleotide divergence” allows the
standard Forward Genomics method to run an unbiased
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genome-wide screen that considers all conserved genomic
regions, regardless of whether they overlap coding exons, reg-
ulatory elements or other classes of functional elements. The
same holds for a recently developed approach, which com-
pares divergence in genomic regions by estimating element-
specific phylogenetic branch lengths that are proportional to
the number of occurred substitutions (Partha et al. 2017), and
also for the Reverse Genomics method, which uses percent
sequence identity and percent sequence match (number of
nucleotide matches divided by alignment length and number
of reference bases, respectively) to classify conserved noncod-
ing regions as “conserved” and “lost” in different species
(Marcovitz et al. 2016). The drawback of this generality is
that plain sequence divergence, regardless of whether inser-
tions/deletions are considered or not, ignores the underlying
grammar that determines the function for specific types of
elements. For cis-regulatory elements (CREs), the “words” are
binding sites for transcription factors (TFs) that bind to the
element and control expression of the target gene. It is there-
fore possible that a CRE largely preserves its regulatory activity
if changes predominantly occur outside of transcription fac-
tor binding sites (TFBS) or maintain the binding preference of
a TF (binding motif), as illustrated in figure 1A. In addition,
TFBS turnover, a frequent process where mutations create a
new binding site followed by the loss of the ancestral binding
site (Huang et al. 2007; Otto et al. 2009; Villar et al. 2014),
results in increased sequence divergence that may not affect
regulatory activity. On the other hand, minor sequence
changes that preferentially affect key TFBSs may substantially
affect regulatory activity, but would not stand out in a
genome-wide search for sequence divergence (fig. 1B).
Consequently, sequence conservation and divergence is not
an ideal indicator of functional conservation and divergence
of regulatory elements. Therefore, the unbiased applicability
of standard Forward Genomics or similar approaches comes
at the cost of a reduced sensitivity and specificity in discov-
ering divergence in regulatory elements that likely affects reg-
ulatory activity in species with the altered trait.

Functional differences in CREs are an important evolution-
ary source for phenotypic change. In particular, it is thought
that morphology largely evolves by changes in CREs that af-
fect the spatio-temporal expression of key developmental
genes (Carroll 2005, 2008; Wray 2007). A number of studies
have linked CRE divergence with morphological traits such as
different pigmentation patterns in Drosophilids (Jeong et al.
2008), loss of limbs in snakes (Kvon et al. 2016; Leal and Cohn
2016), loss of pelvic spines and armor plate reductions in
freshwater stickleback (Chan et al. 2010; O’Brown et al.
2015), wing development in bats (Cretekos et al. 2008;
Booker et al. 2016), and human traits such as the absence
of pelvic spines and toe size reductions (McLean et al. 2011;
Indjeian et al. 2016). Thus, in order to use comparative geno-
mics to associate CRE divergence with phenotypes, it would
be desirable to have an approach that specifically detects
sequence changes in CREs that likely affect regulatory activity
and associates such changes with phenotypes.

Here, we present Regulatory Element forward genomics
(REforge), a new method to predict CREs that are involved

in a phenotypic change by measuring differences in binding
sites of TFs that are relevant for this phenotype. As demon-
strated on large CRE sets obtained by simulating regulatory
element evolution and trait loss, REforge has greatly improved
power to detect divergence in CREs that are associated with a
phenotypic difference. To validate the method on real data,
we applied REforge to detect CREs that exhibit preferential
divergence of eye-related TFBSs in vision-impaired subterra-
nean mammals. We show that the genomic regions uncov-
ered in this genome-wide screen are significantly enriched in
eye-specific regulatory elements. Furthermore, several of these
regions are located near genes with key roles in eye develop-
ment and function as well as genes implicated in human eye
disorders, suggesting that TFBS divergence in these eye-
regulatory elements could be involved in eye degeneration
in subterranean species. In general, REforge has broad appli-
cability to other traits to link binding site divergence in CREs
with phenotypic differences of the sequenced species.

Results

REforge Method
The main rationale behind REforge is to replace sequence
divergence by a divergence measurement that captures differ-
ences in the important building blocks of CREs (TFBS), and
thus better predicts functional differences in regulatory activ-
ity. Like standard Forward Genomics, REforge assumes that
the CREs that are important for a trait should maintain bind-
ing sites for relevant TFs in species that possess this trait,
although not necessarily at conserved positions. In species
in which the trait is absent, sequence divergence that is a
sign of functional divergence should destroy or weaken many
important TFBSs, in contrast to sequence divergence that
largely preserves relevant TFBSs and thus likely regulatory
activity.

REforge requires as input 1) a set of putative CREs and their
orthologous aligning sequences in a set of species, 2) a phy-
logenetic tree, 3) a list of all species in which the phenotype is
lost, and 4) a set of motifs for TFs that are likely relevant for
the phenotype. Such TFs can be obtained by intersecting TFs
with Gene Ontology terms that relate to the phenotype.
Alternatively, TFs which are highly expressed in the respective
tissues or which affect the phenotype in a mouse knockout
represent good candidates. Motifs that reflect the binding
preferences of these TFs can be obtained from TRANSFAC
(Matys et al. 2006), JASPAR (Mathelier et al. 2014), UniPROBE
(Hume et al. 2015), or other sources.

The first step in quantifying conservation or divergence of
TFBSs in a given DNA sequence is to compute a score that
reflects the collective binding affinity of the set of relevant TFs
(fig. 1C). To this end, we made use of Stubb (Sinha et al. 2003,
2006), a Hidden Markov model-based method that takes a set
of TF motifs as input. Stubb has already been successfully used
to find correlations between TFBSs and phenotypes
(Kapheim et al. 2015) and has the following advantages.
First, Stubb avoids overcounting the contribution of overlap-
ping binding sites that can only be occupied by one TF at the
time. Second, Stubb considers both strong and weak binding
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sites without relying on fixed thresholds, which is important
since weak TFBSs contribute to the precision of expression
patterns driven by developmental enhancers (Farley et al.
2015). Third, since Stubb does not explicitly consider the po-
sition of a motif, there are no constraints on the arrangement
of TFBS. Consequently, Stubb scores are not sensitive to TFBS
turnover.

We found that random sequences, which contain TFBSs
only by chance, typically have nonzero Stubb scores (supple-
mentary fig. 1, Supplementary Material online). To ensure
that scores for such sequences are on an average zero, we
normalized the Stubb score by subtracting from it the average
score of ten sequences that were obtained by shuffling the
nucleotides of the given sequence (supplementary fig. 2,
Supplementary Material online). The resulting score is called
the “sequence score” (fig. 1C).

Next, to quantify the extent to which the estimated
binding affinity of the TF set changed during evolution,
we adopted the Forward Genomics branch method
(Prudent et al. 2016). This method requires as input a
multiple alignment of a genomic region with recon-
structed ancestral sequences for every internal node in
the given phylogeny. We then consider the sequence at
the start (an ancestral sequence) and end of a branch
(either the sequence of an ancestor or an extant species)
and compute the difference between the two sequence
scores (fig. 1C), which is called the “branch score.” If TFBSs
are largely preserved or even increased along this branch,
the branch score will be �0 or positive. In contrast, if
mutations destroyed or weakened TFBS, the overall bind-
ing affinity will be lower at the branch end and the branch
score will be negative.

A

B

C

FIG. 1. REforge incorporates knowledge about transcription factor binding sites to associate divergence in cis-regulatory elements with phenotypic
differences. (A) Illustration of multiple sequence changes (blue background) that largely preserve the TFBS ensemble of two sequences. The
mutations are either located outside of binding sites, preserve the motif or result in TFBS turnover (gray arrow). (B) Illustration of just two sequence
changes that destroy TFBS and thus are more likely to result in functional divergence. (C) Overview of REforge. For each node in the phylogenetic
tree, REforge computes sequence scores that reflect the collective binding affinity of the given TF set. Branch scores, which are computed as the
difference between the sequence scores, reflect TFBS changes. Finally, REforge tests if the branch scores of trait-loss branches (red) are lower than
the branch scores of trait-preserving branches (blue).
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Finally, to test for an association between binding site di-
vergence in a CRE and a given phenotypic difference, we test if
the branches leading to nodes or extant species that have lost
the trait have significantly lower branch scores compared
with the remaining branches (fig. 1C). Since every branch in
a phylogeny represents independent evolution, the branch
scores are phylogenetically independent and no further cor-
rection for phylogenetic dependencies between species is
necessary. We compared different statistical tests (Pearson
and Spearman correlation, Wilcoxon rank-sum, and t-test),
which showed that the significance of a positive Pearson cor-
relation coefficient, computed between the branch scores
and the binary branch classification (trait-loss vs. trait-
preserving branches), performed best (supplementary fig. 3,
Supplementary Material online).

REforge Substantially Outperforms Standard Forward
Genomics
To test the performance of REforge and to compare it with
standard Forward Genomics, we used PEBCRES to simulate
CRE evolution (Duque et al. 2014) and generated a large data
set of CREs where the ground truth is known. In this simula-
tion, selection acts on a predefined regulatory activity pattern
of a CRE, which is inferred from binding sites of five TFs in the
sequence (supplementary fig. 4A, Supplementary Material
online). Thus, during in silico evolution, the fitness of each
CRE is maintained if sequence changes do not affect binding
sites or if equivalent TFBS arise (turnover). We considered a
20-species phylogeny that contained three independent trait-
loss species (fig. 2A) and generated two sets of CREs. First, we
computationally evolved 10,000 CREs (background) that are
under selection to preserve the regulatory activity pattern
along every branch. Since these background CREs are not
associated with the lost phenotype and any preferential bind-
ing site divergence along the branches leading to trait-loss
species would be due to random chance alone, these CREs
were counted as negatives. Second, we computationally
evolved 200 CREs (foreground) that are associated with the
lost trait. These CREs evolve under selection throughout the
tree, except for the final part of three branches leading to the
trait-loss species, where these CREs then evolved without
selection to preserve regulatory activity (fig. 2A). These fore-
ground CREs are associated with the loss of the phenotype
and are counted as positives. Overall, the entire set of 10,200
CREs contains 1.96% positives.

We generated three sets of 200 foreground CREs that differ
in the age of the trait loss by setting the length of the final part
of the trait-loss branches to 0.03, 0.06, and 0.09 substitutions
per site, respectively. We found that REforge is able to distin-
guish the 200 foreground CREs from the 10,000 background
CREs with an area under the receiver operating characteristic
curve (AUC) of 0.9344, 0.9952, and 0.9993 for the three trait
loss ages (fig. 2B). In contrast, standard Forward Genomics
achieves a lower AUC of 0.5420, 0.5859, and 0.6209 on the
same data sets. Comparing the area under a precision-
sensitivity curve (see following paragraph) corroborates this
result (supplementary fig. 5, Supplementary Material online).
This shows that REforge substantially outperforms standard

Forward Genomics in detecting simulated CREs that have
diverged binding sites on the trait-loss branches.

REforge is Robust to Various Parameters
Next, we evaluated the robustness of REforge to various
parameters that are relevant for application to real data.
We expect that, in general, the vast majority of CREs are
not involved in the loss of the trait and thus are negatives.
For such strongly imbalanced data sets, recapitulated in our
simulation by >98% negatives, the use of receiver operating
characteristics, which compares sensitivity and specificity
(proportion of correctly identified negative CREs; 1—false
positive rate), is not appropriate (Saito and Rehmsmeier
2015). Since the main objective of REforge is to achieve a
high precision (defined as the proportion of trait-involved
positive CREs out of all identified CREs; also called positive
predictive value), we assessed performance in the following by
comparing sensitivity versus precision.

Since the age of loss will differ between traits and between
trait-loss species, we first reconsidered the sensitivity versus
precision performance of REforge on the three data sets that
differ by the age of the trait-loss. Considering a high precision
of 90%, REforge achieves a sensitivity of 29%, 79%, and 96%,
respectively, for the three ages (fig. 2C). This shows that the
older the trait loss, the easier it is to detect foreground CREs,
which is expected as CREs that evolve neutrally for a longer
time will show a higher binding site divergence. Nevertheless,
REforge is able to identify a certain percentage of positive
CREs at 90% precision also for trait losses that occurred rel-
atively recently (fig. 2C).

Second, for real data applications the ancestral sequences
are not known, as in our simulation, but have to be recon-
structed. Furthermore, less than 20 species may be available.
Therefore, we tested REforge considering a phylogeny of only
eight trait-preserving and three trait-loss species (fig. 2A,
asterisks) and reconstructed ancestral sequences using
PRANK (Loytynoja and Goldman 2008). Compared with us-
ing a 20-species phylogeny and known ancestral sequences,
the sensitivity at a precision of 90% slightly drops by 4–9%
(fig. 2C). However, REforge still achieves a sensitivity of 20%,
75%, and 92% for the three trait-loss ages, showing that the
method is robust toward ancestral reconstruction uncer-
tainty on a phylogeny with less species.

Third, when REforge is applied to real data, it is likely that
the input set of CRE candidates also contains CREs that are
active in tissues, which are not relevant for the lost trait. This
is especially the case when REforge is applied to a set of con-
served noncoding regions (see below), where many regions
will not overlap CREs active in the tissues of interest, or may
not overlap CREs at all. So far, both the foreground and back-
ground set of CREs have activity in a tissue relevant for the
lost trait and this activity was controlled by binding sites for
the same five TFs (supplementary fig. 4A, Supplementary
Material online). Therefore, we assessed the performance of
REforge on a data set where 5,000 of the original background
CREs were replaced by 5,000 new background CREs that are
active in an unrelated tissue and where this activity is con-
trolled by five other TFs (supplementary fig. 4B,

Langer et al. . doi:10.1093/molbev/msy187 MBE

3030

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/35/12/3027/5107024 by M
ichael H

iller on 05 D
ecem

ber 2018

Deleted Text: to
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
Deleted Text: to
Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
Deleted Text:  
Deleted Text:  
Deleted Text:  
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
Deleted Text:  &ndash; 
Deleted Text: to
Deleted Text: s
Deleted Text: -
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data
Deleted Text:  
Deleted Text:  
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy187#supplementary-data


A B

C D

E F

FIG. 2. REforge outperforms standard Forward Genomics and is robust to various simulation parameters. (A) Phylogenetic tree that was used to
simulate the evolution of 200 foreground and 10,000 background CREs. The terminal parts of the three trait-loss branches (red) that correspond to
the three trait-loss ages (0.03, 0.06, and 0.09 substitutions per site) are indicated by red crosses. An asterisk marks those species that were included
in the 11-species phylogeny (panel C). (B) Receiver operating characteristic curves (sensitivity vs. false positive rate) compare REforge and standard
Forward Genomics for three trait-loss ages. (C) Tests that compare a 20-species phylogeny and known ancestral sequences (shades of blue) and a
sparser phylogeny of 11 species for which ancestral sequences were reconstructed. Blue curves serve as reference in panels (C–F) and show the
same data as in panel (B) but in a sensitivity versus precision plot. (D) Tests that include background CREs that are not active in the tissues relevant
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Supplementary Material online). Compared with the original
background CRE set, REforge achieved on this mixed back-
ground set a similar sensitivity at 90% precision for the me-
dium and old trait loss scenarios and a �10% higher
sensitivity for recent trait losses (fig. 2D), showing that the
new background CREs, which have different TFBSs, are easier
to recognize as negatives.

Fourth, if functional annotations such as Gene Ontology,
expression or gene-knockout data is used to select promising
TFs as input to REforge, it is likely that not all these TFs are
actually relevant for the lost trait. Therefore, we tested the
performance of REforge on input sets of TF motifs that in-
cluded not only the five TFs controlling CRE activity in the
relevant tissue but also 15 other TF motifs that are not im-
portant for the activity of these simulated CREs (supplemen-
tary table 1, Supplementary Material online). As shown in
figure 2E and supplementary figure 6, Supplementary
Material online, while the motifs of 15 unrelated TFs intro-
duce noise, REforge’s performance is largely similar and sen-
sitivity only slightly decreases by 1–3% at a precision of 90%.

Fifth, CREs can be pleiotropic and control expression in
different tissues, as shown by enhancers with shared activity
in the developing limb and genital tissues (Infante et al. 2015).
After trait loss, pleiotropic CREs are expected to lose selection
for TFBSs that are only required for regulatory activity in
tissues related to the lost trait. However, pleiotropic CREs
should still be under selection to preserve TFBSs required
for regulatory activity in the other tissues. Thus, while some
TFBSs may get lost, the overall divergence is more limited in
pleiotropic CREs. To explore how the performance of REforge
is affected by pleiotropy, we simulated pleiotropic CREs that
are active in two tissues, controlled by two different sets of
five TFs each (supplementary fig. 4, Supplementary Material
online). The first tissue is relevant for the lost trait, while the
second tissue is not. After trait-loss, selection pressure on the
pleiotropic foreground CREs changed to preserve only regu-
latory activity in the second tissue. Compared with 200 tissue-
specific foreground CREs, applying REforge to 10,200 CREs
that contain 200 pleiotropic foreground CREs decreases sen-
sitivity by 6–10% at a precision of 90% for the three trait-loss
ages (fig. 2F). This shows that while it is harder to detect
binding site divergence in pleiotropic CREs, REforge is capable
of identifying trait-involved pleiotropic CREs in a large set of
CREs.

In summary, while the age of the trait loss has a major
influence on the performance, several other factors such as
number of species, ancestral reconstruction uncertainty, the
presence of background CREs with binding sites for different
TFs, the addition of unrelated TF motifs, or pleiotropy of the
foreground CREs have a rather small influence. We conclude
that at a high precision of 90% REforge is able to detect a

sizeable portion of simulated CREs with preferential binding
site divergence along the branches leading to trait-loss
species.

Genome-Wide Application of REforge to Uncover
CREs Involved in Eye Degeneration
To test REforge on real data, we focused on eye degeneration
as a trait loss for the following reasons. First, four independent
subterranean mammals (blind mole-rat, naked mole-rat, star-
nosed mole, and cape golden mole; fig. 3A) that possess small,
rudimentary eyes have sequenced genomes (Nevo 1979;
Sanyal et al. 1990; Catania 1999; Hetling et al. 2005; Nemec
et al. 2008). Second, many TFs that are important for eye
development are known. Third, genome-wide regulatory
data sets such as enhancer marks or TF bound regions are
available for several mouse eye tissues. These data sets can be
used to validate that genomic regions detected by REforge
overlap eye-related regulatory elements.

We applied REforge to a genome-wide set of 351,279 con-
served noncoding elements (CNEs) obtained from a multiple
genome alignment of the four aforementioned subterranean
species, 22 other mammals, and lizard, chicken, and frog as
outgroup species (fig. 3A). Since CNEs often overlap CREs
(Woolfe et al. 2005; Pennacchio et al. 2006; Capra et al.
2013), these genomic regions are a good proxy for regulatory
elements. To obtain input TF motifs, we compiled a set of 28
motifs for TFs (supplementary table 2, Supplementary
Material online) that are known to be important for lens or
retina development (Cvekl and Mitton 2010). Screening for
preferential binding site divergence in the subterranean mam-
mals, REforge identified 3,711 (1.06%) of the 351,279 CNEs at a
false discovery rate of 10%. Supplementary table 3,
Supplementary Material online, lists the coordinates and P
values of these 3,711 CNEs, the distance to the transcription
start site of the closest upstream and downstream genes, and
functional annotations of these genes.

To explore if these 3,711 CNEs overlap CREs that are active
in eye tissues in species with normal eyes, we compiled a list of
publicly available eye-regulatory data sets and determined the
overlap with these CNEs. To assess if the observed overlap is
significantly higher than expected by chance, we used a
Fisher’s exact test and additionally sampled 10,000 random
sets of 3,711 CNEs each from the entire set of 351,279 CNEs.
These random sets were used to compute a Z-score that
measures how many SDs the observed overlap is above or
below the average of the 10,000 random sets.

We found a significantly higher overlap between the 3,711
REforge-identified CNEs and a number of eye-related regula-
tory data sets from mouse retina and lens tissues (fig. 3B and
supplementary fig. 7, Supplementary Material online). These
data sets include genomic regions bound by essential eye

FIG. 2. Continued
for the lost trait. Pure background refers to 10,000 background CREs whose activity is controlled by the same five TFs as the 200 foreground CREs.
The pure background data sets are identical to the reference in panel (C). Mixed background refers to a different background set where the activity
of 5,000 of 10,000 CREs is controlled by five different TFs. (E) Tests that include 15 unrelated TFs that do not influence the activity of foreground or
background CREs. The 10,000 pure background set was used. (F) Tests on data sets that contain 200 pleiotropic foreground CREs having activity in
two tissues, of which only one is relevant for the lost trait. The 10,000 pure background set was used.
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FIG. 3. Genome-wide screen for TFBS divergence in CNEs in subterranean mammals. (A) Phylogenetic tree of the species included in the multiple
genome alignment. The four independent subterranean lineages that have degenerated eyes are in red, species that are outgroups to eutherian
mammals are in gray. (B) Diverged CNEs identified with REforge significantly overlap eye-related regulatory data sets. Left: Orange and gray vertical
bars compare the observed overlap of the 3,711 top-ranked CNEs identified with REforge and standard Forward Genomics, respectively. The
expected overlap was determined by randomly sampling 3,711 CNEs from all CNEs and plotting the overlap of 10,000 such subsets as gray violin
plots (thick horizontal line spans the first and the third quartile, white dot is the median). Middle: Z-scores measure the number of SDs that the
observed overlap is above the random expectation. Right: Benjamini–Hochberg adjusted P values obtained with a one-sided Fisher’s exact test. (C
and D) Two examples where minor sequence changes destroy a homeobox TF binding site in subterranean mammals. Both CNEs rank highly
among the REforge-identified CNEs but are not identified as significantly diverged by standard Forward Genomics, which measures overall
sequence divergence. (C) A CNE located 1-kb downstream of the Irx5 transcription start site overlaps a H3K27ac enhancer mark and a region
bound by Otx2 in the mouse retina. The convergent T>C change in blind mole-rat and cape golden mole results in the loss of this TFBS, reflected
by the low sequence scores. (D) A CNE located 44 kb downstream of Rlbp1 overlaps a cone-specific ATAC-seq peak and a region bound by Otx2 in
mouse retina. Independent single base pair substitutions in star-nosed mole and cape golden mole weaken or destroy this TFBS. Since REforge uses
Stubb, which does not output the positions of TFBSs, we used MAST (Bailey and Gribskov 1998) to locate TFBSs in these CNEs.
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transcription factors such as Pax6, Crx, Nrl, and Otx2 (Corbo
et al. 2010; Hao et al. 2012; Samuel et al. 2014; Sun et al. 2015).
We also found a significant overlap with genomic regions
marked by accessible chromatin (a hallmark of regulatory
activity) in mouse retina tissue and in cone and rod photo-
receptor cells (Encode Project Consortium 2012; Mo et al.
2016). This shows that the 3,711 CNEs with binding site di-
vergence in subterranean mammals overlap eye-regulatory
data sets significantly more often than expected.

In total, 264 out of the 3,711 CNEs with diverged TFBS
overlap eye-specific regulatory regions (supplementary table
3, Supplementary Material online). Subsampling from the
publicly available regulatory data sets shows that the overlap
with the detected CNEs does not saturate, indicating that
additional CNEs may overlap eye-specific regulatory regions
not yet sampled (supplementary fig. 8, Supplementary
Material online). Yet, these 264 CNEs already highlight a num-
ber of regulatory elements that are located near genes with
key roles in eye development and function. For example, we
detected a CNE located in the first intron of Irx5 (fig. 3C),
which encodes a homeobox TF required for the development
of retinal bipolar cells, a type of neuron that transmit signals
from cone photoreceptors to ganglion cells (Cheng et al.
2005). Another CNE is located in the second intron of Rax,
another homeobox TF that is required for retinal progenitor
cell proliferation and the formation of the optic cup (Mathers
et al. 1997). REforge also detected a CNE near Eomes, a T-box
TF required for differentiation of retinal ganglion cells and
proper development of the optic nerve (Mao et al. 2008).
Other CNEs that overlap eye-regulatory regions are located
near genes that have important roles in photoreceptors, such
as Crb1, an adherens junction transmembrane protein re-
quired for photoreceptor maintenance (van de Pavert et al.
2004), Rlbp1, a gene necessary for efficient rhodopsin regen-
eration (Saari et al. 2001), or Neurod1, a basic helix-loop-helix
transcription factor required for photoreceptor survival
(Pennesi et al. 2003; Ochocinska et al. 2012). REforge also
detected a CNE that overlaps the promoter of Gnat2, which
encodes a cone-specific subunit of transducin, a G-protein
that is essential for visual phototransduction (Chang et al.
2006). Finally, two additional CNEs are located near Tdrd7,
which encodes an RNA granule component required for nor-
mal lens development (Lachke et al. 2011). Notably, muta-
tions in many of these genes are associated with eye diseases
in human, ranging from night blindness (Rlbp1), total color
blindness (Gnat2), retinitis pigmentosa (Neurod1, Crb1), Leber
congenital amaurosis (Crb1), glaucoma, and cataracts (Tdrd7)
to severe disorders such as anophthalmia (absence of one or
both eyes, Rax) (Lotery et al. 2001; Kohl et al. 2002; Voronina
et al. 2004; Lequeux et al. 2008; Lachke et al. 2011; Wang et al.
2014).

Next, we compared REforge with standard Forward
Genomics on real data. To this end, we applied standard
Forward Genomics to all 351,279 CNEs and selected the
same number (3,711) of top-ranked CNEs to ensure compa-
rability. The sets of top-ranked 3,711 CNEs identified with
REforge and Forward Genomics have an overlap of 153
CNEs (supplementary table 3, Supplementary Material

online), which is 4 times more than the overlap of 39
(3,7112/351,279) CNEs expected by chance. We next assessed
which of the two sets of 3,711 CNEs has a higher overlap with
eye-regulatory data. In contrast to REforge, the top-ranked
3,711 CNEs identified with standard Forward Genomics are
not significantly enriched in these eye-regulatory data sets
(fig. 3B). 178 of these 3,711 CNEs overlap eye-related regula-
tory data sets, which is substantially less than the 264 CNEs
that REforge identified. Comparing the top-ranked 9,364
CNEs, which corresponds to a Forward Genomics adjusted
P value cutoff of 0.005, corroborates these results (supple-
mentary fig. 9, Supplementary Material online). Overall,
REforge also outperforms standard Forward Genomics with
respect to enrichments and total overlap with eye-regulatory
regions.

REforge’s improved sensitivity in comparison to standard
Forward Genomics likely reflects its ability to detect small
mutations that destroy binding sites for important eye TFs.
For example, the CNE near Irx5 (discussed above) exhibits a
T>C mutation in the blind mole-rat and cape golden mole
that destroys a putative binding site for Otx2 that is otherwise
conserved among mammals (fig. 3C). The CNE associated
with Rlbp1 is another example for the loss of a homeobox
TFBS by a single substitution (fig. 3D). Such functionally im-
portant sequence changes in an otherwise conserved region
are not detectable with standard Forward Genomics.

Since REforge with eye TFs as input should primarily detect
CNEs that are active in eye tissues, but not necessarily in other
tissues, we investigated the overlap with noneye-related reg-
ulatory data sets. To this end, we tested the significance of the
overlap of the 3,711 CNEs with published data sets from
noneye tissues such as forebrain, skeletal, or limb tissues.
We found no significant overlap between the identified
CNEs and skeleton or limb data sets. Interestingly, however,
we found a significant enrichment with Pax6 bound regions
identified by ChIP-seq in forebrain tissue. A potential expla-
nation is that Pax6 is one of the master regulators of eye
development and eyes develop from optic vesicles, which
originate from forebrain tissue. Furthermore, Pax6 also has
a role in optic nerve development, as Pax6 mutations in
humans are associated with optic nerve malformations
(Azuma et al. 2003). Thus, binding site divergence in some
of these overlapping CNEs may be involved in the degener-
ated optic nerves that characterize the vision-impaired sub-
terranean mammals (Herbin et al. 1995; Catania 1999; Hetling
et al. 2005; Nemec et al. 2008). This suggests that the 3,711
CNEs with binding site divergence in subterranean mammals
not only overlap regulatory data sets obtained from eye tissue
but also from tissue relevant for eye development.

Discussion
Here, we present REforge, a method to associate TFBS diver-
gence with phenotypic differences between species. Like the
Forward Genomics branch method (Prudent et al. 2016),
REforge makes use of ancestral reconstruction to consider
evolutionary changes that happened on each individual
branch. In contrast to standard Forward Genomics, REforge
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does not measure sequence divergence, but estimates differ-
ences in the collective binding affinity of a set of TFs on every
branch. This is important since sequence divergence in CREs
may not necessarily result in functional divergence, which is
conceptually similar to coding regions where synonymous
changes contribute to overall sequence divergence but do
not alter the encoded protein. Using large simulated data
sets, we show that REforge is able to specifically detect those
CREs that evolve under no selection to preserve TFBS on the
trait-loss branches. While the evolution of real CREs is cer-
tainly more complex than what is captured in the simulation,
we found that many of the top-ranked CREs consistently
correspond to true positives, suggesting that REforge is robust
to different scenarios and parameter settings in our simula-
tion. Furthermore, REforge substantially outperforms stan-
dard Forward Genomics, both on simulated and on real
data, showing that REforge is the superior method when ap-
plied to cis-regulatory elements.

We applied REforge to screen genome-wide for CRE can-
didates that exhibit preferential divergence of binding sites for
eye-related TFs in subterranean mammals. Out of 351,279
CNEs, REforge detected 3,711 (1.06%) elements. We showed
that these CNEs overlap a number of eye-regulatory data sets
significantly more often than expected by chance. Our
genome-wide screen largely extends a recent study that con-
sidered 4,000 CNEs near 20 eye-related TFs and 946 mouse
eye enhancers, and successfully identified accelerated se-
quence (though not necessarily binding site) divergence in
subterranean mammals in 29 of these genomic regions
(Partha et al. 2017). While the lack of a genome-wide screen
precludes a direct comparison to our results, our study un-
covered 9 times (264) as many CNEs that overlap eye-specific
regulatory elements. Notably, several of these CNEs, described
here for the first time, are located near key genes implicated in
eye development and human eye disease. These findings sug-
gest that, in addition to a number of lost or diverged eye-
related genes (Kim et al. 2011; Emerling and Springer 2014;
Fang et al. 2014; Prudent et al. 2016; Partha et al. 2017), several
diverged eye-regulatory elements likely contributed to loss of
vision and eye degeneration in subterranean mammals.
Furthermore, our screen provides evidence for a broader,
genome-wide divergence signature of the eye-regulatory
landscape in mammals with degenerated eyes.

REforge provides a new tool to discover associations be-
tween binding site divergence in regulatory elements and
morphological or other phenotypic changes. The discovery
of new associations between regulatory and phenotypic dif-
ferences will benefit from integrating comparative genomics
approaches like REforge with high-throughput functional ge-
nomics approaches like ATAC-, DNase-, or ChIP-seq.
Functional genomics methods typically detect many thou-
sands of regulatory elements in selected tissues, which leaves
the challenge of identifying which of these regulatory ele-
ments are relevant for a particular phenotypic change.
Intersecting such regulatory data with comparative genomics
data will help refine the list of relevant genomic regions show-
ing binding site divergence in species where the selected phe-
notype has changed. Such regulatory elements are promising

candidates for subsequent functional experiments. Facilitated
by the rapid increase in the number of sequenced genomes,
REforge has broad applicability to detect CRE candidates that
could be involved in many other phenotypic differences be-
tween sequenced species, and thus help to uncover the ge-
nomic basis of nature’s phenotypic diversity.

Materials and Methods

REforge Method
Sequence Scores
To compute sequence scores for extant species and recon-
structed ancestral sequences, it is necessary that the input
genomic regions align between the species. However, it is not
required for the genomic regions to be evolutionarily con-
served, as REforge can also identify binding site divergence in
nonconserved genomic regions when applied to a set of
aligning regulatory elements (supplementary fig. 10 and table
4, Supplementary Material online). Given an alignment of a
genomic region with reconstructed ancestral sequences and a
set of TF motifs, REforge estimates the collective binding af-
finity of all TFs to the sequence in every extant and ancestral
species using Stubb version 2.1 (Sinha et al. 2003, 2006). Stubb
makes use of two Hidden Markov models (HMM); one that
emits either background sequence or TF binding sites by
sampling from one of the given motifs, and one that emits
only background sequence. For each HMM, Stubb computes
the weighted sum of all paths through the model that emit
the given sequence, and outputs the ratio of the scores for the
two HMMs. Stubb either optimizes the HMM transition
probabilities via expectation maximization or takes them as
given. REforge makes use of both options. First, we let Stubb
estimate the optimal transition probabilities for the sequence
of the common ancestor of all species. Second, these transi-
tion probabilities are reused for every sequence that repre-
sents a species (extant species or internal node) that descends
from the common ancestor. This procedure ensures compa-
rability in the Stubb scores by avoiding fluctuations in the
transition probabilities (see below), but can be switched off
with parameter –no_fixed_TP. To further ensure comparabil-
ity, we used a fixed predefined set of background sequences as
input to Stubb to infer the HMM emission probabilities for
the background sequence. Specifically, we generated random
sequences and sorted them into 20 bins according to their
GC-content. The background sequence belonging to the bin
that best matches the input sequence’s GC-content is then
used as background input to Stubb. The resulting Stubb score
reflects the collective affinity of the given TF set.

Although randomly generated sequences should contain
TF binding sites only by chance, Stubb scores are consistently
positive for such random sequences (supplementary fig. 1,
Supplementary Material online). To obtain scores that are
on an average zero for random sequences, we created ten
randomized sequences by shuffling the nucleotides in the
input sequence and subtracted the average Stubb score of
these ten sequences from the score of the input sequence.
The resulting score is called the “sequence score” (supple-
mentary fig. 2, Supplementary Material online).
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Branch Scores
Since species are related by the phylogeny, the sequence
scores of extant or ancestral species (terminal or internal
nodes in the tree) are not independent and thus cannot be
directly compared. Therefore, we adapt the branch method
from the Forward Genomics framework (Prudent et al. 2016)
that compares evolutionary changes between the branches in
the phylogenetic tree instead of comparing changes in the
nodes of the tree. We compute a “branch score” as the dif-
ference of the sequence scores of the end and start node of
this branch. Positive branch scores represent gain or strength-
ening of binding sites and negative scores indicate the weak-
ening or loss of binding sites along the branch. Since every
branch represents an independent evolutionary trajectory,
the branch scores are phylogenetically independent and
can be directly compared. Instead of directly determining
the number of sequence changes that happened on this
branch, branch scores measure relative changes in TFBSs
and thus are not dependent on the length of the branch.

Two different scenarios can explain a branch score of �0.
First, if both start and end node of the branch have positive
sequence score, then TF binding sites are present and are
largely preserved (though not necessarily at the same posi-
tion). Second, if both nodes have sequence scores �0, then
no significant TF binding motifs are present in either se-
quence and we did not consider such uninformative branch
scores.

Association Test
To test if there is an association between the branch scores
and a repeatedly evolved binary trait, we use Dollo parsimony
to infer the phenotype of all ancestors. Alternatively,
Maximum Likelihood approaches can be used for that pur-
pose. Then, we classify each branch as either “trait-preserving”
or “trait-loss,” depending on the trait state of the branch end
node. If trait loss is associated with the progressive divergence
or loss of TF motifs along the trait-loss branches, we expect
that these branches preferentially have negative branch
scores, in contrast to trait-preserving branches, where TF
binding affinity is under selection resulting in positive branch
scores or scores �0. To test if trait-loss branches have signif-
icantly lower branch scores than trait-preserving branches, we
used the significance of a positive Pearson correlation coeffi-
cient. It should be noted that while we here only consider an
association between trait-loss branches and negative branch
scores, the association principle is general and can also be
used to detect associations between a set of branches and
positive branch scores that reflect gains of TF motifs. The final
output of REforge is the P value of a given genomic region.

Simulating the Evolution of CREs
We simulated the evolution of CREs to obtain data sets where
the ground truth (which CREs are and are not associated with
the phenotype) is known. In this simulation, we used a set of
five “phenotype-relevant TFs” that have motifs which are
sufficiently different from each other (supplementary fig.
4A, Supplementary Material online). We used a phylogeny

of 20 species (fig. 2A) and selected three independent species
as trait-loss species.

As ancestral CREs, we used 200-bp sequences that were
randomly generated according to a uniform base distribution
and placed five consensus binding sites for randomly selected
TFs at random but nonoverlapping positions. For each con-
structed sequence, we used GEMSTAT (He et al. 2010), a
method that predicts regulatory activity (expression pattern)
from the TFBSs in the sequence, to measure the fitness of the
sequence. A fitness of 1 corresponds to a perfect match be-
tween the regulatory activity predicted for the sequence and
the target regulatory activity. The target regulatory activity of
a CRE was defined as resulting in 100% expression level in a
single tissue. We simulated a simple regulatory logic where
the five TFs have equal concentrations levels in this tissue and
are independent activators with equal strength, thus each TF
contributes equally to regulatory activity. To ensure that the
ancestral sequence at the start of the simulation has the ap-
propriate regulatory activity, we discarded all sequences with
a fitness of <0.85. In total, we generated 10,200 different
ancestral sequences. Starting with an ancestral sequence,
the evolution of each phylogenetic branch was simulated
by a successive application of PEBCRES (Duque et al. 2014),
a discrete-time Wright–Fisher simulation with a fixed size
population. The mutation parameters of PEBCRES were set
to mutation_rate 1e-04, substitution_probability 0.95, inser-
tion_probability 0.5, and tandem_repeat_probability 0.2. For
every branch, we ran PEBCRES with a number of iterations
(parameter “num_generations”) such that the total mutation
rate equals the branch length (number of substitutions per
site). For example, a branch length of 0.05 substitutions per
site corresponds to 500 iterations. Starting from a single an-
cestral sequence, PEBCRES simulates the evolution of a pop-
ulation of 50 sequences to obtain the final population
representing an internal node in the tree. To independently
evolve this population along the two branches that descend
from this internal node, we modified the PEBCRES source
code to start these two independent evolution runs with
the set of 50 sequences obtained for this node. This process
was repeated until we obtained the 50-sequence population
of every internal node and every extant species. Then, for each
node, we selected the sequence with the median fitness to
obtain a single sequence that represents each node in the
tree. As a result, all ancestral states are known after simulating
the evolution of a CRE.

For 10,000 of the ancestral sequences, we evolved every
branch under selection to preserve the target regulatory ac-
tivity (high fitness) using the selection parameters
D_max¼ 1, selectionExp¼ 2, selectionScale¼ 100, and
selectionCoeff¼ 0.1. These CREs are not associated with trait
loss and thus correspond to negatives (background CRE set
1). To simulate 200 foreground CREs that are associated with
the trait loss and thus evolve neutrally after the trait was lost,
we split the trait-loss branch into two parts. Along the first
part, the CRE evolved under selection. Along the second part,
which consisted of a branch length of 0.09, 0.06, or 0.03 neu-
tral substitutions per site, the CRE evolved neutrally by setting
selectionCoeff¼ 0, which removes the influence of fitness
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during the selection step in the Wright–Fisher model. For
comparison, 0.09 subs. per site corresponds to the divergence
of rat from the rat–mouse ancestor. The final data set consists
of 10,200 CREs, 200 (1.96%) of which are associated to trait-
loss (positives). We always used the known (simulated) an-
cestral sequences, except for the tests with the 11-species
phylogeny, for which we reconstructed ancestral sequences
with PRANK (Loytynoja and Goldman 2008) (parameters
“-once -gaprate¼ 0.05 -gapext¼ 0.2 -termgap –showanc”).

To explore robustness of REforge to different backgrounds,
we generated an additional set of 5,000 CREs (background
CRE set 2) that are active in an unrelated tissue and whose
regulatory activity is controlled by five different activator TFs.
To this end, we chose five TFs having motifs that are suffi-
ciently different from the five previously chosen motifs using a
TomTom (Gupta et al. 2007) similarity score cutoff of 0.01
(supplementary fig. 4B, Supplementary Material online) and
repeated the above-described steps to generate a negative
CRE set. We also tested the robustness of REforge to variation
in the sets of input TF motifs by selecting three sets of 15
additional TFs with motifs that are different from the motifs
of the five activator TFs (TomTom similarity score cutoff of
0.01, supplementary table 1, Supplementary Material online).

In order to create three sets of 200 pleiotropic foreground
CREs (one set for each trait-loss age), we simulated CRE evo-
lution under a target regulatory activity of 100% expression
level in two different tissues. While expression in the first
tissue is controlled by the same five TFs as before, expression
in the second tissue is controlled by a second set of five
activator TFs with equal strength and equal concentrations
levels (supplementary fig. 4B, Supplementary Material online).
We assumed that the first tissue is related to the lost trait,
while the second tissue is not. Therefore, after trait loss, we
redefined the target regulatory activity of the CRE to 100%
expression level in only the second tissue. This differs from the
tissue-specific foreground CREs above, where we removed
any selection by setting selectionCoeff¼ 0.

Testing REforge Parameters
We used the simulated data to test and optimize various
parameters of REforge. First, we compared the performance
of different methods for quantifying the significance of the
association between trait and branch scores. As shown in
supplementary figure 3, Supplementary Material online,
Pearson correlation outperforms several other methods
such as ranking CREs by the significance of a positive
Spearman correlation coefficient, the significance of a
Wilcoxon test or t-test, or the upper bound of the 95% con-
fidence interval obtained with a Wilcoxon or t-test.

Second, we tested the effect of estimating the optimal
Stubb-HMM transition probabilities for the sequence of the
common ancestor and then reusing the same transition
probabilities for every descendant species. As shown in sup-
plementary figure 11, Supplementary Material online, reusing
the optimal ancestral transition probabilities results in a bet-
ter performance, since it avoids fluctuations in the transition
probabilities that would arise if they were optimized for each
sequence separately. Reusing the optimal ancestral transition

probabilities has another beneficial side effect. In case, our
assumption that the ancestral CRE is important for the given
trait and thus exhibits TFBS is violated, the optimal transition
probabilities for the sequence that represents the common
ancestor are zero. Consequently, all sequences scores and
thus all branch scores will be zero, resulting in a P value of
1. Therefore, by default, REforge avoids computing sequence
scores for such CREs to save runtime.

Detecting CREs Associated with Eye Degeneration in
Mammals
The multiple genome alignment was created as previously
described in (Prudent et al. 2016). Briefly, we used the mouse
mm10 genome assembly as the reference and applied the
lastz/chain/net pipeline (Kent et al. 2003; Harris 2007) to ob-
tain pairwise alignments to 25 mammals and 3 outgroups
(lizard, chicken, and frog) and Multiz (Blanchette et al. 2004)
to build a multiple alignment. To obtain CNEs, we first iden-
tified evolutionarily conserved elements with PhastCons
(parameters “expected-length¼ 45, target-coverage¼ 0.3
rho¼ 0.3”) (Siepel et al. 2005) and GERP (default parameters)
(Davydov et al. 2010) in this multiple alignment and then
excluded all conserved parts that overlap annotated coding
exons in mouse. We only considered CNEs that are �30 bp
long and provide sequence information for all four subterra-
nean species and at least 15 of all species in total. This resulted
in 351,279 CNEs. For each CNE, we used the phylogeny-aware
PRANK method (Loytynoja and Goldman 2008) (parameters
“-keep -showtree -showanc -prunetree -seed¼ 10”) to align the
sequences of all species and to reconstruct all ancestral
sequences (internal nodes in the tree).

We obtained eye-related transcription factors from a re-
cent review (Cvekl and Mitton 2010) and used the
TRANSFAC (Matys et al. 2006), JASPAR (Mathelier et al.
2014), and UniPROBE (Hume et al. 2015) motif databases
to assign motifs to these TFs. In case, several distinct (pri-
mary/secondary) motifs describe the binding preference of a
TF, we included all motifs. This resulted in a total of 28 motifs
for 19 different TFs (supplementary table 2, Supplementary
Material online). Using the 28 motifs as input, we applied
REforge to all 351,279 CNEs using a scoring window size of
200, ancestrally fixed transition probabilities and ancestral
CNE filter on the ancestor of eutherian mammals. To correct
for multiple testing, we applied the Benjamini–Hochberg pro-
cedure and used an adjusted P value cut-off of 0.1, which
resulted in 3,711 CNEs that are associated with eye degener-
ation. Repeating the same analysis with only one representa-
tive motif for each of the 19 eye-related TFs (marked in
supplementary table 2, Supplementary Material online)
resulted in 3,392 CNEs that are also enriched for overlap
with eye-regulatory data sets (supplementary fig. 7,
Supplementary Material online).

To compare REforge to the standard Forward Genomics
on real data, we applied the branch method with default
parameters (Prudent et al. 2016) to all 351,279 CNEs. We
selected the 3,711 top-ranked CNEs to compare both meth-
ods on a data set of the same size. To also compare both
methods to random CNE sets, we randomly selected 10,000
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sets of 3,711 CNEs each out of the total 351,279 CNEs. To
exclude any bias in comparing REforge to standard Forward
Genomics, we also selected the 9,364 top-ranked CNEs that
correspond to a Forward Genomics adjusted P value of
<0.005 and compared this set to the same number of top-
ranked REforge CNEs (supplementary fig. 9, Supplementary
Material online).

To test if the CNEs identified with REforge or standard
Forward Genomics significantly overlap eye-specific regula-
tory elements, we compiled a comprehensive list of publicly
available eye-regulatory data sets obtained from ChIP-seq,
DNase-seq, and ATAC-seq experiments, as previously de-
scribed (Roscito et al. 2018). These include ChIP-seq binding
sites for the transcription factors Crx (Corbo et al. 2010) and
Nrl (Hao et al. 2012) in retina of adult mice, for Otx2 (Samuel
et al. 2014) in retina of 1-month-old mice, and for Pax6 (Sun
et al. 2015) in lenses of newborn (P1) mice. We also included
open chromatin regions identified with DNase-seq in both
adult and embryonic E14.5 retinas (Encode Project
Consortium 2012), and with ATAC-seq in adult retina,
cone, and rod photoreceptors (Mo et al. 2016).

To obtain discrete regulatory regions, we processed each
data set as follows. Otx2 ChIP-seq peaks were kindly provided
by Alexander Samuel (Samuel et al. 2014) and Nrl peaks were
kindly provided by Anand Swaroop (Hao et al. 2012). For
Otx2, we defined retina- and retinal pigment epithelium
(RPE)-specific peaks by selecting those peaks which are
unique to each tissue (bedtools intersect –v; 14,015 retina-
specific peaks and 1,509 RPE-specific peaks). For the Crx
data set, we selected the peaks which were supported by at
least 40 sequencing reads (2,974 peaks). To obtain lens-
specific Pax6 and H3K27ac peaks, we used the forebrain sam-
ples from the same study to select peaks marked by Pax6 and
H3K27ac in lens but not in the respective forebrain samples
(bedtools intersect –v; 2,570 lens-specific Pax6 peaks and 6,390
lens-specific H3K27ac peaks). Similarly, we obtained
forebrain-specific Pax6 and H3K27ac peaks by selecting those
peaks unique to forebrain. To obtain adult retina-specific
DNaseI peaks, we downloaded, in addition to the retina peaks,
several ENCODE peak sets from 8-week-old mice (whole
brain, cerebellum, heart, kidney, liver, lung, skeletal tissue,
telencephalon). For each tissue, we combined replicates to
obtain peaks consistently found in at least two of the repli-
cates. Next, we combined all nonretina peaks and subtracted
them from the retina DNaseI peaks (bedtools intersect –v;
12,763 retina-specific DNaseI peaks). We applied the same
procedure for ENCODE E14.5 samples, that is, subtracted
nonretina peak sets obtained from E11.5 and E14.5 mice em-
bryos (facial prominence, whole brain, forebrain, midbrain,
hindbrain, neural tube, whole limb, forelimb, and hindlimb)
from retina peaks to obtain 23,933 retina-specific peaks. We
also obtained peaks specific to each nonretina tissues, adult
and embryonic, following the same procedure. Finally, for the
ATAC-seq peak sets, we ran DiffBind (bFullLibrary
Size¼FALSE, bTagwise¼FALSE, method¼EDGER) (Ross-Innes
et al. 2012) with the adult wild-type retina, cones and rods
samples to obtain 254 rod-, 20,335 cone-, and 1,507 retina-
specific peaks.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Data Availability
All simulated CREs (10,000/5,000 background CREs, 200
tissue-specific, and 200 pleiotropic foreground CREs for the
three trait-loss time points) and the TF motifs are available at
https://bds.mpi-cbg.de/hillerlab/REforge/, last accessed
October 11, 2018.

Code Availability
The REforge source code is available at https://github.com/
hillerlab/REforge, last accessed October 11, 2018.
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