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A new software system designed for use in high-
throughput DNA sequencing laborateries is described.
The Genome Reconstruction Manager (GRM) was de-
veloped from requirements derived from ongoing
large-scale DNA sequencing projects. Object-oriented
principles were followed in designing the system, and
tools supporting object-oriented system development
were employed for its implementation. GRM provides
several advances in software support for high-
throughput DNA sequencing: support for random, di-
rected, and mixed sequencing strategies; a novel sys-
tem for fragment assembly; a commercial object data-
base management system for data storage; a client/
server architecture for using network computational
servers; and an underlying data model that can evolve
to support fully automatic sequence reconstruction.
GRM is currently being deployed for production use
in high-throughput DNA sequencing projects.
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INTRODUCTION

Using current technology, Lthe target for laerge-seale
DNA sequencing is on the order of one million contigu-
ous nuclectide basepairs. However, the primary se-
quence data are obtained in continnous lengths of only
a few hundred bases at a time using polyacrylamide
gel-based technology. Consequently, the application of
a sequencing strategy to the reconstruction of long tar-
get sequences from the relatively short primary se-
quence data is an essential component of large-scale
sequencing {Hunkapiller et «l., 1991).

Most sequencing strategies attack this problem by
breaking the large stretches of DNA into smaller over-
lapping regions approximately 30,000 nucleotides (cos-
mid clones) to 100,000 nucleotides (P1 phage clones) in
length. Strategies vary by the procedure for obtaining
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primary sequence data from these shorter regions. In
a typical project employing a random or shotgun strat-
egy, a cosmid clone is randomly fragmented, and the
resulting fragments are cloned into an M13 phage se-
quencing vector. The vector provides priming sites for
DNA sequencing adjacent to the inserted clone. If only
one end of each cloned fragment is sequenced, then
there is no prior knowledge about the relationship of
each fragment sequence to the original target se-
quence. If both ends of a fragment are sequenced, then
those two sequences have constrained distance and ori-
entation relationships Lo each other relative to the tar-
get sequence (Edwards and Caskey, 1991). The prob-
lem of reconstructing a {arget sequence from primary
data when using a random strategy is usually referred
to as sequence assembly,

On the other hand, directed sequencing strategies
may have precise information about the spatial and
orientation relationships of sequence fragments to the
original DNA sequence. One type of directed strategy
employs transposable elements {which contain the se-
quencing priming sites) inserted at various positions
in a target sequence. The position of sequence data
generated from priming sites in the transposable ele-
ment relative to the target sequence is known because
the poesition of the insert is known. (Strathmann ef a/,,
1991). Another directed strategy systematically ex-
tends sequencing primers along a DNA molecule to dis-
cover new sequence, which then serves as a priming
site for subsequent extension. The recent discovery
that primers of arbitrary sequence may be generated
from a library of hexamers (Kieleczawa et al., 1992)
will make this strategy more cost-effective.

Several pilot large-scale DNA sequencing projects
that will push the rate of DNA sequencing into the 1
Mb per year per laboratory range have recently been
initiated. This rate of DNA sequencing will present new
data management and analysis challenges not appar-
ent in smaller projects. Some of the issues that must
be addressed in a new generation of data management
systems are:
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* The processing and flow of data from the sequencing
hardware to the finished edited sequence should be
autornated.

» Effective user interfaces for those tasks that require
human inspection or interaction must be developed.

* Alternate user interfaces customized for the role of
the specific user (i.e., technician, researcher, manager)
should be provided.

* Support for a range of sequencing strategies includ-
ing random, directed, and hybrid strategies should be
provided.

¢ The probability of error should be assigned to each
nucleotide position in the finished sequence.

¢ Multiple simultaneous usgers should be able to access
and work with the data in a specific sequencing project.
» Transparent access to specialized resources such as
computational and database servers should be pro-
vided.

Much of the data management research to date has
focused only on algorithms and methods for sequence
assembly, an important problem for sequencing proj-
ects using a random strategy (Staden, 1979; Peltola et
al., 1984; Kececioglu, 1991; Huang, 1992; Istvanick et
al., 1993, Burkset al., 1994; Parsons et al., 1993; Myers,
1994). Recently, programs with improved editing envi-
ronments for sequence assembly have become available
{Dear and Staden, 1991; Smith et al., 1993).

QOur research involves the development of a complete
software environment to support large-scale DNA se-
quencing that addresses the issues outlined above. The
result of this project is a software product named the
Genome Reconstruction Manager or GRM. The results
of this project to date and a deseription of the applica-
tion are summarized in this paper.

MATERIALS AND METHODS

Design strategy. Data management and analysis are a significant
bottleneck in the DNA sequencing process. In large part, this can be
attributed to the lack of effective integrated software tools and not
to any major unsolved technical challenge. The goal of GRM is to
eliminate the data management bottleneck, and to achieve this its
design was guided by three main principles:

1. Automate the data flow as much as is practical and minimize
the researcher’s interaction with the computer operating system.

2. Provide an effective and intuitive user interface when human
interaction is necessary,

3. Generalize the system design so that GRM can be easily
adapted to different laboratories using various gel-based sequencing
strategies.

The design and development team included a project manager,
two experienced software engineers, and a molecular biologist. The
molecular biologist had several important roles on the team: coordi-
nating our group’s interaction with users in sequencing laboratories,
developing system requirements, collaborating in the user interface
design, and serving as a resident expert in DNA sequencing tech-
nology.

System requirements were developed from information gathered
by observing the practices in several DNA sequencing laberatories
and by interviewing key researchers in those laboratories. We were
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aleo influenced by emerging trends in sequencing technology, partic-
ularly the emergence of directed sequencing strategies (Hunkapiller
et al., 1991; Strathmann et el., 1991; Kieleczawa ef al., 1992}. Our
most significant interaction was with the Sequencing Core directed
by Richard Gibbs in the Human Genome Center at Baylor College of
Medicine. In addition, Chris Martin and Ed Theil from the Lawrence
Berkeley Laboratories Genome Center, Richard Wilson from the
Caenorhabditis elegans Genome Project at Washington University,
and Tom Marr at Cold Spring Harbor Laboratories provided details
of the sequencing practices used in projects at their facilities.

GRM was designed and implemented using object-oriented meth-
ods. Object technology is a modern paradigm for software develop-
ment that has reached a level of maturity sufficient to be used to
develop production systems. It has now gained wide acceptance in
the software engineering community.

We employed the Fusion (Coleman et al., 1994) and the OOSE
{Jacobson et al., 1992) object-oriented analysis and design methods
to translate system requirements to an object-oriented design. GRM
system design has also been guided by user-centered design practices
(Norman and Draper, 1986) in which the design is driven by the
goals of the end users and users contribute to the design process,
often by being a member of the development team. User-centered
design is facilitated by rapid prototyping, where ideas can be imple-
mented, evaluated, and refined in an efficient interactive cycle.

Fragment assembly algorithms. The problem of reconstructing a
target sequence from small, randomly positioned and oriented, error-
containing fragments of the original sequence has been called the
fragment “assembly” problem (Staden, 1979; Peltola et al., 1984;
Kececioglu, 1991; Huang, 1992; Istvanick et al., 1993; Burks et al.,
1994; Parsons et al., 1993; Myers, 1994}. In GRM, the core combinato-
rial problems of determining potential overlaps between fragments
of sequence data and their assembly into contigs have been the focus
of work by a subgroup at the University of Arizona. This team has
constructed a “C”-language function library that provides a basic
“kernel” for solving the problem of fragment assembly. The kernel
is written in ANSI standard C following the objected-oriented para-
digm. The kernel realizes objects of type overlap graph, constraint
set, and assembly that may be created, destroyed, and manipulated
only via routines of the kernel. An object managed by the kernel
persists until it is explicitly destroyed. The kernel is designed to
interface with the reconstruction subsystem of GRM. New versions
of the kernel may be incorporated with a minimum of additicnal
effort since they do not involve changes at the level of the interface.

Kernel algorithms. At a conceptual level the problem of assem-
bling fragments naturally divides into three phases. In the cverlap
phase each fragment is compared against every other to see whether
they share a common subsequence, implying that they were sampled
from potentially overlapping stretcheg of the original strand. The
result of this first phase may be thought of as resulting in an overlap
graph in which each fragment is modeled as a vertex and each statis-
tically significant overlap between two sequences is modeled as a
directed edge between them. The second, layout phase takes the
overlap graph as input and generates a series of alternate assemblies
or layouts of the fragments based on the pairwise overlaps therein.
A layout specifies the relative locations and orientations of the frag-
ments with respect to each other and is typically visualized as an
arrangement of overlapping, directed lines, one for each fragment.
The general criterion for the layout phase is to produce plausible
assemblies that are as short as possible (an appeal to parsimony),
but with the advent of mixed-mode sequencing strategies may also
be required to meet an additional set of constraints. The final, multi-
alignment phase simultaneously aligns the sequences of the frag-
ments in a layout, giving a final consensus sequence as the desired
reconstruction of the original strand. These final multialignments
are thought of as being the resulting assembly. The requirements of
each phase and the Arizona subgroup’s new algorithmic approaches
to each are briefly described in the following subsections.

Overlap phase. Sequencing errors must be accommodated in the
search for overlapping fragments and while one may not wish to use
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the more error-laden data near the end of a gel run for the purposes
of multialignment and consensus, its use when detecting overlaps
can significantly improve closure probabilities for shotgun projects.
The ability of dynamic programming approaches to robustly handle
large error rates is thus desirable. The difficulty is that such full-
sensitivity comparisons can be very time intensive. Using a focusing
technique in concert with the Four-Russians paradigm (Wu et al,
1992), Myers has developed a prescreener that conservatively elimi-
nates all pairs of fragments that cannot overlap within a given error
rate in time proportional to the square of the number of fragments.
This filter is a thousandfold more efficient than traditional dynamic
programming algorithms yet equally sensitive as it performs the
equivalent computation. Any fragments that are not eliminated are
then submitted to a newly developed incremental alignments algo-
rithm (Landau e al., 1994) that efficiently examines every possible
overlap to find the statistically most significant. The new incremental
algorithm permits substitutions in addition to indels, thus correcting
a deficiency of previous work by the Arizona team. For a 40,000-bp
project with 500 fragments of average length 400, the set of all over-
laps was computed in under 10 min on a 65 SPECint machine. Thus,
the one-time computation for the first phase is competitive in terms
of time with any heuristic, yet has the advantage of full sensitivity.

Layout phase. Many experimentalists now advocate shotgun se-
quencing to the point of marginal return and then resorting to
primer-based or directed methods for achieving completion or clo-
sure. Others advocate approaches invelving sequencing only those
fragments that do not hybridize (overlap) with other sequenced frag-
ments or sequencing both ends of an insert, all in an attempt to
improve on the coverage of pure shotgunning. The impact of these
mixed-mode sequencing strategies is that one must now produce the
most compact layout subject to a collection of constraints modeling
the additional information provided by the enhanced strategy. In
light of the additional complexity of handling constraints and the
fact that the simple greedy heuristic (Staden, 1982; Peltola et al.,
1984; Huang, 1992) for producing layouts tends to work well in most
cases, we chose to develop a variant of the greedy algorithm that
produces solutions that meet all constraints. Like the basic greedy
algorithm, fragments are progressively melded together, where
melds are chosen in order of the “degree” of overlap between frag-
ments. But in addition the algorithm rejects a potential meld if it
violates a constraint or will lead to a violation of the constraints. The
idea of constraints has also been explored in the context of genetic
mapping (Letovsky and Berlyn, 1992) but the repertoire of constraint
types required is different and based on Al inference engines. Qur
layout algorithm is generative in that it produces a sequence of lay-
outs in decreasing order of “quality.” For example, it is important to
know whether there is more than one way to put the pieces together,
especially if both appear equally plausible.

Multialignment phase.  We proceed by producing an initial align-
ment consistent with all the pairwise alignments of the edges in the
layout of the previous phase. This is always possible, is computation-
ally efficient, and, since the error rate is typically less than 10%,
produces a very good first approximation. In a second step, a “win-
dow” is swept over this initial alignment to optimize the alignment
in subregions where the use of global overlap alignments produced
locally nonoptimal subalignments. Within the window, the align-
ment is again the result of merging pairwise alignments, but in this
case, in a potentially different order according to the best pairwise
alignments between the subsequences within the window. With this
window-sweep we empirically find the resulting multialignment to
be almost-everywhere optimal, especially when the error rate is less
than 5%.

Kernel engineering and interface. The kernel interface realizes
three types of objects: overlap graph, constraint set, and assembly,
For each object there is a primitive to create such an object, to destroy
(deallocate) it, and to read and write it to and from a file. Error
conditions detected in any kernel primitive cause a trap to a user-
determined contrel point along with a message and code indicating
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the error. In this way error handling is left to the discretion of the
user of the kernel. .

One may create an initially empty overlap graph and then add
fragmenis (vertices) and overlaps {edges) to it. To support version
control for fragments, the set of fragments in a graph are partitioned
into classes, each clags representing the set of versions of a given
fragment. Only one fragment in a class can be active, and it is this
fragment that is used in assembly and overlap comparisons. The
active fragment can be changed, fragments can be added and deleted
from a class, and classes can be added and deleted from the graph.
If a user does not intend to support version control, then they can
simply place one fragment in each class.

When a fragment is added to a class, one can ask that it either be
{1) compared against all other active fragments in the graph, or (2)
compared against only those fragments with which a currently active
fragment overlaps. If a significant (user-specified) overlap is discov-
ered during the comparisons, then an edge is added to the graph
modeling the overlap, To keep overlap graph construction completely
open-ended, we provide direct access to our overlap detection routine
and even permit one to add overlaps produced by other comparators
as “custom” edges in the graph. One can alse delete any specific edge
from the graph if they wish to override one of the edges automatically
created when a fragment is entered. Thus, the kernel gives the user
considerable control over the construction and nature of the overlap
graph.

One may create constraints of the following types. A fragment
constraint asserts that a specific fragment be in an assembly or out
of an assembly. Thus, one can assemble over any subset of the data.
An edge constraini asserts that a given pair of fragments either
must or must not overlap, where the exact nature of the overlap and
orientation of the fragments can be opticnally specified. An oriente-
tion constraint asserts that two frapments must be in either the same
or the opposite orientation (i.e.,5' to 3' vs 3 to 5’), Finally, a distance
constraint asserts that two fragments must be placed within a certain
distance range of each other in the final layout. There is 4 primitive
for each constraint that returns a constraint set object modeling the
single constraint. Another primitive unions constraint sets together
to produce true collections of constraints.

The second and third algerithmic phases for fragment assembly
are combined under a single kernel primitive that, given an overlap
graph and a constraint set over that graph, produces an assembly
ohject. Actually, the primitive is a generator, in that each successive
call produces an alternative assembly. An assembly object contains
all the information on fragment layout and multialignment. In es-
sence, it is a collection of contigs and for each contig a representation
of the multialignment and consensus for the fragments in the contig.
A stick diagram of a layout is considered to just be a view of this
multialignment at a coarser level of resclution. There are numerous
primitives that allow a user to access the information in the assembly
to produce displays of it. There are also primitives that allow one to
edit the multialignments of the assembly. Internally, a representa-
tion of an assembly is built that is very space parsimonious yet allows
efficient browsing. Essentially, only the misaligned characters in the
multialignment and the relative positions of the fragments are
stored. The GRM interface presents its conceptual view of an assem-
bly and how it may be edited by simply translating its higher-level
view into a sequence of simple kernel function invocations on an
assembly object.

Alternate assembly algorithms. Because the fragment assembly
problem is an active area of algorithmic research, the GRM architec-
ture is designed to accommodate solutions developed by others. The
current version of GRM also includes the CAP function library devel-
oped by Huang (1992), Dr. Huang genercusly modified the program-
ming interface to CAP to make it easier to integrate it in the recon-
struction subsystem of GRM. Users may select the specific algorithm
10 be applied at reconstraction time,

Deuvelopment tools and computing environment. GRM is imple-
mented using Smalltalk 80 {ST80) Release 4.1 and VisualWorks 1.0
from ParcPlace Systems, Inc. Certain modules are written in C and
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linked into the application using the “C-language Programmer's Ob-
ject Kit” from ParcPlace. Client/server communications are imple-
mented using ST80 BSD-Socket classes and the TCP/P protocols.
The Gemstone Release 3.2.5 object database management system
from Servio, Inc., is used for persistent data storage.

GRM runs an Sun Microsystems SPARCstations (1, 1+, 2, IPX, 10)
under SunOS Release 4.1.3 running the X11R5 windowing system.
Server processes will run on other networked Unix-based hosts. To
date, we have used SPARCstations and a DEC 3000 Model 5008
AXP for compute server processes. Contact the author (C.B.L.) for
information about availability.

RESULTS

Conceptual Organization of GRM

The role of the Genome Reconstruction Manager in
the large-scale sequence laboratory is to manage the
reconstruction of the target DNA sequence from the
primary sequence data generated by the sequencing
process. The GREM application is conceptually orga-
nized around four main activities: project management,
sequence preprocessing, reconstruction preprocessing,
and reconstruction editing.

Project management. Project management issues
include controlling read and write access to project data
by individuals, the logical organization of project data,
the import of data into the GRM application, database
transaction management, and managing the flow of
control through the application.

Sequence preprocessing. The goal of the prepro-
cessing activity is to identify the part of the primary
sequence data that can be safely passed to the recon-
struction activity. Primary sequence data may contain
several types of artifacts that will affect the quality of
reconstruction and that can be detected and annotated
pricr to that step. These include regions of the data
derived from the cloning vector or primer sequence,
regions containing unreliable data, and repetitive se-
quence elements and other sequences that may require
the data to be handled specially.

Reconstruction processing. The goal of this activity
is to compute the probable ordering and orientations of
the primary sequence data relative to the target DNA
sequence. The main data available for this computation
are the mutual sequence similarities of the primary
sequence dataset and any relative distance and orien-
tation constraints that may be derived from the specific
sequencing strategy employed.

Reconstruction editing. This activity involves the
interactive ingpection of the ordering derived during
reconstruction processing, the alignment of primary se-
quence data based on the ordering, and a consensus
sequence derived from the aligned columns of primary
sequence data. During this activity, the researcher will
edit the result by correcting inaccurate data in the pri-
mary sequence revealed by the alignment and by over-
riding the details of the automatically generated align-
ment and the computed consensus sequence. Regions
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of poor quality data and missing data that will require
the acquisition of additional data in the laboratory may
also be revealed. The final result of this activity will
be a reviewed and edited consensus sequence repre-
senting the sequence of the target DNA.

An Object Model for Sequence Reconstruction

One of the challenges in designing GRM was devel-
oping an object model for integrating the sequence and
reconstruction data. In this section, we outline the key
domain objects implemented in the system and then
describe the class inheritance hierarchy that supports
the implementation.

An AbiGel represents a subset of the data obtained
from a lane file generated by the Applied Biosystems
373A sequencing hardware. It stores the arrays for the
four fluorescent traces, the sequence predicted by the
373A software, and the array aligning the index of
bases in the predicted sequence with the position of the
prediction in the fluorescent data. An AbiGel object 1s
“imported” by reading the contents of a file using a C-
function library and assigning values of the data to
the Smalltalk object’s attributes. The gel object is then
stored in the database where it is retained in a read-
only form for the duration of the project.

A Celversionis an editable view of an AbiGel that
stores a version of the original predicted sequence that
is editable by human users of the object and by align-
ment algorithms. The ohject also allows a subregion to
be specified by the preprocessing subsystem, which is
subsequently used for reconstruction processing. The
GelVersion is a persistent object that is stored in the
database between sessions. The design of the Gelver-
sion will permit multiple editable views of a single
2biGe]l to exist in the system and therefore multiple
versions of reconstructions on the same data set.

A SubGel is an object representing the subregion of
the GelVersion that may be used for reconstruction
processing. The SubGel is a transient object that con-
tains no permanent state and is not stored in the data-
base. However, edit operations may be applied to its
sequence as if it were a normal sequence object. These
edit operations “pass through” the subGel to its parent
GelVersion where they are maintained. SubGel ob-
jects are used by Contig and ContigAssembler ob-
jects.

A Contig represents the multiple sequence align-
ment of SubGel sequences as calculated by the
ContigAssembler. The Contig permits edit opera-
tions on a column of the alignment and at a position in
the individual sequences of the alignment. The Contig
also stores a Congensus object representing the con-
sensus sequence derived from the columns of the align-
ment. A consensus sequence may be generated follow-
ing different policies such as “unanimity” or “majority
rules” (referring to the nucleotides in a column of the
alignment).
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A MetaContig represents two or more Contig ob-
jects whose position and orientation relative to each
other have been deduced by the MetaContigAssem-
bler from a set of Constraint objects.

A Reconstruction objectis one of the key organiza-
tional objects in the system. It is responsible for storing
the current state of reconstruction (all Contig and
MetaContig objects) for a project and for coordinating
the process of reconstruction with a ContigAssem-
bler and MetaContigAssembler.

A ContigAssembler is responsible for managing
the interaction of objects in GRM with a fragment as-
sembly algorithm. The ContigAssenbler launches an
assembly algorithm packaged as a Unix process on a
specified network host computer and sets up an in-
terprocess communication path with the remote pro-
cess. It then coordinates sending sequences derived
from submitted SubGel objects to the assembly algo-
rithm and creates Contig objects from resulting as-
sembly layouts.

A MetaContigAssembler is responsible for creat-
ing MetaContig objects from Contig and Con-
straint objects. If conflicting constraints cannot be
satisfied, the conflicts are noted and ecan be made avail-
able to a user for resolution.

A ConstraintMap is a type of PhysicalMap from
which Constraint objects may be derived. The Con-
straintMap is used in GRM to represent strategy-
specific information that contributes information to
computing a correct reconstruction. For example, a
project based on a shotgun strategy will often include
sequence data derived from sequencing both ends of an
insert in a M13 cloning vector. In the final reconstruc-
tion, the two individual sequences should appear in
opposite orientation and within a distance of each other
constrained by the average size of the inserts in the
shotgun library. In GRM, we use an instance of Con-
straintMap to represent the relative position and ori-
entation of two sequences obtained from each end of
a M13 insert. Upon request, a ConstraintMap will
generate a set of DistanceConstraint, Orienta-
tionConstraint, and OrderConstraint objects
that are used by the MetaContigAssembler in the
construction of MetaContig objects.

Because many of these object classes shared common
properties, we were able to develop the inheritance hi-
erarchy shown in Fig. 1. In the figure, classes labeled
in italics are abstract classes (classes that define a con-
ceptual object for which no actual instances exist in the
system). All classes representing sequences or “maps”
relating sequences are derived from the abstract class
PhysicalObject, which represents objects having a
“physical” extent—in this case a length in units of nu-
cleotides. All classes representing a type of sequence
are derived from the Sequence class and all editable
sequence types from the EditSequence clags. All
classes that represent the relative positioning of two
or more PhysicalObject instances are derived from
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(Physicalobject
CrientCenstraint
[ ]
{ Saquence | | ConstraintMap | |MatuContig|
EditSequence MultiSeqalign
I BbiGel | [calversioen] I SubGal | [consensus| [ Contig |
FIG. 1. Class inheritance hierarchy for GRM object model. The

figure is a diagram summarizing the inheritance relationships for
the key object classes described in the text. In the diagram, a c¢lass
is indicated as a rectangle labeled with the name of the class. Classes
labeled in italics are abstract classes {a class for which no instances
are created in the application}. All other classes are concrete. Classes
connected to the base of a triangle inherit attributes and methods
from the class connected to the tip of the triangle. '

the PhysicalMap class. The base class for most ohjects
in the system is GrmObject, which provides the proto-
col for assigning a unique identification symbol and a
name for an object.

The figure illustrates only a single inheritance hier-
archy. However, many of the classes that we developed
are functionally the result of multiple inheritance. A
good example of this is the Contig class, which directly
inherits its ability to represent contiguous overlapping
sequences from MultipleSeguenceAlignment and
its editing protocol from EditSeqguence.

Because se many of the domain objects in GRM have
common properties, the use of object class inheritance
allowed us to reuse a great deal of code in implementing
the design and improves our understanding of the de-
sign and ability to maintain the code.

Reconstruction Strategy

There were two key goals with respect to sequence
reconstruction that we wished to achieve in this sys-
tem. The first was to develop an architecture that
would allow for alternate fragment assembly computa-
tional engines to be used. The second was to take ad-
vantage of all information available to assist in comput-
ing the correct reconstruction, particularly constraints
imposed by the specific sequencing strategy used.

The first was achieved by requiring that a fragment
assembly engine to be used with GRM would provide
a minimum set of standard functions for submitting
sequence data and retrieving the resuiting assembly
data structure. Any such engine meeting the standard
(and implemented as a callable function library) can
be conveniently packaged as a Unix process with which
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the GRM application can communicate using a stan-
dard interprocess communication mechanism. The ini-
tial production version of GRM has two alternative as-
sembly engines: the fragment assembly kernel de-
scribed in this paper and the CAP engine developed
elsewhere (Huang, 1992). The user may select to use
either engine at the time she initiates reconstruction
processing. Future versions of GRM may include ap-
proaches to fragment assembly contributed by other
algorithm developers.

There are at least two approaches to thinking about
how to utilize constraints on a reconstruction imposed
by the choice of sequencing strategy. One approach is
to compute optimal assemblies that meet all distance
and orientation constraints provided. The fragment as-
sembly kernel described in this paper has this capabil-
ity. A second approach is to consider strategy-specific
constraints only after computing an assembly based on
gsequence comparison alone. The constraints may be
used to confirm the computed relationships and to build
higher level reconstructions (called metacontigs) based
on the distance proximity of two sequences present in
two unlinked contigs. (For exampile, using a shotgun
strategy it is often the case that both ends of an insert
in an M13 clone have been sequenced, but the individ-
ual sequences are found at the ends of two different
contigs. The two contigs may be assembled into a meta-
contig by the distance and orientation constraint im-
posed by knowing that they originated from the same
cloned insert.) This second approach is reasonable be-
cause the computed similarity that fragment assembly
is based on is an unbiased measure of the likelihood
that two sequences overlap relative to the target se-
quence. However, strategy-specific constraints are
prone to error since there is usually at least one unauto-
mated step in translating information from the se-
guencing strategy into constraints that can be imported
into the reconstruction software. Thus, solutions that
assume the correctness of strategy-specific constraints
may be incorrect.

The initial production version of GRM follows the
second approach and uses constraint information to
check assembly solutions and to build metacontigs. In-
consistencies between the computed assembly and
added constraints are noted and presented to the user
for resolution. However, the assembly kernel provides
sophisticated capabilities for handling constraints that
may be quite useful for computing reconstructions in
difficult sequencing projects. Future versions of GRM
will provide access to these capabilities so that their
utility can be explored in the context of large-scale se-
quencing projects.

Description of the Application

The following is a “walk-through” of GRM for typical
usage of the application. The key user interface compo-
nents and their function will be described, as well as
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some of the underlying functionality that is transpar-
ent to the user. The GRM user interface (UI) organiza-
tion and style is similar to that found in many other
widely used software packages that have a graphical
user interface, so that it is as natural as possible for a
user of GRM to move between the GRM environment
and other applications. In particular, we followed rec-
ommendations in the Motif Style Guide (OSF, 1991)
unless special requirements of our application sug-
gested that we develop a specialized UI solution.

Project management. To start a GEM session, the
user enters her login name and password in the GRM
Login Manager. This action gives authorized users ac-
cess to the Gemstone database management system
and the GRM application. The GRM Application Man-
ager, a compact Ul window with pulldown menus, is
then started and remains on the workstation desktop
for the remainder of the session. The user initiates
work for all other activities from the Application Man-
ager. The two key pulldown menus are Projects and
Tools. The former launches dialog boxes for creating
new projects and opening, renaming, and deleting ex-
isting ones. Once a project has been created or opened,
the user may select an item in the Tools menu for im-
porting, preprocessing, reconstructing, or examining a
project’s inventory. An expanded form of the Applica-
tion Manager also presents useful project status infor-
mation.

The GRM Importer permits the user to import files
into the application. Once data is imported into the
application, it is treated as a specific type of object and
stored in the database management system. Currently
three types of objects may be imported: primary se-
quence data (called gels in GRM), constraints on the
distance and orientation relationships between pri-
mary sequence data known from the sequencing strat-
egy used, and diagnostic sequences such as repetitive
sequence elements.

The GRM Inventory permits the user to list and ex-
amine objects currently in the opened project.

As a user moves between different activities in GEM,
the application transparently commits any changes to
the database management system.

Sequence preprocessing. The preprocessing activity
is supported by the GRM Sequence Prepracessor, which
is launched from the Tools menu of the Application
Manager. The user must select a group of gels to pre-
process and the preprocessing parameters. This can be
accomplished almost automatically because the appli-
cation manages groups of gels for the convenience of the
user and because the preprocessing parameters may be
preconfigured for the duration of the project.

Processing data by groups makes it very easy for
the user to move data through the application. The
following are some of the groups automatically main-
tained by the application: afl, all gels in the project;
last imported, the last set of gels imported into the
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project; unpreprocessed, the subset of gels that have
not vet been preprocessed; preprocessed-excellent, the
subset of gels that have been preprocessed and judged
to be of excellent quality; reconstructed, the subset of
gels that have been added to the growing reconstruc-
tion. The user may also create custom groups using the
GRM Group Editor.

The preprocessing parameters allow the user to con-
figure how the preprocessor will annotate each gel se-
quence for quality and the location of specific sequences
such as cloning vector sequence or repetitive sequence
elements. The parameters may be preconfigured for an
entire project or modified for preprocessing a particular
subget of all of the gels in a project. The GRM Prepro-
cessing Configuration tool is used for this purpose.

Preprocessing is activated by clicking on the Start
Preprocessing button in the Preprocessing Manager. A
dialog window that informs the user of the status of
the selected group of gels as they are being prepro-
cessed then appears, When processing finishes, the Pre-
processing Manager displays a panel that summarizes
information regarding the annotations added to gels
during preprocessing. This panel also displays a list of
the individual gels. A specific gel may be selected to
launch a tool called the GRM Trace Editor, which per-
mits the user to edit individual gel data by modifying
the boundaries of the gel region that will be passed on
for reconstruction and by editing individual nucleotide
positions based on a visual inspection of the quality of
the underlying fluorescent sequence data.

Reconstruction processing. This activity is sup-
ported by the GRM Reconstruction Manager selected
from the Tools menu of the Application Manager. The
goal of this activity is to compute the probable ordering
and orientations of the primary sequence data relative
to the target DNA sequence.

A reconstruction is an object that represents the re-
construction state of some subset of all gels and con-
straints in a sequencing project. When a reconstruction
is created for the first time in a project, the Reconstruc-
tion Manager presents a panel requesting the user to
select the fragment assembly algorithm that will be
used in the reconstruction process. GRM currently pro-
vides two alternative algorithms from which to choose.

The Reconstruction Manager presents a panel to con-
trol the submission of gels and constraints for recon-
struction processing. The user must select a group of
gels and constraints to submit. As with sequence pre-
processing, this choice is simplified by selecting a
group managed by the application, typically unrecon-
structed —preprocessed—excellent—the subset of gels
that have been preprocessed, judged to be of excellent
quality, but not yet added to the reconstruction. The
user may alter the sensitivity of the fragment assembly
algorithm for detecting significant overlaps between se-
quences by selecting the level of sensitivity desired
from a pulldown menu. The user may also select from
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a pulldown menu a host processor other than her work-
station on which the assembly computation will be per-
formed.

Reconstruction processing is activated by clicking a
Start Processing button. An informative dialog window
that presents continuous feedback regarding the status
of the reconstruction process appears. The actual com-
putation is performed by a separate Unix process on
the selected host computer whose execution is managed
by the GRM application. The two processes communi-
cate using standard interprocess communication proto-
cols. When the computation is completed, the dialog
window disappears and the Reconstruction Manager
presents a panel with summary statistics describing
the metacontigs and contigs in the reconstruction.

Reconstruction editing. The reviewing and editing
of a reconstruction is supported by the GRM Recon-
struction Editor, which may be launched from the Tools
menu of the Application Manager or from the Recon-
struction Manager. This is the most complex Ul compo-
nent of the application and is shown in Fig. 2. During
a single session using the Reconstruction Editor, the
user may examine and edit any metacontig or contig
existing in a reconstruction. ‘

There are four key panels in the tool. The upper-left
panel is a browser displaying the schematic of a se-
lected metacontig. It shows the relative positions of
individual contigs within the metacontig and the con-
straints that link them together. Within this panel the
user may place a cursor on a specific contig to select it.
The upper-middle panel is a browser displaying the
schematic of a selected contig. This schematic shows
the relative positions and orientations of individual
gels within the contig and the names assigned to the
gels. Within this panel the user may select a column
1-base wide through the contig by placing the cursor
with a mouse click. The lower panel is an editor of the
multiple sequence alignment computed from the contig
layout and of the consensus sequence derived from the
columns of the multiple alignment. Within this editor
the user may position the cursor on or between columns
of aligned nucleotides to select them for editing opera-
tions. The panel on the right is an alignment of win-
dows displaying the fluorescent traces from the pri-
mary sequence data that correspond to the column of
nucleotides selected in the alignment editor. If the
depth of aligned sequences is too great for all fluores-
cent data to be displayed, the user may scroll through
the list using a scroll bar. The cursors in all panels are
synchronized so that repositioning the curser in one
panel results in the appropriate update of the display
and cursor position in the other panels.

The editor includes several convenience features.
Different policies (unanimity, majority, ete.) for calcu-
lating the consensus bases from the aligned columns
are available. The size of the font display in the editor
may be adjusted to smaller characters to view a larger
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region of sequence or to larger characters for increased
readability. A jump feature allows the user to rapidly
move the cursor to the next or previous selected annota-
tion (alignment defect, Alu element, ete.) The metacon-
tig and contig panels may be expanded to fill the entire
window space to examine large or complicated layouts.
Bookmarks may be placed in the alignment for quick
access to particular regions of a reconstruction during
another editing session.

DISCUSSION

The Genome Reconstruction Manager is the first soft-
ware system to address several issues important for
supporting high-throughput DNA sequencing. Four
capabilities are especially useful:

¢ Employing an industrial-strength object database
management system permits the development of a true
multiuser system and increases the reliability of data
storage.

¢ A flexible design for reconstruction permits direct
support for a range of sequencing strategies.

* A client/server architecture permits the transparent
use of network computational servers.

¢ The comprehensive object model is designed to evolve
to support fully antomatic sequence reconstruction.

This project has also allowed us to evaluate the effec-
tiveness of object technology in building software sys-
tems for use in genome research. Our experience has
been very positive. Sequence reconstruction proved to
be a much more complex process than we anticipated
at the start of the project. Object-oriented techniques
provided us with methods for managing this complex-
ity. The Smalltalk development environment provided
us with efficient implementation tools for developing
GRM with a small team. Much of the GRM implemen-
tation will be reusable in other related projects. For
example, the classes representing sequences, physical
maps, multiple sequence alignments, and contigs are
not specific to GRM and can easily be used in other
applications,

Another benefit that we expect from using object
technology is the ability to efficiently extend and cus-
tomize GRM as gel-based sequencing technology
evolves. An important area for future development not
addressed in the current version of GRM is the use of
gequence accuracy infermation during reconstruction.
In another study we have demonstrated how position-
specific error probabilities may be assigned to primary
sequence data and described how this information can
be used to support automatic alignment editing and
consensus determination (Lawrence and Solovyev,
1994). We will also begin development of a companion
environment for automatically annotating and visual-
izing functional information in newly sequenced ge-
nome DNA.
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