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The mechanisms underlying Golgi targeting and vesiculation
are unknown, although the responsible phosphatidylinositol 4-
phosphate (PtdIns(4)P) ligand and four-phosphate-adaptor pro-
tein (FAPP) modules have been defined. The micelle-bound
structure of the FAPP1 pleckstrin homology domain reveals how
its prominent wedge independently tubulates Golgi membranes
by leaflet penetration. Mutations compromising the exposed
hydrophobicity of full-length FAPP2 abolish lipid monolayer
binding and compression. The trafficking process begins with an
electrostatic approach, phosphoinositide sampling and perpendi-
cular penetration. Extensive protein contacts with PtdIns(4)P and
neighbouring phospholipids reshape the bilayer and initiate
tubulation through a conserved wedge with features shared by
diverse protein modules.
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INTRODUCTION
Our 303 pleckstrin homology (PH) domains generally bind to
phosphoinositides (PIs) or proteins (Lemmon, 2008). Their
functional assignment is compromised by our lack of solved
structures of PH domains that bind to monophosphorylated PIs, or
of other proteins in complex with phosphatidylinositol 4-
phosphate (PtdIns(4)P), which is the most abundant monophos-
phorylated PI. This phospholipid is enriched in the trans-Golgi
network (TGN) and recruits a family of four-phosphate-adaptor

protein (FAPP)-related proteins through its PH domains (Levine
& Munro, 2002; Wang et al, 2003; Sudhahar et al, 2008). These
proteins move membrane components from tubular Golgi protru-
sions to the plasma membrane by reshaping the bilayer and
working with Arf1 and PI 4-kinases (Levine & Munro, 2002; Godi
et al, 2004; Vieira et al, 2005, 2006; D’Angelo et al, 2007).

The FAPP1 and FAPP2 proteins are closely related homologues
that target the TGN by binding to PtdIns(4)P. They contain PH
domains that are 88% identical, and FAPP2 also contains
a glycolipid transfer protein-like domain (Lin et al, 2000; Godi
et al, 2004). The principles that determine Golgi interactions by
FAPP modules could apply to diverse PtdIns(4)P-binding proteins
(Sudhahar et al, 2008). In mammalian cells, the FAPPs exemplify
a set of Golgi-bound proteins, including ceramide transfer protein
and oxysterol binding protein 1. Insights into their membrane
recognition mechanism might illuminate the working of
PtdIns(4)P-binding motifs in the distinct folds of adaptor protein
AP-1 (Mills et al, 2003; Wang et al, 2003), Bem1p (Stahelin et al,
2007), EpsinR (Hirst et al, 2003), SdcA (Weber et al, 2006),
SidC (Ragaz et al, 2008) and SidM (Brombacher et al, 2009), and
might also shed light on how other cellular membranes are
manipulated by the action of diverse protein modules, including
BAR (Bin/Amphiphysin/Rvs) domains.

Here, we report nuclear magnetic resonance (NMR)-based
solution structures of the free, micelle- and PtdIns(4)P-bound
FAPP1-PH domain, the wedge of which is shown to be respon-
sible for initiating membrane tubule formation. The basis of its
multifarious lipid specificity and penetration into the bilayer
leaflet is revealed, and the mechanism responsible for initiating
membrane tubulation by PH domains is presented.

RESULTS AND DISCUSSION
The FAPP1-PH domain structure was solved by triple resonance
NMR methods (Fig 1; supplementary Table S1 online), revealing a
pronounced hydrophobic protrusion from the b1–b2 hairpin.
The protrusion of the free state is encircled by an expansive
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basic surface (supplementary Fig S1 online) that does not bind
detectably to inorganic phosphate, suggesting the need for a more
specific partner (supplementary Fig S2 online). Interactions
mediating membrane association were identified by adding
micelles composed of dodecylphosphocholine (DPC) and CHAPS
(3-[(3-cholamidopropyl)-dimethylammonia]-1-propane sulphonate).
The entire b1–b2 loop showed chemical shift perturbations
(CSPs), the largest of which occurred in the Trp 8, Thr 9 and
Tyr 11–Trp 15 resonances (Fig 2A; supplementary Fig S3A,C
online). Together with the dissociation constant (KD) of
41.0±4.6 mM, this suggests intimate encounters that position
the nearby canonical PI pocket inside the interfacial zone
of the membrane.

The structure of the inserted state was modelled by using
paramagnetic relaxation enhancements obtained by incorporating
5- and 14-doxyl spin-labelled phosphocholine into the micelle.
The backbones of Thr 9, Asn 10, Tyr 11, Leu 12, Thr 13 and Gly 14
were inserted into the hydrophobic interior on the basis of NH
signal broadening, as were the side chains of Trp 8, Asn 10, Trp 15
and Gln 16 (Fig 3; supplementary Fig S4 online). Together,
this reveals an unprecedented burial of a wedge that spans
residues Thr 9–Gly 16. The complexed structure was calculated
by HADDOCK using 10 paramagnetic relaxation enhancement
distance restraints, a flexible zone defined by the CSPs and
refinement in water (Table 1; supplementary Table S3 online). The
long axis of FAPP1-PH inserts at an angle of �159.26±4.01 1,
leaving the distal termini exposed. Together with an orthogonal
twist of 251.74±13.63 1, this defines the orientation of the protein
on the micelle. The protein–micelle interface buries 914±173 Å2

and involves structural rearrangements in the penetrant b1–b2
loop (Fig 2; supplementary Table S3 online). An array of hydrogen
bonding interactions are populated with 5–6 proximal DPC
headgroups (Table 1). The Asn 10, Tyr 11 and Leu 12 side chains
intercalate between the lipid acyl chains, whereas Trp 8 and
Trp 15 buttress the interface.

The isolated FAPP1-PH domain was added to palmitoyl-oleoyl-
phosphatidylcholine (POPC) membranes and was found to
be necessary and sufficient to induce tubule formation when
PtdIns(4)P was present (Fig 4A; supplementary Movie S1 online),
recapitulating the PtdIns(4)P-dependent tubulation activity of full-
length FAPP2 (Cao et al, 2009). In light of the assigned FAPP2
function, the Thr 11–Leu 12 wedge extremity in the conserved PH
domain of full-length FAPP2 was mutated to GG and EE sequences
to remove penetrant hydrophobic bulk and introduce repulsive
force, respectively. The surface pressure assay involved injecting
FAPP2 into monolayers composed of POPC and 2% PtdIns(4)P
(Fig 4B). Insertion of wild-type protein increased the surface
pressure until a critical concentration when lipid removal began,
presumably reflecting a bilayer budding or reshaping process. The
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Fig 1 | Solution structures of FAPP1-PH determined by nuclear magnetic

resonance and docked to a DPC micelle. (A) Backbone superposition
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the interactions of the side chains with the DPC molecules. DPC,

dodecylphosphocholine; FAPP, four-phosphate-adaptor protein;

PH, pleckstrin homology.
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GG mutant still interacted, but its insertion was compromised
by an order of magnitude and no lipid removal was detected. As
predicted, the EE mutation abolished binding, insertion and
removal. Neither mutant full-length protein could tubulate the
membrane sheets (supplementary Fig S5 online), indicating that
membrane penetration by an intact wedge is required. We note
that a number of mutations have been reported in human FAPP1-
PH sequences by the Cancer Genome Anatomy Project, and these
substitutions could affect various interactions and structural
features; for example, the Y11D mutation would be predicted to
impair membrane wedging and TGN traffic.

The ligand interactions of FAPP1-PH were mapped by NMR. A
soluble form of PtdIns(4)P with dihexyl (C6) chains binds to the
free state in the fast exchange regime with an affinity in the
mM–mM range, inducing CSPs across the canonical PI pocket
(Fig 3A; supplementary Fig S3B,D online). Docking of the
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Table 1 | Intermolecular restraints and interactions, which are
present in at least 25% of the ensemble of structural models
of FAPP1-PH docked with DPC micelles

Residue number PRE CSP Hydrogen bonds Hydrophobic contacts

Backbone Side chain

Trp 8 NeH 0.06 0 0 8

Thr 9 * 0.08 5 0 7

Asn 10 NdH 0.03 5 0 7

Tyr 11 * 0.26 5 1 62

Leu 12 NH 0.37 0 11 85

Thr 13 NH 0.08 0 11 20

Gly 14 NH 0.08 0 8 0

Trp 15 NeH 0.16 0 8 0

Gln16 NeH 0.03 0 0 9

CSP, chemical shift perturbation; DPC, dodecylphosphocholine; FAPP, four-
phosphate-adaptor protein; PH, pleckstrin homology.
*Paramagnetic relaxation enhancements could not be recorded owing to broadening
of these resonances in the micelle complex.
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Fig 4 | FAPP-PH independently tubulates membrane sheets. (A) Membrane

sheets composed of POPC and PtdIns(4)P (98:2 mol%) spontaneously
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contrast microscopy (supplementary Movie S1 online). (B) Surface

pressure changes (DP) induced in POPC and PtdIns(4)P (98:2 mol%)

lipid monolayers after injection of full-length FAPP2 with Thr 11–Leu 12

replaced with GG and EE sequences as well as wild-type protein at

the concentrations indicated, with the latter control as described

previously (Cao et al, 2009). The DP of the monolayer was recorded
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was normalized to the initial established P (~30 mN/m). FAPP,
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headgroup based on NMR data (supplementary Table S4 online)
helped to predict that the 4-phosphate is positioned by the Lys 7
residue, whereas the 1-phosphate orients near His 70 and Asn10.
This facilitates parallel insertion of the b1–b2 loop and lipid acyl
chains (Fig 3B). The 5- and 6-OH groups of the FAPP1-PH ligand
were positioned by Trp 8, whereas the 2- and 3-OH groups abut
Thr 9, Phe 20, Tyr 29 and Phe 71. Proximal residues including
Arg 18 act to enhance the overall electropositivity that attracts the
protein to acidic membranes.

FAPP1-PH does not bind exclusively to PtdIns(4)P. Soluble
PtdIns(4,5)P2 and PtdIns(3,5)P2 also interact with the canonical PI
binding site by the same assay, inducing large CSPs, especially in
b7, that suggest a modified binding orientation and slightly
higher affinity (supplementary Fig S6 online). However, this could
simply reflect the greater attraction of polyphosphorylated PIs to
the exposed basic surface in the absence of a bilayer context.
Indeed, earlier studies show a twofold weaker association of
FAPP1-PH with PtdIns(4,5)P2 over PtdIns(4)P-containing vesicles,
the latter of which are bound with a KD of 230 nM (Stahelin et al,
2007). To explore further the electrostatic effects, acidic lipids
including C6-PtdSer were introduced and were found to
stabilize insertion into PtdIns(4)P-containing micelles (supplemen-
tary Fig S7 online). The length of the PI chains also significantly
affected the affinity, with the C8-PtdIns(4)P/DPC micelles being
bound by FAPP1-PH better by an order of magnitude than

C6-PtdIns(4)P/DPC micelles. Both stabilizations were evidenced
by larger CSPs and by shifts of the interactions towards the
slow exchange regime (supplementary Fig S3 online), indicating
slower off rates. Other influences on TGN-localized activity of
FAPPs include myristoylated Arf1, a cytosolic factor that interacts
reversibly with the PH domain and membranes, thus influencing
its GTPase activity and regulating PI 4-kinase (Levine & Munro,
2002; Godi et al, 2004).

Together, this suggests a model whereby the FAPP1-PH domain
is recruited stepwise to the TGN by several concerted interactions.
Nonspecific electrostatic attraction dips a wedge into the leaflet.
This hydrophobic keel allows the protein to diffuse upright over
the lipid bilayer, sampling PIs until PtdIns(4)P is recognized in
the bilayer leaflet. This concentrates oriented FAPP molecules
at PtdIns(4)P pools in the TGN, compressing the membrane
and favouring local positive curvature. On reaching a critical
protein concentration the bilayer buds spontaneously, yielding
a tubule that grows rapidly. Although subsequent events such as
tubule fission and vesicle delivery might rely on the recruitment of
further factors, this defines the minimal machinery needed to
initiate membrane tubulation at the TGN.

The wedge is highly conserved across the FAPP family of PH
domains, including the ceramide transfer protein and oxysterol
binding protein relatives, suggesting that they all tubulate the
Golgi membrane by the same general mechanism (Fig 5).
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Moreover, similar b1–b2 loop elements are found in other
PH domains that target multiply phosphorylated PIs in other
membranes (DiNitto & Lambright, 2006; Lemmon, 2007).
Comparison with structures of the latter type reveals that the
4-phosphate orientation is maintained, although the 1-phosphate
position is shifted to where it can be bound by their conserved
(K/R)XR sequences. This motif is supplanted by a QXR motif in
the FAPP family, which instead engages phosphocholine
headgroups. In contrast to the parallel insertion of the PtdIns(4)P
acyl chains and the inserted b1–b2 hairpin loop in FAPP1, a
more perpendicular orientation of PtdIns(4,5)P2, PtdIns(3,4)P2 and
PtdIns(3,4,5)P3 headgroups is seen in crystal structures of other PH
domains. Nonetheless, all of the PH domains of Akt, ARNO,
DAPP1, dynamin, Grp1 and TAPP1 present exposed hydro-
phobicity at their b1–b2 hairpin tips, with flanking glycine and
basic residues positioned to support analogous dynamic insertions
into their plasma membrane destinations.

The PH wedge mechanism provides a basis for understanding
diverse PtdIns(4)P-binding proteins. An exposed cluster of basic and
hydrophobic residues is also presented by AP-1 for binding
PtdIns(4)P in the Golgi membrane (Heldwein et al, 2004). The
ENTH domain of the clathrin adaptor EpsinR instead utilizes
an inducible amphipathic helix to bind PtdIns(4)P and insert into
the Golgi membrane (Miller et al, 2007). Recently, Legionella
pneumophila proteins were discovered to bind to PtdIns(4)P during
host cell infection, and all three proteins—namely SdcA (Weber
et al, 2006), SidC (Ragaz et al, 2008) and SidM (Brombacher et al,
2009)—possess largely helical domains that suggest unique
functions. Analogous wedge motifs have also been proposed for
proteins, including those with F-bar domains that interact with the
plasma membrane (Wang et al, 2009). Thus, the FAPP mechanism
might illuminate how diverse membrane surfaces are manipulated
and possibly sensed by a range of different protein folds presenting
hydrophobic wedges to insert into bilayers.

METHODS
Expression and purification. A human FAPP1-PH construct
containing a C94S substitution was expressed in Esherichia coli
by using a pGEX-6P-1 vector (Amersham Biosciences, Piscataway,
NJ, USA) in M9 media supplemented with 15NH4Cl and 13C6-
glucose. The FAPP2 cDNA was subcloned into a pGEX-6P-1
vector (GE Healthcare, Little Chalfont, Buckinghamshire, UK) and
point mutations were created by using the QuikChange XL kit
(Stratagene, La Jolla, CA, USA). The sequences of all constructs
were verified. The GST fusions were cleaved with PreScission
protease (GE Healthcare) and purified over Superdex columns (GE
Healthcare). The monomeric state was determined by analytical
ultracentrifugation and NMR methods (supplementary Fig S8,S9
online) in the presence of 9.6 mM b-mercaptoethanol. The PH
domain was exchanged into 20 mM Tris buffer, pH 7.0, and
100 mM NaCl, purified on a HiTrapQ column, concentrated, and
NaN3 (1 mM) and D2O (10% v/v) were added.
NMR spectroscopy. The spectra of 100–500 mM uniformly 15N
or 15N/13C-labelled protein were collected at 298 K on
600–900 MHz INOVA spectrometers (Varian Inc, Palo Alto, CA,
USA). Pulse sequences used for assignment included HNCO,
HNCA, HN(CO)CA, HNCACB, HN(CO)CACB, H(C)CH-TOCSY
and CCH-TOCSY experiments. Interactions were monitored from
the HSQC spectra of 15N-labelled FAPP1-PH, and PtdIns(4)P

(Cayman Chemical, Ann Arbor, MI, USA) was added at volumes
from 100 mM to 2 mM. The micelles contained a 3:1 ratio of DPC
(Anatrace, Santa Clara, CA, USA) and CHAPS (Sigma-Aldrich,
Dorset, UK). The induced CSPs were calculated as (DdH

2 þ
0.15DdN

2 )1/2. Distance restraints from 3D 15N- and 13C-edited
nuclear Overhauser enhancement spectroscopy-heteronuclear
single quantum coherence experiments were analysed by ARIA2.2
(Rieping et al, 2007). Slowly exchanging amides (supplementary
Table S2 online) were deduced from the 15N SOFAST-heteronuclear
single quantum coherence (Schanda et al, 2005) spectra of
protein dissolved in 99.96% D2O. Backbone dihedral angles were
deduced by using TALOS (Cornilescu et al, 1999). Paramagnetic
relaxation enhancements were obtained by adding micelles
spiked with equimolar 5- or 14-doxyl 1-palmitoyl-2-stearoyl-
sn-glycero-phosphocholine (Avanti, Polar Lipids, Alabaster, AL,
USA) to the 15N-labelled PH domain (200mM) and by standardizing
NH intensities to those induced by spiking with unlabelled
dipalmitoyl phosphocholine (Avanti, Polar Lipids).
Structural calculations. The conformational space of the FAPP1-
PH structure was sampled by restrained Cartesian molecular
dynamics, with 100 apo conformers being generated per iteration.
The final set of structures were refined in explicit water, and
the 20 lowest energy structures were selected and analysed
with Crystallography and NMR System (Brunger et al, 1998).
The PtdIns(4)P:PH complex was calculated using AUTODOCK4
(Morris et al, 1998; supplementary information online). The
DPC:PH complex was calculated by HADDOCK (Dominguez
et al, 2003; Dancea et al, 2008). A total of 10 paramagnetic
relaxation enhancements restrained the distances between the
micelle centre and the respective NH groups to 0–20 Å, with CSPs
defining the flexible zone. The top 200 models were ranked
according to their experimental energies, and statistics derived
from the 20 best were reported.
Membrane sheet and monolayer assays. Membrane sheet tubula-
tion and lipid monolayer surface pressure assays were performed
as described previously (Cao et al, 2009). Droplets of mixed
lipid stock solution consisting of POPC (Avanti Polar Lipids)
and PtdIns(4)P (Matreya, Pleasant Gap, PA, USA) were spotted
on coverslips, dried and rehydrated. A 5 ml solution of FAPP1-PH
protein (1 mg/ml) was added and images recorded by DIC
microscopy on a Zeiss Axioplan 2 microscope (Carl Zeiss Micro-
imaging, Jena, Germany). Monolayer assays were performed by
injecting a chloroform solution of POPC and PtdIns(4)P into the
subphase, solvent evaporation and stepwise injection of the specified
FAPP2 concentrations into the subphase after equilibration.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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