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ABSTRACT

Motivation: The problem of identifying victims in a mass disa-
ster using DNA fingerprints involves a scale of computation
that requires efficient and accurate algorithms. In a typical
scenario there are hundreds of samples taken from remains
that must be matched to the pedigrees of the alleged victim’s
surviving relatives. Moreover the samples are often degraded
due to heat and exposure. To develop a competent method for
this type of forensic inference problem, the complicated qua-
lity issues of DNA typing need to be handled appropriately,
the matches between every sample and every family must
be considered, and the confidence of matches need to be
provided.

Results: We present a unified probabilistic framework that
efficiently clusters samples, conservatively eliminates implau-
sible sample-pedigree pairings, and handles both degraded
samples (missing values) and experimental errors in produ-
cing and/or reading a genotype. We present a method that
confidently exclude forensically unambiguous sample-family
matches from the large hypothesis space of candidate mat-
ches, based on posterior probabilistic inference. Due to the
high confidentiality of disaster DNA data, simulation experi-
ments are commonly performed and used here for validation.
Our framework is shown to be robust to these errors at levels
typical in real applications. Furthermore, the flexibility in the
probabilistic models makes it possible to extend this frame-
work to include other biological factors such as interdependent
markers, mitochondrial sequences, and blood type.
Availability: The software and data sets are available from
the authors upon request.

Contact: epxing@cs.cmu.edu

1 INTRODUCTION

family structures are complex or sample mixtures and muta-
tions are involved (Morterat al., 2003). A natural next step
is to enlarge the scale of genetic forensic inference to mass
disasters, such as airplane crashes, terrorist bombinigatte
lefields, in which hundreds or even thousands of remains,
usually highly degraded, have to be identified for all the
victims according to DNA evidences from candidate family
members (Egelaret al., 2000; Lauritzen and Sheehan, 2003).
In addition to issues related to the increased scale of tire pr
blem, such a problem also poses new technical challenges
such as the presence of errors in the genotypes and pedigrees
incomplete genetic information, and the need for decision
making with very high confidence. (This lastissue is typafal
forensic cases, where seemingly low probability event sisch
incorrect victim/family matching can have serious legat-co
sequence, and must be determined with a confidence much
more stringent than usually adopted in experimental bip)og
DNA typing has long been used in forensic investigations,
but until a decade ago, mass disaster victim identificatam h
generally relied on dental and medical records, fingergrint
and even photographic evidence and personal effects (Balla
tyne, 1997). These techniques require comparison between
ante morten{AM) information for the victim andbost mor-
tem(PM) information of the remains. However, in most mass
disaster scenarios, AM information is not available for all
victims and bodies are not intact, rendering such methods
ineffective. Whitakeet al. (1995) established the use of short
tandem repeat (STR) typing, or microsatellite markers, in
mass disaster identification, and Olaisgml. (1997) applied
it to victim identification in the 1996 Spitsbergen aircradti-
dent, in which it proved to be highly reliable. A thirteen STR
loci fingerprint set called the Combined DNA Index System
(CODIS)is now inroutine usage by the FBI, and has become a

Rapid advances in genotyping technology and mathematicanaior toolin difficult disaster victim identification casg$su

theories of pedigrees have enabled their application in tra®
ditional forensic applications such as victim or perpetrat
identification and paternity testing common place, evenrwhe

*to whom correspondence should be addressed

t al, 1999; Caslet al,, 2003).

While the basic problem of computing the likelihood ratio
that a given sample is part of a given pedigree versus the
null hypothesis of a random sample has been extensively stu-
died (Olaiseret al., 1997), the inference problem of matching
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many pedigrees against many samples has not. Specializ2d PRELIMINARIES

software tools have been developed for large scale mass disgonsidern/ forensic samples from a mass disaster scene. Let
ster identification (Caslet al, 2003) including the use of s1,82, ...y denote the set afample genetic statdto be
mitochondrial DNA (mtDNA) and single nucleotide polymor- specified shortly) retrieved from the DNA samples, each
phism (SNP), but the matching algorithms utilized only rankfrom one of the forensic samples. Suppose theré\afami-
the likely samples for each victim, and rank the likely viesi |ies that have filed missing person reports regarding trie ca
for each sample. The complex interactions of all family evi—(fOr presentation simplicity, we assume each family report
dence and all samples are not explored, and a great amougly one missing person, although generalization to mieltip
of expert involvement is still required. Moreover there is missing persons is feasible with our approach presentéin t
currently no systematic solution that addresses all theptiom following), and have donated DNA samples as genetic refe-
cating factors: body part clustering, arbitrary pedigraed  yences for victim identification. Lé , f, . . . £ denote the set
their vetting, experimental genotyping error for the sa8pl o familial genetic state@efined in the sequel) obtained from
partial genotypes due to heat and pressure damage of the DNfhese families.
and confidence of a cluster to family match based on other Typically, body remains from a mass disaster and samples
likely and unlikely family. This paper presents an archite€  from donors are genetically characterized by a standard pro
for the problem and a probabilistic framework that incorpo-fie of 1~ microsatellite markersEach allele of such a marker
rates these uncertainties and scales to the required pTOb'ecorresponds to a numerical (in fact, discreet) reading faom
sizes. electrophoresis gel; formally, we define each marker to be a
We consider the following problem. We are givdifamily  random variable, and each of its alleles to be one of the-reali
pedigrees for which the genotypes for some members argaq states of this variable. For a forensic samjples sample
known, and the (potentially partial) genotypesdf samp-  genetic state (SGS) = (s;1, 52, - - . , ;) denote theieno-
les belonging to the victims of a mass disaster. The problerypeprofile of K markers, Whérejk = ‘(3(}1@7 si,) represents
is to match, with high confidence, the samples to the variazn unordered pair of alleles of markefrom samplej. There
ble nodes (the purported victim reported by the family) @ th gre two alleles for each marker as human somatic cells are
pedigrees. Furthermore, we address how to screen out unamiploid, that is, there is a copy of a chromosome inherited
biguous matching outcomes and extract the truly ambiguouom each parent. The superscripts "1" and "0" correspond to
cases that merit costly personalized forensic investigati the parental origin of the alleles, i.e., paternal and nmaer
We approach the problem in two phases. First the samplesimij|arly, for each donor, we defink = (d;j1,d;o, ..., d;x)
are clustered into groups that have the same genotype. Thi§ pe his/her genotype profile. Each family, say fanjlgnay
reduces the problem of matchifg samples taV pedigrees, nayve multiple donors related bypedigreeT;, therefore the
to a smaller one of matching << M sample clusters to familial genetic state (FGS) of a family with; donors is
N pedigrees. During clustering possible errors in the STRyenoted byf; = {di,...,d,,;T;}. In typical mass disaster
data must be considered, especially when the DNA is degrascenarios, multiple forensic samples (e.qg., body remaiag)

ded or when thousands of genotypes have been collected. Welong to the same victim; therefore the samples can be grou-
include a model for the types of errors that can occur in 0Uked into clusters: i.esy, ss,...sy = c1, Co, . .. cy, Where

probabilistic framework. In second phase, the cluster $esnp .. _ (¢j1,---,Cjm,) andm; denotes the size of clustgr
oty 7

are matched to the variable nodes in the pedigrees. ForenS(iFjbr simplicity, in the sequel we overload the symiaglto
conclusions must be satisfactory from a legal perspedse, 3|5 represent the set of indices of SGSs belonging to clu-
the purpose is to confirm the death of the victim, to retumster ;). The forensic inference problem we concern here is
the remains to the families for closure, and in some cases i@at of determining the number of victims in the disasted an
identify some of the victims as the perpetrators (in the casgne correct mapping between the victims and the reporting
of terrorist acts). Therefore one can only make conclusions fgmilies.
there is a very small probability, typicall)—° or smaller, of | forensic applications, the microsatellite markers are
being wrong. We present a method to calculate the confidencgosen to be independent from each other (e.g., on diffe-
of a certain match considering its likelihood ratio and othe ygnt chromosomes). Via population censuring, #hpriori
competitors for the slot. Then a forensically impossibléaha  yropability (i.e., population frequency) of every allelea
can be removed with high confidence. microsatellite marker can be determined. Thus, given ni-fam
Due to high confidentiality in disaster DNA data, simulation |ig| information, the probability of an SGS of a forensic szen
experiment is commonly performed so that true identity iScan pe defined by the product of marker-specific genotype pro-

known. We run three experiments with different simulationpapjjities (by assuming the alleles are random samples from
settings, and show that our algorithm is robust even with a lothe population):

of missing information and noise.

K
p(s;) = [ p(si), @

k=1
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where marginal probability of an FGS of family. Assuming dif-
e o0 1 ferent families and different sample clusters are genlgtica
(T4 50 ) if s7, =s;
p(sjk) = { 5 ks ¢ gk~ ik independent given their matching configurations, the condi
Ths0 Thosl, 1 Sjk 7 S tional probability of all FGSgf; } and clusters of SFSg; },
andry, , denotes the population frequency of alletef marker ~ 9Ven the matching matrix, is:
k.
The de'pendenmes among donqrs from afamlly are capture}Q({cj}’ {fYz) = H p(c;|{fi},2) Hp(fi)
by a pedigree. In our current setting, we consider only dexua y ;

inheritance among family members (i.e., donors plus the pur _ o
ported victim), and leave out nonsexual inheritance such as = [I#esle)= [T (et 2= [ [ n(f)
the mitochondria inheritance (incorporating such infatiora ij J @
is fea5|ble_|n ourframework and WI|.| be pursuedin futureres. _ H m(c;|f;) Hp(fi)'
arch.) As illustrated in §3.4, a pedigree can be used to define i ;
the probability of the FGS of a family viarobabilistic gra-
phical model(Pearl, 1988; Cowelét al, 1999). Note that a Note that according to the constraints of one-to-one matchi
pedigree contains members who are not donors, nor victimd) Ed. (2), we have — 5, z;; = 0. _ o
in order to specify the relations between the donors and the The likelihood ratio of an overall matching specification
victim. These members represent the hidden variables in the versus a null hypothesis (that all families and samples are
graphical model, and will be marginalized out when compu-unrelated) is:
ting the the FGS probability. For example, when the donor
is the victim’s brpther, parents must appear on the pedigre_e LR(z) — p({c;}, {£:}|2)
even though their DNA samples are not available. The pedi- z) = p({c; Dp({E:1)
. . J ?
gree may have arbitrary structures, which are assumed to be

correct after passing the validity check. _ I, IT; m(ejlfi)
[1;7m(e;)
3 BODY IDENTIFICATION 2ij
. . o _ m(c;lfi) 3
To formulate a likelihood-ratio matching criteria for body - H (c;) : (3)

identification, let’s firstassume that we haveeporting fami- i

lies and.J victims (J will be determined by sample clustering | gt Aij = n(c;|fi)/7(c;), and take the logarithm of LR,
as described in 83.2), anl= N. That is, each family has \ye have

exactly one victim which corresponds to one cluster; andethe

is a one-to-one alignment between the family pedigrees and J N

the sample clusters. Our goal here is to find the optimal mat- log LR(z) = > > zijlog Aij. (4)
ching betweer{c;} and{f;}. We will discuss how to relax j=li=1

the "J = N" and "one-to-one correspondence” assumptions We postulate that an optimal body identification corre-
later. sponds to & that maximizes the likelihood ratio of matching

; ol . family-clusters versus randomly generafed} and{f;}. In
3.1 Matching via Likelihood Ratio the sequel we describe algorithms for identifying the sampl

The matching between families and sample clusters can bgusters from the SGSs of samples, and for solving the optima
represented by alV x N matching matrixz, of which an ele- matching.

mentz;; indicates the matching status between sample cluster )

j and familyi: 3.2 Sample Clustering

The first problem in body identification is to determine the
total number of victims in the case, and group body remains
for each victim. We determine whether two samplgsand

In case of one-to-one matchingmust satisfy the following  s;, are from the same victim or not based on the ratio of their

L 1 if c; is assigned tdj;
771 0 otherwise ‘

constraints: joint probabilities under the two circumstances:
N J
Zzij =1 Vj, Zzij =1 Vi (2) e e K
P = LR(SZ',Sj) _ p(si;s;)) _ p(sl|sj) _ H p(81k|5gk>

o . p(si)p(s;) —p(si) Pl p(sik)
Let7(c,|f;) denotes the conditional probability of a cluster -

given amatchingfamily, (c;) denotes the marginal proba-  The conditional probability(s;x|s;x) of genotypes will be
bility of a cluster given no matching, andf;) denotes the referred to as aarror mode| which will be specified in §3.2.2.
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3.2.1 The union-find clustering algorithm_et each sam- 5. Mutation error: Allelex mutates to allelé

ple n the case be represented by a 'node, we can define Mrhe probability of measurement, calibration, stutter, and
undirected graph over all samples of interest. Two nodes ar;

t%reshold error are constants, denoted as.., ¢, €, respec-

tively. Based on the stepwise mutational model (Valetes!.,

f[hres_h_old._ As a common pract|ce_|n mass disaster foren5|£993) for microsatellite, the probability of a mutationrna
identification, any two samples with more than two geno-, . lb—a|—1 .
tobis p(bla) = 0.5u(1 — a)o , wherey is the muta-

types differences are immediately considered d|scondectetion rate (probability of any mutation) and is the factor

Sample clustering is done by partition this graph into ceane by which mutation decreases as distance increases. Althoug
ted subgraph, which can be implemented efficiently using an: tation distribution i ¢ stati e it d. ot
union-find algorithmWe defines three operatiomaake-set 'S mutation distribution 1S not stationary (ie. it do n
— creates a setjnion — merges two sets, arfthd — returns ensure allele frequencies to be gonstant_oyer the genesitio
the host set of a node. The algorithm proceeds as follows: itis simple and Co”?mor?'y usedin forensm_mference. Shutte

' " threshold, and calibration errors are defined on genotypes,

1. make-setcreates a set for each node but measurement and mutation errors are defined on alleles
2. For two nodes of each edge, iterate the following and have to consider two combinatiops |t )p(st;,) and
« find the corresponding sets, p(spltr)p(sglty). To summarize, fos, # i, we have:
e union the two sets (if they are connected by cross-set
edges). o ifsp—t) =5, —t} = £l
€5 ifs)=s) =10 ]s} —th| =1

This process will converge to a clustering of samples, e R
without a prior specification the number of clusters, but ap(5k|tk) =q @ I Sko :Otk :fk 1 041 1..0vy
threshold controlling the tightness of the clusters. Thigi max(q(sg; £ )q(sks t)s (s t)a(si; 1))
desirable feature in forensic inference because usuadly th otherwise
legal agents would need to leverage their forensic expegien

> ; e . - where the allele error functiof(b; a) is defined as
and determine tolerable risk of legal decisions circuntstan

ally. Once the clustering is complete, we extract a consensu 1 ifb=a
SGSg¢; for each cluster; based on a maximum likelihood ¢(b;a) = { €, if |b—al=0.1".
principle. That is, given the consensésthat corresponds 0.5u(1 — a)al=4l=1  otherwise

to the true genetic state (TGS) of a victim, the conditional _ N 3
probability of all SGSs of this cluster (i.e., this victim i ~ Thep(s|tx) is a conditional probability that must sum to

maximized: one. Thus, we define the "consistence" probabjity, =
tx|tr) as one minus all error probabilities, which is large com-
¢j = argmaxp(t) 11 p(silt) paring to the overall error probability ( since the probitieis
lee; of each error type are always set to be very small):
K
= argmax 1T ([ po) TT pCsinlts) ) - plsk =tltn) =1 > p(sklts)-
k=1 lec; Sk#tk

where the marker-specific conditional probabifitys; . |1 ) is 33 PeQ'Qree Inferen-c.:e )

) matching family,p(¢;|f;), can be derived by pedigree infe-
3.2.2 The error model The error model defines the proba- rence. As discussed in Lauritzen and Sheehan (2003), the
bility distribution of a marker-specific sample genotypesgi  joint distribution of {¢,, f;} defined by an arbitrary pedigree
the true genotypep(si|tx). For two allelesa # b of any  can pe specified by probabilistic graphical mode(Pearl,

markers (i.e., locus), we define five error types: 1988; Cowellet al., 1999), or more specifically, Bayesian
1. Measurement error: Alleleis misread as + 0.1 by the ~ Network(Pearl, 1986).
technician Recall that an FGS; is a two-tuple of donor genotypes

{di,...,d,,} and a familial pedigred’;. Based orl;, we
can construct a particular Bayesian network, knowalke
network orgene pedigre@_auritzen and Sheehan, 2003), for

2. Calibration error: True genotypeis, b) but calibration
ladder is off by one, so instruments shofust 1,5 + 1)

or(e—1,b—1) ) _ all the alleles from all members (donor and non-donor) of the
3. PCR Shutter error: True genotype(is a) but instru-  tamjly and from the purported victim. Assuming that markers

ments showga, a + 1) are independent and following the same pedigree, we con-
4. Threshold error: True genotype(is, b) but theb signal  struct an allele network for a single marker, say micrositgel

falls below threshold, so instruments shawsa) k, as follows. For each individual, we introduce two allelic
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2. Meiosis distribution: For an allelg, inherited from a
parent with genotype;, = {u$,u;.}, we have

Mother i
Father 0.5 if ty = uy, ort;, = uy, anduy, # uy ,

p(tplug,uy) =< 1 if ¢ =), andu), = uj, ,

Child 0 otherwise

3. Genotype distributiony(uj|uy,, u;,), which is specified
Fig. 1. A simple pedigree and its allele network, shaded nodes as by the error model defined in §3.2.2.

donors and bold nodes as victim. . " L
Given the allele network, and the above conditional distri-

butions of a node in the network given its graph parents (ot t
be confused with biological parents), one can write down the
joint distribution of all nodes, i.e. the victim and the FGS,

a product of all node-specific conditionals following a nratu
ral node ordering (e.g., from founder to decedents) (Peatrl,
1988). From this joint probability we can derive conditibna
probability p(zr|2z ) of a set of variabled” C V' conditio-
ned on a set of observed variablesC V. F'is calledquery
nodes F is calledevidence nodeandV is the totality of all
nodes. The junction tree algorithm (Lauritzen and Spiegjelh
ter, 1988) can perform exact inference efficiently on a netwo
of reasonable size, which is sufficient for our purpose.

3.4 Viterbi Match: Optimal Body Identification
via Linear Programming
Given the conditional probabilities of TGSs of sample clu-
sters and the FGSs of their matching familie&; |f;), now
we are ready to tackle the optimal matching between sample

Fig. 2. A pedigree of three generations and its allele network.

nodesy), andu;, (which are unobserved), denoting the mater-
nal and paternal allele of this individual, respectivelgfda
genotype node:], which are observed for the donors and

hidden for the non-donors in the family. Since the genotgpe i ters and families. Let us view the match magias a

determined Jom_tly by the tv_vo alleles, we _have arcs IC)0'm'ngr(::presentation of the edge configuration of a bipartite lyrap
from each allelic node to its corresponding genotype node

(Fig. 1 and 2). Due to Mendelian inheritance, the marker alle”” which the_glusAter$éj} correspond to node§ in one partie,
les in a decedent is dependent on that in his/her direct fsaren and the familiegf; } correspond to the nodes in the other par-

thus we also have arcs pointing from the allelic nodes of a{'te' Associating each edge betwegnandf; with a weight

parent to the allelic nodes of the children. Note that theliall  €9ual tologm(&;[f;)/7(€;), then the total cost of the mat-
nodes of individuals that af®underof the pedigree do not ching, L R(z), corresponds to the sum of weights of edges in

have any arcs pointing to them. For those individuals who ar%hethb'pal‘rt'te_ grlaph. I_:lndlng an ﬁ?gmalpsatch|trn?]_|s eqmaxglal
donorsinafamily (i.e., their genotype states are avaslfibim 0 Ihe classical maximum weight bipartite matching probiem

their DNA samples), we denote their corresponding genotypﬁée can solve th|§b|palfgt§ matching problem by mixed intege
nodes as observed variables, shown as shaded circles. T ear programming (LP):

genotype of the purported victim is also observed via sam- J N

ple clustering, but need to be matched correctly. In Fig. 1 max Y Y zjlog A

and 2 we use circles with thick border to denote the geno- j=11i=1

type of acandidatevictim. Because markers are independent N J

in our case, each marke_r has a separate allele network with zi; € {0,1}, Z zij = 1V, sz =1Vi. (5)
the same structure but different donor evidence (i.e., arark =1 =

specific genotypes). The joint probability of multiple mairk o ) ) )

is the product of all locus-specific marker probabilitieside ~ There are many efficient algorithms and implementation

ned by the allele network. Specifically, we use the followingfor solving the above LP, and we use the open source Gnu

conditional distributions in our allele network model: Linear Programming Kit (GLPK) (Makhorin, 2001). Note that
this approach gives a globally optimal mapping assignment

between (equal number of) clusters and samples, analogous
1. Founder distributionp(uy,) = mx e, Wheree € {0,1}  to finding the Viterbi path in hidden Markov model (but in
represents the parental index of the alletg,, is the this case an optimal matrix). Thus, we call the resultingybod
population frequency of allele. identification results &fiterbi match
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4 POSTERIOR MATCH AND MATCHING
DISAMBIGUATION R .
. . . . .  ow(glf) i i oz =1

The one-to-one constrain assumed so far in our algorithm is ~ p(&;[{fi},z) = w&) S =0 (8)
not always valid. In fact, since we cluster samples based on ! B
a tightness threshold rather than a given fixed number of clu- Therefore the joint conditional probability of the TGSs and
sters, we can not easily enforée= J. In practice, a cluster FGSs givery is
may be unmatched, i.e. not assigned to any reporting family
(e.g., due to poor sample quality, or nonexistence of the tru
claiming family); conversely, a family may also be unmatthe p({&;}, {fi}|z)
(e.g., because no remain of the victim is found). _ N ‘

We assume each sample either comes from one family, or = p({&;}if} 2)p(ifi}]2)

itis a random sample from the population. However, samples = Hp(éj {f:},z) Hp(fi)

from one victim may be clustered into multiple clusters due j i

to heterogeneity of the physical and measurement quality of . - o N—S 2

different samples. To accommodate these flexibility, waxel - H m(&lf:)™ H (&) Hp(fi)
1] J 1

the normality constraints on the columns and rows of mat-
ching matrixz, so that multiple clusters can be matched to H {w(éﬂfi)r’ H R
(&) [ [ ()

one family, or no clusters or family get matched: (&)

= [Ia5 T TTe.

Thus, Eq. (7) reduces to:

N
>z €401} Vi (6)
=1

Furthermore, instead of seeking an overall estimate, of 1
we would like to have a confidence measure of each of the p(z|{c;}, {f:}) = — HAf;j7 9)
judgments (i.e., match or not-match) specifiedzbyrom a A ij
forensic perspective, only matches with small enough pro- : - . .
- . : . : whereA is a normalizing constant summing overallUsing

bability should be considered (forensically) impossitalad : . -

: . the fact that we are summing over all possiblander limi-
excluded from legal consideration. In the sequel, we sh0v¥ - . . .

. . . . ation (6), we can derive normalizing constant in closed
how to calculate the posterior probability of a matchingegiv

cluster and family data; and then we show that, with thisform:

probability, how to screen out unambiguous matching outco- B wy
mes and extract the truly ambiguous cases that merit costly A= Z H H Aij = H(l + Z Aij)- (10)
personalized forensic investigation. 2o J !

According to Egs. (10) and (9), now we have a close-form

4.1 Posterior Probability of a Many-to-One expression for the posterior probability of a matching give
Matching the clusters and families data:
Now we derive the posterior probability of a matching given L. A%
cluster TGSs and family FGSgiz|{c,}, {f;}). According to p(zl{c;}, {f;}) = ij i . 11
the Bayes’ theorem, we have: (zltes {£:}) Hj(l + 22 M) ()
4.2 Individual Posterior Match and Matching

plalfey), (£ = eienl- ), ™) Disambiguation

p(fes} {£}) To qualify a candidate matcle, versusf;, we compute the
posterior probability of a match as follows. L&f; denote the
set of all matrixz in which z;; = 1, i.e. all possible matching
that assigns; to f;:

Since we do not know the matchirgpriori, p(z) can be
taken as uniform. Following the notations in §3.1, p¢f;)
andw(¢&;) denote the marginal probability of a given family,
and a cluster TGS, respectively; and €€ ;|f;) denote the
conditional probability a cluster TG&; given its matching
FGST; (i.e., z;; = 1). Following the new constrain given by  Similarly, letZg; denote the complement of this set. Now the
Eqg. (6), and since the cluster TGSs are independent of eagiosterior probability of andividual posterior matclIPM)
other given a matching, the conditional probability of each given TFSs of all samples clusters and FGSs of all reporting
cluster TGS given a matching is: families can be computed as:

Zij = {Z . Zij = 1}, (12)
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thirteen FBI CODIS markers are used. In each experiment
we simulateN core families from a single population, by

generating two random parents based on population allele
frequencies, and generate one child from the parents. The

To disqualify a candidate paie,; andf;, on the basis that victim is the child in three simulations, and in two other gim
] 71 . .. . .
they are extremely unlikely to be a true match, we define oufations the victim is one of the parents. Allele frequencies
decoupling confidencéDC) of this pair to be the posterior k.« &€ assumed to be known and correct. Then we generate
probability mass of the set¢,, which can be computed as several TGSs for each victim, using the error model with dif-
follows: " ferent values of the parameters (to simulate different lef/e

noise). The number of SGSs generated from a victim is dis-
tributed uniformly in an interval[A7(®), M (D], Throughout

the experiments, the parameters used for sample generation
are intentionally set to be different from the ones used in ou
later inference, so that our test is unbiased and objedtwe.

p(zi; = Uen} {8)) = Y plal{en} {8))  (13)

zEL;j

p(z € Zi;|{em}, {fi})
1= p(z € Zijl{em}, {f})

1 Y plal{en). {fi)

2€%;; each marker, there is a probability ef that the genotype
1 is missing. The simulating parametey is set to be high,
= 1- Z a1 H H Apr to represent that some samples are heavily degraded. Howe-
z€Z;  m 1 ver we require that the total number of available markers to
1 be greater than 4 to make our cases forensically realistic —
= 1-— Ay H 1+ ZA“” for situations where the recovered markers are less than or
A ) e . . .
mtj ] qual to 4, DNA evidence are usually dismissed due to lack

of reliability. We performed five experiments with diffeten
B Ayl Hm#j (IT+>, M) Yy p p

= 1 simulating parameters, as described below:
Hm (1 + Zl Alm)
A 1. N = 100,[M© M®] = [3,7], so on average 500
= 1-— samples. Victim is the child, and donors are the two
1 + Zl Alm

parents. Simulation parameters ate = 1/10,¢,, =
€. = 0.001, e, = ¢, = 0.004.

A noisier setting,N = 100, (M, MM] = [3,7], so

Given the posterior probabilities of all IPMs, and the value
of all DCs, now we can not only extragtaximal a posterior 2.

(MAP) matches asin 83, but also performmatching disambi-
guationfor the given{c,, } and{f;}. Essentially, for the later
task we exclude a candidate match with DC higher than a spe-
cifiable thresholdl — 6,,. Different values can be assigned
to 6,,, based on the situation of the disaster, dapd= 10~° 3
is commonly used in mass disaster scenes, meaning that by -
excluding the chosen pair of cluster TGS and family FGS, in
less than one out of a million cases we missed a true match.
If the DCs of all family-cluster pairs are higher than- 6,,,,
then we are confident the cluster is unmatched, i.e. no family
claims this victim. 4.
After the aforementioned impossible-match exclusion, if
there is zero or only one possible family for a cluster, thisc -
ster is unambiguous and is considered determined. Othesrwis
if a remaining cluster-family pair passes an IPM threshibld,
is still considered a valid match. Finally, the clusters sl
have ambiguity, i.e., with two or more possible familiesfif1
lower than the threshold, will be reported to human expert fo
further forensic investigate.

5 EXPERIMENTS

on average 500 samples. Victim is one of the parents,
and donors are the child and the other parent. Simulation
parameters are, = 1/4,¢,, = €. = 0.001,¢e; = & =
0.004.

Similar to simulation 2 but with even more noisg: =

100, [M© M (] = [1, 9], so on average still 500 samp-
les, but the cluster sizes vary more. The values of the
simulation parameters are now higher,= 1/3,¢,, =

€. = 0.002, ¢, = ¢, = 0.008.

Similar to simulation 1 but contains 500 families and on
average 2500 samples (1,250,000 potential matches).

Similar to simulation 1 but contains 1000 families and on
average 5000 samples (5,000,000 potential matches).

The parameters used during computational inference in
all four experiments are the same;,
0.00025,¢, = 0.001,¢; = 0.001, which may be different
from the parameters for sample simulation. The clustering
LR threshold isf. = 500. All experiments are repeated 9
times and their results are averaged.

0.00025, ¢, =

Due to high confidentiality of forensic DNA fingerprintdaza, 2-1 Results on Optimal Body Identification

common practice in forensic science is to validate the n@delSince our clustering is stringent, the number of resulting ¢
and algorithms via computer simulation experiments, forsters is always greater or equal to the number of families
which the true matchings are known. Following convention,(N < .J), and the assumption of one-to-one mapping behind
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Table 1. Optimal body identification perfor- Table 2. Comparison of disambiguation by posterior threshold and by
mance of LP and MAP LR threshold
LP MAP Posterior LR thresholding
Sim | FN FP FN FP Sim | Clusters Families MatchesClusters Families Matches

1 |0.0109 0.0 0.0 0.0 1 0.01 0.06  0.0007 0.03 0.07  0.0019

2 |0.0130 0.0 0.0043 0.0043 2 0.04 0.08 0.0034 0.48 0.04  0.019(

3 | 0.0567 0.0112| 0.0225 0.0225 3 0.12 0.10 0.011d9 0.53 0.07  0.0371

4 | 0.0099 0.0004 0.0020 0.0020 4 0.01 0.04  0.0004 0.08 0.02  0.0013

5 | 0.0073 0.0002 0.0021 0.0021 5 0.01 0.03  0.0007 0.14 0.01  0.0014
Comparison of average false-negative (FN) and Results of disambiguation by posterior and LR threshold.us@rs"
false-positive (FP) rate of LP and MAP algo- denote the average percentage of remaining ambiguous slugtami-
rithm. LP denotes the Viterbi match via LP based lies" denote the percentage of ambiguous candidate matcnmges for
on one-to-one mapping assumption in § 3.4, each of these clusters. "Matches" denotes the ratio of ambgyfamily-
and MAP denotes the MAP match based on cluster matches over all possible matches. Parameter satfittysthree
many-to-one mapping in § 4.2. simulations are described in § 5.

the Viterbi matching via LP no longer holds. We can still gppl

LP by enforcing the same optimization and constraint terms

in Eg. (5), which means we still require one matching family o )

for each cluster and one matching cluster for each family, buP€rcentage of remaining ambiguous clusters; (2) the ave-

some clusters may be unmatched. rage percentage of remaining aml_mguous m_atchmg fam_|I|es
We perform optimal body identification using Viterbi mat- for each cluster; and (3) the ratio of ambiguous family-

ching via LP and MAP matching. We measure the pen<0r_cluster ma}tcheS over all ca_nd|dgte matc_hes. After app_lymg

mance by average false-negative rate (FN) and false-gositi the posterlor match disambiguation alggrlthm, the renngini

rate (FP), where FN is the ratio of undiscovered true matche@Mbiguous clusters are almost always single samples. Gn ave

to all true matches, and FP is the ratio of incorrect preiiti  '@g€, the 500 samples were reduced to only 1, 5, and 13

to all predictions. The results are shown in Table 1. ambiguous samples, in simulation 1, 2, and 3, respectively;
Overall, LP has low FP, but the FN is very high, mainly due @nd each ambiguous cluster has 6, 8, and 10 ambiguous can-

to incorrectness of the one-to-one assumption in the modeflidate matching families, respectively. In simulation 80Q

MAP has slightly higher FP, but the FN is much lower. In samples and 500 families were reduced to 5 samples, each

simulation 1, MAP has zero FN and FP. Overall, both a|go_having 21 can_o_lidate families. In simulation 5, 5000 samples

rithms have good performance, even in the presence of noig'd 1000 families were reduced to 6 samples, each having 33

and incomplete information. We are not aware of existenc&andidate families. Under the same noise level, larger Eamp
of any algorithm or software for this kind of forensic task in S12€ resultsin better reduction rate. The results of L Rsthoé

earlier and current literature. ding is generally much worse, about 3 to 12 fold increase in
cluster ambiguity, and 3to 5 fold increase in overall amtigu
) ) ] ] A close examination of our results showed that these
5.2 Results on Matching Disambiguation ambiguities all occurred in samples with severely degraded
In a matching disambiguation task, our goal is to reducanarkers, typically with only 5 of the 13 marker readable.
as much as possible the amount of human effort in forenUnder these circumstances, a family becomes a candidate
sic inference by remove impossible cluster-family matchesnatch to a sample even when only 3 of the markers are compa-
and high-confidence matches from a given mass disaster casiale with that of the samples within an error range. In picat
In this section, we compare the disambiguation resultsggusinsuch genetic samples would automatically be ruled legally
the individual posterior match method with the ones usingnsubstantiative even before computational forensiaerfee
a conventional approach that excludes a candidate match iy conducted, and would require additional forensic evigen
thresholding the likelihood ratio, e.g., a candidate métwm  Thus, our disambiguation results presented above is irafact
c; to f; is excluded (i.e., deemed impossible)\if; < 6,, =  worst-case result, and the actual rate of disambiguaticesiin
10~5. Such threshold means that the relative probability of dife can be much better if we are willing to insist on morerstri
cluster-family match is only0~% compared to an alliterative gent requirement for the quality of the DNA samples (e.g., by
hypothesis that they are unrelated. requiring more than half of the markers can be clearly typed)
We found that the accuracy of disambiguation via theltis noteworthy thata domain expert does not need to examine
posterior methods is significantly better than that of the-co the ambiguous families of each cluster one by one. An expert
ventional LR thresholding approach, as shown in Table 2can determine the true family from evidences other than DNA,
The threshold),, is set to bel0~ in both algorithms. In our  or determine the sample as unidentifiable, or repeat the DNA
experiments, the accuracy are measured by: (1) the averagampling.
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5.3 Analysis of Disambiguation Threshold

A. LR of all clusters of sim 1 D. LR of all clusters of sim 2

The major difference between the posterior disambiguatior g *°*° 1500
and the LR-based method is that posterior disambiguatio & 1000
relates the LRs of all possible families versus a candidate ¢ “g 500 500
ster when inferring about each single matching. That is, fo €
one cluster, if several likely matching families alreadysgx 2 o 20 o e Yo I
other families with lower LRs will be considered less Ilkely B. LR of a normal cluster of sim 1 E. LR of a normal clusters of sim 2
whereas in the conventional LR-based disambiguation, eac & 4° ; 40 "
candidate matching is assessed independent of other cani & ! !
dates. We illustrate this difference in disambiguatiotecia s } 20 }
in Figure 3. The histogram of all the log LR of simulation E HI ! d‘ !
1 and 2 is shown in Figure 3A and 3C. For the log LR of = %0 -4 -20 o % w0 o 2
all possible families Corresponding toa We||-typed (Nﬂth ” C. LR of a degraded cluster of sim 1 F. LR of a degraded clusters of sim 2
most markers measurable) cluster, as shown in Figure 3B ar % 0 | 0 |
3E, usually there are only a few (in this case, only one) can £ } » !
didate matches having LR abo¥6—%, so the two methods E 20 | Ji
make little (or no) difference because of nearly inexiseenc 5 o . jl o
of between-match influences. However, for a degraded clu -60 -40 -20 0 20 60 40 -20 0 20

Log likelihood ratio Log likelihood ratio

ster illustrated in Figure 3C and 3F, there are many canelidat
matches with large LRs and they influence each other. CorFig. 3. The histogram of log likelihood ratio of simulation 1 and 2.
sequently the disambiguation via posterior inferencesead A - C is based on simulation 1 arial- F is based on simulation 2.
assess other candidates to be less likely than would have be&he x-axis is common logarithm of likelihood ratio, and the y-axis
suggested by the LRs alone. This effectively results inta<ri is nléjmber of families or matches. Vertical blue solid line denotes
rion more stringentthat—S. The LR thresholding approach, 0 threshold, and red dotted line denotes the effective threshold
onthe other hand, still use the same threshold on LR. As show%fdlsamb'guatlon corresponding to the posterior match criteria. Spe-

- . cifically, we haveA. Distribution of all sample clusters of simulation
in Figure 3C and 3F, the posterior match method can reduceE B. LR distribution of a well-typed cluster of simulationC. LR

the amb?g““y by a ha_llf_or ev_e_n more for degra_ded clusters. distribution of a degraded cluster of simulatiorDtF. The LR dis-
Intraditional forensic identification cases, whichdo nesitl  (ribytions of all sample clusters, a normal cluster, and a degraded

with DNA sample clustering but consider mostly high-qualit cluster, respectively, in simulation 2.
anonymous samples, the LR of the correct identificationgend
to be very high, and there is usually no ambiguity. To see Table 3. Case study of a highly degraded sample

the difference in a mass disaster case, it is instructivake t Errors| Log LR | Description] THOT — D7S820 VWA
a close look at the dataset and the ambiguous clusters and Sample 7.8 811) (14,15
families reported by our algorithm. When there are fewer 0 1.70 True mate | (6,9) (10,11) (13,15)
than 7 markers in a sample, typically there are indeed many True child | (8,9) (8,10) (13,15
ambiguous family pedigrees that cannot be excluded froma | © 100 | Mate 67  (1011) (1517)
) . . . Child (7.8) (11,11) (15,17)
forensic perspective. For example, consider the highlyateg I 66 | Mate 79 (610) (18.18)
ded samples, of which an example is shown in Table 3. ' Child ©m*,9) (1011) (15.18)
Typically such samples can have multiples plausible matchi 2 2412 | Mate (9.93) (811) (17,18)
families, and the matches listed in Table 3 are only a few of Child (7,9) (8,9) (18,18)

all the “kely matches. The amblgwty prObIem become very A highly degraded sample of which three typed markers are shown

serious when the quality of the samples gets really poor, €.g  THO1, D7S820, and VWA are three markers in the CODIS system.
with fewer than 5 usable markers available. Essentially, th  The symbola?®, a*, a™* denotes shutter, threshold, mutation error

evidence become not enough for body identification — given  respectively. All the pedigrees have one of the parentsasitim

only three or four markers, there could be too many perfect 2nd the other parent and a child as the donors. Among candidate
tch In thi th f tati | and/ families with high LR, four representative matches are listere.

matches. In !S .Case’ e power ofany computatonal an O_I‘ Note that many different combinations are qualified for a match.

manual forensic inference diminishes, and we must seek addi

tional evidence. We discuss some of the options in the next

section. from the two segments of the hyper-variable control regions
(e.g., regions 16,024 to 16,365 and 73 to 340) of the 16,569bp
6 DISCUSSION human mitochondria DNA (mtDNA). Because mtDNA has

Extending our probabilistic forensic inference methods tofar more copies than the genome, they are often sequenceable
include other evidence is straightforward. For examplmeso  when the genome is degraded and not sequenceable. Inhe-
times, in the forensic samples there also exist sequenee dattance of mtDNA is maternal only, so there is much less
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uncertainty. But the mtDNA is less variable compared toto handle more complicated forensic inference problems,
microsatellites in genomic DNA. For example, while thereand leverage richer forensic evidence or expert knowledge.
are in principle 10 or more possible SNP differences in thdt offers a promising platform to develop automatic expert
mtDNA between any two individuals, a match is not conclu-system for a wide-range of forensic and genetic inference
sive due to high degeneracy of these polymorphism in humaapplications.
population. For example, about 7% of all Caucasian males
have the same mtDNA sequence. Nevertheless, mtDNA can
ill limin im ible match i.e., w
still be used to e ' ate poss b.e atf: es, i.e., We Caly e pENCES
remove cluster-family matches with inconsistent mtDNAJ an
further reduce ambiguity. Ballantyne,J. (1997) Mass disaster genetidatural Genetics15,
Occasionally, there will also be alleged direct sample evi- 3i9'331- | ) | d
dence for a victim from a personal effect, such as a comb of23".D-C.. Hoyle,J.W., Sutton,A.J. (2003) Development under
. . . . extreme conditions: forensic bioinformatics in the wake of the
tooth brush, in which case the genotype is available for the

ictim in th | famil di Similarl herct World Trade Center disastdProceedings of Pacific Symposium
victim in the relevant family pedigree. Similarly, othercfa on Biocomputing 2003, 638-653.

tors like gender and blood type can be easily included using el R.G., Dawed,A.P., Lauritzen,S.L., Spiegelhalter,D.J99)9
probabilistic rules. Probabilistic Networks and Expert Syster8gringer, New York.

In mass disaster scenes it is important to validate pedigreggeland,T., Mostad,P.F., Stenersen,M., Mevag,B. (2000) Bkyo
structure and donor evidence. For example, there may be an traditional paternity and identification cases: selecting the most
error in some donor’s genotype, making it inconsistent with ~ probable pedigredorensic Science International10, 47-59.
other donors’ genotype. There is also the rather delicateis Hsu, C. M., Huang, N. E., Tsai, L. C., Kao, L. G., Chao, C. H,,
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