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ABSTRACT
Motivation: The problem of identifying victims in a mass disa-
ster using DNA fingerprints involves a scale of computation
that requires efficient and accurate algorithms. In a typical
scenario there are hundreds of samples taken from remains
that must be matched to the pedigrees of the alleged victim’s
surviving relatives. Moreover the samples are often degraded
due to heat and exposure. To develop a competent method for
this type of forensic inference problem, the complicated qua-
lity issues of DNA typing need to be handled appropriately,
the matches between every sample and every family must
be considered, and the confidence of matches need to be
provided.
Results: We present a unified probabilistic framework that
efficiently clusters samples, conservatively eliminates implau-
sible sample-pedigree pairings, and handles both degraded
samples (missing values) and experimental errors in produ-
cing and/or reading a genotype. We present a method that
confidently exclude forensically unambiguous sample-family
matches from the large hypothesis space of candidate mat-
ches, based on posterior probabilistic inference. Due to the
high confidentiality of disaster DNA data, simulation experi-
ments are commonly performed and used here for validation.
Our framework is shown to be robust to these errors at levels
typical in real applications. Furthermore, the flexibility in the
probabilistic models makes it possible to extend this frame-
work to include other biological factors such as interdependent
markers, mitochondrial sequences, and blood type.
Availability: The software and data sets are available from
the authors upon request.
Contact: epxing@cs.cmu.edu

1 INTRODUCTION
Rapid advances in genotyping technology and mathematical
theories of pedigrees have enabled their application in tra-
ditional forensic applications such as victim or perpetrator
identification and paternity testing common place, even when

∗to whom correspondence should be addressed

family structures are complex or sample mixtures and muta-
tions are involved (Morteraet al., 2003). A natural next step
is to enlarge the scale of genetic forensic inference to mass
disasters, such as airplane crashes, terrorist bombings, or batt-
lefields, in which hundreds or even thousands of remains,
usually highly degraded, have to be identified for all the
victims according to DNA evidences from candidate family
members (Egelandet al., 2000; Lauritzen and Sheehan, 2003).
In addition to issues related to the increased scale of the pro-
blem, such a problem also poses new technical challenges
such as the presence of errors in the genotypes and pedigrees,
incomplete genetic information, and the need for decision
making with very high confidence. (This last issue is typicalof
forensic cases, where seemingly low probability event suchas
incorrect victim/family matching can have serious legal con-
sequence, and must be determined with a confidence much
more stringent than usually adopted in experimental biology.)

DNA typing has long been used in forensic investigations,
but until a decade ago, mass disaster victim identification has
generally relied on dental and medical records, fingerprints,
and even photographic evidence and personal effects (Ballan-
tyne, 1997). These techniques require comparison between
ante mortem(AM) information for the victim andpost mor-
tem(PM) information of the remains. However, in most mass
disaster scenarios, AM information is not available for all
victims and bodies are not intact, rendering such methods
ineffective. Whitakeret al. (1995) established the use of short
tandem repeat (STR) typing, or microsatellite markers, in
mass disaster identification, and Olaisenet al. (1997) applied
it to victim identification in the 1996 Spitsbergen aircraftacci-
dent, in which it proved to be highly reliable. A thirteen STR
loci fingerprint set called the Combined DNA Index System
(CODIS) is now in routine usage by the FBI, and has become a
major tool in difficult disaster victim identification cases(Hsu
et al., 1999; Cashet al., 2003).

While the basic problem of computing the likelihood ratio
that a given sample is part of a given pedigree versus the
null hypothesis of a random sample has been extensively stu-
died (Olaisenet al., 1997), the inference problem of matching
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many pedigrees against many samples has not. Specialized
software tools have been developed for large scale mass disa-
ster identification (Cashet al., 2003) including the use of
mitochondrial DNA (mtDNA) and single nucleotide polymor-
phism (SNP), but the matching algorithms utilized only rank
the likely samples for each victim, and rank the likely victims
for each sample. The complex interactions of all family evi-
dence and all samples are not explored, and a great amount
of expert involvement is still required. Moreover there is
currently no systematic solution that addresses all the compli-
cating factors: body part clustering, arbitrary pedigreesand
their vetting, experimental genotyping error for the samples,
partial genotypes due to heat and pressure damage of the DNA,
and confidence of a cluster to family match based on other
likely and unlikely family. This paper presents an architecture
for the problem and a probabilistic framework that incorpo-
rates these uncertainties and scales to the required problem
sizes.

We consider the following problem. We are givenN family
pedigrees for which the genotypes for some members are
known, and the (potentially partial) genotypes ofM samp-
les belonging to the victims of a mass disaster. The problem
is to match, with high confidence, the samples to the varia-
ble nodes (the purported victim reported by the family) of the
pedigrees. Furthermore, we address how to screen out unam-
biguous matching outcomes and extract the truly ambiguous
cases that merit costly personalized forensic investigation.

We approach the problem in two phases. First the samples
are clustered into groups that have the same genotype. This
reduces the problem of matchingM samples toN pedigrees,
to a smaller one of matchingJ << M sample clusters to
N pedigrees. During clustering possible errors in the STR
data must be considered, especially when the DNA is degra-
ded or when thousands of genotypes have been collected. We
include a model for the types of errors that can occur in our
probabilistic framework. In second phase, the cluster samples
are matched to the variable nodes in the pedigrees. Forensic
conclusions must be satisfactory from a legal perspective,as
the purpose is to confirm the death of the victim, to return
the remains to the families for closure, and in some cases to
identify some of the victims as the perpetrators (in the case
of terrorist acts). Therefore one can only make conclusionsif
there is a very small probability, typically10−6 or smaller, of
being wrong. We present a method to calculate the confidence
of a certain match considering its likelihood ratio and other
competitors for the slot. Then a forensically impossible match
can be removed with high confidence.

Due to high confidentiality in disaster DNA data, simulation
experiment is commonly performed so that true identity is
known. We run three experiments with different simulation
settings, and show that our algorithm is robust even with a lot
of missing information and noise.

2 PRELIMINARIES
ConsiderM forensic samples from a mass disaster scene. Let
s1, s2, . . . sM denote the set ofsample genetic states(to be
specified shortly) retrieved from theM DNA samples, each
from one of the forensic samples. Suppose there areN fami-
lies that have filed missing person reports regarding this case
(for presentation simplicity, we assume each family reports
only one missing person, although generalization to multiple
missing persons is feasible with our approach presented in the
following), and have donated DNA samples as genetic refe-
rences for victim identification. Letf1, f2 . . . fN denote the set
of familial genetic states(defined in the sequel) obtained from
these families.

Typically, body remains from a mass disaster and samples
from donors are genetically characterized by a standard pro-
file of K microsatellite markers. Each allele of such a marker
corresponds to a numerical (in fact, discreet) reading froman
electrophoresis gel; formally, we define each marker to be a
random variable, and each of its alleles to be one of the reali-
zed states of this variable. For a forensic samplej, its sample
genetic state (SGS)sj ≡ (sj1, sj2, . . . , sjK) denote thegeno-
typeprofile ofK markers, wheresjk ≡ (s0

jk, s1

jk) represents
an unordered pair of alleles of markerk from samplej. There
are two alleles for each marker as human somatic cells are
diploid, that is, there is a copy of a chromosome inherited
from each parent. The superscripts "1" and "0" correspond to
the parental origin of the alleles, i.e., paternal and maternal.
Similarly, for each donor, we definedj ≡ (dj1, dj2, . . . , djK)
to be his/her genotype profile. Each family, say familyi, may
have multiple donors related by apedigreeTi, therefore the
familial genetic state (FGS) of a family withni donors is
denoted byfi ≡ {d1, . . . ,dni

;Ti}. In typical mass disaster
scenarios, multiple forensic samples (e.g., body remains)may
belong to the same victim; therefore the samples can be grou-
ped into clusters: i.e.,s1, s2, . . . sM ⇒ c1, c2, . . . cJ , where
cj = (cj1, . . . , cjmj

) andmj denotes the size of clusterj
(for simplicity, in the sequel we overload the symbolcj to
also represent the set of indices of SGSs belonging to clu-
ster j). The forensic inference problem we concern here is
that of determining the number of victims in the disaster, and
the correct mapping between the victims and the reporting
families.

In forensic applications, the microsatellite markers are
chosen to be independent from each other (e.g., on diffe-
rent chromosomes). Via population censuring, thea priori
probability (i.e., population frequency) of every allele of a
microsatellite marker can be determined. Thus, given no fami-
lial information, the probability of an SGS of a forensic sample
can be defined by the product of marker-specific genotype pro-
babilities (by assuming the alleles are random samples from
the population):

p(sj) =

K
∏

k=1

p(sjk), (1)
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where

p(sjk) =

{

(πk,s0

jk
)2 if s0

jk = s1
jk

2πk,s0

jk
πk,s1

jk
if s0

jk 6= s1
jk

,

andπk,a denotes the population frequency of alleleaof marker
k.

The dependencies among donors from a family are captured
by a pedigree. In our current setting, we consider only sexual
inheritance among family members (i.e., donors plus the pur-
ported victim), and leave out nonsexual inheritance such as
the mitochondria inheritance (incorporating such information
is feasible in our framework and will be pursued in future rese-
arch.) As illustrated in §3.4, a pedigree can be used to define
the probability of the FGS of a family via aprobabilistic gra-
phical model(Pearl, 1988; Cowellet al., 1999). Note that a
pedigree contains members who are not donors, nor victims,
in order to specify the relations between the donors and the
victim. These members represent the hidden variables in the
graphical model, and will be marginalized out when compu-
ting the the FGS probability. For example, when the donor
is the victim’s brother, parents must appear on the pedigree
even though their DNA samples are not available. The pedi-
gree may have arbitrary structures, which are assumed to be
correct after passing the validity check.

3 BODY IDENTIFICATION
To formulate a likelihood-ratio matching criteria for body
identification, let’s first assume that we haveN reporting fami-
lies andJ victims (J will be determined by sample clustering
as described in §3.2), andJ = N . That is, each family has
exactly one victim which corresponds to one cluster; and there
is a one-to-one alignment between the family pedigrees and
the sample clusters. Our goal here is to find the optimal mat-
ching between{cj} and{fi}. We will discuss how to relax
the "J = N " and "one-to-one correspondence" assumptions
later.

3.1 Matching via Likelihood Ratio
The matching between families and sample clusters can be
represented by anN ×N matching matrixz, of which an ele-
mentzij indicates the matching status between sample cluster
j and familyi:

zij =

{

1 if cj is assigned tofi
0 otherwise

.

In case of one-to-one matching,z must satisfy the following
constraints:

N
∑

i=1

zij = 1 ∀j,
J
∑

j=1

zij = 1 ∀i. (2)

Let π(cj |fi) denotes the conditional probability of a cluster
given amatchingfamily, π(cj) denotes the marginal proba-
bility of a cluster given no matching, andp(fi) denotes the

marginal probability of an FGS of familyi. Assuming dif-
ferent families and different sample clusters are genetically
independent given their matching configurations, the condi-
tional probability of all FGSs{fj} and clusters of SFSs{cj},
given the matching matrixz, is:

p({cj}, {fi}|z) =
∏

j

p(cj |{fi}, z)
∏

i

p(fi)

=
∏

ij

π(cj |fi)
zij

∏

j

π(cj)
1−Σizij

∏

i

p(fi)

=
∏

ij

π(cj |fi)
zij

∏

i

p(fi).

Note that according to the constraints of one-to-one matching
in Eq. (2), we have1 −

∑

i zij = 0.
The likelihood ratio of an overall matching specification

z versus a null hypothesis (that all families and samples are
unrelated) is:

LR(z) =
p({cj}, {fi}|z)

p({cj})p({fi})

=

∏

j

∏

i π(cj |fi)
zij

∏

j π(cj)

=
∏

ij

[

π(cj |fi)

π(cj)

]zij

. (3)

Let Λij ≡ π(cj |fi)/π(cj), and take the logarithm of LR,
we have

log LR(z) =

J
∑

j=1

N
∑

i=1

zij log Λij . (4)

We postulate that an optimal body identification corre-
sponds to az that maximizes the likelihood ratio of matching
family-clusters versus randomly generated{cj} and{fi}. In
the sequel we describe algorithms for identifying the sample
clusters from the SGSs of samples, and for solving the optimal
matching.

3.2 Sample Clustering
The first problem in body identification is to determine the
total number of victims in the case, and group body remains
for each victim. We determine whether two samples,si and
sj , are from the same victim or not based on the ratio of their
joint probabilities under the two circumstances:

LR(si, sj) =
p(si, sj)

p(si)p(sj)
=

p(si|sj)

p(si)
=

K
∏

k=1

p(sik|sjk)

p(sik)

The conditional probabilityp(sik|sjk) of genotypes will be
referred to as anerror model, which will be specified in §3.2.2.
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3.2.1 The union-find clustering algorithmLet each sam-
ple in the case be represented by a node, we can define an
undirected graph over all samples of interest. Two nodes are
connected ifLR(si, sj) > θc, whereθc is a user-specifiable
threshold. As a common practice in mass disaster forensic
identification, any two samples with more than two geno-
types differences are immediately considered disconnected.
Sample clustering is done by partition this graph into connec-
ted subgraph, which can be implemented efficiently using an
union-find algorithm. We defines three operations:make-set
– creates a set,union – merges two sets, andfind – returns
the host set of a node. The algorithm proceeds as follows:

1. make-setcreates a set for each node

2. For two nodes of each edge, iterate the following
• find the corresponding sets,

• union the two sets (if they are connected by cross-set
edges).

This process will converge to a clustering of samples,
without a prior specification the number of clusters, but a
threshold controlling the tightness of the clusters. This is a
desirable feature in forensic inference because usually the
legal agents would need to leverage their forensic experience
and determine tolerable risk of legal decisions circumstanti-
ally. Once the clustering is complete, we extract a consensus
SGSĉj for each clustercj based on a maximum likelihood
principle. That is, given the consensusĉj that corresponds
to the true genetic state (TGS) of a victim, the conditional
probability of all SGSs of this cluster (i.e., this victim) is
maximized:

ĉj = arg max
t

p(t)
∏

l∈ci

p(sl|t)

= arg max
t

K
∏

k=1



p(tk)
∏

l∈cj

p(slk|tk)



 ,

where the marker-specific conditional probabilityp(slk|tk) is
given by the error model described bellow.

3.2.2 The error model The error model defines the proba-
bility distribution of a marker-specific sample genotype given
the true genotype,p(sk|tk). For two allelesa 6= b of any
markers (i.e., locus), we define five error types:

1. Measurement error: Allelea is misread asa± 0.1 by the
technician

2. Calibration error: True genotype is(a, b) but calibration
ladder is off by one, so instruments shows(a + 1, b + 1)
or (a − 1, b − 1)

3. PCR Shutter error: True genotype is(a, a) but instru-
ments shows(a, a ± 1)

4. Threshold error: True genotype is(a, b) but theb signal
falls below threshold, so instruments shows(a, a)

5. Mutation error: Allelea mutates to alleleb

The probability of measurement, calibration, stutter, and
threshold error are constants, denoted asǫm, ǫc, ǫs, ǫt respec-
tively. Based on the stepwise mutational model (Valdeset al.,
1993) for microsatellite, the probability of a mutation from a
to b is p(b|a) = 0.5µ(1 − α)α|b−a|−1, whereµ is the muta-
tion rate (probability of any mutation) andα is the factor
by which mutation decreases as distance increases. Although
this mutation distribution is not stationary (i.e. it does not
ensure allele frequencies to be constant over the generations),
it is simple and commonly used in forensic inference. Shutter,
threshold, and calibration errors are defined on genotypes,
but measurement and mutation errors are defined on alleles
and have to consider two combinations,p(s0

k|t
0
k)p(s1

k|t
1
k) and

p(s0
k|t

1
k)p(s1

k|t
0
k). To summarize, forsk 6= tk, we have:

p(sk|tk) =























ǫc if s0
k − t0k = s1

k − t1k = ±1
ǫs if s0

k = s1
k = t0k, |s1

k − t1k| = 1
ǫt if s0

k = t0k = t1k
max(q(s0

k; t0k)q(s1
k; t1k), q(s0

k; t1k)q(s1
k; t0k))

otherwise

,

where the allele error functionq(b; a) is defined as

q(b; a) =







1 if b = a
ǫm if |b − a| = 0.1
0.5µ(1 − α)α|b−a|−1 otherwise

.

Thep(sk|tk) is a conditional probability that must sum to
one. Thus, we define the "consistence" probabilityp(sk =
tk|tk) as one minus all error probabilities, which is large com-
paring to the overall error probability ( since the probabilities
of each error type are always set to be very small):

p(sk = tk|tk) = 1 −
∑

sk 6=tk

p(sk|tk).

3.3 Pedigree Inference
The conditional probability of a TGS given the FGS of a
matching family,p(ĉj |fi), can be derived by pedigree infe-
rence. As discussed in Lauritzen and Sheehan (2003), the
joint distribution of{ĉj , fi} defined by an arbitrary pedigree
can be specified by aprobabilistic graphical model(Pearl,
1988; Cowellet al., 1999), or more specifically, aBayesian
network(Pearl, 1986).

Recall that an FGSfi is a two-tuple of donor genotypes
{d1, . . . ,dni

} and a familial pedigreeTi. Based onTi, we
can construct a particular Bayesian network, known asallele
network, orgene pedigree(Lauritzen and Sheehan, 2003), for
all the alleles from all members (donor and non-donor) of the
family and from the purported victim. Assuming that markers
are independent and following the same pedigree, we con-
struct an allele network for a single marker, say microsatellite
k, as follows. For each individual, we introduce two allelic
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Fig. 1. A simple pedigree and its allele network, shaded nodes as
donors and bold nodes as victim.

Fig. 2. A pedigree of three generations and its allele network.

nodes,u0

k andu1

k (which are unobserved), denoting the mater-
nal and paternal allele of this individual, respectively; and a
genotype nodeug

k, which are observed for the donors and
hidden for the non-donors in the family. Since the genotype is
determined jointly by the two alleles, we have arcs pointing
from each allelic node to its corresponding genotype node
(Fig. 1 and 2). Due to Mendelian inheritance, the marker alle-
les in a decedent is dependent on that in his/her direct parents,
thus we also have arcs pointing from the allelic nodes of a
parent to the allelic nodes of the children. Note that the allelic
nodes of individuals that arefounderof the pedigree do not
have any arcs pointing to them. For those individuals who are
donors in a family (i.e., their genotype states are available from
their DNA samples), we denote their corresponding genotype
nodes as observed variables, shown as shaded circles. The
genotype of the purported victim is also observed via sam-
ple clustering, but need to be matched correctly. In Fig. 1
and 2 we use circles with thick border to denote the geno-
type of acandidatevictim. Because markers are independent
in our case, each marker has a separate allele network with
the same structure but different donor evidence (i.e., marker-
specific genotypes). The joint probability of multiple markers
is the product of all locus-specific marker probabilities defi-
ned by the allele network. Specifically, we use the following
conditional distributions in our allele network model:

1. Founder distribution:p(ue

k) = πk,ue
k
, wheree ∈ {0, 1}

represents the parental index of the allele,πk,a is the
population frequency of allelea.

2. Meiosis distribution: For an allelete

k inherited from a
parent with genotypesk = {u0

k, u1

k}, we have

p(te

k|u
0

k, u1

k) =







0.5 if te

k = u0

k or te

k = u1

k, andu0

k 6= u1

k ,
1 if te

k = u0

k, andu0

k = u1

k ,
0 otherwise.

3. Genotype distribution:p(ug

k|u
0

k, u1

k), which is specified
by the error model defined in §3.2.2.

Given the allele network, and the above conditional distri-
butions of a node in the network given its graph parents (not to
be confused with biological parents), one can write down the
joint distribution of all nodes, i.e. the victim and the FGS,as
a product of all node-specific conditionals following a natu-
ral node ordering (e.g., from founder to decedents) (Pearl,
1988). From this joint probability we can derive conditional
probabilityp(xF |xE) of a set of variablesF ⊆ V conditio-
ned on a set of observed variablesE ⊆ V . F is calledquery
nodes, E is calledevidence nodesandV is the totality of all
nodes. The junction tree algorithm (Lauritzen and Spiegelhal-
ter, 1988) can perform exact inference efficiently on a network
of reasonable size, which is sufficient for our purpose.

3.4 Viterbi Match: Optimal Body Identification
via Linear Programming

Given the conditional probabilities of TGSs of sample clu-
sters and the FGSs of their matching families,p(ĉj |fi), now
we are ready to tackle the optimal matching between sample
clusters and families. Let us view the match matrixz as a
representation of the edge configuration of a bipartite graph
in which the clusters{ĉj} correspond to nodes in one partite,
and the families{f̂j} correspond to the nodes in the other par-
tite. Associating each edge betweenĉj andfi with a weight
equal tolog π(ĉj |fi)/π(ĉj), then the total cost of the mat-
ching,LR(z), corresponds to the sum of weights of edges in
the bipartite graph. Finding an optimal matching is equivalent
to the classical maximum weight bipartite matching problem.
We can solve this bipartite matching problem by mixed integer
linear programming (LP):

max

J
∑

j=1

N
∑

i=1

zij log Λij

zij ∈ {0, 1},

N
∑

i=1

zij = 1 ∀j,

J
∑

j=1

zij = 1 ∀i. (5)

There are many efficient algorithms and implementation
for solving the above LP, and we use the open source Gnu
Linear Programming Kit (GLPK) (Makhorin, 2001). Note that
this approach gives a globally optimal mapping assignment
between (equal number of) clusters and samples, analogous
to finding the Viterbi path in hidden Markov model (but in
this case an optimal matrix). Thus, we call the resulting body
identification results aViterbi match.
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4 POSTERIOR MATCH AND MATCHING
DISAMBIGUATION

The one-to-one constrain assumed so far in our algorithm is
not always valid. In fact, since we cluster samples based on
a tightness threshold rather than a given fixed number of clu-
sters, we can not easily enforceN = J . In practice, a cluster
may be unmatched, i.e. not assigned to any reporting family
(e.g., due to poor sample quality, or nonexistence of the true
claiming family); conversely, a family may also be unmatched
(e.g., because no remain of the victim is found).

We assume each sample either comes from one family, or
it is a random sample from the population. However, samples
from one victim may be clustered into multiple clusters due
to heterogeneity of the physical and measurement quality of
different samples. To accommodate these flexibility, we relax
the normality constraints on the columns and rows of mat-
ching matrixz, so that multiple clusters can be matched to
one family, or no clusters or family get matched:

N
∑

i=1

zij ∈ {0, 1} ∀j. (6)

Furthermore, instead of seeking an overall estimate ofz,
we would like to have a confidence measure of each of the
judgments (i.e., match or not-match) specified byz. From a
forensic perspective, only matches with small enough pro-
bability should be considered (forensically) impossible,and
excluded from legal consideration. In the sequel, we show
how to calculate the posterior probability of a matching given
cluster and family data; and then we show that, with this
probability, how to screen out unambiguous matching outco-
mes and extract the truly ambiguous cases that merit costly
personalized forensic investigation.

4.1 Posterior Probability of a Many-to-One
Matching

Now we derive the posterior probability of a matching given
cluster TGSs and family FGSs,p(z|{cj}, {fi}). According to
the Bayes’ theorem, we have:

p(z|{cj}, {fi}) =
p(z)p({cj}, {fi}|z)

p({cj}, {fi})
. (7)

Since we do not know the matchinga priori, p(z) can be
taken as uniform. Following the notations in §3.1, letp(fi)
andπ(ĉj) denote the marginal probability of a given family,
and a cluster TGS, respectively; and letπ(ĉj |fi) denote the
conditional probability a cluster TGŜcj given its matching
FGSfi (i.e., zij = 1). Following the new constrain given by
Eq. (6), and since the cluster TGSs are independent of each
other given a matchingz, the conditional probability of each
cluster TGS given a matching is:

p(ĉj |{fi}, z) =

{

π(ĉj |fi) if ∃i : zij = 1
π(ĉj) if

∑

l zlj = 0
, (8)

Therefore the joint conditional probability of the TGSs and
FGSs givenz is

p({ĉj}, {fi}|z)

= p({ĉj}|{fi}, z)p({fi}|z)

=
∏

j

p(ĉj |{fi}, z)
∏

i

p(fi)

=
∏

ij

π(ĉj |fi)
zij

∏

j

π(ĉj)
1−Σlzlj

∏

i

p(fi)

=
∏

ij

[

π(ĉj |fi)

π(ĉj)

]zij
∏

j

π(ĉj)
∏

i

p(fi)

=
∏

ij

Λ
zij

ij

∏

j

π(ĉj)
∏

i

p(fi).

Thus, Eq. (7) reduces to:

p(z|{cj}, {fi}) =
1

A

∏

ij

Λ
zij

ij , (9)

whereA is a normalizing constant summing over allz. Using
the fact that we are summing over all possiblez under limi-
tation (6), we can derive normalizing constant in closed
form:

A =
∑

z

∏

j

∏

i

Λ
zij

ij =
∏

j

(1 +
∑

i

Λij). (10)

According to Eqs. (10) and (9), now we have a close-form
expression for the posterior probability of a matching given
the clusters and families data:

p(z|{cj}, {fi}) =

∏

ij Λ
zij

ij
∏

j(1 +
∑

i Λij)
. (11)

4.2 Individual Posterior Match and Matching
Disambiguation

To qualify a candidate match,cj versusfi, we compute the
posterior probability of a match as follows. LetZij denote the
set of all matrixz in whichzij = 1, i.e. all possible matching
that assignscj to fi:

Zij = {z : zij = 1}, (12)

Similarly, letZc
ij denote the complement of this set. Now the

posterior probability of anindividual posterior match(IPM)
given TFSs of all samples clusters and FGSs of all reporting
families can be computed as:
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p(zij = 1|{cm}, {fl}) =
∑

z∈Zij

p(z|{cm}, {fl}) (13)

To disqualify a candidate pair,cj andfi, on the basis that
they are extremely unlikely to be a true match, we define our
decoupling confidence(DC) of this pair to be the posterior
probability mass of the setZc

ij , which can be computed as
follows:

p(z ∈ Z
c
ij |{cm}, {fl})

= 1 − p(z ∈ Zij |{cm}, {fl})

= 1 −
∑

z∈Zij

p(z|{cm}, {fl})

= 1 −
∑

z∈Zij

1

A

∏

m

∏

l

Λzlm

lm

= 1 −
1

A
Λij

∏

m 6=j

(

1 +
∑

l

Λlm

)

= 1 −
Λij

∏

m 6=j (1 +
∑

l Λlm)
∏

m (1 +
∑

l Λlm)

= 1 −
Λij

1 +
∑

l Λlm

.

Given the posterior probabilities of all IPMs, and the values
of all DCs, now we can not only extractmaximal a posterior
(MAP) matches as in §3, but also perform amatching disambi-
guationfor the given{cm} and{fl}. Essentially, for the later
task we exclude a candidate match with DC higher than a spe-
cifiable threshold1 − θm. Different values can be assigned
to θm based on the situation of the disaster, andθm = 10−6

is commonly used in mass disaster scenes, meaning that by
excluding the chosen pair of cluster TGS and family FGS, in
less than one out of a million cases we missed a true match.
If the DCs of all family-cluster pairs are higher than1 − θm,
then we are confident the cluster is unmatched, i.e. no family
claims this victim.

After the aforementioned impossible-match exclusion, if
there is zero or only one possible family for a cluster, this clu-
ster is unambiguous and is considered determined. Otherwise,
if a remaining cluster-family pair passes an IPM threshold,it
is still considered a valid match. Finally, the clusters that still
have ambiguity, i.e., with two or more possible families of IPM
lower than the threshold, will be reported to human expert for
further forensic investigate.

5 EXPERIMENTS
Due to high confidentiality of forensic DNA fingerprint data,a
common practice in forensic science is to validate the models
and algorithms via computer simulation experiments, for
which the true matchings are known. Following convention,

thirteen FBI CODIS markers are used. In each experiment
we simulateN core families from a single population, by
generating two random parents based on population allele
frequencies, and generate one child from the parents. The
victim is the child in three simulations, and in two other simu-
lations the victim is one of the parents. Allele frequencies
πk,a are assumed to be known and correct. Then we generate
several TGSs for each victim, using the error model with dif-
ferent values of the parameters (to simulate different level of
noise). The number of SGSs generated from a victim is dis-
tributed uniformly in an interval,[M (0),M (1)]. Throughout
the experiments, the parameters used for sample generation
are intentionally set to be different from the ones used in our
later inference, so that our test is unbiased and objective.For
each marker, there is a probability ofǫu that the genotype
is missing. The simulating parameterǫu is set to be high,
to represent that some samples are heavily degraded. Howe-
ver we require that the total number of available markers to
be greater than 4 to make our cases forensically realistic —
for situations where the recovered markers are less than or
equal to 4, DNA evidence are usually dismissed due to lack
of reliability. We performed five experiments with different
simulating parameters, as described below:

1. N = 100, [M (0),M (1)] = [3, 7], so on average 500
samples. Victim is the child, and donors are the two
parents. Simulation parameters areǫu = 1/10, ǫm =
ǫc = 0.001, ǫs = ǫt = 0.004.

2. A noisier setting,N = 100, [M (0),M (1)] = [3, 7], so
on average 500 samples. Victim is one of the parents,
and donors are the child and the other parent. Simulation
parameters areǫu = 1/4, ǫm = ǫc = 0.001, ǫs = ǫt =
0.004.

3. Similar to simulation 2 but with even more noise:N =
100, [M (0),M (1)] = [1, 9], so on average still 500 samp-
les, but the cluster sizes vary more. The values of the
simulation parameters are now higher,ǫu = 1/3, ǫm =
ǫc = 0.002, ǫs = ǫt = 0.008.

4. Similar to simulation 1 but contains 500 families and on
average 2500 samples (1,250,000 potential matches).

5. Similar to simulation 1 but contains 1000 families and on
average 5000 samples (5,000,000 potential matches).

The parameters used during computational inference in
all four experiments are the same:ǫm = 0.00025, ǫc =
0.00025, ǫs = 0.001, ǫt = 0.001, which may be different
from the parameters for sample simulation. The clustering
LR threshold isθc = 500. All experiments are repeated 9
times and their results are averaged.

5.1 Results on Optimal Body Identification
Since our clustering is stringent, the number of resulting clu-
sters is always greater or equal to the number of families
(N ≤ J), and the assumption of one-to-one mapping behind
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Table 1. Optimal body identification perfor-
mance of LP and MAP

LP MAP
Sim FN FP FN FP

1 0.0109 0.0 0.0 0.0
2 0.0130 0.0 0.0043 0.0043
3 0.0567 0.0112 0.0225 0.0225
4 0.0099 0.0004 0.0020 0.0020
5 0.0073 0.0002 0.0021 0.0021

Comparison of average false-negative (FN) and
false-positive (FP) rate of LP and MAP algo-
rithm. LP denotes the Viterbi match via LP based
on one-to-one mapping assumption in § 3.4,
and MAP denotes the MAP match based on
many-to-one mapping in § 4.2.

the Viterbi matching via LP no longer holds. We can still apply
LP by enforcing the same optimization and constraint terms
in Eq. (5), which means we still require one matching family
for each cluster and one matching cluster for each family, but
some clusters may be unmatched.

We perform optimal body identification using Viterbi mat-
ching via LP and MAP matching. We measure the perfor-
mance by average false-negative rate (FN) and false-positive
rate (FP), where FN is the ratio of undiscovered true matches
to all true matches, and FP is the ratio of incorrect predictions
to all predictions. The results are shown in Table 1.

Overall, LP has low FP, but the FN is very high, mainly due
to incorrectness of the one-to-one assumption in the model.
MAP has slightly higher FP, but the FN is much lower. In
simulation 1, MAP has zero FN and FP. Overall, both algo-
rithms have good performance, even in the presence of noise
and incomplete information. We are not aware of existence
of any algorithm or software for this kind of forensic task in
earlier and current literature.

5.2 Results on Matching Disambiguation
In a matching disambiguation task, our goal is to reduce
as much as possible the amount of human effort in foren-
sic inference by remove impossible cluster-family matches
and high-confidence matches from a given mass disaster case.
In this section, we compare the disambiguation results using
the individual posterior match method with the ones using
a conventional approach that excludes a candidate match by
thresholding the likelihood ratio, e.g., a candidate matchfrom
cj to fi is excluded (i.e., deemed impossible) ifΛij < θm =
10−6. Such threshold means that the relative probability of a
cluster-family match is only10−6 compared to an alliterative
hypothesis that they are unrelated.

We found that the accuracy of disambiguation via the
posterior methods is significantly better than that of the con-
ventional LR thresholding approach, as shown in Table 2.
The thresholdθm is set to be10−6 in both algorithms. In our
experiments, the accuracy are measured by: (1) the average

Table 2. Comparison of disambiguation by posterior threshold and by
LR threshold

Posterior LR thresholding
Sim Clusters Families MatchesClusters Families Matches

1 0.01 0.06 0.0007 0.03 0.07 0.0019
2 0.04 0.08 0.0034 0.48 0.04 0.0190
3 0.12 0.10 0.0119 0.53 0.07 0.0371
4 0.01 0.04 0.0004 0.08 0.02 0.0013
5 0.01 0.03 0.0002 0.14 0.01 0.0010

Results of disambiguation by posterior and LR threshold. "Clusters"
denote the average percentage of remaining ambiguous clusters. "Fami-
lies" denote the percentage of ambiguous candidate matching families for
each of these clusters. "Matches" denotes the ratio of ambiguous family-
cluster matches over all possible matches. Parameter settingsof the three
simulations are described in § 5.

percentage of remaining ambiguous clusters; (2) the ave-
rage percentage of remaining ambiguous matching families
for each cluster; and (3) the ratio of ambiguous family-
cluster matches over all candidate matches. After applying
the posterior match disambiguation algorithm, the remaining
ambiguous clusters are almost always single samples. On ave-
rage, the 500 samples were reduced to only 1, 5, and 13
ambiguous samples, in simulation 1, 2, and 3, respectively;
and each ambiguous cluster has 6, 8, and 10 ambiguous can-
didate matching families, respectively. In simulation 4, 2500
samples and 500 families were reduced to 5 samples, each
having 21 candidate families. In simulation 5, 5000 samples
and 1000 families were reduced to 6 samples, each having 33
candidate families. Under the same noise level, larger sample
size results in better reduction rate. The results of LR threshol-
ding is generally much worse, about 3 to 12 fold increase in
cluster ambiguity, and 3 to 5 fold increase in overall ambiguity.

A close examination of our results showed that these
ambiguities all occurred in samples with severely degraded
markers, typically with only 5 of the 13 marker readable.
Under these circumstances, a family becomes a candidate
match to a sample even when only 3 of the markers are compa-
tible with that of the samples within an error range. In practice,
such genetic samples would automatically be ruled legally
insubstantiative even before computational forensic inference
is conducted, and would require additional forensic evidence.
Thus, our disambiguation results presented above is in facta
worst-case result, and the actual rate of disambiguation inreal
life can be much better if we are willing to insist on more strin-
gent requirement for the quality of the DNA samples (e.g., by
requiring more than half of the markers can be clearly typed).
It is noteworthy that a domain expert does not need to examine
the ambiguous families of each cluster one by one. An expert
can determine the true family from evidences other than DNA,
or determine the sample as unidentifiable, or repeat the DNA
sampling.
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5.3 Analysis of Disambiguation Threshold
The major difference between the posterior disambiguation
and the LR-based method is that posterior disambiguation
relates the LRs of all possible families versus a candidate clu-
ster when inferring about each single matching. That is, for
one cluster, if several likely matching families already exist,
other families with lower LRs will be considered less likely,
whereas in the conventional LR-based disambiguation, each
candidate matching is assessed independent of other candi-
dates. We illustrate this difference in disambiguation criteria
in Figure 3. The histogram of all the log LR of simulation
1 and 2 is shown in Figure 3A and 3C. For the log LR of
all possible families corresponding to a well-typed (i.e.,with
most markers measurable) cluster, as shown in Figure 3B and
3E, usually there are only a few (in this case, only one) can-
didate matches having LR above10−6, so the two methods
make little (or no) difference because of nearly inexistence
of between-match influences. However, for a degraded clu-
ster illustrated in Figure 3C and 3F, there are many candidate
matches with large LRs and they influence each other. Con-
sequently the disambiguation via posterior inference tends to
assess other candidates to be less likely than would have been
suggested by the LRs alone. This effectively results in a crite-
rion more stringent than10−6. The LR thresholding approach,
on the other hand, still use the same threshold on LR. As shown
in Figure 3C and 3F, the posterior match method can reduces
the ambiguity by a half or even more for degraded clusters.

In traditional forensic identification cases, which do not deal
with DNA sample clustering but consider mostly high-quality
anonymous samples, the LR of the correct identification tends
to be very high, and there is usually no ambiguity. To see
the difference in a mass disaster case, it is instructive to take
a close look at the dataset and the ambiguous clusters and
families reported by our algorithm. When there are fewer
than 7 markers in a sample, typically there are indeed many
ambiguous family pedigrees that cannot be excluded from a
forensic perspective. For example, consider the highly degra-
ded samples, of which an example is shown in Table 3.
Typically such samples can have multiples plausible matching
families, and the matches listed in Table 3 are only a few of
all the likely matches. The ambiguity problem become very
serious when the quality of the samples gets really poor, e.g.,
with fewer than 5 usable markers available. Essentially, the
evidence become not enough for body identification — given
only three or four markers, there could be too many perfect
matches. In this case, the power of any computational and/or
manual forensic inference diminishes, and we must seek addi-
tional evidence. We discuss some of the options in the next
section.

6 DISCUSSION
Extending our probabilistic forensic inference methods to
include other evidence is straightforward. For example, some-
times, in the forensic samples there also exist sequence data
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Fig. 3. The histogram of log likelihood ratio of simulation 1 and 2.
A - C is based on simulation 1 andD - F is based on simulation 2.
The x-axis is common logarithm of likelihood ratio, and the y-axis
is number of families or matches. Vertical blue solid line denotes
10

−6 threshold, and red dotted line denotes the effective threshold
of disambiguation corresponding to the posterior match criteria. Spe-
cifically, we have:A. Distribution of all sample clusters of simulation
1. B. LR distribution of a well-typed cluster of simulation 1.C. LR
distribution of a degraded cluster of simulation 1.D-F. The LR dis-
tributions of all sample clusters, a normal cluster, and a degraded
cluster, respectively, in simulation 2.

Table 3. Case study of a highly degraded sample

Errors Log LR Description THO1 D7S820 VWA
Sample (7,8) (8,11) (14,15)

0 1.70 True mate (6,9) (10,11) (13,15)
True child (8,9) (8,10) (13,15)

0 1.00 Mate (6,7) (10,11) (15,17)
Child (7,8) (11,11) (15,17)

1 -1.66 Mate (7,9) (9,10) (18,18)
Child (6mu,9) (10,11) (15,18)

2 -4.12 Mate (9,9.3) (8,11) (17,18)
Child (7,9) (8,9s) (18,18t)

A highly degraded sample of which three typed markers are shown.
THO1, D7S820, and VWA are three markers in the CODIS system.
The symbolsas

, a
t
, a

mu denotes shutter, threshold, mutation error
respectively. All the pedigrees have one of the parents as the victim
and the other parent and a child as the donors. Among candidate
families with high LR, four representative matches are listedhere.
Note that many different combinations are qualified for a match.

from the two segments of the hyper-variable control regions
(e.g., regions 16,024 to 16,365 and 73 to 340) of the 16,569bp
human mitochondria DNA (mtDNA). Because mtDNA has
far more copies than the genome, they are often sequenceable
when the genome is degraded and not sequenceable. Inhe-
ritance of mtDNA is maternal only, so there is much less
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uncertainty. But the mtDNA is less variable compared to
microsatellites in genomic DNA. For example, while there
are in principle 10 or more possible SNP differences in the
mtDNA between any two individuals, a match is not conclu-
sive due to high degeneracy of these polymorphism in human
population. For example, about 7% of all Caucasian males
have the same mtDNA sequence. Nevertheless, mtDNA can
still be used to eliminate impossible matches, i.e., we can
remove cluster-family matches with inconsistent mtDNA, and
further reduce ambiguity.

Occasionally, there will also be alleged direct sample evi-
dence for a victim from a personal effect, such as a comb or
tooth brush, in which case the genotype is available for the
victim in the relevant family pedigree. Similarly, other fac-
tors like gender and blood type can be easily included using
probabilistic rules.

In mass disaster scenes it is important to validate pedigree
structure and donor evidence. For example, there may be an
error in some donor’s genotype, making it inconsistent with
other donors’ genotype. There is also the rather delicate issue
that sometimes paternity or other blood relationships are not
true. This kind of error can be detected by calculating the
marginal probability of the evidence based on the allele net-
work model. Families with probabilities under a threshold
can be picked out and given to experts for examination. A
family may have several victims in a mass disaster site. In this
case one can introduce duplicated pedigrees one for each alle-
ged victims. Each pedigree has the same structure and donor
genotypes, but has different victim node. One must be care-
ful about now the incorrectness of independence assumption
for all pedigrees and for all the victim samples. For example,
if a father and his son are both victims, their genotypes are
not independent. This could slightly complicate the probabi-
listic inference computation for LR-based Viterbi match and
posterior match.

Finally, it is noteworthy that, although in current forensic
applications, genetic markers are usually chosen as indepen-
dent (e.g. the thirteen CODIS markers reside on different
chromosomes), our probabilistic framework presented in this
paper does not rely on the assumption that markers are inde-
pendent. In extremely degraded disaster scenes, using single
nucleotide polymorphism (SNP) for identification may be hel-
pful (Cashet al., 2003); and for SNPs with high linkage
disequilibrium, the markers are no longer independent. In
such cases we can create an allele network with linkage pro-
bability, by adding a meiosis variable which couples different
markers (Lauritzen and Sheehan, 2003). Under such circum-
stances, the allele network will become more complex and
approximate inference or sampling may be necessary (Jordan
et al., 1999; Xinget al., 2003).

In conclusion, we have presented a probabilistic modeling
and inference framework for mass disaster victim identifica-
tion. We expect that this framework can be easily generalized

to handle more complicated forensic inference problems,
and leverage richer forensic evidence or expert knowledge.
It offers a promising platform to develop automatic expert
system for a wide-range of forensic and genetic inference
applications.
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