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ABSTRACT 

Automatic segmentation of nuclei in 3D microscopy images is 

essential for many biological studies including high throughput 

analysis of gene expression level, morphology, and phenotypes in 

single cell level. The complexity and variability of the microscopy 

images present many difficulties to the traditional image segmenta-

tion methods. In this paper, we present a new method based on 3D 

watershed algorithm to segment such images. By using both the 

intensity information of the image and the geometry information of 

the appropriately detected foreground mask, our method is robust 

to intensity fluctuation within nuclei and at the same time sensitive 

to the intensity and geometrical cues between nuclei. Besides, the 

method can automatically correct potential segmentation errors by 

using several post-processing steps. We tested this algorithm on 

the 3D confocal images of C.elegans, an organism that has been 

widely used in biological studies. Our results show that the algo-

rithm can segment nuclei in high accuracy despite the non-uniform 

background, tightly clustered nuclei with different sizes and 

shapes, fluctuated intensities, and hollow-shaped staining patterns 

in the images. 
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1. INTRODUCTION  

Automatic segmentation of nuclei in 3D microscopy images is an 

essential yet very challenging problem in many biological studies 

where the quantitative or high throughput analysis of nuclei gene 

expression level, morphology, and cell phenotypes is needed. Most 

of the difficulties come from the variability and complexity of the 

images caused by the intrinsic properties of the samples, as well as 

the staining and imaging procedures. In these images, the 

background intensity generally varies at different locations. Nuclei 

can be tightly clustered, making it hard for biologists to tell the 

exact boundaries between nuclei. Typically the intensities within 

nuclei are highly non-uniform and fluctuated. In many cases, the 

intensity variation within a nucleus can be even bigger than that 

between nuclei. Besides, the intensity profiles of nuclei can be very 

complicated due to the imperfect staining or intrinsic intra-cellular 

characteristics. For example, the unstained nucleolus can make a 

nucleus appear hollow-shaped. Furthermore, the sizes and shapes 

of nuclei can vary a lot in an image. All these problems have 

presented difficulties to most of the traditional image segmentation 

methods such as thresholding, region growing, and edge-based 

approaches (see [1] for a review) that have been successfully 

applied to other applications.  
Watershed algorithm has been demonstrated more suitable for 

segmenting biological images [2-4]. It takes an image as topog-
raphic relief and uses morphological flooding operations to deter-
mine regions and region boundaries [2,5].  There are generally two 
ways to use watershed algorithm, intensity-based and shape-based. 

The intensity-based approaches use intensity gradient image as the 
input to the watershed algorithm, whereas shape-based approaches 
use the shape information of the thresholded image of the original 
as the input. When dealing with the images with such properties as 
described earlier, however, the intensity-based method can lead to 
many over- and wrong- segmentations of nuclei even with the help 
of pre-selected markers and sophisticated merging processes, due 
to the existence of fluctuated and hollow shaped staining patterns. 
The shape-based approaches, although more robust to intensity 
fluctuation and typically generates much smaller number of over-
segmented regions, may also produce an unacceptable number of 
wrong partitions of nuclei when the thresholded image does not 
have clear ‘neck’-shaped structure between nuclei.  

In this paper, we present a new watershed approach that uses 
both the intensity information of the image and the geometrical 
information of the foreground mask to segment 3D microscopy 
images with all the challenging properties described earlier. The 
diagram of the algorithm is shown in Fig. 1. The algorithm uses the 
intensity information to determine the appropriate foreground mask 
with clear ‘neck’-shaped structure. The geometrical information of 
the foreground mask is then used by the shape-based watershed 
method to produce the right partition of nuclei. An adaptive inten-
sity- and shape-based region grouping method is developed to 
merge over-segmented regions, the number of which is usually 
small. Since the segmented nuclei are usually smaller than their 
true sizes due to the process of producing neck-shaped foreground 
mask, we then used region dilation to refine nuclei boundaries. The 
method also includes several post-processing steps, the purposes of 
which are to correct segmentation errors based on the statistical 
information of the nuclei already segmented. These steps include 
recovering missed nuclei, splitting big regions, and post-processing 
small regions. We applied this algorithm to the 3D confocal images 
of C.elegans which process all the variability and complexity men-
tioned earlier and found the algorithm can segment this type of 
images in high accuracy. 
 

 

 
Figure 1. Diagram of the algorithm 
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2. GENERATING FOREGROUND MASK 

To reduce noises and make intensity distributions within nu-
clei regions less fluctuated, we first used the Gaussian kernel to 
smooth a 3D image stack (3 3 3 Gaussian kernel for our data). 
The smoothed image was then used to extract the foreground mask 
that largely contains most of the nuclei and at the same time proc-
esses clear ‘neck’-shaped structure.  

2.1 Fill hollow-shaped patterns 

To generate an appropriate foreground mask, we first filled 
the hollow-shaped patterns into more or less solid shaped pattern. 
For this purpose, we thresholded the image at different intensity 
level l, where l  [lmin, lmax], to obtain the binary images Tl(I). For 
each Tl(I), we used morphological ‘fill’ operation [1], denoted 
o(Tl(I)), to fill the holes in Tl(I). The union of the pixels that belong 
to the difference image of o(Tl(I)) and Tl(I) at different intensity 
level l constitute the hollow region E, i.e.,  

E = l {p |p (o(Tl(I))- Tl(I))}                          (1) 

We then used the following formula to revise the intensity of 
pixels within the hollow region E:  

I’p E = b + [max(Ip E)- Ip E]                          (2) 
b = median(Ip E’-E)                                (3) 

E’ = E  e                                         (4) 

where  denotes morphological dilation operation; E’ is the result 
of dilating E with a spherical element e of 1 pixel in radius; b is the 
constant baseline intensity, computed as the median value of the 
intensities of pixels belonging to E’ but outside of E. Eqn. (2)~(4) 
set the intensities of the peripheral pixels of region E lower than 
those of the central pixels, thus removing the hollow effect. 
 
2.2 Global thresholding 

After filling the hollow-shaped regions, we used Ostu’s 
method [6] to adaptively determine the threshold T0 that separates 
the foreground pixels from the background pixels. This method 
takes foreground and background pixels as two classes and chooses 
the intensity level that minimizes the intra-class intensity variance 
as the threshold. We then thresholded the smoothed and hollow-
filled image at T0, obtaining the binary mask image, denoted M0 
(see Fig.2b as an example).  

2.3 Shrinking the mask by morphological reconstruction 

When there is significant autofluorescence signal or when 
many nuclei are tightly clustered thus making the fluorescence 
signal from out-of-focus nuclei leak into in-focus nuclei, M0 may 
easily contain many background pixels between nuclei. As the 
result, M0 may lack of ‘neck’-shaped structure between nuclei 
regions in many places of the image, making the shape-based wa-
tershed fail. To solve this problem, we used morphological recon-
struction [7] to further ‘shrink’ the foreground mask M0. More 
specifically, we extracted h-domes from the foreground pixels 
marked by M0. An h-dome is a connected component of pixels 
such that every pixel in the dome has an intensity value greater 
than those of the pixels surrounding the dome and the intensity 
difference between any two pixels in the dome is less than h. Once 
the h-domes were extracted, we set the pixels within h-domes to 1 
and the remaining to 0, obtaining the shrunk mask of nuclei areas, 
denoted M (Fig.2c). Such process may miss a small number of 
weakly stained nuclei, we recovered those nuclei in post-
processing (see section 5.1).  

3. SHAPE-BASED 3D WATERSHED  

SEGMENTATION AND REGION GROUPING 

3.1 Shape-based 3D watershed segmentation 

Once the foreground mask image M with clear ‘neck’ struc-
ture is extracted, we used 3D shape-based watershed approach to 
segment individual nucleus. The method first applied the distance 
transform to M. The distance transform of a foreground pixel in the 
mask is the distance (we use Euclidean distance metric) between 
the pixel and the nearest background pixel. The transformed image 
is then reverted and the intensities of background pixels set to 
negative infinity.  

   

Figure 2. (a) A single slice of a small part of the 3D image of C. elegans. 

(b) Foreground mask M0. (c) Shrunk foreground mask M. (d) Result of 

watershed segmentation and region grouping. (e) Result of region dilation. 

(Note that as regions were dilated in 3D and we only show the result on a 

single slice, a blue region that cannot be seen in figure d now can be seen in 

figure e). (f) The same result of (e) represented by overlaying region con-

tours on (a).  

 
After that, we applied 3D watershed algorithm to the trans-

formed image. The watershed transform was implemented by the 
3D version of the recursive immersion method proposed by Vin-
cent and Soille [2]. It takes an image as topographic relief being 
immersed in a lake, with holes pierced in local minima. The 
catchment basins which are regions associated with these minima 
are filled up with water starting at these local minima and are suc-
cessively expanded as water level increases. A catchment basin at 
water level l+1 can be either a new minimum or an extension of a 
catchment basin at water level l determined by the geodesic influ-
ence zone of the catchment basin within Tl+1(I) (i.e, the thresholded 
image of I at level l+1). Dams are built at positions where water 
comes from different basins. The whole process iterates from the 
lowest to the highest intensity level. As the result, the image is 
partitioned into regions (corresponding to catchment basins) sepa-
rated by dams (corresponding to watersheds).  
 

3.2 Region grouping 

Compared to the intensity-based watershed, the above method 
generates much lower degree of over-segmented regions which 
enables us to use a hierarchical pair-wise grouping scheme to 
merge over-segmented regions. Assuming the watershed segmenta-
tion generates N regions, we first computed the N N convexity 
matrix R, where the value of element rij is the convexity of the 
region resulted from merging regions i and j. We also identified 
regional maxima by extracting h-domes. Each time we selected 
regions m and n that correspond to the maximum value of rij as the 
candidate regions to be merged, i.e., (m,n) = arg(max(rij)), i, j 

[1,N]. If regions m and n can be merged, the size of the resulted 
region should be less than Smax, i.e., Sm + Sn < Smax , and its pixel 
intensities should have only one regional maximum. If the above 
merging conditions are not satisfied, we set rmn to 0. Otherwise, we 
merge regions m and n by setting region n’s label equal to region 
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m’s label, i.e., Ln = Lm. We also set size Sm = Sm + Sn and Sn = 0. 
We then updated the convexity matrix R by setting rnj = rjn = 0 ( j 

 [1,N]) and re-computing rmj = rjm for those j that are adjacent to 
the new region m. We repeated the above process until no regions 
can be further merged. As the result, we iteratively generated N, N-
1, N-2,…, and N-K number of regions. We then selected the kth 
(k  [1,K]) iteration as the final merging result if the least convex 
region in the kth iteration has the maximum convexity among those 
in iterations 1 to K. Fig.2d shows an example of the result of wa-
tershed segmentation and region grouping.  
 

4. REGION DILATION 

Since the shrunk foreground mask makes nucleus regions 
smaller than their real sizes, we refined region boundaries using the 
following dilation approach. Given the foreground mask M0 before 
shrink and the union of segmented regions , we took any p  M0-

 as foreground pixel and p’   as background pixel. We com-
puted the distance transform of p and assigned p to a segmented 
region in  that is closest. By doing this, we also obtained the 
equal-distance contour for all pixels p in M0- . 

We thus started from pixels that were closest to region i and 
gradually included the pixels that were further away based on the 
equal-distance contour. Since the h-dome extraction process de-
scribed above may miss nuclei (which will be recovered in later 
steps; see 5.1), we used the following constraints to prevent dilat-
ing a segmented region into a missing region: 1) assigning fore-
ground pixels to regions should keep regions highly convex; 2) the 
size of the dilated region should not exceed Smax. Fig.2e and 2f 
show an example of region dilation.  
 

5. POST-PROCESSING 

Most of the nuclei can be correctly segmented using the above 
steps. However, some weakly stained nuclei can be missed and 
segmented regions might need to be further split or merged. The 
post-processing steps used the statistical information of the seg-
mented nuclei as the refined knowledge to correct these segmenta-
tion errors.  

 

5.1 Recovering missing nuclei  

We first excluded segmented nuclei by setting the intensities 
of all the pixels in  to 0. We then estimated the background level 
of the remaining pixels in mask M0 using Ostu’s method [6] and 
obtained a binary mask image M’ after thresholding the remaining 
pixels at that level. Since the intensities of pixels in M0-  are in 
general lower than those in , the mask image M’ may contain 
ring-shaped structures surrounding . We used morphological 
opening operation [1] followed by median filtering to remove such 
artifacts. After that, we detected the connect components in M’ and 
obtained a set of isolated regions that are potentially missing nu-
clei. We took those that are big enough as the recovered missing 
regions containing one or multiple nuclei, the later can be further 
segmented using region splitting method in 5.2. Fig.3 gives an 
example of nuclei recovering. 

Figure 3. An example of recovering missing nuclei. (a) Original image. (b) 

Regions segmented using the method in section 2~4. (c) A missing nucleus 

region (highlighted by red boundary) is recovered.  

 

5.2 Splitting big regions 

We computed the convexity and size of each segmented re-
gion, as well as the median convexity rmed and median size of the 
regions Smed. We selected those satisfying the following conditions 
as regions that need further splitting: 1) the size Si is bigger than 
k1*Smed ; and 2) the convexity ri is less than k2*rmed, where k1 >1 
and k2 <1 are constants determined empirically (k1 =1.5, k2 = 0.9 
for our experiments). For the selected regions, we then determined 
the number of nucleus it most likely to contain by dividing the size 
of the region Si by the median size Smed, i.e., n= Si/Smed. We then 
used Gaussian mixture model [8] to split the region into n sub-
regions, each corresponding to one nucleus. Fig.4a and 4b show 
examples of big region splitting.  
 

 

 

 

 

Figure 4. Post-process of big and small regions. Big regions before (a) and 

after (b) splitting are highlighted by red contour.  Small regions before (c) 

and after (d) merging are highlighted in the same way.  

 

5.3 Post-processing small regions  

We selected regions whose sizes Si are smaller than k3*Smed, 
where k3 is a constant smaller than 1, as regions need further merg-
ing (k3 = 0.5 for our experiments). To merge a small region i with 
its neighboring regions, we computed the convexity vector [rij], 
where the value of element rij is the convexity of the region re-
sulted from merging regions i with one of its neighboring region j. 
We then found the neighboring region j’ with rij’ = max(rij). If it 
further satisfies rij’> rmed and Si+Sj<Smax we merged region i with j’. 
Otherwise we set rij’ =0 and found the next neighboring region 
satisfying the merging condition. We repeated the process until 
region i could no longer be merged with other regions.  

If region i cannot be merged with any neighboring region, it is 
likely to be a small piece of a nucleus whose other pieces are miss-
ing. In this case we removed region i and used the method in sec-
tion 5.1 to recover the entire nucleus. Fig. 4c and 4d show exam-
ples of small regions before and after merging. 

 
6. ACCURACY EVALUATION  

To quantitatively evaluate segmentation accuracy, we devel-
oped a 3D tool that allows us to annotate the segmentation results 
in detail. In principal, there are four types of segmentation errors: 
1) missing nuclei; 2) falsely detecting regions that do not corre-
spond to nuclei; 3) taking multiple nuclei as a single nucleus; and 
4) splitting a single nucleus into multiple pieces. Denote the num-
ber of segmented nuclei as P and the number of nuclei of the above 
four cases as Pm, Pe, Pg, and Ps respectively. Then the number of 
cell regions that are correctly segmented, denoted as Pc, is com-
puted as Pc = P- (Pe + Pg + Ps).  By manual annotation, we can 
obtain the true number of cells Pt. We then used Pc / Pt to quantify 
the segmentation accuracy.  
 

7. RESULTS AND DISCUSSION 

We used the 3D images of newly hatched first larval stage 
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hermaphrodites of C. elegans to test our algorithm, which proc-
esses all the challenging properties described earlier. Nuclei were 
stained with DAPI. The images were acquired using a Leica confo-
cal microscope with 63x/1.4 oil lens.  
 
Input sample Our method Intensity-based Shape-based 

 

 
Figure 5. Comparison of our algorithm against traditional intensity-based 

and shape-based watershed. The first column images are sample patches of 

the 3D image. The second to the fourth column images are the correspond-

ing segmentation results using our algorithm, the intensity-based, and the 

shape-based algorithm respectively.  

We first compared our method against traditional intensity-
based (using gradient image with regional maximum as seed mark-
ers) and shape-based watershed on small 3D image patches. The 
results are shown in Fig.5. The number of regions that are correctly 
segmented by our method is very much close to the true number, as 
shown in Table 1. In contrast, the other two methods fail to gener-
ate accurate results for our data where hollow-shaped, non-uniform 
stained, and tightly clustered nuclei are presented. As shown in 
Fig.5 and Table 1, the intensity-based method generates a much 
smaller number (less than half) of correctly segmented regions. 
Shape-based method is slightly worse than our method for tightly 
clustered image patches but is still significantly worse than our 
method when hollow-shaped nuclei are presented.  

Table 1. Segmentation accuracy evaluation of Fig.5, with each row corre-

sponding to the same row in Fig.5. Pt is the true number of nuclei, P c1, P c2, 

and P c3 are the number of correctly segmented regions generated by our 

method, the intensity-based, and shape-based methods respectively.  

 rows Pt P c1 Pc2 Pc3 

1 14 14 3 11 

2 31 29 12 26 

3 32 28 16 26 

4 15 13 3 8 

 
We then applied our method to the entire 3D images of C. 

elegans. Fig.6 shows an example of our segmentation results. In 
this example, most of the nuclei are correctly segmented, including 
the big hollow-shaped nuclei in the trunk part and the tightly clus-
tered nuclei in the head part.  
 

 

 

Figure 6. An example of the segmentation results of the 3D images of 

C.elegans. For clarity purpose, the image is displayed in two halves. The 

head and part of the trunk are displayed in (a). The remaining part of trunk 

and the tail are displayed in (b). 

Table 2 shows the evaluation of segmentation accuracy for 5 
image stacks. Due to noises and signal loss in staining and imaging 
processes, some nuclei may be invisible to human observers. Thus 
the true number of nuclei (Pt) in these stacks may deviate from the 
theoretical number of cells, 550. The average segmentation accu-
racy of the 5 stacks is 93.43%, which is quite satisfactory given the 
complexity of the data. We noticed that most of the errors come 
from head part where fluorescence signals from out-of-focus nuclei 
contribute significantly to the in-focus nuclei, making the boundary 
unclear. For the trunk part which has less clustered nuclei but 
many more hollow-shaped nuclei, the algorithm can achieve ~98% 
accuracy (not shown in Table 2). Form Table 2 we derived that the 
algorithm generates about 0.26% (computed by Pe/Pt) non-nuclei 
regions, and misses about 1.2% (computed by Pm/Pt) of nuclei that 
have very weak fluorescence signal. The major segmentation errors 
come from regions that need splitting (about 2.22%, computed by 
Ps/Pt) and merging (about 3.33%, computed by Pg/Pt ). Most of 
these errors come from the parameters k1, k2 and k3 we empirically 
determined for selecting candidate regions. A possible way to im-
prove is to use training samples to determine k1, k2 and k3.  

 
Table 2. Segmentation accuracy evaluation of five 3D C.elegans images. 

See section 6 for the explanation of parameters P, Pm, Pe, Ps, Pg, Pc, and Pt. 

Stacks P Pm Pe Ps Pg Pc Pt Pc/ Pt 

S1 538 9 2 16 26 494 528 93.56% 

S2 547 8 2 9 24 512 550 93.09% 

S3 547 6 0 7 20 520 550 94.55% 

S4 520 8 3 12 14 491 530 92.64% 

S5 537 2 0 16 6 515 552 93.30% 
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