
 

 
Proc. of  RECOMB 2008: 12th Annual Int. Conf . on Research in Computational Molecular 
Biology, March 30- April 2, 2008, Singapore; Lecture Notes in Computer Science: 
Research in Computational Molecular  Biology, Springer  Berlin /  Heidelberg, pp. 128- 139, 
2008. 

1 

Automatic Recognition of Cells (ARC) for  
3D Images of C. elegans 

  

Fuhui Long1*, Hanchuan Peng1, Xiao Liu2, Stuart Kim2, and Gene Myers1 
 

1 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA 
2 Department of Developmental Biology, Stanford University, Stanford, California, USA 

*  longf@janelia.hhmi.org 

 
Abstract. The development of high-resolution microscopy makes possible the high-throughput 
screening of cellular information, such as gene expression at single cell resolution. One of the 
critical enabling techniques yet to be developed is the automatic recognition or annotation of 
specific cells in a 3D image stack. In this paper, we present a novel graph-based algorithm, 
ARC, that determines cell identities in a 3D confocal image of C. elegans based on their highly 
stereotyped arrangement.  This is an essential step in our work on gene expression analysis of C. 
elegans at the resolution of single cells. Our ARC method integrates both the absolute and 
relative spatial locations of cells in a C. elegans body. It uses a marker-guided, spatially-
constrained, two-stage bipartite matching to find the optimal match between cells in a subject 
image and cells in 15 template images that have been manually annotated and vetted. We 
applied ARC to the recognition of cells in 3D confocal images of the first larval stage (L1) of C. 
elegans hermaphrodites, and achieved an average accuracy of 94.91%.  

1. Introduction 

Automatic recognition of the identities of individual cells in 3D microscopy images is 
indispensable for the high-throughput analysis of cellular information, such as gene 
expression levels and cell morphology, at the single cell level. One example is our 
recent work on high-throughput whole-animal single-cell gene expression analysis for 
C. elegans [1] based on a 3D digital atlas of the nuclei of this animal [2]. Currently 
cell recognition is accomplished by expert manual annotation, which is extremely 
labor intensive and basically untenable for a large number of images. Using a small set 
of, say a dozen or so, manually annotated images of the same organism as templates, 
we demonstrate that it is possible to extract cellular information such as location and 
relative spatial relationship of individual cells from these templates, and automatically 
assign names to cells in any new image of the same organism provided it is 
sufficiently stereotyped, which C. elegans most certainly is.  But this is not the only 
application, for example, the embryonic and larval neurons of D. melanogaster are 
highly stereotyped, as are many other early developmental patterns. Figure 1 illustrates 
this problem schematically. 
        I t is challenging to develop such automatic cell recognition technique for several 
reasons. First, individual cells in an image need to be segmented to high accuracy as a 
precursor, and this is difficult when the image quality is limited and cells are tightly 
clustered. Second, it is common that an image of an entire organism (e.g. C. elegans), 
or a particular tissue of an organism (e.g. the mushroom body of a fly brain) may 
contain hundreds or thousands of cells. Thus the scale of the problem presents a 
challenge to traditional graph matching techniques [4~14], which have been 
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successfully applied in applications such as face recognition [11], object tracking [12], 
image retrieval [13], and image registration [14] to find correspondences between two 
sets of spatial points, each usually containing less than a hundred objects. Finally, due 
to the imperfection of staining and the resolution-limit of the imaging, an expert 
annotator can only annotate the subset of cells in a template image that are large 
enough and strongly stereotyped in location. Thus the problem becomes a subset-
matching problem, which is more diff icult than the case where both the subject image 
and the template images have the same number of cells.  
 

  
(a) (b) 

Fig. 1. (a) is a raw image of C. elegans, and in (b) we illustrate the cell recognition problem on 
image stacks where the worm has first been straightened [3], and then size and orientation 
normalized and segmented as described in our earlier work [2]. Cells in a template are colored 
so that locally it is clear which cells have the same identity between instances.  

For this problem, our new method, called Automatic Recognition of Cells 
(ARC), is developed below in three layers of increasing refinement or power as 
follows. In Section 2 we introduce a basic framework of a two-stage bipartite 
matching that f irst matches cells in a subject image against the annotated cells in each 
template image, and then matches cells in the subject image to a unique cell by 
considering assignment scores based on the first-level matching results. In Section 3 
we introduce and constrain the possible matchings to observe relative spatial invariant 
relationships discovered in the training stacks, specifically, the anterior-posterior (AP), 
left-right (LR), dorsal-ventral (DV) invariant relationships.  In Section 4 we introduce 
a marker-based strategy in which a f iducial framework of alternately-labeled marker 
cells is automatically annotated with very high confidence, and then these are used to 
triangulate and constrain the annotation of the remaining cells. 

We applied ARC to the 3D confocal images of the first larval stage (L1) of C. 
elegans hermaphrodite that has ~558 cells [1]. For this problem we manually 
annotated 351 cells in 15 templates.  Most of the un-annotated cells are small neurons 
in the head of the organism. Our results show that using our marker-guided, 
AP/LR/DV-constrained, two-stage bipartite matching, we achieved 94.91% accuracy 
in searching for these 351 cells in an initially unsegmented image stack.  

2. Two-stage Bipartite Graph Matching 
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Given a subject image S in which cells are to be recognized by a computer program 
and a template image T in which cell identities have been annotated by biologists, we 
can formulate our problem as bipartite matching. Consider the directed bigraph G =  
(VS! VT,E) consisting of two disjoint vertex sets, VS for the subject S and VT for the 
template T, and all edges E = VS! VT from VS to VT. Later we will restrict E to be a 
subset of all the possible pairings. In the f irst stage we find a minimal cost, maximal 
matching M between VS and VT.  That is, we minimize a cost function 

!  

E1 = D1(s" t)
s" t # M

$                                                    (1) 

over all sets of edges M for which adding another edge to M gives a set of edges which 
is no longer a matching, i.e. 

!  

" s# t out(s) =1or in(t) =1( ) where out and in are the 

out- and in-degree of a vertex.  

!  

D1
(s" t)  is the distance between cells s and t, i.e., 

!  

D1(s" t) = ps # pt = (xs # xt )
2 + (ys # yt )

2 + (zs # zt )
2                    (2) 

where pc = (xc,yc,zc) is the coordinate of the cell c. We f ind M by using the Hungarian 
algorithm [15]. 

If we have K template images T1 through TK, we obtain K maximal matchings M1 
through MK against the subject S. Thus a cell in S has anywhere from 0 to K 
assignments of cell names. Let the set of cell labels 

  

!  

L = VTk

kU  be the set of all cell 

names used in some template.  Note carefully, that not every cell annotation in L is 
necessarily labeled in a template.  We then use the second stage bipartite matching to 
determine the unique identity of each cell in S, by finding the minimum cost E2, 
maximal match 

!  

M* " V S # L with respect to the cost function D2 defined as follows: 

!  

D2(s" t) = N(s# t)
s$ V S%( ) &N(s# t)                                  (3) 

where 

!  

N(s" t) = k : s# t $ Mk{ }  is the number of times that s is assigned to t.  In 

summary, the first stage finds the best matching of subject cells to the cells of each 
template based on minimizing Euclidean distances, and the second stage finds the best 
matching of subject cells to a label by, in effect maximizing the number of template 
cells that support the assignment. Because the bipartite matching minimizes a global 
cost and guarantees a one-to-one mapping, it is superior to a simple majority vote 
scheme. Note that the result does not depend on the processing order of the templates. 

3. Imposing AP/LR/DV Constraints 

The bipartite matching scheme in ¤2 does not consider the relative spatial relationship 
among vertices within VS or within VT. For example suppose a pair of cells (a,b) in the 
subject S should be mapped to a pair of cells (u,v) in the template T, with a to u, b to v, 
where it is always the case that u is anterior to v in all the templates. The 
unconstrained bipartite matching is free to match a to v and b to u and this is likely 
wrong. To solve this problem, we propose using invariant anterior-posterior (AP), left-
right (LR), and dorsal-ventral (DV) relationships between cells to prune the possible 
match edges, i.e. the set of edges E between VS and VT in the bipartite graph model.  
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3.1 Der iving the Intr insic AP/LR/DV Relationships Between Cells  

The intrinsic AP/LR/DV relationships among cells are derived from the template 
images. Let us take the AP relationship as an example. We compute the |L|" |L| 
adjacency matrix APk for each template Tk, where APk(u,v) = 1 if  cell u is anterior to 
cell v, or either of u or v is in 

!  

L " VTk , and 0 otherwise. Then the consensus AP 
adjacency matrix, denoted AP, can be obtained by applying the simple element-wise 
AND operation, #, on the APk, i.e., 

!  

AP= AP1 " AP2 " ..." APK . In this matrix, AP(u,v) 
= 1 if and only if  cell u is always anterior to cell v in all K templates, and 0 otherwise 
(we are assuming that every label is used in at least one template).  In the same way, 
we also compute the LR/DV adjacency matrix LR and DV to describe the intrinsic LR 
and DV relationships among cells across different images.  

3.2 Constructing AP/LR/DV Adjacency Matr ices for  a Subject Image 

Given a matching M that maps cells in the subject S to cells in a template Tk, we may 
construct AP/LR/DV adjacency matrices for S, denoted ap, lr , and dv, as follows. If  a 
pair of cells a and b in S are recognized as cells u and v in Tk, respectively, under the 
bipartite matching M, i.e., a" u #  M and b" v #  M, and cell a is anterior to b in the 
subject image then we set ap(u,v) = 1. We also set ap(u,v) = 1 if  u or v is in 

!  

L " VTk . 
Otherwise ap(u,v) = 0. Similarly, we compute the LR/DV adjacency matrices lr  and 
dv.  In brief, the spatial relationships of the subject are mapped to the template via the 
matching M. 

3.3 Selecting Wrongly Recognized Cells and Pruning Impossible Edges of the 
Bipar tite Graph 

Given a" u #  M and b" v #  M, if ap(u,v)=1 and ap(v,u)=0, but AP(u,v)=0 and 
AP(v,u)=1, then it is the case that cells a and b in the subject, where a is anterior to b, 
are labeled as cells u and v, with u always posterior to v in the templates they occur in. 
Thus at least one of the cells a and b in the subject is matched incorrectly. More 
generally, we may compute a contradiction matrix C using the 6 adjacency-matrices: 

!  

C = Cap " Clr " Cdv
    (4) 

!  

Cr = [(R) " (ÂRT ) " (Âr ) " (r T )] # [(ÂR) " (RT ) " (r ) " (Âr T )]  (5) 

where 

!  

" ,#,Â are the element-wise OR, AND, and NOT operations, respectively, and T 
is matrix transposition.  R represents adjacency matrices AP, LR, DV, and r  represents 
adjacency matrices ap, lr, dv respectively. Moreover, when r  equals say ap in Eq. (5) 
then R is AP.  Observe that C(u,v) = 1 if and only if one or more of the AP, LR, or DV 
relationships of cells a and b in the subject image are contradictory to those of cells u 
and v in the template. Thus at least one of a and b is wrongly recognized. 

Based on the contradiction matrix C, we select, with high confidence, the cells in 
the subject that are wrongly labeled by M. We then cut the edges between these cells 
in the subject image and their mappings in the template and rerun the bipartite 
matching. To select the cells that are most likely to be wrongly recognized, we count, 
for each cell a in the subject S, the number of cells in S that have a contradictory 
AP/LR/DV relationships with cell a, i.e.,  



 

 
Proc. of  RECOMB 2008: 12th Annual Int. Conf . on Research in Computational Molecular 
Biology, March 30- April 2, 2008, Singapore; Lecture Notes in Computer Science: 
Research in Computational Molecular  Biology, Springer  Berlin /  Heidelberg, pp. 128- 139, 
2008. 

5 

conflict(a) = |{ b | C(u,v) = 1, a$ u #  M, b$  v #  M} |  (6) 

We then take the most conflicted cell and remove the edge between it and its 
assigned vertex in M. We then compute using the Hungarian algorithm [15] a new M 
with respect to the reduced bipartite graph.  This process is repeated until %a conflict(a) 
does not decrease for tmax sequential steps (tmax=3 for the results reported, but other 
values yielded similar results.).  Once terminated, one takes as the answer the 
matching M that gives the minimum %a conflict(a). 

We have thus far not identified M as M*  or one of the Mk.  We actually f ind 
conflicts for each stage 1 matching Mk and should technically speak of Ck.  That is, we 
produce the best subject to template matching for each template using the matrices 
AP, DV, and LR that represent the invariant relationships over all the templates.  
Thereafter, we proceed with compute M*  in stage 2 as before.  Algorithm 1 in 
Appendix shows the pseudo-code of the AP/LR/DV constrained two-stage bipartite 
matching.  

4. Marker-based Recognition 

The recognition approach above treats each cell equally and matches them all together 
at once. However, biologists usually use markers to aid cell identification. For 
instance, in the manual annotation of cells in C. elegans, our biologists f irst assigned 
names to the body wall muscle cells that were stained separately with GFP. With these 
marker cells labeled, the biologists then annotated both the ventral motor neurons and 
intestinal cells by examining their positions relative to the marker cells. After that the 
biologists used relative triangulation to annotate most other cells in trunk. Therefore, 
in addition to AP/LR/DV-constrained bipartite matching, in the following we present a 
hierarchical strategy similar to that of the biologists by first identifying marker cells 
and then using these marker cells to aid the identification of other cells.  

4.1 Recognition of Muscle Cells 

In the L1 larval stage of C. elegans, there are 81 body wall muscle cells and 1 
depressor cell distributed along the entire worm body from the head to the tail. In our 
data (see ¤5 for details), most muscle cells, lit up by GFP in a separate frequency 
channel, are well separated from each other and thus are easier to segment and 
recognize, compared to other cells. We thus f irst use the AP/LR/DV-constrained 
bipartite matching to recognize just these 82 cells in the GFP channel. In this case, the 
adjacency matrices, AP, LR, DV, ap, lr , dv and an assignment are computed only for 
these 82 cells. 

4.2 Identifications of Additional Markers 

Once the identities of 81 body wall muscle cells and the 1 depressor cell have been 
determined, we use them as markers to identify cells that can be uniquely determined 
according to their relative positions with respect to these muscle cells. For this 
purpose, we again make use of adjacency matrices of template images and of the 
subject image. However, at this stage we only care about the relative relationship of 
cells to be recognized with respect to the markers. Thus we use sub-matrices of the six 
adjacency matrices. Using AP as an example, we extract 2 sub-matrices, denoted as 
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AP(pxq) and AP(qxp). The sub-matrix AP(pxq) contains p rows and q columns. The p rows 
correspond to the p cells in the template to be matched by the cells in the subject 
image. The q columns correspond to the q marker cells (i.e., 82 in this example). Note 
that p+q = NT is the total number of cells annotated in the template images. The sub-
matrix AP(qxp) contains q rows and p columns, corresponding to q marker cells and p 
cells to be matched by cells in the subject image. The combination of AP(pxq) and 
AP(qxp) reflects the relative AP relationship between a cell and a marker. More 
specifically, if we denote B1=AP(pxq) # (ÂAP(qxp)

T), and B2=(ÂAP(pxq)) # (AP(qxp)
T), 

then cell u is anterior to marker v if  B1(u,v) =1 and B2(v,u)=0, posterior to marker v if  
B1(u,v)=0 and B2(v,u) = 1, and can be either posterior or anterior to marker v if  
B1(u,v)=0 and B2(v,u)=0. Similarly, we compute LR(pxq), LR(qxp), DV(pxq) and DV(qxp).  

We also extract the sub-matrices of ap, lr , and dv, denoted as ap(rxq), ap(qxr), 
lr (rxq), lr (qxr), dv(rxq) and dv(qxr). The r rows (in ap(rxq), lr (rxq), dv(rxq)) or r columns (in 
ap(qxr), lr (qxr), and dv(qxr)) correspond to the r cells in the subject image to be 
recognized (note that r $ p). The q columns (in ap(rxq), lr (rxq), dv(rxq)) or q rows (in 
ap(qxr), lr (qxr), and dv(qxr)) correspond to the q cells in the subject image that have been 
recognized as markers (i.e, 82 muscle cells in this example). Note that r+q = NS is the 
total number of segmented cells in the subject image S. With these adjacency sub-
matrices available, we further derive three matrices: 
 

! 

H
( r"p )

(r ) = [h(r )](r"p) = [(r(r"q))# (Âr(q"r ))
T ] " [(ÂR( p"q))

T
# (R(q"p))]

          + [(Âr(r"q))# (r(q"r ))
T ] " [(R( p"q))

T
# (ÂR(q"p))] 

              (7) 

where "  is matrix multiplication operation. R represents adjacency matrices AP, LR, 
DV, and r  represents adjacency matrices ap, lr , dv respectively, similar to Eq. (5). 

We then binarize 

!  

H
( r" p )

(r ) , obtaining 

!  

C
( r" p )

(r ) : 

!  

 C(r" p)
(r ) = [c(r )(a,u)](r" p) =

1  if h(r )(a,u) > 0

0 if h(r )(a,u) = 0

# 
$ 
% 

& % 
   (8) 

If an element

!  

 c(ap)(a,u) in 

!  

 C(r" p)
(ap)  is 1, then the AP relationships between cell a 

and the marker cells in the subject image are different from those between cell u and 
the marker cells in the template. Thus cell a should not be recognized as cell u. The 
edge between a and u in the bipartite graph should be cut. On the contrary, if  

!  

 c(ap)(a,u)=0, then the AP relationships between cell a and the marker cells in the 

subject image are consistent with those between cell u and the markers in the template. 
Thus cell a can be recognized as cell u. The edge between a and u in the bipartite 
graph should be kept. Similar explanation applies to 

!  

c(dv )(a,u) and 

!  

c(lr )(a,u).  

Considering AP, LR, DV relationships all together, the contradictory matrix is 
computed as  

 
 

!  

 C(r" p) = C(r" p)
(ap) # C(r" p)

(lr ) # C(r" p)
(dv )     (9) 
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We then search for pair-wise cells (a,u) in matrix C(rxp), such that C(a,u) = 0, and 
&x' u, C(a,x)=1, &x' a, C(x,u)=1. This condition means cell a in the subject image can 
only be recognized as cell u in the template and at the same time cell u can only be 
assigned to cell a. In another word, cell a can be uniquely identif ied based on its 
relative position with respect to the markers. Cells thus identif ied are added to the set 
of markers. For those pair-wise cells (a,u) such that C(a,u) = 1, we cut the edge 
between them in the bipartite graph by setting the distance between a and u to inf inity. 

After expanding the marker set, we repeat the above process until no new marker 
cell can be found. The remaining cells that cannot be uniquely determined according 
to their relative relationship with respect to markers are then recognized using 
AP/LR/DV constrained bipartite matching as described in ¤3. Algorithm 2 in 
Appendix shows the pseudocode of the marker-guided, AP/LR/DV constrained, two-
stage bipartite matching. 

5. Exper iments 

We applied our ARC method to the 3D images of newly hatched first larval stage 
hermaphrodites of C. elegans that were acquired using a Leica confocal microscope 
with 63x/1.4 oil lens. We used DAPI to stain the nuclei of all 558 cells, and GFP to 
stain the nuclei of the 81 body wall muscle cells and 1 depressor muscle cell (see 
Figure 1 for example data). As a worm body usually curves in 3D, we developed an 
automated approach to straighten a curved worm body into a canonical rod shape to 
facilitate later image comparison across different individuals [3] (see example in 
Figure 1 (b)). We then segmented cells in 3D using adaptive thresholding, the 
watershed algorithm, and a region grouping method (the details of the method [2] are 
beyond the scope of this paper, thus they are omitted). After that, we normalized each 
worm image, making the sizes and the orientations of different worms the same. This 
step maps the coordinates of the cells into a standard space defined by AP, LR, and 
DV axes. Finally, we annotated cells in a set of images with the aid of a 3D annotation 
tool called WANO developed by us (see Figure 1 (b) for schematic example of 3D 
annotated templates). Cells in the nerve ring of the head are small and tightly clustered 
and so very diff icult to annotate solely based on our current images without 
developmental or cell-specific staining information. We annotated the subset of 351 
cells out of the 558 cells, that exclude most neurons in the pharynx. These annotated 
cells include all the body wall muscle cells distributed along the entire worm body, 99 
cells in the trunk where cell densities are relatively low, and 170 additional cells of 
different types in the head and tail. Thus our purpose was to match a subset of ~558 
segmented regions in a subject image against the 351 annotated cells in templates. 

One of the key ideas in this paper is to use the relative location relationships 
among cells to constrain the possible matching. We computed and analyzed the AP, 
DV, LR adjacency matrices from template images. Figure 2 illustrates the invariant 
AP relationship. For clarity of displaying, we only show the AP relationships of 181 
cells by plotting the AP adjacency matrix as a graph after transitive reduction. It can 
be seen that many cells have strong AP relationships, apparently due to the stereotypy 
of C. elegans cells. These relationships, as well as the DV and LR relationships were 
used to constrain the possible mappings between cells in a subject image and the 
templates. 
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We used 15 image stacks and leave-one-out cross validation scheme to test our 
recognition method. In other words, we repeated the experiment 15 times. Each time 
we took one image as the subject image and the remaining 14 as the template images. 
Our purpose was to identify from all the segmented cells in each subject image the 351 
cells that had been annotated in the templates. We compared our three approaches: 
two-stage bipartite matching (BM), AP/LR/DV constrained two-stage bipartite 
matching, and marker guided AP/LR/DV constrained two-stage bipartite matching.  
 

 

Fig. 2. Illustration of the invariant AP relationship of cells. For clarity of visualization, only the 
transitive reduction of the AP adjacency matrix is shown here for a set of 181 cells, including all 
82 muscle cell markers and all cells in the trunk of L1-stage C. elegans. In this figure, left is 
anterior and right is posterior. An arrow always points from left to right (i.e. anterior to 
posterior). 

The results in Table 1 show that using only the spatial coordinates of cells 
without considering the relative relationships between cells, the bipartite matching can 
only achieve an average of 73.79% accuracy in recognizing the 351 cells from the 
~558 segmented regions (the second column in Table 1). When adding AP/LR/DV 
constraints to tailor edges in the bipartite graph, the accuracy improved ~5% (the third 
column in Table 1). With the combined use of marker-guides and AP/LR/DV-
constrained bipartite matching, the average recognition accuracy improved 
significantly to 94.91% (the fourth column in Table 1). In this case, the average 
recognition rate of muscle cells (markers) is 99.81% (all 100% except that for stack 
S13, which is 97.56%) (not shown in Table 1). Thus the average recognition rate of the 
remaining 269 cells is 93.42%. This indicates that the accuracy improvement is not 
merely due to the increased number of muscle cells that are correctly recognized in a 
separate channel but due to the marker guided scheme.  

We also compared our method against other conventional approaches such as the 
K-Nearest-Neighbor (KNN) classif ier and soft assignment approach [7]. The KNN 
approach f inds for each cell in the subject image the K closest cells in the templates 
and then use majority vote to determine cell identities. The method did not yield a 
leave-one-out accuracy higher than 60%, much lower than our results showed in Table 
1. The soft assignment method is computationally very expensive for big graphs. Thus 
we tested the recognition of 99 trunk cells. Despite the low number and low density of 
these cells which makes the task easier than our original matching problem, our results 
show that the average recognition rate using soft assignment is no higher than 68%.  
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         We further analyzed for each cell to be recognized, how many times in the 15 
images it is wrongly recognized. We then computed distribution of the cells and 
plotted the percentage of cells as a function of the number of images in which a cell 
was wrongly recognized. The result is shown in Figure 3. Among the 351 cells, 71% 
(the left most bar) of them are correctly recognized in all the 15 images, 90% (the sum 
of the three left most bars) are correctly recognized in 13 to 15 of the15 images. In the 
worst cases, there are two cells wrongly recognized in 7 images and another two cells 
wrongly recognized in 9 images (the two right-most bars). Those cells do not have a 
fixed local spatial relationship with respect to their neighboring cells and are in the 
head where cells are more densely clustered in the animal. 

Table 1. Comparison of the recognition rates of the two-stage bipartite matching (BM), 
AP/LR/DV constrained two-stage BM, and marker-guided-AP/LR/DV-constrained-two-stage 
BM. The rates are produced by leave-one-out cross validation on 15 image stacks.  

 

Image 
stack 

Two-stage 
BM 

AP/LR/DV 
 constrained 

BM 

Marker guided 
AP/LR/DV 
constrained 

BM 
S1 0.7114 0.7771 0.9486 
S2 0.7593 0.8166 0.9341 
S3 0.7607 0.8319 0.9829 
S4 0.7721 0.8205 0.9288 
S5 0.7892 0.8689 0.9259 
S6 0.5244 0.6074 0.9799 
S7 0.8054 0.8084 0.9581 
S8 0.7216 0.7994 0.9731 
S9 0.6161 0.6726 0.9821 
S10 0.9017 0.9153 0.9186 
S11 0.8328 0.8396 0.9147 
S12 0.6944 0.6458 0.9271 
S13 0.7550 0.8177 0.9459 
S14 0.7229 0.7971 0.9571 
S15 0.7009 0.8034 0.9601 

mean 0.7379 0.7881 0.9491 
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Fig. 3. The percentage of cells P(k) incorrectly recognized in k of the 15 images. 

Overall, the experimental results show that our method can achieve high 
recognition accuracy despite the difficulty of the problem. To further improve the 
recognition accuracy, we will use additional cell information, such as size, shape, and 
gene expression levels. In fact, although our method currently only uses spatial  
coordinates and the relative spatial relationships between cells, our scheme is general 
enough to incorporate this additional cell information for further improvement.  
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Appendix 
 
Algor ithm 1: Cell recognition using AP/LR/DV constrained two-stage bipartite matching 
Input: A subject image S with NS segmented cell regions and template images Tk, k(  [1,K], with 

!  

NTk  annotated cells each, and a threshold tmax .   
Output: Matching matrix M* and cost value E2 

1. Compute the intrinsic adjacency matrices AP, LR, DV. 
2. &a, &u, Set 

!  

N(a " u)  = 0 
3. FOR EACH Tk  
4. {   Compute distance 

!  

D1(a " u) using Eq. (2) 
5.     Set t = 0, minerr = )  
6.     WHILE (t < tmax) 
7.     {   Compute matchings

!  

Mk
 using the first stage bipartite matching 

8.         Compute adjacency matrices ap, lr , dv from the subject image S using 

!  

Mk  
9.         Compute contradiction matrix C using Eqs. (4)~(5) 
10.   Select wrongly matched a and set 

!  

D1(a " u) = )   for 

!  

a " u # Mk 
11.   IF 

!  

conflict(a)
a

" # minerr 

12.              

!  

minerr= conflict(a)
a

" , 

!  

MB
k
=

!  

Mk  

13.   ELSE 
14.              t = t+1}  
15.   

!  

Mk = 

!  

MBk 
16.   

!  

N(a " u)  =  

!  

N(a " u)  + 1, if 

!  

a " u # Mk}  
17.  Compute 

!  

D2(a " u)  using Eq. (3) 
18.  Compute the matching M* and cost value E2 using 

!  

D2
(a " u)  and the second  

              stage bipartite matching 
 
 
Algor ithm 2: Cell recognition using marker guided, AP/LR/DV constrained, two-stage bipartite 
matching 
Input: A subject image S with NS segmented cell regions and K template images Tk, k( [1,K], 

each with 

!  

NTk  annotated cells, and a threshold tmax.   
Output: Matching matrix M* and cost value E2 

1. Compute adjacency matrices AP, LR, DV from template images Tk, k( [1,K]. 
2. Recognize muscle cells in the GFP channel by calling Algorithm 1. 
3. Let U={ all segmented regions in S} , Um={ recognized muscle cells in S} , V = 

{ annotated cells in templates} , Vm = { annotated muscle cells in templates}  
4. WHILE (new markers detected) 
5. {   U = U \ Um, r = |U|, V = V \ Vm, p = |V|  
6.     Compute contradiction matrix 

!  

 C(r" p)
 using Eqs. (7)~(9)  

7.     Prune edges in the bipartite graph using

!  

 C(r" p)
 

8.   Detect new markers,Um = Um! {new markers in S} , 
                    Vm = Vm! {new markers in T }  

        }  
9. &a( U \Um, &u( V \Vm, set 

!  

N(a " u)  = 0 
10. FOREACH Tk  
11. { Compute distance 

!  

D1(a " u)using Eq. (2) 
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12. Set t = 0, minerr = )  
13. WHILE (t<tmax) 
14. {  Compute matching matrix 

!  

Mk using the first stage bipartite matching 
15. Compute adjacency matrices ap, lr , dv from subject image S using 

!  

Mk  
16. Compute contradiction matrix C using Eqs. (4)~(5) 
17. Select wrongly matched aÕs and set 

!  

D1(a " u)= )  for 

!  

a " u # Mk 

18. IF 

!  

conflict(a)
a

" # minerr 

19.      

!  

minerr= conflict(a)
a

" , 

!  

MBk
=

!  

Mk
 

20. ELSE 
21.        t = t+1 }  
22. 

!  

Mk
= 

!  

MBk
 

23. 

!  

N(a " u)  =  

!  

N(a " u)  + 1, if 

!  

a " u # Mk
}  

24. Compute 

!  

D2
(a " u)using Eq. (3) 

25. Compute the matching M* and cost value E2 using 

!  

D2(a " u)and the second 
stage bipartite matching 

 
 
 


