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We built a digital nuclear atlas of the newly hatched, 
first larval stage (L1) of the wild-type hermaphrodite of 
Caenorhabditis elegans at single-cell resolution from confocal 
image stacks of 15 individual worms. The atlas quantifies the 
stereotypy of nuclear locations and provides other statistics 
on the spatial patterns of the 357 nuclei that could be 
faithfully segmented and annotated out of the 558 present at 
this developmental stage. We then developed an automated 
approach to assign cell names to each nucleus in a three-
dimensional image of an L1 worm. We achieved 86% accuracy 
in identifying the 357 nuclei automatically. This computational 
method will allow high-throughput single-cell analyses of the 
post-embryonic worm, such as gene expression analysis, or 
ablation or stimulation of cells under computer control in a 
high-throughput functional screen.

Despite the detailed knowledge of the anatomy of the nematode 
C. elegans1 as well as its determined cell lineage2,3, the mapped 
connectivity of its nervous system4,5 and its sequenced genome6,7, 
we still lack a three-dimensional (3D) digital atlas of positions of 
nuclei in any postembryonic stage. Such an atlas has several poten-
tial applications. First, it provides us with previously unavailable 
quantitative knowledge about the degree of stereotypy of the 
positions of nuclei and the specific spatial relationships between 
different cells. Second, the atlas can serve as a standard template; 
we can compare any 3D image of a wild-type C. elegans to the atlas 
and extract the identities of individual nuclei using an automated 
approach. This is essential for high-throughput analysis of cellular 
information such as gene expression at single-cell resolution. Such 
an analysis provides much richer information than does analysis 
of expression data from a DNA microarray experiment8,9 as DNA 
microarrays reveal average expression from tissue or from the 
entire individual but not the expression in an individual cell.

Prior to this study, the anatomy of C. elegans has been described 
qualitatively by images with a text description or two-dimensional 
sketches10. Early efforts using electron microscopy analyses have 
resulted in detailed views of the anatomy10 and even a connec-
tivity graph of the nervous system4,5, but to date, manual or 
automated segmentation of the fine structure of such an ultra-
high-resolution image stack has not been demonstrated. Whereas 

one might contemplate carrying out such a manual segmentation 
for a single worm, doing so for enough worms to deliver statistical 
information on the location of nuclei is effectively impractical.

Our method for automatically analyzing individual cells in 
postembryonic worms complements the similar capability devel-
oped previously for the embryo11,12. However, the computational 
problem is completely different. The previous method consists 
of tracking nuclei as they divide in vivo using known cell lineage 
information. In this work, we identified nuclei in situ without the 
help of temporal or lineage information. Moreover, our method 
is general and could be applied to other stereotypic systems, such 
as later post-embryonic worm stages or the fruit fly embryonic 
nervous system13. Here we present the method we used to build 
the atlas, followed by analyses of the model to confirm that it 
is well-constructed and recapitulates known biology. Then we 
describe our automated approach for using the atlas to annotate 
cell identities in images of first larval stage (L1) worms and dem-
onstrate its accuracy.

RESULTS
Building a 3D digital atlas
We used DAPI (4,6-diamidino-2-phenylindole) to stain the nuclei 
of all 558 cells. We used a myo-3:GFP transgene to label the nuclei 
of the 81 body wall muscle cells and 1 depressor muscle cell. These 
nuclei were fiducial markers, used by our manual and automated 
approach to annotate cells. We used a gene encoding monomeric 
Cherry protein (mCherry) driven by a promoter from a gene of 
interest to reveal expression in a set of target cells. We collected 
3D images of C. elegans at the L1 stage using a Leica confocal 
microscope (Fig. 1a) with a ×63 oil lens and x-y and z dimension 
sampling set at 0.116 µm and 0.122 µm per pixel, respectively.

To build a standard digital atlas, we first computationally 
straightened the curved worm body in the 3D image into a  
rod shape14 (Fig. 1b, Supplementary Fig. 1 and Supplementary 
Video 1). The method first detects the principal curve or ‘back-
bone’ that represents the anterior-posterior line that passes 
from head to tail through the center of a straightened worm 
(Supplementary Fig. 1b). It then generates one-pixel separated 
planes orthogonal to the backbone and restacks them along a 
straight anterior-posterior line, making the planes parallel to each 
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other (Supplementary Fig. 1c). Because each local transform is a 
rigid rotation, the resolution of the straightened image is merely 
a function of the subpixel interpolation error when a straight  
line is rotated in space. Thus, the overall resolution loss is  
naturally minimized.

We next developed an automatic approach to segment each 
individual nucleus in the 3D image of the straightened worm 
(Fig. 1c and Supplementary Fig. 2). First, our method applies 
3D median filtering (3 × 3 × 3 pixels) followed by Gaussian 
filtering (s.d. = 1) to reduce noise so that the intensity distribu-
tions in nuclear regions become less variable. It then fills any 
intensity holes in the nuclei, which are typically nucleoli that are 
unstained by DAPI (Supplementary Fig. 2b). Next, our method 
uses adaptive thresholding to detect local background, generating 
a location-dependent foreground mask of nuclei or clusters of 
nuclei (Supplementary Fig. 2c). After that, it applies the distance 
transform, which computes the distance of a foreground pixel from 
the nearest background pixel, converting the binary foreground 
mask into a gradient image. An initial segmentation of nuclei is 
then generated from the gradient image using the 3D watershed 
algorithm15,16 (Supplementary Fig. 2d). Finally, to handle the 
small number of over- and under-segmented regions, we devel-
oped both rule- and training-based methods to merge and split 
regions. The rule-based method uses the statistical information of 
the segmented regions to predict regions of wrong segmentation 
and then uses rules defined on shape, size and intensity of typi-
cal nuclear regions to merge or split regions. The training-based 
method trains a support vector machine classifier17,18 using the 
intensity, size and shape of nuclei to determine whether a region 
should be further split or merged. Splitting and merging of regions 
are iterated until the classifier predicts that additional merging 
or splitting of a given region is unwarranted (Supplementary  
Fig. 2e,f). Overall, the training-based approach produces slightly 
better results.

Then, we manually validated, corrected and annotated 
the segmented nuclei using cell name conventions of the  

C. elegans community. For this purpose, we had previously 
developed a 3D annotation and visualization tool called a volume-
object image annotation system19 (VANO; Supplementary  
Fig. 3), which permits one to edit any observed errors in the  
segmentation and to enter a name for every segmented region or 
nucleus. Our manual annotation is based on the morphology and 
relative spatial positions of cells10 (Online Methods). As we used 
GFP to highlight the 81 body wall muscle cells and 1 depressor 
cell in a separate channel, we annotated these nuclei first. We then 
used these muscle cells as fiducial markers to identify additional 
nuclei whose spatial relationships with respect to these marker 
nuclei are stable. We added the newly annotated nuclei to the 
marker set and repeated this process. By doing so, we manually 
annotated approximately 357 nuclei in each image with high con-
fidence (Supplementary Note and Supplementary Fig. 4).

Individual C. elegans images differ in size and orientation; 
therefore, the final step was to register or map all of the stacks 
into the same canonical space so that the positions of their nuclei 
are comparable. For this purpose, we computed the ‘median’ or 
‘centroid’ of the collection of K stacks, say C, for which the sum 

a

b

c

Figure 1 | Automatic processing of a 3D image of C. elegans. (a) A 
two-dimensional (2D) slice of a 3D image. Blue, DAPI; green, nuclear 
localization signal (NLS)-GFP expressed from the myo-3 promoter; red, 
mCherry regulated by a promoter of interest (in this example, expression 
is in some ventral motor neurons and neurons in the nerve ring). (b) The 
same 2D slice after worm body straightening. (c) The segmentation result 
of the DAPI channel of same 3D image, with the same 2D slice as in a. 
Scale bars, 10 µm.
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Figure 2 | Statistics of nuclear positions. (a) The mean (dots) and 
standard deviation (lines) of the locations of 357 nuclei along the AP 
axis computed from 15 randomly selected images of L1 hermaphrodites. 
The vertical axis is the ordering of the nuclei sorted according to their 
mean locations along the AP axis. Bottom inset, names of a subset of the 
357 nuclei marked by the red box. Top inset, distribution of the standard 
deviation of nuclear locations of all the 357 nuclei. (b) The average 
standard deviation of nucleus positions along the indicated dimensions  
as functions of the number of stacks used to build the atlas.
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of the squared differences of the 357 or so nuclei centers between 
C and every other stack was minimal. We then used C as the refer-
ence stack to map every other stack to it via an affine transform. 
The final atlas is the ensemble of the transformed nuclei positions 
for each named nucleus in the coordinate system of the reference 
stack (Supplementary Video 2).

Statistical analysis of the atlas
We analyzed the mean and standard deviation of the center posi-
tions of each nucleus along the anterior-posterior (AP; Fig. 2a), 
dorsal-ventral (DV; Supplementary Fig. 5a) and left-right (LR; 
Supplementary Fig. 5b) axes (Supplementary Table 1). The dis-
tribution of standard deviation along the AP axis showed that 77% 
of the cells had standard deviations of cell positions less than 2 µm  
(Fig. 2a). The average standard deviation of the position of cell 
nuclei along the AP axis was 1.87 µm, which is about 72% of the 
average nuclear diameter. This recapitulates that cell nuclei in the 
L1 stage have positions that are highly stereotyped and provides a 
quantitative estimate of the stereotypy of each cell. Note that this 
estimate is an upper bound as some of the observed variations may 
be due to imperfect staging, straightening, registration and so on.

Several cell nuclei had a standard deviation of their position 
that was more than twice that of other nuclei along a given axis 
(see Supplementary Note for a list of these cells). These hyper-
variable nuclei included the nuclei of hypodermal cell hyp7, the 
intestinal nuclei, and the hermaphrodite-specific neuron and 
coelomocyte cell nuclei, among others. hyp7 is a large syncytium 
with 23 nuclei that are free to move within the cell relative to 
each other. The number of intestinal cells varies between 19 and 
21 in individual worms, and the location of these cells is variable 
depending on cell number. Finally, the hermaphrodite-specific 
neuron and coelomocyte cells start to migrate shortly after hatch-
ing. So the results from the atlas agree with known biology.

To determine the minimum number of 
stacks needed to build the atlas, we tested 
how the statistics of nucleus positions 
changed as the number of stacks increased. 
For this purpose, we randomly chose  
K stacks, with K ranging from 5 to 40, and 

computed the average standard deviation of nucleus positions along 
AP, DV and LR axes for each K value. To make the statistics independ-
ent of the stacks chosen, we repeated this process 200 times, each time 
with different subsets of the stacks and obtained an average curve 
(Fig. 2b). The average standard deviation of cell positions along AP, 
DV, and LR axes increased quickly with K and then tapered off with 
only an inconsequential and asymptotically limited increase after 
K = 15 stacks. This confirmed the stability of our computational 
approach and justified using 15 stacks for the atlas.

The atlas permits more sophisticated analysis on nuclear 
locations. For instance, we quantitatively modeled and visual-
ized the spatial patterns of nuclei within and across different 
types of cells, such as the four bundles of body wall muscle cells 
(BWMVL, BWMVR, BWMDL and BWMDR), the intestinal 
cells (InD and InV), the hypodermal cell hyp7, the blast cells 
H, V and T, the P cells, and the ventral motor neurons DD, DA 
and DB, using quadratic polynomial curves through the mean 
cell nucleus positions (Fig. 3a,b). The spatial distributions of 
pharyngeal muscle cell and marginal cell nuclei in the head  
(Fig. 3c,d) form 7 rings of pharyngeal muscle cell nuclei and  
3 rings of marginal cell nuclei projected onto the AP-LR plane. 
The spacing of nuclei within each ring was quite consistent with 
earlier qualitative descriptions of worm anatomy1,10 (see also 
http://www.wormatlas.org/).

We also analyzed the invariant spatial relationships between 
nuclei along the AP, DV and LR dimensions. For this purpose, we 
built a graph in which each nucleus was a vertex and there was a 
directed edge from nucleus u to nucleus v if nucleus u was always in 
front of nucleus v in the dimension under consideration (Fig. 4 and 
Supplementary Fig. 6). Note that we also applied transitive reduction 
to the graphs, meaning that if nucleus u was always in front of nucleus 
v and nucleus v was always in front of nucleus w, then we removed the 
transitively inferable edge from nucleus u to w. Such graphs show the 
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Figure 3 | The nuclear spatial location patterns 
for different cell types. (a,b) Nuclear locations 
of the four bundles of body wall muscle cells 
(BWMDL, BWMDR, BWMVL and BWMVR) and 
most of the trunk cells including dorsal and 
ventral intestinal cells (InD and InV), trunk 
hypodermal cells (hyp7), H, V, T and P cells 
as well as ventral motor neurons (DD, DA and 
DB), projected onto the AP-DV plane (a) and 
AP-LR plane (b). For better visualization, we 
performed quadratic polynomial fitting for each 
cell type. (c,d) Nuclear locations of the 7 rings 
of pharyngeal muscle cells (pm) and the 3 rings 
of marginal cells (mc) in the head, projected 
onto AP-LR (c) and DV-LR (d) plane. On the AP-
LR plane, vertical lines show the mean locations 
of each ring along the AP axis. On the DV-LR 
plane, nuclei of the same ring are connected in 
lines. In d, pm2, pm3, pm1, mc1 and pm4 rings 
are shown on the left; mc2, pm5, pm6, pm7 and 
mc3 rings are shown on the right.

 

 

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



670  |  VOL.6  No.9  |  september 2009  |  nature methods

Articles

statistically verified invariance of the relative cell position, especially 
among cells of particular tissues in the body plan, and can only be 
built given an atlas constructed from many worm observations.

In addition to recording the position of each nucleus, we also 
estimated the volume and diameter of every nucleus in the atlas  
(Fig. 5). The average diameter of a nucleus at the L1 stage was 2.58  µm, 
but intestinal cells were much bigger, with an average diameter of  

3.23 µm, which could be used to identify 
them. Additionally, hyp7 and V nuclei were 
also larger, with average diameters of 2.88 µm 
and 2.90 µm, respectively. None of the nuclei 
were considerably smaller than average.

Automated annotation of nuclei
With an atlas in hand, we developed an 
automated approach that replaced the 
manual annotation of cell identities in the 
analysis of potentially thousands of stacks 
of worm lines, each expressing mCherry 
from a different target gene’s promoter. 
The motivation was to permit medium- 
to high-throughput analysis of cellular 
information at single-cell resolution. The 
procedure for a newly acquired image stack 
was (i) automated straightening; (ii) auto-
mated segmentation of the DAPI, GFP and 
mCherry channels; (iii) optional manual 
curation of the segmentation; (iv) optional 
manual preannotation of ‘problematic’ 
cell nuclei; (v) automated registration and 
annotation of the atlas cell nuclei; (vi) 
optional curation of the annotation; and 
(vii) automated extraction of cellular infor-
mation for each cell (for example, expres-
sion in the red fluorescence (mCherry) 
channel). A Matlab implementation of all 
the automated steps took less than 1 h to 
process one stack with a 2.3 GHz central 
processing unit. Our pipeline implemented 
in C is under development and prelimi-
nary timings indicate the computation 
speed will be about 10 times faster. For the 
manual steps, it takes about 1 h to curate 
the segmentation of one stack and another 
two hours to curate the annotation. In con-
trast, it takes about 3 d to process one stack 
completely manually.
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Figure 5 | Nuclear sizes for different cell types. BWMVL and BWMVR, 
body wall muscle ventral left and right bundles; BWMDL and BWMDR, 
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The computational problem posed by step v is as follows. 
We are given the K (for example, K = 15) registered ‘template’ 
images of the atlas for which 357 nuclei have been annotated 
and a ‘subject’ image S in which approximately 558 nuclei have 
been segmented and have yet to be annotated. The problem is 
to ‘match’ the 357 nuclei in the atlas and a subset of the nuclei 
in S. First, we annotated the 82 ‘marker’ nuclei (81 body wall 
muscle cells and 1 depressor cell) stained in the green fluores-
cence channel by simultaneous registration and matching using 
a random sample consensus (RANSAC)-like approach20. More 
specifically, we registered S to the reference stack C through 
many trials. In each trial, we selected 4 pairs of non-coplanar 
corresponding marker nuclei centers and computed an affine 
transform that maps S to C. We then used a bipartite matching 
algorithm21 to find the best match between the 82 marker nuclei 
of C and S under the given transform, that is, that minimizes the 
sum of the Euclidean distance between corresponding nucleus 
centers. The trial with the smallest distance produced the best 
annotation of the marker nuclei. Second, we took the affine 
transformation TGFP that minimized the difference between  
S and C with respect to all 82 GFP-labeled nuclei and used the 
now-annotated marker nuclei in S to triangulate the remaining 
cell nuclei in the DAPI channel (Online Methods). We com-
puted the normalized distance between a nonmarker nucleus 
to be annotated and its nearest marker nuclei (one anterior and 
one posterior nucleus in each of the four muscle bundles) and 
used this metric to find the best bipartite matching between 
nuclei in S and a subset of those in the atlas (Online Methods). 
We then examined the AP, DV and LR relationship in our 
initial labeling of S to see whether there was any assignment 
that seemed to substantially conflict with the invariants of 
the AP, DV and LR graphs derived from the atlas22. If so, we 
assumed the most conflicted assignment was erroneous and 

reran the bipartite matching above but this time prohibiting the  
conflicting match. We iterated this process until the level of 
conflict could not be improved.

We tested the automated annotation on a new set of 55 confo-
cal image stacks, which we manually annotated as well to assess 
the accuracy of the automated approach. First, we segmented the 
~558 cells in each stack using our automated approach. The aver-
age accuracy of the automated segmentation was 89% (Fig. 6a). 
Errors mainly occurred in the head, in which nuclear density was 
very high and the axial resolution was not high enough to resolve 
the boundary between neighboring nuclei. Among the 55 stacks,  
6 of them had notably lower signal-to-noise ratio and segmenta-
tion accuracies were lower.

We then ran automated annotation without any intervening 
manual curation of the segmentation. As errors in automated 
segmentation tend to induce errors in the ensuing automated 
annotation, we also manually corrected the segmentation errors 
in these stacks using VANO and then applied automated annota-
tion. The average annotation accuracy in this case was 86% for all  
357 cells in all 55 stacks (Fig. 6b). We found that the nuclei of body 
wall muscle cells, P cells, H, V and T cells, intestinal cells and most 
of the ventral motor neurons (D) were annotated with greater 
than 80% accuracy. There were 38 cell nuclei whose annotation 
accuracies were lower than 60%. Some were in the pharynx, where 
cell density is very high, and others had variable positions. If with 
the help of additional information such as cell morphology and 
size, we pre-annotated these 38 cell nuclei, then the automated 
annotation on the remaining 319 cells in step v became more 
accurate (Fig. 6b). Overall, the average accuracy improved to 92%. 
The percentages of cells that had higher annotation accuracy also 
appreciably improved (Fig. 6c).

Another way to use the automated annotator is to provide 
for each nucleus s a small list of k candidate identities sorted 
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Figure 6 | Accuracies of automated segmentation 
and annotation of 55 image stacks. (a) The 
accuracies of automatic segmentation for each 
stack. (b) The accuracies of automated annotation 
for the 357 nuclei. FA1, fully automated 
segmentation followed by fully automated 
annotation; FA2, manually curated segmentation 
followed by fully automated annotation; and 38PA, manually curated segmentation followed by automated annotation of 319 nuclei in each stack with 
the remaining 38 nuclei preannotated manually. (c) Percentages of nuclei falling into different annotation accuracy ranges for fully automatic annotation 
of 357 nuclei (FA1 and FA2) and for automatic annotation of 319 nuclei (38PA). ‘[‘, not less than; ‘)’, less than. (d) Percentages of the 357 nuclei whose 
identities could be determined by the top 4 candidates for each stack.
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according to their likelihood for which we used w(s,t) (the score 
of matching nucleus t in the templates to nucleus s in S; Online 
Methods) as a proxy. This presents to the user the nuclei in the 
atlas giving the top k candidates for each s in order of score. We 
considered such a list to be informative if the correct answer was 
in the list. We identified the percentage of lists that we deemed 
informative for each of the 55 stacks when k = 4 candidates  
(Fig. 6d). The average rate was 97%; in other words, the top four 
candidates determined by our approach included the correct 
identity of almost every nucleus.

DISCUSSION
The quantitative stereotypy of nuclear locations and the invari-
ance of their relative locations in this atlas can be used to examine 
hypotheses about the anatomy of a worm. In our view, the most 
important application of the atlas is that it allows us to automati-
cally process a new image stack and identify cells in the lineage 
of an L1 without human intervention, with sufficient accuracy 
to consider high-throughput studies. This cannot be achieved 
without a digital nuclear atlas and the automated nuclear anno-
tation approach.

We expect the atlas can be used in many additional applications. 
It may be used to measure gene expression patterns at single-
cell resolution and to quantitatively characterize the molecular 
expression signature of each cell. It may help detect mutants by 
identifying nuclear locations and gene expression that differ from 
those of wild-type C. elegans. It may be used to automatically 
differentiate hermaphrodites from male worms. As our software 
becomes faster and accuracy improves, we could place the soft-
ware onboard a microscope and automatically direct the laser 
ablation or stimulation of channelrhodophsin- or halorhodopsin-
expressing cells. This could allow high-throughput studies of 
worm cell function.

An important limitation is that currently, the L1 atlas includes 
only 357 nuclei. The remaining nuclei are mostly neurons in the 
nerve ring, and a small number of hypodermal cells, arcade cells 
and socket cells in the head. The nuclei are very dense in this 
region of the worm, presenting difficulties for manual annotation. 
Additional fluorescent fiducial markers, analogous to the GFP 
labeling of the body-wall muscle cells, could help us to resolve 
identities of nuclei in this difficult region and provide training 
data for automated segmentation and annotation. Another dif-
ficulty in resolving nuclei in this region is that standard confocal 
microscopy does not have sufficiently high resolution. It is our 
intuitive estimate that a factor of two or greater improvement in 
resolution would be sufficient and there is some hope that stimu-
lated emission depletion microscopy and selective plane illumi-
nation microscopy, or an optimally cleared worm preparation 
would suffice. Once we resolve the identities of these cells, our 
computational pipeline can be directly applied to generate the 
complete atlas.

Our methodology can be applied directly to other devel-
opmental stages, and this work is currently in progress. From 
an algorithmic point of view, we developed a system that can  
identify objects whose positions are stereotypic given an atlas that 
is in effect a set of registered and labeled training data. Given that 
many early developmental body plans are stereotypic, we expect 
that these methods may be useful in gene expression studies  
of development.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Manual annotation. To build the atlas, we manually annotated 
nuclear identities based on the morphology and relative spatial 
positions of cells in C. elegans qualitatively described in earlier lit-
eratures and the WormAtlas website (http://www.wormatlas.org)10  
(Supplementary Note). We assessed the accuracy of our man-
ual annotation and further improved it using three parallel 
approaches. In the first approach, we manually annotated three 
stacks, each twice independently. We found that over 98.5% nuclei 
were assigned the same names in independent annotation trials on 
different days. In the second approach, we annotated some worms 
carrying mCherry reporters whose expression has been well stud-
ied, including reporters for elt-7, pal-1, cnd-1, die-1 and pha-4. 
The expression patterns of these reporters based on our annota-
tion were consistent with their cell- and tissue-specific patterns 
reported in previous literature. In the third approach, we computed 
the standard deviation of the positions of nuclei annotated with 
the same identities across different image stacks. We then pin-
pointed those outliers with large standard deviation (bigger than 
twice of the standard deviation of other nuclei along a given axis) 
and corrected potential annotation errors if there were any. Note 
that position-variable cells were identified using other cues such as 
their morphology, size, and locations relative to marker nuclei. This 
bootstrapping strategy was repeated until we were highly confident 
that the identities of nuclei were correct. Note that since the atlas 
was built on the statistical analysis of multiple 3D worm images, it 
is robust to potential annotation errors if there were any.

Matching score in automatic annotation of nuclei in the DAPI 
channel. For each nonmarker nucleus t in the DAPI channel, 
we found the posterior-most marker nucleus in each body wall 
muscle cell bundle that is anterior to t in all templates, and the 
anterior-most such marker that is posterior to t in all templates, if 
they exist. We called this set Bt or the AP-axis ‘bracketing markers’ 

for t. For each bracketing marker b, we computed the mean µb,m(t) 
and standard deviation σb,m(t) over the K stacks of its distance to 
nucleus t along each dimension m ∈ {AP, DV, LR}. The score of 
matching nucleus t in the templates to nucleus s in S, w(s,t) is the 
average number of standard deviation σb,m(t) that the distance, 
db,m(s), between s and each bracket marker b (in S) differs from 
the mean distance µb,m(t) for t, that is, 
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b m b m

b m
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| ( ) ( ) |
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,

= −∑1
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This criterion is used to find the best bipartite matching between 
the nuclei in S and a subset of those in the atlas and serves as an 
initial annotation of the nonmarker nuclei.

Other computational methods. Descriptions of worm body 
backbone detection, hollow-shaped nuclei pattern filling, adaptive 
thresholding, watershed algorithm, and region merging/splitting 
for nuclei segmentation, VANO interface, affine transform in 
building the atlas, details on computing AP, DV and LR dimen-
sion graphs and adding spatial constraints to automatic nuclei 
annotation are available in the Supplementary Note.

Data and software. The 3D digital atlas of the 357 nuclei is 
available in two forms. A list of the mean and standard deviation 
of the position of each nucleus is available in Supplementary 
Table 1. A ‘point-cloud’ of the atlas (Supplementary Data 1) can 
be displayed and queried using the software V3D (H.P., unpub-
lished data) we developed for microscopy image data processing 
and visualization (Supplementary Video 3). Both V3D and the 
annotation tool VANO are available as a free download at http://
penglab.janelia.org/proj/v3d and http://penglab.janelia.org/proj/
vano. The Matlab code of this pipeline, called CellExplorer, along 
with a sample dataset, is available as Supplementary Data 2.
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