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Abstract. We interpret real-valued black-box optimization problems over con-
tinuous domains as black-box landscapes. The performance of a given optimiza-
tion heuristic on a given problem largely depends on the characteristics of the
corresponding landscape. Designing statistical measures that can be used to clas-
sify landscapes and quantify their topographical properties is hence of great im-
portance. We transfer the concept of fitness-distance analysis from theoretical
biology and discrete combinatorial optimization to continuous optimization and
assess its potential to characterize black-box landscapes. Using the CEC 2005
benchmark functions, we empirically test the robustness and accuracy of the re-
sulting landscape characterization and illustrate the limitations of fitness-distance
analysis. This provides a first step toward a classification of real-valued black-box
landscapes over continuous domains.

Keywords: Fitness landscape, landscape characterization, fitness-distance corre-
lation, continuous black-box optimization.

1 Introduction

Real-valued optimization problems over continuous parameter spaces (“continuous op-
timization problems”) are ubiquitous in science and engineering. They occur in many
practical applications ranging from simple parameter identification in data–model fit-
ting to intrinsic design-parameter optimization in complex technical systems. In a black-
box optimization problem only zeroth-order information about the objective function is
available. The objective function may be discontinuous or noisy, and analytic gradients
or higher-order information may be unknown or inexistent. The diversity of real-world
continuous black-box optimization problems hampers a clean classification of problem
structure and complexity. Nevertheless, an interesting approach is provided by the land-
scape metaphor. Ever since Sewall Wright introduced the fitness landscape imagery to
evolutionary biology [1] it has been a highly influential concept in many subfields of
biology and, more recently, also in combinatorial optimization [2].

We advocate that the fitness landscape perspective also offers a way to establish
a more refined analysis of continuous black-box optimization problems. Inspired by
our shared visual experience of natural terrains and sceneries, we consider the con-
tinuous input variables a high-dimensional landscape domain. Neighborhood or near-
ness in this landscape domain is defined by a suitable distance metric. We interpret the
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scalar objective function value as a height or elevation over the landscape domain. The
landscape metaphor encourages a characterization in terms of topographical features,
such as valleys, ridges, mountain peaks, and plateaus. In order to underline our view of
black-box optimization problems as high-dimensional, complex landscapes we use the
term black-box landscape. It is conceivable that certain landscape topologies allow effi-
cient optimization while others almost surely lead to failure of a given search heuristic.
Despite the tremendous number of novel continuous black-box optimization heuristics
published in the past two decades, limited attention has been paid to the question what
global topology a certain problem instance has, how to quantify it, and how success
or failure of a certain algorithm can be related to landscape topology. In this paper
we attempt a first step toward filling this gap. We propose to characterize real-valued
black-box landscapes solely based on zeroth-order information, i.e., within a statistical
sampling framework. We transfer the well-known concepts of fitness-distance plots and
fitness-distance correlation from evolutionary biology and combinatorial optimization
into the continuous black-box optimization context.

This paper is structured as follows: We first present a number of conceivable land-
scape topologies and comment on their impact on the performance of continuous search
heuristics. In Section 3 we consider the concepts of fitness-distance plots and fitness-
distance correlation. After a short review of the topic we present a number of tools
that are applicable to continuous black-box landscapes. We apply these techniques to
the IEEE CEC 2005 benchmark functions in Section 4 in order to test their capacity to
quantify certain landscape topologies. We conclude this work and suggest future studies
in Section 5.

2 Landscape Topologies and Their Impact on Continuous
Black-Box Search Heuristics

We sketch a number of conceivable landscape topologies in Fig. 1. The simplest topol-
ogy is a convex structure (Fig. 1a). This landscape has only one minimum, the global
one. If one knows in advance that both the landscape domain and the objective function
are convex, there is a wealth of exact and efficient techniques for finding this global
minimum. A globally convex single-funnel landscape topology (Fig. 1b) consists of a
number of local minima that can be seen as high-frequency perturbations to an underly-
ing convex structure. Functions with this topology, also known as “big valley structures”
[2], have been analyzed theoretically by Hu and co-workers [3]. In the evolutionary op-
timization community, Hansen and Kern [4] pointed out that “if the local optima can be
interpreted as perturbations of an underlying unimodal function”, the Evolution Strat-
egy with Covariance Matrix Adaptation (CMA-ES) performs well. The well-known
Rastrigin function and the Ackley function belong to this class of landscapes. This ob-
servation led Lunacek and Whitley to introduce the dispersion metric [5] as statistical
measure that attempts detecting such landscape topologies and may thus serve as a pre-
dictor for success or failure of CMA-ES. Both convex and globally convex landscapes
are also termed “single-funnel landscapes” [5,6]. Another archetypal landscape struc-
ture is the “double-funnel topology” (Fig. 1c). Whenever the funnel that contains the
global minimum covers a much smaller part of the domain than the other funnels, this
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Fig. 1. Sketches of archetypal landscape topologies. (a) Convex single-funnel landscape. (b)
Globally convex single-funnel landscape. (c) Double-funnel landscape with a broad sub-optimal
funnel. (d) Multi-modal landscape with minimum at the boundary and no funnel structure. (e)
Same as (d) but with a deep, needle-like minimum. (f) Golf-course or needle-in-a-haystack topol-
ogy with large regions of neutrality.

topology poses considerable challenges for search heuristics. Most searches are drawn
toward the bottom of the sub-optimal funnel. In the black-box optimization community
such a landscape is also called deceiving. Ikeda and Kobayashi called such topologies
“UV-structures” and showed the failure of a standard genetic algorithm (GA) on certain
model instances. Sakuma and Kobayashi subsequently proposed a novel real-coded GA
to overcome the observed performance loss [7]. Lunacek and co-workers also studied
the performance of heuristics on double-funnel landscapes in their paper “The impact of
global structure on search” [8]. They showed that the performance of CMA-ES can con-
siderably decrease on such instances. The double-funnel case is the simplest instance
of the class of multi-funnel landscapes. A real-world, tunable double-funnel benchmark
test case based on Lennard-Jones clusters has been designed by Müller and Sbalzarini
[9]. Müller and co-workers also introduced a parallel CMA-ES algorithm, the Parti-
cle Swarm CMA-ES (PS-CMA-ES) that is able to improve the performance of CMA-
ES on general multi-funnel landscapes [6]. Figures 1d and e show general multimodal
landscapes with no global funnel structure. The notoriously hard golf-course or needle-
in-a-haystack topology, where large flat regions surround a single narrow minimum, is
depicted in Fig. 1f.

In most black-box optimization scenarios the topology of the considered problem
is not known. Except for Lunacek and Whitley’s dispersion metric, general tools and
techniques for quantifying or classifying the global topology of a landscape based
on only zeroth-order information are largely missing. A potentially useful candidate
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is the concept of fitness-distance analysis from evolutionary biology and combinatorial
optimization. In the next section we propose this concept for the global characterization
of continuous black-box landscapes.

3 Fitness-Distance Analysis

Fitness-distance analysis quantifies the relation between the fitness of a collection of
points in the landscape and their distances to the global minimum. It has first been in-
troduced in theoretical biology by Kauffman for the analysis of NK landscapes [10].
Kauffman introduced discrete NK landscapes as a model for the maturation of immune
response [11]. Boese used fitness-distance analysis for the symmetric Traveling Sales-
man Problem (TSP) [2]. He observed a strong fitness-distance correlation (FDC), which
led him to formulate the big-valley hypothesis for certain TSP instances. This hypothe-
sis states that certain TSP instances have a globally convex landscape structure, which
may explain the success of certain heuristic approaches for solving TSP. Jones and
Forrest [12] introduced fitness-distance analysis and the corresponding correlation co-
efficients as a “measure of problem difficulty” for GA’s on combinatorial optimization
problems. Ever since, FDC analysis has been applied to many discrete optimization
problems, including the Graph Bi-Partitioning problem [13], the Job-shop Scheduling
Problem (JSP) [14], and the unconstrained binary Quadratic Assignment problem [15].
For optimization problems over continuous search spaces, however, quantitative studies
using fitness-distance analysis are largely missing.

3.1 Fitness-Distance Analysis for Continuous Black-Box Landscapes

We propose to characterize the global topology of real-world black-box landscapes
using fitness-distance analysis. Wang and Li proposed the fitness-distance correlation
independently of us in the context of continuous NK landscapes [16]. We consider
black-box landscapes LB defined by a triplet (X , dE, f) where the landscape domain
X is box-constrained with X = [l,u] ⊂ Rn. The vectors l,u ∈ Rn define the lower
and upper bounds. For unconstrained problems, fitness-distance analysis can be applied
to any box-shaped region of interest of the landscape. Distances between points in the
landscape domain are measured using the Euclidean distance dE. Given a uniformly
random sample x(j) ∈ X , j = 1, . . . , S from the landscape, we evaluate the fitness
function f at the sampled points and denote the values by f (j) ∈ R, j = 1, . . . , S. In
standard fitness-distance analysis the location of the global minimum xmin is assumed
to be known a priori. While in a benchmark scenario this information is available,
xmin is approximated by x̃min = argminx(j) f(x(j)), i = 1, . . . , S in the general case.
The distances d(j) = dE(xmin,x(j)) (or d(j) = dE(x̂min,x(j))) and the corresponding
fitness values f (j) provide a means to infer knowledge about the global topology of
the landscape. A general low-dimensional landscape visualization can be achieved us-
ing fitness-distance scatter plots of the available samples. The structure of low-fitness
landscape regions can be analyzed by sorting the f (j) and plotting only the X% best
individuals. In addition to fitness-distance scatter plots, it may be informative to plot
the histograms of the distances of the samples that have the X% best f (j) values. If the
black-box problem has a clear double-funnel landscape topology, the resulting distance
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distributions are bi-modal. A single, scalar quantity that summarizes the fitness-distance
data is the fitness-distance correlation coefficient rFD, defined as:

rFD =
cFD

sFsD
with cFD =

1
S

S∑

j=1

(f (j) − f̄)(d(j) − d̄) (1)

and f̄ , d̄, sF, and sD the means and standard deviations of the fitness and distance
samples, respectively. The coefficient rFD is expected to be near 1 for globally convex,
single-funnel topologies and around 0 for needle-in-a-haystack problems and problems
without any global structure. A negative value of rFD indicates a “deceiving” landscape,
i.e., a landscape on which a sampler or optimizer perceives larger objective function
values closer to the minimum than farther away. It is obvious that the accuracy of rFD

is limited by sample size. If the landscape exhibits fine structures below the sampling
limit, they cannot be detected. We thus do not consider rFD as a “predictive measure of
problem difficulty”, as has been proposed for GA’s and genetic programming [12]. In
fact, it has been proven for certain problem classes that computing a general predictor of
problem difficulty is as hard as solving the problem itself [17]. We rather emphasize that
rFD may represent one out of several potentially informative features based on which
black-box landscapes can be classified.

4 Characterization of the CEC 2005 Benchmark Test Suite

We analyze the relationship between fitness and distance to the global minimum for all
25 functions fi of the CEC 2005 benchmark test suite [18], except for f7 and f25. The
latter problems are unconstrained and would require the definition of an application-
specific region of interest. Apart from the missing constraints, however, f25 is identical
to f24. We choose the CEC 2005 benchmark because (i) the global topology of most
functions is known a priori, and (ii) it enables relating rFD to the performance of a large
number of algorithms tested on this benchmark [19,6]. In order to enable this direct
comparison, we use the standard settings that are also used for benchmarking optimiza-
tion algorithms. This entails considering all problems in n = 10, 30, 50 dimensions with
the standard restriction on the function evaluations (FES) budget (MAX FES = 104n)
and 25 repetitions per run. We present fitness-distance plots and distance distributions
for selected functions. We then provide a comparative analysis of the FDC coefficients.

4.1 Fitness-Distance Plots and Distance Distributions

We first present scatter plots of the fitness and distance data for all CEC functions in
Fig. 2. We focus on the 10-dimensional case. The scatter plots look similar also in
higher dimensions (data not shown). Visual inspection of the plots in Fig. 2 reveals a
rich diversity of patterns. Function f1 can be clearly identified as the sphere function.
Fitness-distance plots of f6, f9, and f10 show strong positive correlations. For functions
f8, f11, and f14 the spherical scatter patterns suggest a complete absence of correlation.

Functions f2–f5, f12, and f13 show a similar pattern, suggesting weak correlations
between fitness and distance in all these cases. The scatter plots for f18–f24 reveal that
many samples far away from the minimum have considerably lower objective function
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Fig. 2. Fitness fi versus distance to the global minimum dE(xmin,x) for all CEC functions except
f7 and f25 in n = 10 dimensions. The FES budget is limited to 104n. The pooled samples from
all 25 repetitions are shown.

values than samples close to the global minimum, characterizing these problems as “de-
ceiving”. An unique scatter plot pattern is observed for the triplet f15–f17. For samples
with low objective function values, two distinct distance regimes are visible, which may
suggest a double-funnel topology of the landscape.

We exemplify the use of scatter plots and distance histograms of samples with low
objective function values for the pair of functions f9 and f15 that have the same land-
scape domain [−5, 5]10. The function f9 is a shifted Rastrigin function with a globally
convex topology. The function f15 is a composite function, designed to have two distant
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regions of low objective function values [18]. Two-dimensional graphs of these func-
tions are depicted in the upper panels of Fig. 3. For all 25 repetitions we identify the
samples with the 1% best fitness values on f9 and f15 and present the corresponding
fitness-distances scatter plot in the lower panels of Fig. 3. While the samples on f9 clus-
ter around an average distance of dE(xmin,x) ≈ 6 in a fitness interval [−280,−200],
the samples on f15 show two distinct modes at dE(xmin,x) ≈ 6 and dE(xmin,x) ≈ 11
with fitness values ranging from [800, 1100]. The corresponding distance histograms
(Fig. 4) are unimodal for f9 and bi-modal for f15.
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Fig. 3. Top row: 2D plots of the fitness landscapes of the CEC functions f9 (upper-left panel)
and f15 (upper-right panel). The function f9 is a shifted Rastrigin function, the function f15 is a
composite function with a double-funnel topology. Bottom row: Fitness-distance plots of the best
1% of the samples for f9 (lower-left panel) and f15 (lower-right panel) in n = 10 dimensions.
The pooled samples from all 25 repetitions are shown.
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Fig. 4. Distribution of distances to the global minimum using the best 1% of the samples on f9

and f15 in n = 10 dimensions, respectively. The pooled samples from all 25 repetitions are
shown. The distance distribution on f9 is unimodal, whereas the distance distribution on f15 is
bi-modal.
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4.2 The Fitness-Distance Correlation Coefficients

We summarize the calculated FDC coefficients rFD in Fig. 5. The data suggest a rough
classification of the functions into three classes: (i) highly correlated rFD > 0.75, (ii)
weakly correlated 0.75 > rFD > 0.15, and (iii) uncorrelated or anti-correlated rFD <
0.15 across all dimensions. Only functions f18, f19, and f24 change class in higher
dimensions.

The functions f1, f6, and f9/f10 belong to the first class. This indicates a global
single-funnel topology. The shifted sphere function f1 is expected to follow this classi-
fication. The shifted/rotated Rosenbrock function f6, however, is multimodal. Nonethe-
less, the rFD suggests that this multi-modality only appears at small length scales. The
Rastrigin pair f9/f10 is also expected to yield large rFD values because of its glob-
ally spherical structure. Comparing the two functions of this pair also reveals that the
rotation in f10 does not significantly change the estimated rFD value.

In all dimensions, the set of weakly correlated functions comprises f2–f5, f12–f13,
and f15–f17. While f2–f5 are unimodal functions, all others are highly multimodal
with little or no globally convex structure. The rFD values cannot discriminate these
functions. The similar rFD values for the function pairs f2/f4 and f16/f17 indicate
that the measure is robust against noise. Among all hybrid functions (f14–f25), the rFD

suggest that the triplet f15–f17 has the highest degree of global correlation.
The class of un-/anti-correlated functions contains f8, f11, f14, and f20–f23 across

all dimensions. For these functions, a low fitness-distance correlation is expected. For
instance, f8 is a needle-in-a-haystack problem and f14’s global minimum is surrounded
by regions of alternating high and low objective function values whose amplitude de-
creases with increasing distance (see Fig. 2). The rFD values for the pair f18/f19 change
from anti-correlation in n = 10 to weak correlation in n = 30, 50. This indicates that
certain topological features that have been picked up by the measure in n = 10 di-
mensions cannot be detected any more in higher dimensions, probably due to sampling
limitations.
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Fig. 5. Estimated FDC coefficients (mean and std) for all CEC functions except f7 and f25 in
n = 10, 30, 50 dimensions. The FES budget is limited to 104n. The dotted line and the dashed
line represent the classification thresholds (see main text).
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5 Conclusions and Future Work

Characterizing topographical features of continuous black-box landscapes from zeroth-
order information only is a formidable challenge that has largely been neglected in
the black-box optimization community. In theoretical biology and discrete combinato-
rial optimization, the concept of fitness-distance correlations (FDC) has been studied
over two decades. We adopted this framework for continuous black-box landscapes and
introduced the corresponding quantities and measures. We have empirically analyzed
the accuracy and robustness (against noise, problem rotation, and dimensionality) of
fitness-distance analysis on the CEC 2005 test functions with known global topologies.
The results have shown that the CEC 2005 benchmark functions cover a wide spectrum
of FDC coefficient values. This contradicts recent results of Vanneschi and co-workers
[20] who claim that the CEC 2005 test functions only have FDC coefficients close to
one or zero.

Our findings on the benchmark suite have also shown that fitness-distance correla-
tion can discriminate between functions with a global single-funnel topology, such as
the Rastrigin function (f9), and highly unstructured problems, such as the needle-in-
a-haystack problem (f8). Moreover, we found FDC to be robust against noise (f2, f4),
problem rotation (f9/f10), and dimensionality, provided a sufficiently large ensemble
of samples is considered. The present benchmark, however, also illustrated the limita-
tions of the approach: FDC was not able to distinguish anisotropic quadratic functions
(f2/f3) from multimodal (f12–f13) and multi-funnel (f15–f17) problems, although the
former are smooth and unimodal. These results, together with the known performance
of search heuristics on these functions [19,6], also suggest that FDC coefficients alone
are neither a meaningful criterion for problem design nor for measuring problem dif-
ficulty. This is again in stark contrast to the suggestions made by Vanneschi and co-
workers [20]. We argue that fitness-distance analysis can only provide one out of several
useful landscape descriptors that need to be combined in order to form discriminative
“landscape fingerprints”. We envision these fingerprints to be used in a future classifi-
cation of black-box landscapes.
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