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Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor
proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically eval-
uate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA
processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR
proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1
and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunopre-
cipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA
targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring se-
quence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind
different sites in last exons and regulate 3′ untranslated region length in an opposingmanner. Both SRSF3 and SRSF7
promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to
NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative
3′ ends.
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Export of mRNA from the nucleus to the cytoplasm is a
highly regulated step in gene expression. Export ismediat-
ed by nuclear export factor 1 (NXF1), which contains two
distinct RNA-binding domains (RBDs) that are both es-
sential for mRNA export (Braun et al. 2001; Hautbergue
et al. 2008). The pseudo-RNA recognition motif (ψRRM)
and the adjacent leucine-rich region constitute one RBD,
which binds exclusively to constitutive transport ele-
ments (CTEs) of retroviruses with high affinity and se-
quence specificity (Teplova et al. 2011). In contrast, the
second RBD of NXF1 at the N terminus is an arginine-
rich region that binds RNAwithout sequence specificity.
Therefore, NXF1 relies on different adaptor proteins to
regulate export of mature cellular mRNAs (Walsh et al.
2010; Viphakone et al. 2012).

The prevailing model for adaptor function holds that
free NXF1 forms a closed loop in which the arginine-
rich RBD is hidden and RNA binding is inhibited. Coordi-
nated binding of adaptors triggers a conformational switch
in NXF1 that opens the loop, exposes the RBD, and en-
ables NXF1 to bind to mRNA (Viphakone et al. 2012).
The model is based on studies of previously characterized
NXF1 adaptor proteins, including RBM15, UIF, CHTOP,
and LUZP4 as well as ALYREF, THOC5, and UAP56 of
the transcription export complex (TREX) (Huang et al.
2003; Taniguchi and Ohno 2008; Hautbergue et al. 2009;
Katahira et al. 2009; Uranishi et al. 2009; Walsh et al.
2010; Viphakone et al. 2015). Most of these adaptors re-
cruit NXF1 to pre-mRNA 5′ ends via the cap-binding
complex (CBC) (Cheng et al. 2006; Nojima et al. 2007), en-
suring that exportedmRNAs are capped and routing them
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toward the NXF1 export pathway (Müller-McNicoll and
Neugebauer 2013). For example, ALYREF and THOC5 en-
sure that NXF1 is loaded onto pre-mRNA only when both
adaptors are assembled within the TREX complex, which
occurs cotranscriptionally (Masuda et al. 2005; Viphakone
et al. 2012). Therefore, the TREX family of adaptors cou-
ple transcription and mRNA 5′ end capping to export.
However, NXF1 can export unspliced pre-mRNA effi-
ciently to the cytoplasm when tethered or directly bound
to it (Hargous et al. 2006; Li et al. 2006), raising the impor-
tant question of how export mechanisms sense mRNA
maturity. Perhaps the great diversity among NXF1 adap-
tors provides the cell with the potential to couple
mRNA export to additional steps in mRNA processing,
such as splicing and 3′ end formation.

SR proteins are essential RNA-binding proteins (RBPs)
with evolutionarily conserved roles as regulators of con-
stitutive and alternative pre-mRNA splicing (Änkö
2014; Howard and Sanford 2015). SR proteins regulate
such diverse processes as 3′ end processing (Lou et al.
1998; Bradley et al. 2015), mRNA export (Masuyama
et al. 2004; Huang and Steitz 2005), mRNP packaging
(Singh et al. 2012), mRNA stability (Lemaire et al. 2002),
and translation (Michlewski et al. 2008; Maslon et al.
2014). They are recruited to pre-mRNA during transcrip-
tion, consistent with cotranscriptional assembly of the
spliceosome and splicing (Sapra et al. 2009) and suggesting
that SR proteins may couple sequential events and mark
mRNAs as they transit from the nucleus to the cytoplasm.

The SR protein family comprises seven canonicalmem-
bers (SRSF1 to SRSF7) that are structurally related but
functionally distinct. All family members contain one or
two RRMs at their N termini. The number and spacing
of the RRMs as well as their combination with additional
domains confer substrate specificity, resulting in diver-
gent RNA-binding preferences in vivo (Clery et al. 2008).
So far, in vivo binding motifs have been determined for
four mammalian SR proteins (Sanford et al. 2008; Änkö
et al. 2012; Pandit et al. 2013). At their C termini, SR pro-
teins possess regions of repeated serine–arginine dipep-
tides (RS domains) that may mediate protein–protein
and/or RNA–protein interactions (Shen et al. 2004). Ex-
tensive serine phosphorylation within the RS domain is
crucial for SR protein recruitment to transcription sites
and for spliceosome assembly; RS domain dephosphoryla-
tion occurs during splicing and is important for catalysis,
release of the splicing machinery, and subsequent mRNP
maturation (Huang and Steitz 2005; Shepard and Hertel
2009; Ghosh and Adams 2011).

Several properties of SR proteins suggest that they act as
adaptors forNXF1-dependentmRNAexport andpotential-
ly couple the completion of splicing to mRNA export.
SRSF1, SRSF3, and SRSF7 bind directly to NXF1 only in
their hypophosphorylated state (Lai and Tarn 2004; Huang
and Steitz 2005; Hargous et al. 2006; Tintaru et al. 2007),
implying that binding occurs after splicing is completed.
Moreover, a cycle of RS domain phosphorylation, dephos-
phorylation, and rephosphorylation is important for the
nucleo–cytoplasmic shuttling of SR proteins (Caceres
et al. 1998; Cazalla et al. 2002; Huang and Steitz 2005; Lin

et al. 2005). SRSF3 and SRSF7 were shown to be required
for the export of reporter transcripts containing an export
element from the coding region of the histone H2A gene
(Huang and Steitz 2001). However, replication-dependent
histonemRNAs do not contain introns and are not spliced
or polyadenylated. Surprisingly little is known about the
nuclear export of spliced mRNAs via SR proteins.

Herewe set out to determinewhether and howdifferent
SRprotein familymembers participate inmRNAexport in
vivo. We employed a series of quantitative in vivo experi-
mental approaches to probe the functions of individual
SRprotein familymembers (SRSF1–7) inmRNAexportus-
ingpluripotentmouseP19cells. First, depletionof individ-
ual SR proteins followed by cellular fractionation and
RNA sequencing (RNA-seq) led to the identification of en-
dogenous transcripts dependent on SR proteins for export.
We conducted individual-nucleotide-resolutionUV cross-
linking and immunoprecipitation (iCLIP) experiments to
globally identify RNA-binding profiles of each SR protein
andNXF1 in vivo, enabling us to determine the proximity
ofNXF1 and SR protein-binding sites and the contribution
of SR proteins to NXF1 RNA-binding specificity. Related
to this, we quantified SR protein-mediated NXF1 recruit-
ment to endogenousmRNAs.Additional analyses andval-
idation experiments show that SR proteins promote
mRNA export of alternatively processed transcripts by re-
cruitingNXF1 to adjacent regulatory sites, suggesting that
they shuttle together withmRNA cargo to the cytoplasm.

Results

Identification of endogenous mRNA export targets
of SR proteins

As NXF1 adaptors, SR proteins are expected to promote
the export of specific mRNAs. Our previous work in P19
cells showed that individual SR proteins interact with dis-
tinct sets of mRNAs (Änkö et al. 2010), suggesting that
specific mRNAs may be controlled by SR protein family
members independently (Björk et al. 2009; Pandit et al.
2013; Bradley et al. 2015). Depletion of export adaptors
usually causes only a modest export block due to func-
tional substitution (Hautbergue et al. 2009; Katahira
et al. 2009; Uranishi et al. 2009). Nevertheless, specific ex-
port targets of THO/TREX components have been identi-
fied using knockdown and cell fractionation approaches
(Rehwinkel et al. 2004; Katahira et al. 2009; Guria et al.
2011). To test whether decreased cytoplasmic transcript
levels are a good proxy for export defects in P19 cells,
NXF1 was depleted by RNAi, and changes in mRNA lev-
els in cytoplasmic and nuclear fractions were quantified
(Supplemental Fig. S1A,B). Upon NXF1 depletion, thou-
sands of transcripts specifically decreased in the cyto-
plasm, and the corresponding transcripts increased in
the nucleus (Supplemental Fig. S1A). We conclude that
depletion of mRNA export factors followed by transcrip-
tome analysis of cytoplasmic and total fractions reveals
mRNA export targets in our system.

To determine mRNA targets of SR proteins, individual
family members were depleted by RNAi (Supplemental
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Fig. S1C). RNA-seq libraries were then prepared from
whole-cell and cytoplasmic poly(A)+ RNA (Fig. 1A; Sup-
plemental Table S1). Transcript levels were highly repro-
ducible between replicates, supporting consistent yield
in our fractionations (Supplemental Fig. S1D). Expression
changes at the transcript level were quantified using Cuff-
diff (Trapnell et al. 2013). In line with previous findings
(Änkö et al. 2010; Pandit et al. 2013; Bradley et al. 2015),
depletion of SR proteins had positive and negative effects
on transcript expression that were validated in every case
tested (Supplemental Fig. S1E,F).
To identify endogenous export targets, cytoplasmic

mRNA abundance was normalized to whole-cell tran-
script levels to identify changes in export independent of
other alterations in gene expression (Fig. 1A). This
yielded a total of 1189 candidate mRNA export targets
that exhibited a net decrease in cytoplasmic abundance
when individual SR proteins were limiting (Fig. 1B).
Each set of export targets was enriched for protein-coding
genes (Supplemental Fig. S1G). SRSF3 had the highest
number of candidate mRNA export targets (433), and
very little overlap was seen among targets of individual
SR proteins (Fig. 1B). To validate our experimental system
and data analysis, cell fractionation and RT-qPCR of
SRSF3 export candidates were conducted after knock-
down or overexpression of SRSF3 (Fig. 1C; Supplemental
Fig. S1H). Notably, SRSF3 knockdown decreased and
overexpression increased cytoplasmic levels of all export
candidates tested, in agreement with the proposal that
SR proteins promote nuclear export. We conclude that

>1000 specific mRNAs are export targets of individual
SR proteins.

SR proteins interact with NXF1 and promote its
recruitment to mRNA in vivo

Intriguingly, candidate export targets were detected for all
SR proteins, prompting us to compare their interactions
with NXF1 in vivo. To do so, we generated stable P19
cell lines expressing physiological levels of functional
GFP-tagged SR proteins (SRSF1–7) from recombineered
bacterial artificial chromosomes (BACs) (Supplemental
Fig. S2A–C; Sapra et al. 2009; Änkö et al. 2010, 2012).
We performed semiquantitative forward and reverse
coimmunoprecipitations (co-IPs) with antibodies specific
for GFP and endogenous NXF1 and found that all SR pro-
teins were detected in NXF1-containingmRNPs (Fig. 2A).
RNase A digestion abolished SR protein and NXF1 inter-
actions with PABPN1, which binds polyA tails and is
not known to interact with SR proteins or NXF1. Similar-
ly, NXF1 interactions with SRSF2 were completely lost
upon RNase A digestion, indicating indirect linkage
through RNA (Fig. 2A). In contrast, partial RNase A resis-
tance was consistent with protein–protein interactions
between NXF1 and all other SR proteins (Fig. 2A; Sup-
plemental Fig. S2D). Quantification of SR protein–NXF1
interactions from six forward and four reverse co-IP exper-
iments revealed that SRSF3 interacts most robustly with
NXF1 in the presence or absence of RNase (Supplemental
Fig. S2D).

nucleuscytoplasm 

SRSF1-7 RNAi

cytoplasm 

Control

0

10.0

2.0

12.0

4.0

Ctrl
KD SRSF3

Hist
1h

1c
Aup

1

Nan
og

Kdb
m2b

Rsu
1

04
3A

19
Rik

Pex
26

La
rs2

Hist
2h

2b
b

Slc2
a6

Hist
1h

2a
i

Dus
p6

Aoc
2

R
at

io
 n

uc
l /

 c
yt

o

*

*

*
*

**
*

*

Validation of export targets - knockdown SRSF3

6.0

8.0

* * *

*
Validation of export targets - overexpression SRSF3

0

1.0

0.2

0.4

R
at

io
 n

uc
l /

 c
yt

o

0.6

0.8

Hist
1h

1c

Pitp
nc

1

Hist
1h

2a
i

Hist
2h

2b
b

Nan
og

Aup
1
La

rs2

Pou
1f5

Dus
p6

Slc2
a6

Aoc
2

Ctrl OE SRSF3

*

*
*

*

*

**

*

*
*

*

nucleuscytoplasm 

cytoplasm 

RNA-Seq

RNA-Seq

mRNA Export Targets 
     of SR proteins

Total RNA levels 
unchanged

Cytoplasmic RNA 
levels reduced

3

3

SR

SR

SRSF1
SRSF2

SRSF6SRSF5SRSF4SRSF3SRSF2

SRSF7
SRSF6
SRSF5
SRSF4
SRSF3

SRSF7
Overlap mRNA export targets at transcript level

111
86

74
106

225
SRSF1

153
433

923

23

29
29

23

23

21

21

18

18

21

21

3228
28
32

9

19

19
24

24
25

25

18
18

18
18

16
18 16

15
15

18

18

16
1816

13

13
19

19

*

A

C

B

Figure 1. Identification of endogenous mRNA export targets of SR proteins. (A) Scheme illustrating the extraction of candidate mRNA
export targets from cytoplasmic and whole-cell RNA-seq data after 36 h of SR protein depletion by RNAi. (B) Numbers of mRNA export
targets for each SR protein and overlaps among them. (C ) Validation of SRSF3 export targets by RT-qPCR. (Left panel) Knockdown (KD) of
SRSF3 in P19wild-type cells leads to an increased nuclear/cytoplasmic ratio of eachmRNA. n = 5. (Right panel) Overexpression (OE) leads
to a decreased nuclear/cytoplasmic ratio of each mRNA. n = 3. (∗) P < 0.05.
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Although SRSF1, SRSF3, and SRSF7 interact directly
with NXF1 in vitro (Huang et al. 2003, 2004; Lai and
Tarn 2004; Hargous et al. 2006; Tintaru et al. 2007), the
observed RNase sensitivity suggests that RNA binding
may stabilize the complex formed in vivo. Indeed, pro-
longed RNase A treatment abolished NXF1 interactions
with SR proteins completely (Supplemental Fig. S2E).
Time-course experiments with different incubation times
of RNase A showed that NXF1–SRSF1 interactions were
maintained at time points long after which rRNAs were

completely degraded and the nuclear polyA-binding pro-
tein PABPN1 was lost from mRNPs (Supplemental
Fig. S2F). The loss of NXF1 binding after 40 min of diges-
tion was attributable to RNA degradation because SRSF1
remained associated with the SR protein kinase 1 (SRPK1)
at all time points. These data suggest that NXF1 binding
to SRSF1 and likely other SR proteins is stabilized by their
assembly on mRNA.

If SR proteins act as genuine NXF1 adaptors, their over-
expression should promote NXF1 recruitment to mRNA,
as do THO/TREX adaptors (Tintaru et al. 2007; Haut-
bergue et al. 2008; Viphakone et al. 2012). To determine
the amount of NXF1 protein associated with polyA+

RNA with and without SR protein overexpression, P19
cells were UV cross-linked and subjected to oligodT cap-
ture (Fig. 2B). Quantification revealed that twofold to
2.5-fold overexpression of SRSF3-GFP and SRSF7-GFP sig-
nificantly enhanced cross-linking of NXF1 to mRNA by
2.5-fold to threefold (Fig. 2C; Supplemental Fig. S2G).
Overexpression of SRSF2-GFP, which showed no direct
interaction with NXF1, did not enhance NXF1 recruit-
ment to mRNA. These data further suggest that SRSF2
does not serve as an NXF1 adaptor in vivo but rather con-
tributes to export indirectly. In contrast, SRSF3 and
SRSF7 interact with NXF1 and promote NXF1 binding
to mature mRNA in vivo.

SR proteins and NXF1 cross-link to spliced mRNAs
and reside in mature mRNPs

If SR proteins serve as genuine export adaptors for the
mRNA export targets identified above (see Fig. 1), we
would expect them to bind directly to these specific tar-
gets and recruit NXF1 nearby. To test this, we performed
iCLIP with GFP-tagged SRSF1–7 or NXF1-GFP in P19
cells (Supplemental Fig. S3A–C). GFP fused to a nuclear
localization sequence (GFP-NLS) served as a negative con-
trol (Änkö et al. 2012). Using the same anti-GFP antibody
and identical conditions permitted direct comparisons be-
tween iCLIP data sets. Biological replicateswere highly re-
producible (Supplemental Table S2), and pooled reads
yielded between 1.8 million and 14 million unique
cross-link events per data set (Supplemental Table S3).
Significant cross-link events (false discovery rate [FDR]
< 0.05) were extracted as previously described (Yeo et al.
2009; König et al. 2010; Wang et al. 2010), yielding a total
of 125,474–214,306 binding sites per protein. Each protein
cross-linked to thousands of exons and bound similar
numbers of target mRNAs across the range of mRNA ex-
pression levels (Supplemental Fig. S3D–F). Consistent
with previous reports (Änkö et al. 2012; Pandit et al.
2013; Bradley et al. 2015), the majority (90%–93%) of tar-
gets was intron-containing protein-coding genes with
only a small proportion of noncoding or other RNAs (Sup-
plemental Fig. S3D,E).

If SR proteins recruit NXF1 to mature mRNAs after
completion of splicing and dephosphorylation in vivo,
then SR proteins should stay bound to spliced mRNA
and be detectable in mature mRNPs. We found that SR
proteins and NXF1 bind similarly to 5′ and 3′ splice sites
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(Fig. 3A), suggesting that our iCLIP reads could be used to
quantify the splicing status of mRNA targets in vivo. To
determine the proportion of cross-linking to spliced and
unspliced junctions, iCLIP reads that uniquely mapped
to 5′ splice sites of protein-coding genes were compiled
and counted (Fig. 3B, left panel). Reads continuing from
the exon into the intron (exon–intron) were counted as
unspliced, while reads spanning across the junction into
the downstream exons (exon–exon) were counted as
spliced. This analysis revealed that all SR proteins and
NXF1 cross-link to a substantial proportion of spliced
junctions (Fig. 3B, right panel), indicating that they main-
tain direct contacts with mRNA after splicing. This is
consistent with the presence of SR proteins in mature
mRNPs containing PABPN1 (Fig. 3C). We conclude that
a large fraction of SR protein-binding events reflect con-
tinuing interactions with mature spliced mRNAs, further
supporting potential roles as splicing-sensitive nuclear ex-
port adaptors.

SR proteins and NXF1 cobind within exons

As mRNA export adaptors that recruit NXF1 to mRNA
targets, SR proteins and NXF1 are expected to bind
mRNA at nearby sites. SR proteins and NXF1 bind pre-

dominantly to exon sequences (Fig. 4A). However,
NXF1-GFP also binds massively within its own intron
10 (Supplemental Fig. S4A), in which a cytoplasmic trans-
port element (CTE)-like element allows efficient export of
this intron-containingNxf1 transcript encoding a truncat-
ed protein (Li et al. 2006). Indeed, NXF1-GFP also down-
regulated expression of endogenous NXF1 protein (Sup-
plemental Fig. S4A), suggesting that NXF1-GFP is func-
tional in our cell line. Whereas SR proteins bound
mainly within ORFs, followed by 5′ and 3′ untranslated
regions (UTRs), NXF1 bound similarly in 5′ UTRs,
ORFs, and 3′ UTRs (Fig. 4A). The high binding density
in 3′ UTRs was surprising given that most known export
adaptors recruit NXF1 to the 5′ end of pre-mRNAs via
the CBC and TREX (Cheng et al. 2006; Nojima et al.
2007; Hautbergue et al. 2009; Katahira et al. 2009). This
raised the possibility that SR proteins may recruit NXF1
to the mRNA body and/or 3′ ends.
We investigated whether SR proteins and NXF1 bind to

common exons using a normalized number of significant
cross-link sites (Supplemental Table S3; Supplemental
Fig. S4B). SR protein familymembers often bound to exons
occupied by other SR proteins (Supplemental Fig. S4C).
Therefore, we calculated the percentage of “cobound” ex-
ons (i.e., exons bound by two or more SR proteins)
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compared with all bound exons for each SR protein (Sup-
plemental Fig. S4D). Hierarchical clustering revealed
that exon binding is highly correlated for SRSF4 and
SRSF6 as well as SRSF2 and SRSF5 (Supplemental
Fig. S4E). In addition, these SR protein groups displayed
similar in vivo binding motifs, as did SRSF1 and SRSF7
(Supplemental Fig. S4E), suggesting that SR protein pairs
may compete or cooperate in binding to the samemRNAs.
In contrast, SRSF3 displayed the most unique RNA-bind-
ing specificity. Its in vivo binding motifs consist of a core
CNUC sequence, confirming previous studies (Änkö
et al. 2012), and its exon-binding pattern clustered least
well with other SR proteins (Supplemental Fig. S4E).
Upon inclusion of NXF1 iCLIP data in the clustering anal-
ysis, SRSF3 showed the best correlation with NXF1 (Fig.
4B). All other SR proteins were more distant and grouped
according to their RNA-binding preferences. These pair-
wise binding relationships are illustrated for the Srsf5
gene, on which the grouped SR proteins as well as SRSF3
and NXF1 display similar binding profiles (Fig. 4C).

NXF1 and SRSF3 bind adjacent sites at the 3′ end
of mRNAs

Integration of the iCLIP data with the identified mRNAs
dependent on SR proteins for export (see Fig. 1) revealed
thata largeproportionofmRNAexport targetswasdirectly
bound by the corresponding SR protein (Fig. 5A). This is
consistent with the hypothesis that mRNA binding by
SRproteins promotesNXF1 recruitment, as demonstrated
forSRSF3andSRSF7 (seeFig.2).Visual inspectionofSRSF3
and NXF1 iCLIP tags in SRSF3 mRNA export targets sug-
gested that NXF1 is bound to fewer regions relative to the
more widespread distribution of SRSF3 iCLIP tags; inter-
estingly, cobinding in these examples occurred mostly
in last exons (Supplemental Fig. S5A). Indeed, global anal-

ysis showed thatmostmRNAs had only one or twoNXF1-
binding sites, predominantly found in 5′ UTRs/first exons
or 3′ UTRs/last exons (Supplemental Fig. S5B).

If SR proteins recruit NXF1 to mRNA targets, one
might expect SR protein-binding sites and NXF1-binding
sites to lie adjacent to one another on target mRNAs. To
test this, we analyzed the iCLIP data more stringently,
quantifying the cobinding of SR protein within a small
window (±30 nucleotides [nt]) around NXF1-binding
sites. In first exons and all transcript regions, ∼50% of
NXF1-bindings sites were equally cobound by SR proteins
(Fig. 5B). This finding is also consistent with our proposal
that NXF1–SR protein interactions are stabilized by
mRNA binding (see above). In contrast, cobinding among
NXF1 and SR proteins differed in last exons, where SRSF4
and SRSF3 bound most often in close proximity to NXF1.
In line with this, metagene profiling on last exons showed
that SRSF3, SRSF4, and NXF1 had similar cross-linking
profiles in last exons, distinct from other SR proteins
(Supplemental Fig. S5C).

SRSF3 emerged as themost important single SR protein
involved in NXF1 recruitment and mRNA export, follow-
ing on the observation that it had the most export targets
detected upon knockdown (see Fig. 1). Strikingly, SRSF3
was frequently detected within the 60-nt window around
NXF1-binding sites in the absence of binding by any other
SR protein (Fig. 5C). This was true within both genes and
last exons. In contrast, other SR proteins binding within
the window often occurred in pairs (Supplemental
Fig. S5D). Taken together, this indicates that cobinding be-
tween SRSF3 andNXF1occurs preferentially in last exons.

IfNXF1 isdirected tomRNAvia sequence-specific adap-
tors, then the adaptor should determine NXF1-binding
specificity. For example, Figure 5D shows two examples
of SRSF3 export targets with overlapping NXF1-binding
sites and SRSF3-binding sites in 3′ UTRs adjacent to
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bona fide SRSF3-binding motifs. These data suggest that
SRSF3 may recruit NXF1 preferentially to last exons or
3′ UTRs, as suggested above, and may also determine the
NXF1 binding in this region. To test this globally, in vivo
NXF1-binding motifs and SR protein-binding motifs
were determinedwithin 5′ UTRs (whereTREX is expected
to dominate NXF1 recruitment) as well as 3′ UTRs
and across all transcript regions (Fig. 5E; Supplemental
Fig. S5E). TheNXF1-bindingmotif derived fromall regions
did not resemble any SR protein motif. Remarkably, the
NXF1-binding motif in 3′ UTRs strongly resembled the
SRSF3-bindingmotif (Fig. 5E; Supplemental Fig. S5E), con-
sistent with SRSF3’s activity in recruiting NXF1 to adja-
cent mRNA-binding sites (Fig. 5F).
Our model presupposes that SR proteins recruit NXF1

after splicing, during which SR proteins are dephosphory-
lated (Huang and Steitz 2005). In agreement with this, SR
proteins associated with NXF1 in cells were shown to be
hypophosphorylated (Fig. 6A). This is consistent with
our demonstration that GFP-tagged SR proteins bind
NXF1 (see Fig. 2) and remain bound to spliced transcripts
(see Fig. 3). Taken together, our data support a model in
which SR proteins are dephosphorylated during splicing,
bind NXF1 through protein–protein interactions, induce
the RNA-binding-competent conformation of NXF1, and
thereby specifyNXF1-binding sites adjacent to the SR pro-
tein (Fig. 5F).

SR proteins link alternative splicing to mRNA export

If SR proteins recruit NXF1 after splicing, we would ex-
pect mRNA export targets to be functionally distinct or
represent different isoforms (Änkö et al. 2010). Indeed,
gene ontology (GO) term analysis of themRNAexport tar-
gets revealed enrichment of distinct biological processes
and the term “splice variant” (Fig. 6B), further suggesting
a link between regulated splicing and mRNA export. To
test whether SR protein-mediated alternative splicing af-
fects the cytoplasmic abundance of mRNA isoforms, we
compared splicing events in whole-cell and cytoplasmic
samples and quantified changes in exon usage using
DEX-seq (FDR < 0.1) (Fig. 6C,D; Anders et al. 2012).
SRSF3 knockdown caused the highest number of splicing
changes (Fig. 6D). Of 1988 splicing events altered by
SRSF3 knockdown, 1436 were significantly less included
in cytoplasmic mRNAs without concomitant changes in
whole-cell mRNAs (Fig. 6D). Similar differences (732 cy-
toplasmic of 876 total changes) were apparent for SRSF1,
while depletion of other SR proteins caused fewer alterna-
tive splicing changes (Fig. 6D), in line with observed re-
dundancies in RNA binding. Because inclusion of
alternative exons is often facilitated by SR protein binding
(Han et al. 2011; Erkelenz et al. 2013), we tested for bind-
ing of cognate SR proteins within those exons (Fig. 6E).
Indeed, most SR proteins displayed a higher number of
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significant cross-link events in exons that were excluded
upon their knockdown, and this differencewasmost strik-
ing for SRSF3 (Fig. 6E, red asterisks).

Because SRSF3 recruits NXF1 to binding sites in last ex-
ons (Fig. 5), we hypothesized that SRSF3 might preferen-
tially affect the splicing of last exons. By separating all
exons affected by SR protein knockdown into first, inter-
nal, or last exons (Fig. 6F), we found that a large proportion
of splicing changes occur in first or last exons. Indeed,
upon SRSF3 knockdown, 75% of exons with decreased in-
clusion are last exons. On the other end of the spectrum,
SRSF7 depletion caused a much higher number of more
included exons, of which 74% are last exons (Fig. 6F).
This suggests that SRSF3 and SRSF7 regulate the inclu-

sion of last exons in an opposite direction. It appears
that SR proteins in general—and SRSF3 in particular—
promote the nuclear export of specific splice isoforms, po-
tentially by influencing the splicing of last exons and sub-
sequent NXF1 recruitment.

SR proteins link alternative 3′ end formation
to mRNA export

Changes in last exons may stem from alternative terminal
exon usage through alternative splicing or from changes in
the length of 3′ UTRs in a splicing-independent manner.
Both processes alter the site of polyadenylation in the ma-
ture mRNA and are therefore referred to as alternative
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polyadenylation (APA). To test which of these processes is
regulated by SR proteins, we mapped changes in last exon
usage to known APA annotations (Katz et al. 2010). We
foundthatboth typesof eventswere regulatedbyall SRpro-

teins; notably, the length of tandem 3′ UTRs was most
affectedinoppositedirectionsuponSRSF3orSRSF7knock-
down (Fig. 7A). SRSF7 depletion leads to an extension of
3′ UTRs, whereas SRSF3 depletion causes shortening.
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In linewith this regulation ofmRNA3′ ends, SRSF3 and
SRSF7 bind at different positions in affected last exons and
3′ UTRs (Fig. 7B). Last exons extended after SRSF7 deple-
tion showed a strong and sharp peak of SRSF7 binding im-
mediately downstream from last splice junctions and at
the beginning of 3′ UTRs, whereas last exons shortened af-
ter SRSF3 depletion showed stronger SRSF3 peaks at last
splice junctions that extended toward the distal ends of
3′ UTRs (Fig. 7B). Interestingly, 32 genes whose last exons
were antagonistically regulated by SRSF3 and SRSF7 were
identified (Fig. 7C). We validated antagonistic changes
in the usage of alternative terminal exons and/or tandem
3′ UTRs after depletion of SRSF3 and SRSF7 using tran-
script-specific primers located in the penultimate exons
and rapid amplification of cDNA 3′ ends (3′RACE). Fol-
lowing SRSF3 depletion, the abundance of long 3′ UTR
isoforms decreased in all cases, while shorter isoforms ap-
peared or increased (Fig. 7D,E, orange asterisks). In con-
trast, depletion of SRSF7 increased the abundance of
isoforms with long 3′ UTRs in most cases (Fig. 7D,E).
These data suggest that SRSF3 and SRSF7 and perhaps
other SR proteins regulate last exon usage and 3′ UTR
length in opposite directions and can even antagonize
each other on the same transcripts.

Because NXF1 and SRSF3 show very similar binding
patterns in last exons and because NXF1 often binds to-
ward distal ends of 3′ UTRs in SRSF3 export targets (see
above), an intriguing possibility is that 3′ UTR shortening
or usage of alternative last exonsmay exclude NXF1 bind-
ing from certain alternative mRNAs (Fig. 7F). Reduced
binding of NXF1 would decrease the cytoplasmic abun-
dance of these isoforms. In agreement with this possibili-
ty, we found that transcripts that are less exported after
SRSF3 depletion have shorter 3′ UTRs compared with
SRSF1 or SRSF7 targets (Fig. 7G). Investigating SRSF3 ex-
port targets in more detail, we found that 265 out of 433
(61%) had SRSF3-binding sites; of those, 171 (64%) were
in last exons or 3′ UTRs. Likely due to the rather low
expression of export targets in general, we detected
NXF1-binding sites in only 126 SRSF3 export targets
(29.1%); of those, 80 were found in last exons or 3′ UTRs
(63.5%). Strikingly, 40 export targets with NXF1-binding
sites underwent APA after SRSF3 depletion; in these cas-
es, polyadenylation cleavage occurs before or within
NXF1-binding sites, suggesting that regulated processing
can remove RNA sequences that serve as binding sites
for NXF1 or NXF1 adaptors (Fig. 7D,E; Supplemental
Fig. S6). These data suggest that nuclear export of specific
mRNA isoforms is regulated through APA (Fig. 7F,G).

Discussion

Here we provide evidence that SR proteins play crucial
roles as NXF1 adaptors that regulate the export of alterna-
tively processed mRNAs in vivo. Specifically, SR proteins
satisfy the following expectations of export adaptors: (1)
Individual SR proteins were required for the export of
>1000 endogenous mRNAs. (2) SR proteins associated
with NXF1 in an RNase A-resistant manner. (3) SRSF3

and SRSF7 promoted NXF1 interactions with mRNA. (4)
NXF1 bound to mRNA in close proximity to SR protein-
binding sites. SRSF3 and NXF1 often bound together to
mRNA downstream regions. (5) Remarkably, NXF1,
which lacks sequence-specific binding on its own, exhib-
ited a binding motif similar to that of SRSF3. SRSF3
emerged as the most potent NXF1 adaptor, with the larg-
est number of mRNA export targets of all of the SR pro-
teins. Many of these targets were alternatively spliced
and/or polyadenylated, and subsequent analysis revealed
that the interplay between SRSF3 and SRSF7 links alter-
native mRNA processing to mRNA export. These obser-
vations support a model in which SR protein binding
recruits NXF1 after splicing to promote efficient export
of fully processed mRNA. Below, we discuss the basis
for these conclusions and expand on related features of
SR protein function.

Our iCLIP study revealed that each SR protein binds
thousands of transcripts, yet fewmRNAs showed changes
in cytoplasmic abundance after knockdown. Redundancy
and/or cooperation among SR proteins may explain the
resistance of mRNA export to depletion of individual
SR proteins, as was shown for other export adaptors
(Hautbergue et al. 2009; Katahira et al. 2009; Uranishi
et al. 2009). Indeed, a severe mRNA export block was
achieved upon injection of an antibody against all SR pro-
teins into frog oocytes (Masuyama et al. 2004). Interest-
ingly, our iCLIP data showed that four of the seven
SR proteins fell into two paired groups according to their
NXF1 interaction and RNA-binding preferences: (1)
SRSF4 and SRSF6 and (2) SRSF2 and SRSF5. Depletion of
each of these proteins alone led to cytoplasmic reductions
in only ∼100 transcripts each, providing evidence for re-
dundancy and compensation. Indeed, depletion of both
SRSF4 and SRSF6 is lethal for cells (M Müller-McNicoll,
unpubl.), and SR protein pairs exhibited a high degree of
cobinding in exons close to NXF1-binding sites. In con-
trast, SRSF3 bound a unique sequence motif and had the
most export targets, suggesting that other SR proteins
cannot compensate for loss of SRSF3. Furthermore,
SRSF3 often bound at NXF1-binding sites alone and was
consistently most abundant in NXF1-containing mRNPs,
indicating that, among SR proteins, SRSF3 is themost im-
portant NXF1 adaptor.

One of the strongest arguments in favor of SRSF3’s role
as an NXF1 adaptor is our observation that, although
NXF1 itself has no sequence preference, the in vivo bind-
ingmotif of NXF1 in 3′ UTRs resembles the bindingmotif
of SRSF3. This implicates SRSF3 in the recruitment of
NXF1 to specific mRNA 3′ ends. Indeed, our NXF1 iCLIP
data revealed thousands of binding sites of NXF1 in
5′ UTRs without specific sequence motifs. However,
NXF1-binding sites at the 3′ end of transcripts often over-
lap with sites where SR proteins bind, particularly SRSF3.
Interestingly, we found that most NXF1-binding sites oc-
cur at mRNA 5′ and 3′ ends, suggesting that SR proteins
and ALYREF independently promote NXF1 recruitment
to bulk mRNAs, possibly also in the context of the exon
junction complex (Le Hir et al. 2000; Singh et al. 2012).
The combination of TREX at 5′ ends and SR proteins in
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downstream regions seems to provide sufficient adaptor
activity to ensure nucleo–cytoplasmic export.
While SRSF3 emerged as a potent NXF1 adaptor, SRSF2

was the least active. For example, overexpression of SRSF3
and SRSF7 promoted NXF1 interaction with mRNA in
vivo, while SRSF2 did not. With the exception of SRSF2,
most SR proteins shuttle continuously between the
nucleus and the cytoplasm (Caceres et al. 1998; Sapra
et al. 2009). Consistent with their roles as mRNA export
adaptors, SRSF1, SRSF3, and SRSF7 bind directly to
NXF1 in vitro (Huang et al. 2003; Lai and Tarn 2004;
Hargous et al. 2006; Tintaru et al. 2007). SR proteins en-
hance NXF1 association with mRNA upon overexpres-
sion (see Fig. 2), a hallmark of previously characterized
mRNA adaptors (Viphakone et al. 2012). SR proteins
only bind NXF1 if they have been dephosphorylated dur-
ing splicing (Huang et al. 2004; Lai and Tarn 2004; Lin
et al. 2005; Sanford et al. 2005); in agreement with these
prior findings, we show that SR proteins associated with
NXF1 are hypophosphorylated and remain bound to
spliced mRNAs.
Our data support mechanistic differences between SR

proteins and components of the TREX complex as they re-
late to NXF1 recruitment and subsequent export.
ALYREF and THOC5 “hand over” their bound mRNA
cargo to NXF1 after inducing a conformational change
that exposes a hidden RBD (Viphakone et al. 2012). This
handover is necessary because ALYREF and THOC5 do
not shuttle to the cytoplasm and are removed from the
mRNP at the nuclear periphery (Kiesler et al. 2002; Golo-
vanov et al. 2006). ALYREF binds RNA nonspecifically
and with low affinity via an arginine-rich peptide that
overlaps with the NXF1-binding region, making binding
mutually exclusive (Hautbergue et al. 2008). In contrast,
the RRMs of SR proteins are nonoverlapping with NXF1
interaction regions, suggesting that SR proteins and
NXF1 can bind mRNA simultaneously (Hargous et al.
2006; Tintaru et al. 2007).
We favor the hypothesis that SR proteins remain associ-

ated with NXF1 and mRNA during export even though
previous investigators argued for a handover mechanism
by SR proteins to NXF1. First, SR proteins shuttle to the
cytoplasm, where they are bound to spliced and polyade-
nylated mRNAs, are present in translating ribosomes,
and regulate translation (Swartz et al. 2007; Sanford
et al. 2008; Sato et al. 2008; Änkö et al. 2010; Maslon
et al. 2014). Second, SR proteins bindRNAwith high affin-
ity and sequence specificity (Cho et al. 2011), unlike the
TREX family of adaptors. Third,we showhere that SR pro-
tein interactions with NXF1 are partially sensitive to
RNase A treatment, suggesting stabilization by bound
mRNAs. The fact that prolonged RNase treatment dis-
rupts interactions between NXF1 and SR proteins sug-
gests that NXF1 sits on mRNA directly adjacent to its
SR protein partner, rendering the RNA linkage relative-
ly less accessible to an enzyme. Fourth, this implied
proximity is consistent with our observations of SR pro-
tein cobinding with NXF1 in a small (60-nt) window.
Therefore, we propose that NXF1, SR proteins, and
mRNA form a ternary complex prior to mRNA export,

which is transported together to the cytoplasm (Fig. 5F).
Although our evidence in support of this model is stron-
gest for SRSF3 and SRSF7, our data suggest that other
SR proteins may also perform this role. Thus, SR pro-
teins differ fundamentally from TREX by recruiting
NXF1 to 3′ ends and remaining bound at adjacent sites
on RNA targets, a prerequisite for their functions in the
cytoplasm, such as the translational regulation of specif-
ic mRNA isoforms.
Why do cells need so many different export adaptors?

Integration of iCLIP and cytoplasmic RNA-seq data re-
vealed a strong link between APA and mRNA export.
SR protein depletion affected the cytoplasmic abundance
of >1000 endogenous mRNAs, many of which harbored
changes in alternative splicing and 3′ end processing.
Our data suggest that SRSF3 regulates mRNA export
through recruitment of NXF1 to extended 3′ UTRs for
the following reasons: (1) SRSF3 binds frequently within
last exons compared with other SR proteins. (2) SRSF3 of-
ten binds adjacent to NXF1-binding sites in the absence of
other SR proteins. (3) SRSF3 and NXF1 display similar
binding patterns and in vivo binding motifs in terminal
exons. Importantly, SRSF3 depletion leads to a shortening
of tandem3′ UTRs or the inclusion of alternative terminal
exons. SRSF3 shows a strong binding peak toward the end
of last exons that are shortened after SRSF3 depletion. Fi-
nally, SRSF3 export targets often have shortened 3′ UTRs
that lack NXF1-binding sites. Remarkably, a function for
SRSF3 in alternative terminal exon usage was shown for
the CT/CGRP pre-mRNA many years ago (Lou et al.
1998), consistent with our present findings.
Finally, we discovered that SRSF3 and SRSF7 regulate

3′ UTR identity and length in an opposite manner and
that these choices feed forward to the cytoplasmic abun-
dance of specific isoforms through an export mechanism
(Fig. 7F). A function for SRSF7 in APA has not been de-
scribed thus far. We propose a model in which SRSF3 ex-
pression promotes the biogenesis of long 3′ UTR
isoforms and regulates their export by preferentially bind-
ing at the distal ends of last exons, regulating polyA
site selection and recruitment of NXF1. We show that
3′ UTR shortening after SRSF3 depletion can lead to a
loss ofNXF1-binding sites and reduced export of the short-
ened 3′ UTR isoforms. In contrast, SRSF7 expression pro-
motes the biogenesis of shorter isoforms, perhaps by
recruiting cleavage and polyadenylation factors, and regu-
lates their export. After SRSF7 depletion, NXF1 recruit-
ment fails, and the resulting isoform with a longer 3′

UTR is less exported. Phosphatases present in both splic-
ing and polyadenylation complexes may dephosphorylate
SRSF3 and SRSF7 and promote NXF1 recruitment (Shi
et al. 2009). Furthermore, recruitment of the export
machinery promotes mRNA release from chromatin,
whereas incompletely processed transcripts bound by
hyperphosphorylated SRproteins are retained at transcrip-
tion sites (Girard et al. 2012). Taken together, our findings
indicate that the expressionof alternativemRNAisoforms
depends on the orderly action of SR proteins in multiple
steps of nuclear pre-mRNA processing, preceding and in-
cluding mRNA export to the cytoplasm.
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Materials and methods

Stable BAC cell lines

P19 cells were grown in DMEM GlutaMAX medium (GIBCO)
supplemented with 10% heat-inactivated fetal bovine serum
(GIBCO), 100 U/mL penicillin, and 100 µg/mL streptomycin
(GIBCO) on dishes coated with 0.1% gelatin (Sigma) under hu-
midified 5%CO2 at 37°C. GFP-taggedmouse BACs were isolated
from Escherichia coli DH10 cells using a BAC preparation kit
(Macherey-Nagel). P19 cells were transfected with BACDNA us-
ing Effectene (Qiagen), and stable clonal cell lines were obtained
after selection with 500 µg/mL Geneticin (GIBCO) and FACS
sorting (Supplemental Table S4).

Knockdown, cell fractionation, and RNA-seq

P19 cells grown until 25% confluency were transfected in six-
well plates with 2 µg of custom-made esiRNAs (see the Supple-
mental Material) using Lipofectamine 2000 (Life Technologies).
esiRNAs against GFP were used as a control. Cells were sepa-
rated into total, nuclear, and cytoplasmic fractions, and RNA
was isolated using Trizol (Life Technologies). PolyA+ RNA-
seq libraries were generated, quantified, and sequenced on an
Illumina HiSeq2000 machine obtaining ∼50 million 85-base-
pair (bp) or 75-bp single-end reads per sample in two biological
replicates (Supplemental Table S1). For validation, RNA was re-
verse-transcribed using either oligodT primers or RT primers
for 3′RACE and SuperScript III (Life Technologies). Quantita-
tive RT–PCR was performed using the SYBR Green kit
(Thermo-Fisher) and gene-specific primers. 3′RACE RT–PCR
was performed using transcript-specific forward primers located
in the penultimate exons and a common reverse primer located
in the 3′RACE RT primer.

OligodT capture

Approximately 5 × 107 P19 cells were irradiated with 0.25 J/cm2
UV light at 254 nm, harvested, and lysed as previously described
(Castello et al. 2012). Poly(A)+ mRNAs and cross-linked proteins
were captured with oligo(dT)25 magnetic beads (New England
Biolabs). Oligo(dT)25 beads were washed with buffers containing
decreasing concentrations of LiCl and LiDS, and cross-linked pro-
teinswere eluted for 3min at 55°C , concentrated, and loaded on a
4%–12% NuPAGE gel (Life Technologies). Released NXF1 was
analyzed by Western blotting using NXF1-specific antibodies
(Santa Cruz Biotechnology).

iCLIP library preparation

P19 BAC cells were irradiated once with 150 mJ/cm2 UV light
(254 nm), and iCLIP was performed as described before (Änkö
et al. 2012). Protein GDynabeads coupled with goat anti-GFP an-
tibody (D. Drechsel, Max Planck Institute of Molecular Cell Biol-
ogy and Genetics [MPI-CBG], Dresden) were used for
immunopurification. Cross-linked, immunopurified RNA was
digested to lengths of 60–150 nt, reverse-transcribed to generate
cDNA libraries, and subjected to high-throughput sequencing
on an Illumina HiSeq2000 machine (single-end 75-nt reads).

Accession numbers

Data are available at Gene Expression Omnibus SuperSeries
GSE69734.
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