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Abstract- Single- and multicriteria evolution strate-

gies are implemented to optimize micro-fluidic devices,
namely the shapeof a microchannelusedfor bioanalysis
and the mixing rate in a micromixer usedfor medical ap-

plications. First, multimembered evolution strategiesem-
ploying mutative step size adaptation are combined with

the Strength Pareto Approach. In order to support tar-

getting, an extension of the Strength Pareto Evolution-

ary Algorithm is proposed. Applied on the optimization

of the microchannel,thesealgorithms suggesta novel de-
signwith impr oved propertiesover traditional designs.A

comparisonwith a gradient methodis presented.Second,
an evolution strategy with derandomized self-adaptation
of the mutation distrib ution is usedto optimize the mi-

cromixer. The resultsagreewell with dynamical systems
theory.

1 Intr oduction

We apply evolution stratgies to optimization problemsfor
microdevicesusedin medicalapplications.In particulay the
shapeof a microchannelndthemixing ratein a micromixer
areoptimized.Optimizingmicrodevicespresents challenge
dueto the lack of knowledgeto guidethe designanddueto
the difficulty to formulate gradientalgorithmsfor the gov-
erningequationsin conjunctionwith efficientcomputational
methodsfor the simulationof suchdevices,evolutionaryal-
gorithmsarehighly suitablemethodsdor this applicationdue
to their portability andinherentparallelizationrmaking possi-
ble thereductionof time to marketin suchdesigns.

Besidesclassicalsingleobjective evolution stratgies,we
also presentmultiobjective algorithmsthat find a setof op-
timal trade-of fronts, the so-calledPareto-optimalset, for
problemswith multiple, conflictinggoals.An existing power-
ful multicriteriaalgorithmis embeddedn anevolution strat-
egy andextendedfor the purposeof targetting.

Section2 of this paperintroducesthe evolutioary algo-
rithmsimplementedn thiswork. Section3 showvstheirappli-
cationon the designof a microchannelvhile the application
on a micromixer is presentedn Sectiond4. Conclusionsare
drawnin Section5.

2 Evolutionary Optimization Methods used in
this Work

We usethefollowing evolutionaryoptimizationstrateyies:

e The(1+1)evolution strateyy

¢ The StrengthPareto Approachfor multiobjective op-
timization[Zitzler & Thiele (1999] combinedwith an
evolution strategyy using mutative stepsize adaptation
(seesubsectior.1)

e The Strength Pareto Approach with Targetting (see
subsectior®.2)

e The derandomizedy/pur, A) evolution stratey with
covariancematrix adaptation(CMA-ES) with inter-
mediaterecombinatiojHansen& Ostermeie1996]),
[Hansen& Ostermeief1997)

2.1 The Strength Pareto Approach combined with an
Evolution Strategy

For this work, the Srength Pareto Approach for mul-
tiobjective optimization has been used becausecompar
ative studies have shavn that, among all major mul-
tiobjectve EAs, the Srength Pareto Evolutionary Algo-
rithm (SPEA) is clearly superior ([Zitzler & Thiele (1999)
Zitzler, Deb& Thiele(2000]). It is based on Pareto-
optimality and dominance. The algorithm as proposedby
[Zitzler & Thiele(1999] wasimplementedn a restartable,
fully parallelcode.

Following thenotationin [Zitzler & Thiele (1999]), step7
requiresanalgorithmfor the selectionof individualsinto the
matingpool and Step8 includessomemethodfor dynamical
adaptationof stepsizes(i.e. mutationvariances). For this
paper selectionwasdoneusingthe following binarytourna-
mentprocedure:

1. Selectatrandomtwo individualsout of the population
P.

2. Copy theonewith thebetterfitnessvalueto themating
pool.

3. If thematingpoolis full, thenstop,elsegoto Stepl

Adaptationof the stepsizeswas realizedusing the self-
adaptie mutative technique Eachelementof the population
P andof the non-dominatedndividualsin the externalpop-
ulation P’ is assignedinindividual stepsizefor eachdimen-
sion. The stepsizesof all membersof the mating pool are
theneitherincreasedyy 50%, cut to half, or keptthe same,
eachata probabilityof 1/3.



2.2 Strength Pareto Approachwith Targetting

Comparedto other methods like for example the En-
ergy Minimization Evolutionary Algorithm (EMEA) (cf.
[JonathanZelulum, Pacheca% Vellasco(2000)), theSPEA
hastwo majoradvantagesit findsthewholePareto-frontand
not just a singlepoint on it andit corvergesfaster The lat-
teris auniversaladvantagevhereagheformeris not. There
areapplicationswvherea targetvaluecanbe specified.In this
case pnewantsto find the point on the Pareto-frontwhich is
closestto the userspecifiedtarget (in objective space).This
eliminatesthe needto analyseall the pointsfound by SPEA
in orderto make a decision.EMEA offers sucha possibility
but it corvergesslower thanSPEA.Moreover, EMEA is not
able to find more than one point per run. Thus, we extend
SPEAwith atargettingfacility that canbe switchedon and
off dependingonwhetheroneis looking for a singlesolution
or for thewholefront, respectiely. We addedthis capability
to SPEADby thefollowing changego the algorithm:

1. BetweenStep6 andStep7 thefitnesseof all individ-
ualsin P and P’ arescaledby the distanceD of the
individual from the target (in objective space)}o some
power g:

fi=fi-Df

This ensuresthat enough non-dominatedmembers
closeto the targetwill be found, so thatthe onewith

minimal distancewill appeaathigherprobability. The
parametey determineshesharpnesef theconcentra-
tion aroundthetarget.

2. Another external storage P,.; is addedthat always
containsthe individual out of P’ which is closestto
thetarget. Therefore betweensteps4 and5, the algo-
rithm calculateghe distancesf all membersf P’ to
thetargetandpicksthe onewith minimal distancento
Pyesi. At all times, Py.s; containsonly onesolution.

3. At the endof the algorithm, not only the Pareto-front
is put out but alsothe solution storedin P,.s;. Note
thatdueto clusteringandremovalin P’, thesolutionin
Pyes: is not necessarilycontainedn P’. Therefore,jt
is an optimal solutionwhich otherwisewould nothave
appearedh the output.

The algorithmhasbeenimplementedandtestedfor con-
vex andnoncorvex testfunctions.Figuresl to 4 shov some
results for the noncorvex testfunction7, as proposedin
[Zitzler, Deb& Thiele(2000j:

Minimize 73(x) = (fi(z1), f2(x))
subject to  fo(x) = g(x2, ..., Tm)h(f1(z1), 9(22, .- -
where = (X1, -, Tm)
( 1) =2
g(@2,. ., m) =149-> ", z;/(m —1)
h(fi,9) =1- (fl/g)2
1)

wherem is thedimensiorof theparametespaceandz; €
[0,1]. The exactPareto-optimalfront is givenby g(x) = 1.
The parameter®f the algorithmwere setas summarizedn
Tablel.

| Parameter | Value |
Dimensionof parametespacgm) | 5
Sizeof population()) 50
Sizeof matingpool (1) 30
Sizeof non-dominatedet(N') 70
Numberof generations 250
Targetvaluefor (f1, f2) (0.5,0.7)
Concentratiorparametey 4

Tablel: Settingsfor targettingSPEA

The chosentarget valueis slightly off-front. Therefore,
thetargettingerrorwill notbecomezero.Figurel shavsthe
final populationafter250generationsvithouttargetting. The
diamondsindicate membersof the external non-dominated
set (Pareto-optimalfront) whereasmembersof the regular
populationare denotedby crosses.in Figure2 the samerun
hasbheenrepeatedvith targetting. Figure3 shavs the tamget-
ting errorasafunctionof thegeneratiomumber Thedashed
line indicatesthe theoreticaiminimum of the distance.After
about80 to 100 generationsthe point on the front which is
closestto the targethasbeenfoundwith goodaccurag. Fig-
ure 4 shaws the pathof Py, towardsthetarget. Thejumps
aredueto thefactthattheindividual storedin P.s; getsre-
placedassoonasanotherindividualis closerto the target.

Theactuallyachievedbestobjective valuewasf(Pyes;) =
(0.5265,0.7247); its Euclideandistancefrom the target is
3.6287 - 10~2, whichis equalto the theoreticalminimal dis-
tancewithin thegivencomputationahccurag.

3 Micr ochannelFlow Optimization

Both single- and multiobjectve EAs have beenappliedto
a fluidic microchanneldesignproblem. Bio-analytical ap-
plications require long thin channelsfor DNA sequencing
by meansof electrophoresis. In order to pack a chan-
nel of several metersin length onto a small squareplate,
curved geometriesare required. However, curved channels
introducedispersionand thereforelimit the separatioreffi-
cieng of the system. The questionis now how to shape
the contourof the channelin orderto minimize dispersion.
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A detaileddescriptionof the problem as well as an opti-
mization solution using gradientmethodscan be found in
[MohammadiMolho & Santiagg2000].

3.1 Single Objective Optimization

The goal of this optimization run was to minimize the
final skewness of the flow inside the channel,i. e. it
was required, that the iso-values of the adwected species
a be normal to the flow field U by time T" when they
exit the channel. The objectve function defined by
[MohammadiMolho & Santiagg2000] is therefore:

J= /Q (Valz,T) x U(x))? do @)

with € beingthe crosssectionof the channelexit. The
shapeof the 90 degreesturn is describedby 11 parameters.
Therefore,the parametersearchspaceis of dimensionll.
The objective spaceis scalarsinceit is a single objectve
problem.

Theobjective functionis computedy solvingthegovern-
ing equation®f themotionof thespeciesn anelectricfields.
Both a (1+1)-ESanda (3/3r,12)-CMA-ES were appliedto
the problemandtheir corvergencewas compared. The re-
sults were statistically averagedfrom 5 runs with different
initial conditions,i.e. startingpoints.

Sincethe CMA-EShasapopulationsizeof 12,it performs
12 function evaluationsper generation.Figure 5 shows the
convergencenormalizedo thesamenumberof functioncalls.
Figurest and7 shav thecorrespondingolutionsafter20and
180generation®f thebest1+1 run out of the ensembldthe
linesareiso-potentialinesof theelectricfield). After 20gen-
erationsthe contourof the channelgetsa clearlyvisible dent
in it. After 80 evaluationsof the objective function,thealgo-
rithm hasfound a double-tump shapeto be even betterand
after 180 calls to the solver, no further significantimprove-
mentis obsened. The value of the objective function has
droppedto about10~% for the bestrun out of the ensemble.



Convergence of (3,12)-CMA-ES vs. (1+1)-ES, 5 runs averaged each

8 T T T T T T T T T

cost function
IS
T
!

0 ! ! ! !
20 40 60 80

L L L L L
100 120 140 160 180
nr. of function calls

200

Figure5: Convergenceof (3/3r,12)-CMA-ES [solid line] and
(1+1)-ES[dashedine] vs. numberof evaluationsof the objec-
tive function.
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Figure6: Solutionatgeneratior20 usingeES

Thismeanghatdispersions almostzeroandthechannehas
goodseparatiorproperties.

3.2 Multiobjecti ve Optimization

Afterwards, the total deformationof the channelcontouris
introducedasa secondbjective to be minimizedsimultane-
ously in orderto minimize manufcturingcosts. Thus, the
seconcbbjectivereads:

K=Y,p? i=1,...,11 3)

wherep; arethe shapeparameter®f the channelasin-
troducedby [Mohammadi,Molho & Santiagg(2000). The
first objective remainsunchanged. The algorithm usedfor
this optimizationis a SPEAwith a populationsize of 20, a
maximumsizeof theexternalnon-dominatedetof 30,anda
matingpool of size10.

Figure8 shaws the Pareto-optimatrade-of front after 80
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Figure7: Solutionatgeneratiorl80usingES
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Figure8: Pareto-frontof non-dominatedolutionsafter80 gen-
erationsusingES

generation®f the algorithm andfigures9 and 10 shaw the
correspondingsolutions,i.e. optimizedshapesof the chan-
nel. Oneis now free to choosewhetherto go for minimal

skewnessat the expenseof a higherdeformation(cf. Figure
9), choosesomeintermediateesultor minimize deformation
in orderto minimizemanugcturingcostsandstill getthelow-

estskawnesspossiblewith the givenamountof deformation
(cf. Figure10).

3.3 Comparisonwith Gradient basedMethods

Figures11 and 12 shav two classesof optimized shapes
obtainedby [Mohammadi,Molho & Santiagq2000) using
gradientmethods. It is interestingthat the gradienttech-
nigque offerstwo differentdesigns namelythe single-dented
(Fig. 11) andthe double-denteghapegFig. 12) which we
found with the evolution strateyy also. Therefore we obtain
qualitatively similar resultsfrom both methods. Using the
gradientmethod the skew is reducedoy oneorderof magni-
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Figure9: Solutionat point 1 usingES
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Figure10: Solutionatpoint 3 usingES

tude[Mohammadi,Molho & Santiagg2000) whichis com-
parableto the numbersobtainedby evolutionary optimiza-
tion. While trial anderrorproceduresvereusedin the gradi-
entmethodgo obtainvarioussolutions,ES providesuswith
anumberof solutionsanda Paretofrontin a fully automated
fashion. Unlike the gradientbasedmethodswhich require
anexplicit formulationof the optimizationproblemin hand,
the evolution strateyy provided a straightforvard optimiza-
tion procedure Moreover, thesmallcostof the computations
impliesthatES areareliablemethodleadingto greateiflexi-
bility andshorter‘time-to-solution”.

-

Figure 11: First optimized shapeusing a gradient method
[MohammadiMolho & Santiagg2000]

-

Figure 12: Secondoptimized shapeusing a gradientmethod
[MohammadiMolho & Santiagg2000)

4 Micr omixer Optimization

An evolution strategy with covariance matrix adaptation
(CMA-ES) is appliedto optimize a micromixer. This strat-
egy hasbeenfoundto presere invariancepropertiesagainst
transformationsof optimization parametersaandto perform
betterthan other evolutionary algorithmsfor non-separable
and badly scaledfunctions [Hansen& Ostermeief1997]).



Moreover, since we are dealing with a highly dynamical
systemthat introducesnoise to the objective function, we
take advantageof the recombinatiorfeaturein the proposed
method.

Theproposednixeris actively controlledto enhancenix-
ing in astraightchannel Flow in themainchannels manipu-
latedby controllingtime-dependerflow from six secondary
channels. From thesesecondarychannels time-dependent
cross-flav momentumis impartedon the main channefflow
which altersthe trajectoriesof flow-tracingparticles. A mi-
crographof the mixing chip is shovn in Figure 13 andthe
flow configurationis illustratedin Figure14.

—

Figure13: Micrographof the mixing chip
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Figure14: Schematiof theflow configuration

As seenfrom Figure 14, the main channelis 2k in height
and13.5h in lengthwhereh is avaryinglengthscale.With a
distanceof 3h betweensecondarchannelsthey areh /2 in
width and5h in length. Theinlet velocity U(y) of the main
channel

Uy, =0) = Un, (1 - (%)2) Jyl<=h (@

is parabolic,andtheinlet velocity of eachsecondarchannel
seti A
Vi = Visin(2r fit + ¢4),4 = 1(1)3 (5)

is sinusoidaln time where f; is the oscillationfrequeng, ¢;
the phaseshift relative to thefirst setof secondarychannels,
andV; thevelocity amplitude.

In orderto studythe performanceof the mixer, we com-
putethe mixing rateof the flow by numericalsimulationsof
thegoverningNavier-Stokesequationsata Reynoldsnumber
Re = 5.

The aim of the optimizationis to obtain the parameter
vector which leadsto the most pronouncedmixing rate in
the micromixer. Actuation parametersare the frequeng,
the amplitude,and the phaseshift for eachpair of the sec-
ondarychannelsyielding a total numberof 9 actuationpa-
rameters. Within this work, we setamplitudesand phases
to constantvalues,namelyV, = Vo, = V3 = 2U,, =
2, and¢; = ¢3 = 0, ¢o = m asrecommendedn
[Volpert,Mezic, Meinhart& Dahleh(2000). As optimiza-
tion parametergemainthethreefrequenciesf, f, f3 which
varywithin thelimits [0, 1], summarizedh theparametevec-
torx = (f17f27f3)'

Theobjective functionto be minimizedis the mixing rate
m whichis computecby

SN (e6)? <zf1<c<i»>2
N N

wherec is the scalarconcentratiorand N the numberof ver-
ticesin theoutletfor which the concentrationis measured.

For the optimization, we evaluatethe mixing rate until
time ¢t = 135 in stepsof 0.05. After trying different sets
of frequencieswe decidedon averagingthe mixing ratebe-
tweentime ¢t = 90 andtime ¢ = 135, atime regimein which
theflow reachesteadystatefor thetestedfrequenciesTime
t = 135 correspondso 10flow throughtimes. TheCPUtime
for onesimulationof the flow until time ¢t = 135 takesabout
3 CPUhourson a SunSparcUltra-2 processar

We implementa derandomize@volution strateyy with co-
variancematrix adaptatiorandwith recombinatiorof all par
ents. The populationconsistof y = 2 parentsandA = 10
children. Using MPI, the optimizationis runin parallelon 5
processorsf a Sunworkstationcluster

Theresultsof theoptimizationof thethreefrequenciesre
documentedn Table2.

(6)

m =

Numberof actuatedrequencies 3
Initial frequencies f 0.25
f2 1 0.3333
f3 0.5
Initial mixing rate m | 0.0345
Bestfrequencies f1 ] 0.1388
f2 | 0.3165
f3 | 0.4956
Bestmixing rate m | 0.0213
Numberof functionevaluations 460

Table2: Initial andoptimizedfrequencies

To obtain the requiredaccurag of the parametersthe
functionhadto beevaluated460times. Dueto the hugecom-
putationalcost of the optimization,we could not afford to



run anotheroptimizationwith a differentdirect searchtech-
nigueandcomparet with the ES.However, we comparethe
optimizationresultwith dynamicalsystemtheory The opti-
mum frequengy for a mixer with only one side channelcan
be determinedanalytically by consideringthe movementof
a fluid particlein the main channelwhich yields a value of
f = 1/2 (non-dimensionalnits). From studyingthe ra-
tios of the frequenciespne canlearnthat thereis a differ-
enceif frequeng ratios are 1, rational, or irrational. The
computationof the mixing ratefor the parameterectorx =
(1/2,1/2,1/2) with identicalfrequencieyieldsm = 0.1596
while ourinitial "rational” frequeng setx = (1/2,1/3,1/4)
givesus m = 0.0345. ’"lrrational” frequenciesas pro-
posedin [Volpert,Mezic, Meinhart& Dahleh(2000] x =
(1/(2v/5),1/(2v/2),1/2) yield m = 0.0285 which is the
bestmixing found theoretically As one can see,the evo-
lutionary optimizationyields a much better mixing rate of
m = 0.0213 with thefrequencieseportedn Table2. Thisre-
sultmeansa considerablémprovementcomparedvith num-
bersfrom awell-establishedheory

Figuresl15and16 shav a snapshobf theflow in the mi-
cromixerattimet = 45 for theidenticalandoptimalfrequen-
cies,respectiely.
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Figure15: Flow actuatedy x = (1/2,1/2,1/2)

5 Conclusions

Single-andmultiobjective evolutionaryalgorithmshave been
implementedcandassessedlhe SPEAhassuccessfullybeen
extendedto supporttargettingin objective spaceanimpor-

tantfeaturewhenfacedwith a problemwheresomeproblem-
specificknowledgeis available. It hasbeenshavn thatthese
algorithmsareeasyto applyto microdevicerelatedproblems.
For the microchannelthe solutionsare comparablégo those
found by gradientbasedmethodswhile remainingportable
and providing a multitude of efficient new designsin anau-

STAR

PROSTAR 3.10

23-JUN-00
SC 1-PASSIVE

TIME = -1.00000
LOCAL Mx= 1.008
LOCAL MN=-0.6469E-02

aaaaa
nnnnn

07143601
o

Figure16: Flow actuatedby optimalfrequencies

tomatedfashion. For the micromixer, the evolution stratey
suggests solutionevenbetterthantheoreticakesults.
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