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The concept of high-resolution shapes �also referred to as folds or states, depending on the context�
of a polymer chain plays a central role in polymer science, structural biology, bioinformatics, and
biopolymer dynamics. However, although the idea of shape is intuitively very useful, there is no
unambiguous mathematical definition for this concept. In the present work, the distributions of
high-resolution shapes within the ideal random-walk ensembles with N=3, . . . ,6 beads �or up to
N=10 for some properties� are investigated using a systematic �grid-based� approach based on a
simple working definition of shapes relying on the root-mean-square atomic positional deviation as
a metric �i.e., to define the distance between pairs of structures� and a single cutoff criterion for the
shape assignment. Although the random-walk ensemble appears to represent the paramount of
homogeneity and randomness, this analysis reveals that the distribution of shapes within this
ensemble, i.e., in the total absence of interatomic interactions characteristic of a specific polymer
�beyond the generic connectivity constraint�, is significantly inhomogeneous. In particular, a specific
�densest� shape occurs with a local probability that is 1.28, 1.79, 2.94, and 10.05 times �N
=3, . . . ,6� higher than the corresponding average over all possible shapes �these results can
tentatively be extrapolated to a factor as large as about 1028 for N=100�. The qualitative results of
this analysis lead to a few rather counterintuitive suggestions, namely, that, e.g., �i� a fold
classification analysis applied to the random-walk ensemble would lead to the identification of
random-walk “folds;” �ii� a clustering analysis applied to the random-walk ensemble would also
lead to the identification random-walk “states” and associated relative free energies; and �iii� a
random-walk ensemble of polymer chains could lead to well-defined diffraction patterns in
hypothetical fiber or crystal diffraction experiments. The inhomogeneous nature of the shape
probability distribution identified here for random walks may represent a significant underlying
baseline effect in the analysis of real polymer chain ensembles �i.e., in the presence of specific
interatomic interactions�. As a consequence, a part of what is called a polymer shape may actually
reside just “in the eye of the beholder” rather than in the nature of the interactions between the
constituting atoms, and the corresponding observation-related bias should be taken into account
when drawing conclusions from shape analyses as applied to real structural ensembles.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3140090�

I. INTRODUCTION

From a broad perspective, the ideal random-walk model
is a mathematical device to emulate ensemble statistics on
sequences of events �defined by successive points in a given
space� by assuming that the displacements between two suc-
cessive events along the sequence are �i� of constant length
�a common variant considers a Gaussian length distribution
instead� and �ii� entirely uncorrelated in their directions. In
spite of its apparent simplicity, this model already provides a
very reasonable approximate description of many phenom-

ena involving weakly correlated successive displacements,
such as diffusion of molecules in gases, liquids, or solids,1

bacterial chemotaxis,2 population dynamics,3 fixational eye
movements,4 behavior of economic markets,5 gambling,6 and
structure of polymer chains.7–11 The present article exclu-
sively focuses on the latter �structural� type of application. In
this case, events correspond to the occurrence of specific
polymer sites �e.g., atom or reference point of a monomer�
in three-dimensional Cartesian space, while the sequence
of events is determined by the covalent connectivity
of the polymer chain and the constant displacement by the
�pseudo�bond length between successive sites.

The mathematical characterization of the structural
random-walk ensemble has led to a number of classical ana-
lytical results concerning the distributions or averages of
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low-resolution properties, such as the end-to-end distance
and the radius of gyration.7,8,10 More recently, the full radius
of gyration tensor was also investigated through a combina-
tion of analytical, computational, and experimental
approaches.11–18 These studies revealed a seemingly counter-
intuitive feature: Although all individual steps of the walk
are taken in random �i.e., isotropically distributed� directions,
anisotropic shapes �nonequal eigenvalues of the radius of
gyration tensor� are actually more probable than isotropic
ones within the random-walk ensemble. As a result, the av-
erage shape of a walk over the entire ensemble is not spheri-
cal but a prolate ellipsoid with the ratio of eigenvalues
�mean-square principal radii of gyration� of approximately
9:2.3:1.11,13

In spite of the general interest of the above results, the
end-to-end distance and the radius of gyration �scalar or ten-
sor� only provide a very low-resolution characterization of
polymer shapes. In contrast, much less is known concerning
the distributions of high-resolution properties �i.e., detailed
three-dimensional shapes� within the random-walk en-
semble.

The concept of high-resolution shape �also referred to as
fold or state, depending on the context� of a polymer chain
plays a central role in structural biology and bioinformatics
�e.g., protein structure classification19–22 and prediction23–26�,
as well as in biopolymer dynamics �e.g., definition of states
based on clustering27–33 of computer simulation trajectories
and evaluation of their thermodynamical properties based on
the corresponding populations34–38�. However, although the
idea of shape is intuitively very useful, there is no unambigu-
ous mathematical definition for this concept, and many alter-
native formulations have been used in the field, involving, in
particular, different comparison metrics.11,39–46

A possible way to define polymer shapes based on the
ensemble of all possible structures with a specified chain
length and composition �i.e., all possible sets of coordinates
for the constituting atoms� is based on the specification of �i�
a pairwise metric for the determination of the difference �or
distance� between two structures and �ii� a cutoff distance
applied to this metric for the assignment of individual struc-
tures to a common shape. More specifically, given these two
choices, the shape of a polymer chain associated with a spe-
cific �central� structure may be defined as the collection of all
structures for which the distance to this central structure is
below the cutoff value. This definition implies, in particular,
that �i� every structure can be used to define a corresponding
shape �of which it is the central structure� and �ii� that dif-
ferent shapes may be overlapping in terms of the structures
they encompass �i.e., individual structures are not associated
to a single shape�. This definition has been adopted in the
present work due to its simplicity, but alternative definitions
are also possible �and commonly used�. For example, a non-
overlapping set of shapes may be constructed by tesselation
of the structural space around a finite number of central
structures �e.g., by clustering,27–34 the definition is then more
complex and must include a generalization of the cutoff pa-
rameter for determining the clustering resolution, i.e., the
approximate number and sizes of the shapes to be produced�.

Ideally, the pairwise metric for evaluating structural dif-

ferences should match our intuitive feeling of how dissimilar
two structures “look like.” In particular, it should be �i� in-
dependent of the �rigid-body� relative positioning and orien-
tation of the two compared structures and �ii� unaffected by
performing a mirror symmetry, a central inversion, or an
atom renumbering on the two compared structures. This met-
ric can characterize the structural difference either partially
�i.e., at low resolution, e.g., difference in the end-to-end
distance,47 radius of gyration,48 radius of gyration tensor
anisotropy,13 number of hydrogen bonds,48,49 or number of
interatomic contacts50� or globally �i.e., at high resolution,
e.g., root-mean-square atomic positional deviation39,51–55 as
well as its so-called unit-vector41 and universal43 variants,
distance-matrix root-mean-square difference,36,56 �
measure,40 or TM-align parameter46�. In general, the high-
resolution comparisons will be more meaningful when per-
formed in terms of Cartesian �as opposed to internal� coor-
dinates because our intuitive feeling concerning structural
similarity refers to our vision in three-dimensional Cartesian
space.

The most commonly used comparison metric in struc-
tural biology and biopolymer dynamics is by and large the
atom-positional root-mean-square deviation �RMSD� after
least-squares rototranslational fitting.39,51–55 The RMSD is
easy to calculate and corresponds well to our intuitive notion
of structural dissimilarity. It can be applied to entire biomol-
ecules �e.g., comparison of protein structures� as well as to
subunits thereof �e.g., comparison of structural motifs
adopted by the same amino-acid sequence in different pro-
teins�. The RMSD has been used in many different contexts.
These include, for example, evaluating the quality of struc-
ture prediction schemes,23–26 monitoring structural changes
during protein folding,27,28,34,36,48 comparing the diversity of
model structures derived from experiments,57,58 comparing
the properties of modeling approaches at different levels of
resolution,59,60 evaluating the extent of conformational space
accessible to a polymer via N-cube analysis,59 or construct-
ing cumulative distribution functions for polymer conforma-
tional ensembles.60 For these reasons, the RMSD was
adopted in the present work for the definition of high-
resolution shapes.

A common �implicit� assumption in the analysis of poly-
mer chain structures in terms of shapes �as defined above,
i.e., using a common metric and cutoff value for all shapes�
is that the relative populations of the different shapes in an
ensemble of structures at equilibrium �e.g., a protein in solu-
tion� only depend on the energetics of the structures they
encompass. As will be shown in the present study, this as-
sumption is incorrect. According to this assumption, one
would expect that in the absence of any energetics �inter-
atomic interactions restricted to a mere connectivity con-
straint, that is, in the random-walk ensemble�, the probability
distribution of shapes is homogeneous, i.e., all shapes are
equally probable. This, however, need not be the case: The
neighborhood of specific structures may be intrinsically more
populated than the neighborhood of others. In particular, for
a given metric and cutoff, there is generally a most probable
shape �or a set thereof� in the random-walk ensemble, i.e.,
structures taken at random from the ensemble fall with the
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highest probability within this shape �or these shapes� com-
pared to any other one. This inhomogeneity in the probability
distribution of shapes in the random-walk ensemble will de-
pend on the chosen pairwise metric and cutoff value, i.e., on
two choices that characterize the way we have decided to
“look” at structures rather than the physics of the system
itself �i.e., the interactions between the constituting atoms�.

The goal of the present work is to investigate the nature
and magnitude of this intrinsic bias in high-resolution shape
analysis. This is done by considering the ideal random-walk
ensemble, along with the above simple definition of high-
resolution shapes, the commonly used RMSD metric, and
various cutoff distances �both infinitesimal and finite�. For
completeness, the distributions of various low-resolution
shape parameters �end-to-end distance, radius of gyration,
radius of gyration tensor anisotropy, and number of contacts�
over the random-walk ensemble are also evaluated and com-
pared to analytical results whenever possible. This investiga-
tion is carried out using a systematic �grid-based� sampling
of the random-walk ensemble in terms of internal coordi-
nates. Due to the exponential growth in the computational
cost of any systematic approach with the system size �at
fixed grid spacing�, the analysis is restricted to relatively
short �up to at most 6–10 beads depending on the analysis�,
oriented, unbranched, and non-self-avoiding random walks.
These can be viewed as a highly simplified model for
polypeptides �where each bead would represent e.g., the C�

of an amino-acid residue from the N-terminus to the
C-terminus with a pseudobond distance of about61 0.38 nm�.
A few of these calculations are also performed for self-
avoiding walks �i.e., introducing an excluded volume for the
beads�.

II. THEORY

A. Walks

A walk of length N and step size b corresponds to the
path obtained �in three-dimensional Cartesian space� by
starting at some origin P1 and taking N−1 successive
�straight� steps of common length b in arbitrary directions, as
illustrated in Fig. 1�a�. The N points �Pn �n=1, . . . ,N� along
such a path will be referred to here as beads and the corre-
sponding steps as bonds �although they are most often rather
pseudobonds�. Note that walks defined in this way are �i�
unbranched �linear topology�, �ii� non-self-avoiding �beads
may be positioned arbitrarily close to each other except for
consecutive ones�, and �iii� oriented �a walk is distinct from
its reverse walk, as defined by taking the beads in a reverse
order�. In the following, it is also assumed that N�3.

A walk can be entirely specified by the 3N-dimensional
vector r� �rn �n=1, . . . ,N�= �r� ��=1, . . . ,3N�, where rn is
the Cartesian coordinate vector of bead n and r� a single
Cartesian coordinate within r. To avoid the redundancy of
walks that can be superimposed by a trivial rigid-body trans-
lation and rotation, it is convenient to define anchored walks
as the walks satisfying the six additional constraints r�=0 for
�=1,2 ,3 ,5 ,6 ,9, along with r4=b and �r7−b�2+r8

2=b2. In
other words, for an anchored walk, the P1 bead is placed at
the origin, the P1− P2 bond aligned along the x-axis, and the

P2− P3 bond contained in the xy-plane, which uniquely de-
fines the overall �rigid-body� position and orientation of the
walk. Due to the N−1 bond plus six rigid-body constraints,
the space CN spanned by the Cartesian coordinate vectors r
associated with all anchored walks of length N represents a
M-dimensional hypersurface within R3N, where M �2N−5.

Alternatively, an anchored walk can also be entirely
specified by a M-dimensional internal coordinate vector
q� �qn �n=1, . . . ,M�, where qn �n=1, . . . ,N−2� is the cosine
of the angle �n formed by Pn− Pn+1− Pn+2 and qn+N−2 �n
=1, . . . ,N−3� is the dihedral angle �n formed by Pn− Pn+1

− Pn+2− Pn+3 �oriented and measured in radians� �see
Fig. 1�a��. This can be written as

q � ��cos��n��n = 1, . . . ,N − 2�,��n�n = 1, . . . ,N − 3�� .

�1�

The N−2 angle-cosine coordinates are nonperiodic and
bounded to the range ��1; 1�. The N−3 dihedral-angle co-
ordinates are periodic and chosen here �by convention�
within the range �−� ;��. The M-dimensional space QN

spanned by the internal coordinate vectors q corresponding
to all anchored walks of length N is thus compact �no
“holes”� and bounded, with a finite volume VQN

given by

1

2

3
N

2N −

1θ
1ω
2θ 2ω

1N −

3Nθ −
3Nω −

2Nθ −

1n +

n

1n −

1nπ θ −−

2nω −

2n −

b

QQQQ N-space
(M=2N-5 dim) (3N dim)

CCCCN-hypersurface
(M=2N-5 dim)

3N�

a b

c

FIG. 1. �a� Definition of the angles �n and dihedral angles �n characterizing
an anchored walk of length N �Sec. II A�. �b� Illustration of the conversion
q→r�q� from an internal coordinate vector q to the corresponding Cartesian
coordinate vector r via trigonometry �Sec. II A�. �c� Schematic of the coor-
dinate transformation from QN �M-dimensional internal coordinate space,
with M =2N−5� to CN �M-dimensional hypersurface within the entire Car-
tesian coordinate space R3N� for anchored walks of length N �Sec. II A�. QN

is bounded and of finite volume VQN
�Eq. �2��. CN is also bounded and of

finite area ACN
. Note that the N−3 dihedral-angle coordinates within q are

actually periodic �i.e., bounded only by the definition of a reference inter-
val�. For simplicity, this periodicity �i.e., the “folding” of a part of the
boundary of QN or CN on itself� is not represented in the figure. The same

drawing could also illustrate the coordinate transformation from QN to R̃N

�M dimensions within R3N�, the hypersurface associated with the local

RMSD metric R̃ of Eq. �7� �Sec. II B�. In this case, the fact that two infini-

tesimal volumes of QN transform to patches of different areas of R̃N indi-
cates that the corresponding shapes have different local probabilities
PN�q ,0� �Sec. II E; Eqs. �18� and �19��. In the present case, the patch on the
right is representative of a �locally� more probable shape compared to the
one on the left.
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Downloaded 13 Jun 2012 to 141.5.11.5. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



VQN
� �

QN

dMq = 2N−2�2��N−3 = 2M��M−1�/2. �2�

Note that if any bond angle �n of the walk is equal to 0 or �,
the preceding and succeeding dihedral angles ��n−1 and �n�
are undefined and should be replaced by a single dihedral
angle Pn−1− Pn− Pn+2− Pn+3 �assuming that �n−1 and �n+1

themselves differ from 0 and ��. Because these special walks
belong to the boundary of QN, such a special handling turns
out, however, to be unnecessary for the present purposes
�Secs. II E and III�.

The mapping q→r�q� of an anchored walk from QN to
CN, as well as the reverse mapping r→q�r� from CN to QN,
is defined and unique �except for walks involving one or
more bond angles equal to 0 or ��, as well as continuous.
Both transformations can be performed using straightforward
trigonometry, as illustrated in Fig. 1�b�. Because QN is com-
pact and bounded �with a finite volume VQN

�, the uniqueness
and continuity of the transformation implies that the hyper-
surface CN �within R3N� is also compact and bounded, with a
finite area ACN

. The relationship between the two spaces is
schematically illustrated in Fig. 1�c�.

B. Pairwise metric

The pairwise metric used in the present work for struc-
ture comparison is the root-mean-square atomic positional
deviation R after least-squares rototranslational fitting
�RMSD39,51–55�. For a given reference structure r and a given
compared structure r�, R is the metric representing the scalar
distance between two associated 3N-dimensional vectors
s�r� and s��r ,r��, defined by s�r��N−1/2r and

sn��r,r�� � N−1/2�T� rn� + t�, n = 1, . . . ,N , �3�

namely,

R�r,r�� � �s��r,r�� − s�r�� = 	N−1

n=1

N

�T� rn� + t − rn�2�1/2

.

�4�

Here, T� �T� �r ,r�� and t� t�r ,r�� denote, respectively, the
three-dimensional rotation matrix �three degrees of freedom�
and translation vector �three degrees of freedom� leading to
the minimum value of R for the given structure pair. It can be
shown that R satisfies all properties of a metric in the math-
ematical sense62–64 �positivity: R�r ,r�=0 and R�r ,r��
	0∀r��r; symmetry: R�r ,r��=R�r� ,r�∀r ,r�; triangle in-
equality: R�r ,r��
R�r ,r��+R�r� ,r��∀r ,r� ,r��. A number
of alternative �equivalent� procedures for determining T� and
t from r and r� have been proposed in the literature.51,52,65,66

For a given reference structure r, the M-dimensional hy-
persurface �within R3N� containing the vectors s��r ,r�� asso-
ciated with all anchored walks r� of length N will be noted
RN�r�. This hypersurface contains the 3N-dimensional
Cartesian coordinate vectors �amplified by N−1/2� of all an-
chored walks after least-squares rototranslational fitting onto
r. Because QN is compact and bounded �with a finite volume
VQN

�, for any r, the hypersurface RN�r� �within R3N� is also
compact and bounded, with a finite area ARN�r�.

The hypersurface RN�r� associated with the R metric
depends on the choice of the reference structure r. However,
if only distances between very close structures are of interest,
it is possible to piece the RN�r� hypersurfaces together into a

single hypersurface R̃N with a metric R̃ that is locally
equivalent to R, i.e., satisfying

lim
R�r,r��→0

�R�r,r�� − R̃�r,r��� = 0. �5�

This can be done by introducing a regular paving of QN

using G grid cells centered at grid points �qk �k=1, . . . ,G�.
The hypersurface R̃N is then defined as

R̃N � lim
G→�

�k=1
G RN,k, �6�

where RN,k denotes the portion of RN�r�qk�� corresponding

to all structures contained within the grid cell k. The metric R̃

in R̃N is the scalar distance

R̃�r,r�� � lim
G→�

�s̃G� �r�� − s̃G�r�� , �7�

where s̃G�r� and s̃G� �r�� represent the 3N-dimensional
Cartesian coordinate vectors �amplified by N−1/2� of the two
anchored walks after least-squares rototranslational fitting
onto the structures associated with the two respective closest
grid points �for a given G�. Note that unlike s�, s̃G� only
depends on r� �not on r�.

On a nonlocal level �i.e., when comparing structures at a

finite distance R�, R̃N is essentially equivalent to CN ampli-

fied by N−1/2, and R̃ represents the RMSD-like distance be-
tween two anchored walks without any rototranslational fit-

ting. However, at the local level, R̃N is not equivalent to CN

scaled by N−1/2. For any finite G, the patched hypersurface
�union of the RN,k� is discontinuous at the grid-cell bound-

aries, and this discontinuity survives in R̃N at the infinitesi-
mal �local� level when taking the limit G→�. It is easily
seen that Eq. �5� holds provided that the limit R�r ,r��→0 in
this equation is taken before the limit G→� in Eq. �7�, i.e.,
provided that the distance between the two compared struc-
tures remains infinitesimal compared to the grid spacing,
even when taking the latter toward zero.

Because QN is compact and bounded �with a finite vol-

ume VQN
�, the hypersurface R̃N �within R3N� is also compact

and bounded with a finite area AR̃N
. For the above-mentioned

reasons, however, AR̃N
is not equal to N−1/2ACN

. The drawing
in Fig. 1�c� could thus also apply to the relationship between

QN and R̃N �keeping in mind the peculiar local properties of
the latter hypersurface�.

The RMSD metric, as a measure of structural dissimilar-
ity, satisfies the intuitively expected conditions that it is �i�
independent of the �rigid-body� relative positioning and ori-
entation of the two compared structures and �ii� unaffected
by performing a mirror symmetry, a central inversion, or an
atom renumbering on the two compared structures. Note,
however, that since the present walks are oriented, the dis-
tance between a walk and its reverse walk is, in general, not
zero. Although the RMSD metric is probably the most ap-
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propriate one to match our visual intuition concerning struc-
tural difference, it is not unique. For example, a distance-
matrix root-mean-square difference36,56 could be more
appropriate to match our expectations concerning structure-
related energetical differences �for systems where the domi-
nant interactions correlate with pairwise interatomic dis-
tances�. In contrast, a RMSD without rototranslational fitting
would represent a poor measure, in the intuitive sense, of the
structural dissimilarity between two walks because the an-
choring of the walks in the CN space �performed here on the
first three beads� is arbitrary. This would mean, in particular,
that �i� differences in the first angles and dihedral angles
along the walk will have more influence on the metric com-
pared to corresponding differences at the end of the walk and
�ii� the distance between two walks would not be equal to the
distance between the two corresponding reverse walks. A
root-mean-square difference in internal coordinates would
also represent a poor metric for structure comparison, in par-
ticular, because �i� differences in the angles and dihedral
angles would be equally weighed along the chain, although
the central ones are intuitively expected to have more impact
on the overall shape compared to the terminal ones and �ii�
dihedral angles are periodic variables, so that the resulting
measure would depend on the arbitrary choice of a reference
interval for the dihedral angles.

C. Random-walk ensemble

The random-walk ensemble WN is defined as an infinite
ensemble of anchored walks of length N with a homoge-
neous �normalized� probability distribution pN over QN, i.e.,

pN�q� = VQN

−1 , so that �
QN

dMqpN�q� = 1. �8�

It is easily seen that WN can be generated by taking �an
infinite number of� walks in CN for which each successive
step of length b is taken in a random �i.e., isotropically dis-
tributed� direction, keeping in mind the six constraints im-
posed to the Cartesian coordinate components of the first
three beads �as all hikers know this is, however, a fairly
inefficient way of walking�. For the last statement to be true,
it is essential that the first N−2 coordinates of q �correspond-
ing to the bond angles� are defined as angle cosines and not
as angles.

D. Low-resolution shape parameters

Although the internal coordinates are, by definition, dis-
tributed homogeneously in WN, this is not the case for the
corresponding distributions of specific low-resolution shape
parameters, which may evidence a significant extent of
“apparent” structure and anisotropy7–11 �induced by the cor-
responding coordinate transformation�.

The low-resolution observables considered in the present
work are the end-to-end distance, radius of gyration, radius
of gyration tensor anisotropy factors, and number of contacts
between bead pairs. For simplicity, these parameters are de-
fined below in a reduced form, so as to enforce �i� indepen-
dence of the value chosen for the bond length b and �ii� a
possible convergence to a unique �i.e., size independent� dis-

tribution in the limit N→�. Weighing by bead masses is also
left out from the definitions �i.e., it is assumed that all bead
masses are unity�.

The reduced end-to-end distance rE is defined as the dis-
tance between beads 1 and N, scaled by �N−1�1/2b, i.e.,

rE�r� � �N − 1�−1/2b−1�rN − r1� . �9�

The reduced radius of gyration rG is defined as the root-
mean-square distance between all beads and the center of
geometry of the walk, scaled by �N−1�1/2b, i.e.,

rG�r� � �N − 1�−1/2b−1	N−1

n=1

N �rn − N−1

m=1

N

rm��2�1/2

.

�10�

The radius of gyration tensor anisotropy factors a1�a2�a3

are defined as

a��r� �
I�

I1 + I2 + I3
, � = 1,2,3, �11�

where I1� I2� I3 are the eigenvalues of the radius of gyra-
tion tensor I�, the components of which are

I��r� � 

n=1

N �rn,� − N−1

m=1

N

rm,���
��rn, − N−1


m=1

N

rm,��, �, = 1,2,3. �12�

Note that

rG�r� = �N�N − 1��−1/2b−1�I1 + I2 + I3�1/2. �13�

Finally, the reduced number of contacts c is defined here as
the number of �unique, distinct, and nonconsecutive� bead
pairs located at a distance smaller or equal to b, scaled by
�N−1��N−2� /2.

Analytical expressions for the distributions and mean
values of the reduced end-to-end distance �PN

E�rE� and �rE�N�
and for the root-mean-square values of the radius of gyration
��rG

2 �N
1/2� over the N-beads �non-self-avoiding� random-walk

ensembles WN can easily be derived �see the Appendix, Eqs.
�A15�, �A17�, and �A23�, respectively�. They converge to
N-independent expressions in the limit N→� �see the
Appendix, Eqs. �A19�, �A20�, and �A24�, respectively�.

E. High-resolution shape parameters

The shape of a polymer chain associated with a given
�central� structure is defined in the present work �Sec. I� as
the collection of all structures for which the distance to this
central structure �based on a specified metric, here the
RMSD �Sec. II B�� is below a given cutoff value Rc. This
definition implies, in particular, that �i� every structure can be
used to define a corresponding shape �of which it is the cen-
tral structure� and �ii� different shapes may be overlapping in
terms of the structures they encompass �i.e., individual struc-
tures are not associated to a single shape�. For simplicity, the
central structure of a shape will be noted q, i.e., as an inter-
nal coordinate vector of QN �with the corresponding Carte-
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sian coordinate vector in CN noted r�r�q��, and the shape of
which q is the central structure will be loosely referred to as
the shape q.

The central problem considered here is to determine how
the homogeneous internal-coordinate probability distribution
pN�q� �Eq. �8�� associated with individual structures in the
random-walk ensemble WN �Sec. II C� transforms to a cor-
responding shape probability distribution PN�q ,Rc� associ-
ated with shapes �based on the RMSD metric R and for a
given cutoff distance Rc�. This shape probability distribution
will be normalized to VQN

�Eq. �2�� rather than to unity, i.e.,

�
QN

dMqPN�q,Rc� = VQN
. �14�

This permits an immediate interpretation of PN�q ,Rc� as the
probability that an arbitrary random walk from WN belongs
to the specific shape q, relative to the average of this prob-
ability over all possible shapes. For example, a value of 1.1
for PN�q ,Rc� indicates that for the given cutoff Rc, shape q is
10% more likely to encompass an arbitrary random walk,
compared to any shape of QN taken at random. The probabil-
ity PN�q ,Rc� can also be interpreted as the subvolume of QN

spanned by the specific shape q, relative to the average of
this subvolume over all possible shapes. For example, a
value of 1.1 for PN�q ,Rc� also indicates that for the given
cutoff Rc, the neighborhood of structure q spans a 10% larger
subvolume of QN compared to the neighborhood of any
shape of QN taken at random. PN is thus a measure of the
average density of random walks in the neighborhood of
structure q �i.e., within the shape q�. When comparing two
shapes, the ratio of the corresponding PN values indicates
accordingly how much more likely one of them is compared
to the other. Finally, the chosen normalization implies that if
all shapes were equiprobable, PN would be uniformly one
over QN. In the following discussion, the cases of a finite
versus an infinitesimal cutoff Rc are handled consecutively.

Consider first the case of a finite cutoff. For the RMSD
metric, a given shape q with r�r�q� can be given a weight
�N�q ,Rc� defined by the subvolume of QN mapping to the
region of the hypersurface RN�r� �Sec. II B� enclosed within
a 3N-dimensional hypersphere of radius Rc centered at s�r�,
i.e.,

�N�q,Rc� � �
QN

dMq���Rc − �s�r�q�,r��q��� − s�r�q���� ,

�15�

where � is the Heaviside function. The corresponding shape
probability density �normalized as defined by Eq. �14�� may
then be written as

PN�q,Rc� �
VQN

�N�q,Rc�

�QN
dMq�N�q,Rc�

. �16�

Another quantity of interest is the fractional coverage func-
tion fN�q ,Rc�, defined as the fraction of QN covered by
�N�q ,Rc�, i.e.,

fN�q,Rc� � VQN

−1 �N�q,Rc� . �17�

For a given value of N, the function fN�q ,Rc� is expected to
present three regimes depending on the choice of Rc: �i� for
Rc below some threshold value RN

� , all shapes will only en-
compass part of QN, i.e., fN�1 for all q; �ii� for Rc above
some threshold value RN

��	RN
� , all shapes will encompass the

entire extent of QN, i.e., fN=1 �and, consequently, PN=1� for
all q; and �iii� for intermediate values RN

� 
Rc
RN
��, a single

shape �Rc=RN
� �, and then an increasingly large set of shapes

�Rc	RN
� �, will extend over the entire QN �i.e., have fN=1,

the other shapes still being characterized by fN�1�. The
single shape qN

� �it can also be a few symmetry-related
shapes� for which fN�qN

� ,RN
� �=1 has a special meaning. It is

the shape that can encompass the entire extent of its RN�r�
hypersurface for the smallest possible value of the cutoff
distance. For this reason, qN

� will be referred to as the “bary-
centric” shape of QN. Note also that the second threshold RN

��

represents the maximum possible distance between any two
walks of QN �i.e., the distance between the two most differ-
ent walks�. A more detailed analysis of the properties of RN

�

and RN
�� will be presented in a following article.67

Consider next the case of an infinitesimal cutoff, i.e., the
limiting case Rc→0 �which will loosely be written as Rc

=0�. In this case, PN�q ,0� probes the local density of random
walks within a shape of infinitesimal size centered at q. Be-
cause distances within an infinitesimal shape are infinitesi-
mal and due to Eq. �5�, it is possible to work here in the

patched hypersurface R̃N �Eq. �6�� rather than in the indi-
vidual hypersurfaces RN�r� �Sec. II B�. For the RMSD met-
ric, if an infinitesimal volume element dMq around q in QN

maps to a corresponding infinitesimal hypersurface element

dM�̃N of R̃N around s�r�, the shape can be given a weight
�N�q� defined by

�N�q� �
dMq

dM�̃N

. �18�

Intuitively, for a given dMq around a central structure q, a

large �N �small dM�̃N� indicates that the random walks

within dMq are more densely packed in R̃N around the cen-
tral structure �i.e., that the corresponding shape is more prob-
able�, while a small �N indicates that these walks are more
widely spread �i.e., that this shape is less probable�. This
correspondence is schematically illustrated in Fig. 1�c�. The
ratio �N represents the inverse of �the absolute value of� a
Jacobian determinant of a special kind, which associates in-
finitesimal variations in a M-dimensional space �QN� to cor-
responding variations in a 3N-dimensional space �R3N� that

are constrained to a M-dimensional hypersurface �R̃N�. This
Jacobian determinant is that of a 3N-dimensional matrix con-
taining in its first M lines the variations ds� /dqn with
n=1, . . . ,M and �=1, . . . ,3N, and in its 3N−M =N+5 last
lines, the coefficients of a set of 3N-dimensional unit vectors
that are orthogonal to those in the first M lines as well as to
each other. The corresponding local shape probability density
�normalized as defined by Eq. �14�� may then be written as
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PN�q,0� � IN
−1VQN

−1 �N�q� , �19�

where IN is the average of �N over all shapes of QN divided
by the volume VQN

, i.e.,

IN � VQN

−2 �
QN

dMq�N�q� . �20�

The single shape qN
# �it can also be a few symmetry-related

shapes� that maximizes PN�q ,0� over QN has a special
meaning. It corresponds to the structure that has the highest
density of random walks in its local neighborhood. For this
reason, qN

# will be referred to as the “densest” shape of WN.

Finally, based on Eq. �18�, the area AR̃N
of R̃N can be evalu-

ated as

AR̃N
= �

QN

dMq�N
−1�q� . �21�

Note that the above approach is not applicable to walks con-
taining one or more bond angles equal to 0 or � since these
cannot be unambiguously represented in QN. However, be-
cause they possess fewer than M degrees of freedom, it is
easily seen that they are characterized by a vanishing local
shape probability density PN�q ,0�=0.

It is important to realize that the weight �N �Rc→0; Eq.
�18�� differs from the weight �N �Rc�0; Eq. �15�� in that the

former one is a local surface density on R̃N �infinitesimal
volume of QN divided by the associated infinitesimal area of

R̃N� while the latter one is a volume in QN �finite subvolume
of QN associated with a finite area of RN�r��, i.e., �N is not
the limit of �N when Rc→0. An approximate relationship
between the two quantities for small Rc values can be ob-
tained by assuming that �i� the surface density of random
walks is approximately constant over RN�r�q�� in the neigh-
borhood of q, �ii� this surface density is approximately equal
to ��q�, and �iii� the effect of the curvature of RN�r�q�� in
R3N can be neglected. In this case, �N�q ,Rc� should be ap-
proximately equal �for a given q� to �N�q� multiplied by the
area of a M-dimensional hyperdisk of radius Rc, i.e.,

�N�q,Rc� � �M/2Rc
M�−1�M/2 + 1��N�q� for small Rc,

�22�

where � is the Euler gamma function, with ��M /2+1�
=2−�M+1�/2�1/2M ! ! for M odd �always the case here�. This
can be rewritten in terms of the fractional coverage function
fN �Eq. �17�� as �using Eq. �2� and for M odd�

fN�q,Rc� � �2�M−1�/2M ! !�−1�N�q�Rc
M for small Rc.

�23�

Note that due to curvature effects, one should not expect this
equation to be exactly satisfied even in the limit Rc→0 �i.e.,
in the sense of evaluating limRc→0 Rc

−MfN�q ,Rc��.
To better appreciate the extent of inhomogeneity in the

distribution of random walks into shapes, one may consider
subvolumes of QN containing the most likely shapes based
on a cutoff criterion Pc �in the range �0, . . . , PN�qN

# ,0��� ap-
plied to the local shape probability density PN�q ,0�. The

fractional volume of such a region in terms of internal coor-
dinates �relative to the entire accessible volume� is given by

vN�Pc� � VQN

−1 �
QN

dMq��PN�q,0� − Pc� . �24�

This function varies between 0 �Pc= PN�qN
# ,0�� and 1 �Pc

=0� upon decreasing Pc. The integrated local shape probabil-
ity over the same region relative to the corresponding inte-
gral VQN

over the entire QN is given by

Pin,N�Pc� � VQN

−1 �
QN

dMq��PN�q,0� − Pc�PN�q,0� . �25�

This function varies between 0 �Pc= PN�qN
# ,0�� and 1 �Pc

=0� upon decreasing Pc. Finally, the average of the local
shape probability over this same region is given by

Pav,N�Pc� � vN
−1�Pc�VQN

−1 Pin,N�Pc� . �26�

This function varies between PN�qN
# ,0� �Pc= PN�qN

# ,0�; in a
limiting sense� and 1 �Pc=0� upon decreasing Pc. By com-
paring Pin,N�Pc� or Pav,N�Pc� to vN�Pc� for increasing values
of Pc �i.e., by plotting Pin,N or Pav,N as a function of vN�, it is
possible to assess the extent to which the most likely shapes
dominate the less likely ones in the shape analysis of the WN

ensemble.

III. COMPUTATIONAL DETAILS

A systematic �grid-based� approach was used to sample
the random-walk ensemble WN for chain lengths ranging
from N=3 to 10 beads. This approach involved the regular
paving of QN using G=gM grid cells of volume G−1VQN
centered at grid points �qk �k=1, . . . ,G�, with g being the
number of cell subdivisions along one dimension �for sim-
plicity, this number was chosen identical for all angle cosine
as well as dihedral angle variables�. Grid-based sampling is,
in principle, the most appropriate method when sufficiently
large g values are computationally affordable because it is
deterministically reproducible and guarantees a rigorously
homogeneous sampling throughout QN. Note, however, that
when used in combination with too small g values, it may
introduce a systematic bias in the sampling �in which case a
random sampling approach might be more adequate�.

Apart from the number of beads N, the bond length b is
the only free parameter in the considered random-walk en-
sembles. Because b has the dimension of a length �while N is
dimensionless�, all monitored properties scale in a predict-
able manner with b. This parameter was thus set to unity in
all calculations for simplicity without affecting the generality
of the results.

The probability distributions of the low-resolution shape
parameters �rE, rG, a1, a2, a3, and c, in reduced form �Sec.
II D�� were monitored by sorting the corresponding values at
the grid points into �normalized� occurrence histograms with
a bin width of 0.005.

To evaluate the finite-cutoff shape probability density
PN�q ,Rc� �Sec. II E� at a given grid point qk, the volume
�N�qk ,Rc� of Eq. �15� was estimated by the number of struc-
tures qk� on the grid satisfying the involved cutoff condition
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relative to qk, amplified by G−1VQN
. These estimates were

then used to calculate the corresponding �gridded� finite-
cutoff probability density PN�qk ,Rc� via Eq. �16�, where the
integral in the denominator was replaced by a discrete sum
over all grid points. The �gridded� fractional coverage func-
tion fN�qk ,Rc� was evaluated similarly via Eq. �17�. These
two functions were computed for a discrete set of cutoff
values Rc usually corresponding to Rc /RN

��=0.1, 0.2, 0.4, and
0.6 �for N=5, the last two values were replaced by 0.25 and
0.45; for N=6, the first value was replaced by 0.15 and the
last value omitted�. The computational cost of the above cal-
culation �one R calculation for each unique pair of distinct
structures� is O�G�G−1� /2��O�g2M�, which is only trac-
table for reasonable values of g along with a rather small
number of beads �e.g., N
6→g2M 
g14�. For this reason,
the analysis using finite cutoff distances was not extended
beyond 6 beads.

To evaluate the local shape probability density PN�q ,0�
�Sec. II E� at a given grid point qk, the surface density �N�qk�
of Eq. �18� was estimated using a finite-difference approach.
More precisely, for a grid point qk �reference structure�, the q
vector was increased or decreased by half of the grid spacing
along each of the M dimensions, resulting in 2M slightly
altered structures �shifted structures�. The reference and
shifted structures were transformed to CN and the latter ones
rototranslationally fitted onto the former one. The corre-
sponding M �3N Cartesian displacements, divided by the
grid spacing and scaled by N1/2, provided finite-difference
estimates for the elements of the first M rows of the Jacobian
matrix �Sec. II E�. The matrix was then completed by the
N+5 orthogonal unit vectors �the construction of which re-
quired an equivalent number of matrix inversions�. Finally,
the �absolute value of the� inverse of this Jacobian determi-
nant provided the required value for �N�qk�. These estimates
were then used to calculate the corresponding �gridded� local
probability density PN�qk ,0� via Eq. �19�, where the integral
involved in IN�qk� was replaced by a discrete sum over all
grid points. The value of g employed for these calculations
was chosen to be even, so that the reference walk �a grid-cell
center� can never present angles equal to 0 or �. Whenever
this situation occurred for a shifted walk, the corresponding
angle cosine was simply set to �0.9999 instead of �1. This
avoided the need of a special handling of this situation �the
resulting error being essentially negligible�. The computa-
tional cost of the above calculation �one �N calculation for
each structure� is O�G�=O�gM�, which represents a more
favorable scaling compared to the corresponding calculation
at finite cutoff �see above�, i.e., it remains tractable for rea-
sonable values of g along with a larger number of beads
�e.g., N
9→gM 
g13�. For this reason, the analysis using
infinitesimal cutoffs was extended up to nine beads. In order
to obtain more precise coordinates for the densest shape qN

#

�the shapes maximizing PN�q ,0��, a grid-focusing approach
was used, whereby the grid cell containing the best structure
at a relatively low G value was subsequently rediscretized by
a full grid of G points �iteratively if needed; this could be
done reliably up to six beads only�.

The computation of the finite-cutoff shape probability
density was implemented into MATLAB 7.4 and carried out on

an Apple Mac Pro �3 GHz Intel Xeon dual cores�. The com-
putation of the local shape probability density was imple-
mented into a C program and carried out on Sun worksta-
tions. In both cases, the most expensive calculations �n=9
and g=4 for the local shape probability density or n=6 and
g=5 for the finite-cutoff probability density� required about
3 weeks of computer time. Corresponding calculations with
the same grid spacing but considering only one more bead in
the walk would be prohibitively expensive �requiring about 1
or 40 years of computer time, respectively, on the same com-
puters�.

Unless otherwise specified, the calculations were per-
formed as described above, considering non-self-avoiding
random walks. However, a few additional calculations were
also performed for self-avoiding walks �i.e., excluding any
walk containing at least one pair of distinct and nonconsecu-
tive beads at a distance smaller or equal to b�. In this case,
the sampling over angle-cosine coordinates was restricted to
the range ��1, 0.5� rather than ��1, 1�.

IV. RESULTS

A. Low-resolution shape parameters

The �normalized� probability distributions of the low-
resolution shape parameters �rE, rG, a1, a2, a3, and c, ex-
pressed in reduced form �Sec. II D�� over the random-walk
ensembles WN with N=3, . . . ,10 are displayed in Figs. 2–5,
while the corresponding averages reported in Table I, for
both non-self-avoiding and self-avoiding walks. In the
former case, the results for rE and rG are also compared to
corresponding analytical expressions �see the Appendix�.
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FIG. 2. Normalized probability distributions PN
E�rE� of the reduced end-to-

end distance rE �Eq. �9�� calculated over the random-walk ensembles WN

with N=3, . . . ,10. The data were evaluated using grid-based sampling in the
internal-coordinate space �number of grid points per dimension set to g
=106, 500, 40, 20, 10, 8, 6, and 4 for N=3, . . . ,10� and sorted into histo-
grams �bin width 0.005�. The solid and dotted lines refer to the ensembles of
non-self-avoiding and self-avoiding random walks, respectively. The curves
for the non-self-avoiding case are compared to corresponding analytical
curves �bold gray lines� from Eq. �A15�. The dashed line in the panel for
N=10 represents the limiting analytical curve for N→� from Eq. �A19�.
The corresponding averages �rE�N are reported in Table I.
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The distributions PN
E�rE� of the reduced end-to-end dis-

tance rE �Fig. 2� over the non-self-avoiding random-walk
ensembles match very well the corresponding analytical
curves �Eq. �A15��. The resulting averages �rE�N �Table I� are
also identical �within numerical accuracy� to the expected
analytical values �Eq. �A17��. These distributions are non-

zero only within the interval �0; �N−1�1/2� because the end-
to-end distance for a walk of length N can neither be nega-
tive nor exceed �N−1�b and consist of piecewise-defined
polynomials �involving �N−ON� /2+2 successive definition
intervals over R, where ON is one for N odd and zero other-
wise�. The resulting functions are either discontinuous �N
=3�, continuous to the first derivative �N=4�, or continuous
to the second derivative �N�5�. Upon increasing N, these
distributions converge to an N-independent limiting form
�Gaussian amplified by rE

2 and truncated to the range rE�0
�Eq. �A19��; see Fig. 2, panel for N=10�, with a correspond-
ing average value of �3� /8�−1/2�0.9213 �Eq. �A20��. The
convergence is relatively rapid, and these limiting expres-
sions already represent good approximations for relatively
low values of N. Although it may seem surprising at first
sight that �rE�N decreases upon increasing N, it should be
recalled that rE is defined in a reduced form �scaled by �N
−1�1/2b�. The average of the �unscaled� end-to-end distance
actually increases with increasing N, as expected.

The distributions PN
G�rG� of the reduced radius of gyra-

tion rG �Fig. 3� over the non-self-avoiding random-walk en-
sembles are nonzero only within the interval �rG,N

min ;rG,N
max�

�Eqs. �A25� and �A26�� and also appear to consist of
piecewise-defined functions. The numerical distribution
P3

G�rG� for N=3 is in excellent agreement with the corre-
sponding analytical curve �Eq. �A30�; analytical forms could
not be derived for N�4�. The resulting root-mean-square
averages �rG

2 �N
1/2 �Table I� are also identical �within numerical

accuracy� to the expected analytical values �Eq. �A23��.
Upon increasing N, these root-mean-square averages con-
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FIG. 3. Normalized probability distributions PN
G�rG� of the reduced radius of

gyration rG �Eq. �10�� calculated over the random-walk ensembles WN with
N=3, . . . ,10. The data were evaluated using grid-based sampling in the
internal-coordinate space �number of grid points per dimension set to g
=106, 500, 40, 20, 10, 8, 6, and 4 for N=3, . . . ,10� and sorted into histo-
grams �bin width 0.005�. The solid and dotted lines refer to the ensembles of
non-self-avoiding and self-avoiding random walks, respectively. The curve
for the non-self-avoiding case with N=3 is compared to the corresponding
analytical curve �bold gray line� from Eq. �A30�. The corresponding aver-
ages �rG�N and root-mean-square averages �rG

2 �N
1/2 are reported in Table I.
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FIG. 4. �Color online� Normalized probability distribution PN
a��a�� of the

radius of gyration tensor anisotropy factors a1, a2, and a3 �Eq. �11�� calcu-
lated over the random-walk ensembles WN with N=3, . . . ,10. The data were
evaluated using grid-based sampling in the internal-coordinate space �num-
ber of grid points per dimension set to g=106, 500, 40, 20, 10, 8, 6, and 4 for
N=3, . . . ,10� and sorted into histograms �bin width 0.005�. The solid and
dotted lines refer to the ensembles of non-self-avoiding and self-avoiding
random walks, respectively. The corresponding averages �a��N are reported
in Table I.
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FIG. 5. Normalized probability distributions PN
c �c� of the reduced number of

contacts c �number of unique, distinct, and nonconsecutive bead pairs lo-
cated at a distance smaller or equal to b, scaled by �N−1��N−2� /2 �Sec.
II D�� calculated over the random-walk ensembles WN with N=3, . . . ,10.
The data were evaluated using grid-based sampling in the internal-
coordinate space �number of grid points per dimension set to g=106, 500,
40, 20, 10, 8, 6, and 4 for N=3, . . . ,10� for non-self-avoiding random walks.
The corresponding distributions evaluated over the self-avoiding random-
walk ensembles �not shown� are uninformative �single bar at c=0�. Note
that for ease of comparison the distributions are normalized as integrals, so
that the sum of all bars is always equal to �N−1��N−2� /2. The correspond-
ing averages �c�N are reported in Table I.
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verge to an N-independent limiting value of 6−1/2�0.4082
�Eq. �A24��. Although the convergence of the distributions
toward a limiting form is less rapid than was the case for rE,
the limiting root-mean-square average still represents a good
approximation for even relatively low values of N. Here
again, �rG�N and �rG

2 �N
1/2 decrease upon increasing N because

rG is defined in a reduced form �scaled by �N−1�1/2b�. The
average and root-mean-square average of the �unscaled�
radius of gyration actually increase with increasing N, as
expected.

The corresponding rE and rG distributions and averages
evaluated over the self-avoiding random-walk ensembles
�Figs. 2 and 3 and Table I� are systematically shifted �at
identical N� toward higher values. This is due to the exclu-
sion of walks presenting bead overlaps, which are on average
more compact. In particular, the rE distributions now vanish
for rE� �N−1�−1/2 �because the first and last beads of a walk
can no longer be closer than a distance b�. In contrast to the
non-self-avoiding case, the corresponding averages �rE�N and
�rG

2 �N
1/2 now increase upon increasing N. Furthermore, the

corresponding dependence on N over the �limited� interval
N=3, . . . ,10 suggests �without rigorously proving� the ab-
sence of convergence to a limiting value for large N. As a
consequence, the scalings selected for rE and rG in Eqs. �9�
and �10� may be inappropriate for the self-avoiding random-
walk ensemble �in the sense of leading to an N-independent
distribution in the limit N→��.

The distributions PN
a��a�� of the radius of gyration tensor

anisotropy factors a� ��=1, . . . ,3; Fig. 4� over the non-self-
avoiding random-walk ensembles clearly evidence the over-
all anisotropy effect revealed previously.11–18 The a1 and a2

distributions are nearly nonoverlapping, while the a2 and a3

distributions, though partially overlapping, remain clearly
distinct. This indicates that most non-self-avoiding random
walks present an anisotropic overall shape, with an average
that can be characterized as a prolate ellipsoid �“flattened-out
cigar”�. The corresponding average values of a1, a2, and a3

for large N �e.g., about 0.72, 0.20, and 0.08 for N=10� are in
a ratio of about 9.4:2.6:1. This ratio is already very close to
the corresponding ratio of about 9:2.3:1 suggested
previously11 for the limit N→�. The comparison of these
distributions with the corresponding distributions evaluated
over the self-avoiding random-walk ensembles reveal a sig-
nificant anisotropy enhancement �at identical N�, especially
for a1 versus a2 and a3. As a result, the average values of a1,
a2, and a3 for large N �e.g., about 0.78, 0.17, and 0.05 for
N=10� are now in a ratio of about 15.3:3.3:1. Visual inspec-
tion suggests that the distributions of the anisotropy factors
probably converge to unique functions in the limit of large N
in the non-self-avoiding as well as in the self-avoiding case.

Finally, the distributions PN
c �c� of the reduced number of

contacts c �Fig. 5� over the non-self-avoiding random-walk
ensembles suggest that most such walks do not present a
compact overall shape. The reduced number of contacts is,

TABLE I. Average values of low-resolution shape parameters over the random-walk ensembles WN with
different numbers of beads N=3, . . . ,10. The parameters are the reduced end-to-end distance rE �Eq. �9��, the
reduced radius of gyration rG �Eq. �10��, the radius of gyration tensor anisotropy factors a1�a2�a3 �Eq. �11��,
and the reduced number of contacts c �number of unique, distinct, and nonconsecutive bead pairs located at a
distance smaller or equal to b, scaled by �N−1��N−2� /2�. The data refer to the non-self-avoiding �top� and
self-avoiding �bottom� random-walk ensembles. The values for �rE�N and �rG

2 �N
1/2 over the non-self-avoiding

random-walk ensembles were calculated from the analytical results of Eqs. �A17� and �A23�, respectively �the
corresponding numerical values were identical within numerical accuracy, i.e., with deviations of at most
�0.001�. The two corresponding N→� limits were calculated using Eqs. �A20� and �A24�. All other values
were calculated numerically using grid-based sampling in the internal-coordinate space �number of grid points
per dimension set to g=106, 500, 40, 20, 10, 8, 6, and 4 for N=3, . . . ,10�. The corresponding distributions are
shown in Figs. 2–5.

N �rE�N �rG�N �rG
2 �N

1/2 �a1�N �a2�N �a3�N �c�N

Non-self-avoiding
3 0.9428 0.4661 0.4714 0.7828 0.2166 0.0000 0.2500
4 0.9382 0.4497 0.4564 0.7555 0.2082 0.0441 0.2222
5 0.9333 0.4395 0.4472 0.7406 0.2049 0.0574 0.2001
6 0.9309 0.4326 0.4410 0.7329 0.2036 0.0647 0.1823
7 0.9293 0.4277 0.4364 0.7283 0.2029 0.0694 0.1815
8 0.9281 0.4239 0.4330 0.7256 0.2022 0.0725 0.1544
9 0.9272 0.4210 0.4303 0.7238 0.2017 0.0748 0.1536

10 0.9265 0.4188 0.4282 0.7221 0.2013 0.0770 0.1420
� 0.9213 ¯ 0.4082 ¯ ¯ ¯ ¯

Self-avoiding
3 1.0983 0.4980 0.5004 0.8053 0.1945 0.0000 0.0000
4 1.1716 0.5056 0.5088 0.7984 0.1718 0.0372 0.0000
5 1.2255 0.5151 0.5188 0.7920 0.1674 0.0435 0.0000
6 1.2681 0.5249 0.5291 0.7888 0.1666 0.0460 0.0000
7 1.3051 0.5349 0.5394 0.7870 0.1666 0.0472 0.0000
8 1.3237 0.5405 0.5455 0.7835 0.1680 0.0490 0.0000
9 1.3546 0.5504 0.5556 0.7827 0.1683 0.0495 0.0000

10 1.3638 0.5538 0.5594 0.7798 0.1697 0.0508 0.0000
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on the average, relatively low �c
0.25� compared to the
theoretically possible maximum number of contacts �all
beads in contact; c=1�. The extent of compactness also ap-
pears to decrease upon increasing N, the average value �c�N

decreasing from 0.25 to 0.14 over the interval N=3, . . . ,10.
Note that the corresponding distributions evaluated over the
self-avoiding random-walk ensembles �not shown� are unin-
formative �single peak at c=0; contacts are by definition not
allowed in this ensemble�.

B. High-resolution shape parameters

The present discussion of high-resolution shape param-
eters is almost exclusively restricted to non-self-avoiding
walks. The case of self-avoiding walks is briefly discussed at
the end of the section.

The results for N=3 beads are displayed in Fig. 6, the
corresponding key parameters being reported in Table II.

Here, the internal coordinate vector q consists of the cosine
of the single angle �1 defined by the three beads.

The local shape probability density P3�q ,0� is displayed
in Fig. 6�a� as a function of �1 for three different grid spac-
ings g �10, 100, and 1000�. The results for the three g values
are essentially consistent, the curves corresponding to g
=100 and 1000 being nearly indistinguishable �indicating a
sufficient accuracy of the finite-difference approximation to
the Jacobian�. As expected, the shapes centered at �1=0 ,�
are characterized by a vanishing probability. The distribution
shows a single maximum and is slightly biased toward open
angles �	90°�. The maximum �densest shape q3

#� is located
at �1

#=105.5° and associated with a local shape probability
density P3�q3

# ,0�=1.28. This indicates that the local neigh-
borhood of this central structure is 28% more populated �in
terms of random-walk density� compared to the correspond-
ing average over all possible shapes or, equivalently, that the
corresponding shape is 28% more likely �in a local sense�
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FIG. 6. �a� Normalized local shape probability distribution P3�q ,0� �Eq. �19��, where q= �cos �1�, displayed as a function of the single angle �1 of the walk.
�b� Corresponding normalized finite-cutoff shape probability distribution P3�q ,Rc� �Eq. �16�� displayed as a function of the single angle �1 of the walk; left
to right: Rc=0.09b, 0.19b, 0.38b, and 0.57b, with b being the bond length. �c� Left: maximum �f3

max�, mean �f3
mean�, and minimum �f3

min� values of the fractional
coverage function f3�q ,Rc� �Eq. �17�� over Q3 displayed as a function of the cutoff Rc. Middle: maximum �P3

max�, mean �P3
mean�, and minimum �P3

min� values
of P3�q ,Rc� over Q3, displayed as a function of the cutoff Rc. Right: maximum, mean, and minimum values of the angle �1 over the set of structure
maximizing P3�q ,Rc�, displayed as a function of the cutoff Rc; points indicated at Rc=0 in the middle and right panels correspond to expected values based
on the local probability analysis. Note that P3 in �a� and �b� is normalized in terms of cos �1 �not �1� so that its average over the graph differs from one. The
data in �a� were evaluated using three different numbers of grid points g=10, 100, or 1000. The data in �b� and �c� were evaluated using g=105 grid points.
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than any shape taken at random. This difference may seem
modest because it expresses a bias relative to the average
over all shapes �i.e., including the most likely ones�. How-
ever, pairwise comparisons can show more dramatic effects.
For example, the densest shape is about 15 times more likely
compared to the one centered at �1=5°.

The finite-cutoff shape probability density P3�q ,Rc� is
displayed in Fig. 6�b� as a function of �1 for four different
cutoff values Rc. As expected, the curve corresponding to the
lowest Rc value is the closest to the limiting case Rc→0 �Fig.
6�a��. Upon increasing Rc, the bias in the distribution and the
location of the maximum progressively shift in the direction
of closed angles ��90°�. For the largest Rc value considered
here �Rc=0.57b	R3

� �see below��, the maximum no longer
corresponds to a single �1 value, but to a range thereof. This
arises because for such a large cutoff, a collection of shapes
is now able to encompass the entire random-walk ensemble.

The dependence of P3�q ,Rc� on the cutoff value is char-
acterized in more details in Fig. 6�c�. The left panel illus-
trates the maximum f3

max�Rc�, mean f3
mean�Rc�, and minimum

f3
min�Rc� values �over shapes centered at all points of Q3� of

the fractional coverage function f3�q ,Rc�, displayed as a
function of Rc. The central panel displays the associated
maximum P3

max�Rc�, mean P3
mean�Rc�, and minimum P3

min�Rc�
values of the finite-cutoff shape probability density
P3�q ,Rc�. Finally, the right panel displays the range of �1

values associated with the central structures of the most
likely shapes �i.e., those corresponding to f3

max and P3
max�, as

well as the average value of �1 over this set. The function
f3

max, i.e., the fraction of the random-walk ensemble encom-
passed by the most likely shape for a given Rc, increases
from zero at Rc=0 �infinitesimal shape� to 1 �the most prob-
able shapes encompass the entire ensemble�. This function
reaches 1 at a cutoff value R3

�=0.486b for a specific shape
�barycentric shape q3

�� characterized by �1
�=74.2� and

P3�q3
� ,R3

��=1.13. This shape is the one that encompasses the
entire ensemble for the smallest possible value of Rc. As
could be anticipated from Fig. 6�b�, the �1 angle associated
with the most likely shape decreases upon increasing Rc from
0 to R3

�. Over a sizable range of Rc values �0
Rc
0.4b�,
this most likely shape is consistently more probable by about
20% �P3

max� than any shape taken at random. The function

TABLE II. Parameters characterizing the local shape probability density PN�q ,0� �top� and the finite-cutoff
shape probability density PN�q ,Rc� �bottom� for the random-walk ensembles WN with different numbers of
beads N=3, . . . ,9. The parameters are the central structure qN

# of the densest shape �internal coordinates ��#�
and ��#��, the local probability density PN�qN

# ,0� associated with this shape �Eq. �19��, the area AR̃N
of the R̃N

hypersurface �Eq. �21��, the average IN of the random-walk local surface density �N divided by the volume VQN
�Eq. �20��, the central structure qN

� of the barycentric shape �internal coordinates ���� and �����, the smallest
cutoff radius RN

� for which this shape encompasses the entire ensemble, the finite-cutoff probability density
PN�qN

� ,RN
� � associated with these shape and cutoff �Eq. �16��, and the cutoff radius RN

�� above which all shapes
encompass the entire ensemble �maximum distance between any two walks of QN�. Although the data mainly
refer to the ensembles of non-self-avoiding random walks, the values of PN, AR̃N

, and IN for the self-avoiding
random-walk ensemble are reported between parentheses �the qN

# structures are self-avoiding and thus identical
for the two ensembles; this possibly also holds for the qN

� structures and RN
� values, but not for the RN

�� values
�Ref. 67��. The data were evaluated using grid-based sampling in the internal-coordinate space. The number of
grid points per dimension was set to g=104, 200, 24, 12, 8, 4, and 4 for N=3, . . . ,9 �local density� or g=105,
51, 13, and 5 for N=3, . . . ,6 �finite-cutoff density�. The parameters of qN

# for N=3, . . . ,6 were further refined
to a precision of at least 1° using grid focusing.

Infinitesimal cutoff

N ��#� �deg� ��#� �deg� PN�qN
# ,0� AR̃N

�bM� IN�b−M�

3 105.5 ¯ 1.28 �1.15� 1.02�0.82� 1.21�1.35�
4 137.7/137.7 0.0 1.79 �1.50� 0.77�0.52� 1.51�1.80�
5 154.5/143.7/154.5 0.0/0.0 2.94 �2.34� 0.71�0.38� 1.74�2.18�
6 163.5/151.8/151.8/163.5 0.0/0.0/0.0 10.05 �7.60� 0.63�0.26� 2.07�2.73�
7 ¯ ¯ ¯ 0.52�0.17� 2.64�3.75�
8 ¯ ¯ ¯ 0.43�0.09� 3.42�5.89�
9 ¯ ¯ ¯ 0.27�0.05� 5.55�9.86�

Finite cutoff

N
����

�deg�
����
�deg� PN�qN

� ,RN
� � RN

� �b� RN
���b�

3 74.2 ¯ 1.13 0.486 0.943
4a 36.0/36.0 �162.4 1.11 0.712 1.236
5b 81/67/81 �166 / �83, �83 / �166 1.07 0.873 1.600
6c 66/78/78/66 �144 / �+72,−72� / �144 1.06 0.998 1.899

aTwo symmetry-related barycentric shapes �enantiomers �1
�↔−�1

��.
bPrecisions of reported �� and �� parameters are only about 20 and 30°, respectively; four symmetry-related
barycentric shapes �enantiomers �1

� ,�2
�↔−�1

� ,−�2
� and bead-order inversion �1

�↔�2
��.

cPrecisions of reported �� and �� parameters are only about 30 and 70°, respectively; two alternative �2
� values,

each with four symmetry-related barycentric shapes �enantiomers �1
� ,�2

� ,�3
�↔−�1

� ,−�2
� ,−�3

� and bead-order
inversion �1

�↔�3
��.
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f3
min, i.e., the fraction of the random-walk ensemble encom-

passed by the least probable shape for a given Rc, also in-
creases from zero at Rc=0 to 1. This function reaches 1 at a
cutoff value R3

��=0.943b. Above this Rc value, all shapes
encompass the entire ensemble. As expected, the range of �1

values satisfying f3�q ,Rc�=1 widens upon increasing Rc

from R3
� to R3

��, while the average �1 value over this set
slightly increases over this interval.

As a final note concerning the above results for N=3, it
is important to stress that although three beads are always
contained in a plane, the present results pertain to random
walks in three dimensions. In this case, the probability dis-
tribution p3�q� in the random-walk ensemble �Eq. �8�� is ho-
mogeneous in cos �1 �with �1 in the range �0;���, so that the
corresponding average cos �1 value is 0. This is in qualitative
agreement with the observation that the most likely shapes
have �1 angles close to 90°. In two dimensions, however, the

corresponding probability distribution would be homoge-
neous in �1 so that the corresponding average �1 value would
be 0° �if �1 is chosen in the range �−� ;���. The results in
terms of shape probability distributions would then look
quite different.

The results for N=4 beads are displayed in Fig. 7, the
corresponding key parameters being reported in Table II.
Here, the internal coordinate vector q consists of the cosines
of the two angles �1 and �2 along with the single dihedral
angle �1 defined by the four beads.

The local shape probability density P4�q ,0� is displayed
in Fig. 7�a� as a function of cos �1, cos �2, and �1. As ex-
pected, the shapes centered at �1=0 ,� or �2=0 ,� are char-
acterized by a vanishing probability. In addition, due to the
symmetry properties of the RMSD metric �Sec. II B�, the
distribution is invariant with respect to the changes �1↔
−�1 and �1↔�2. This distribution displays a single maxi-
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FIG. 7. �Color� �a� Normalized local shape probability distribution P4�q ,0� �Eq. �19��, where q= �cos �1 ,cos �2 ,�1�, displayed as a function of the angle
cosines cos �1 and cos �2 and the single dihedral angle �1 of the walk. �b� Corresponding normalized finite-cutoff shape probability distribution P4�q ,Rc� �Eq.
�16�� displayed as a function of the angle cosines cos �1 and cos �2 and the single dihedral angle �1 of the walk; left to right: Rc=0.12b, 0.25b, 0.50b, and
0.74b, with b being the bond length. �c� Left: maximum �f4

max�, mean �f4
mean�, and minimum �f4

min� values of the fractional coverage function f4�q ,Rc� �Eq. �17��
over Q4, displayed as a function of the cutoff Rc. Middle: maximum �P4

max�, mean �P4
mean�, and minimum �P4

min� values of P4�q ,Rc� over Q4, displayed as a
function of the cutoff Rc. Right: maximum, mean, and minimum values of the angles �1 and �2 as well as of the dihedral angle �1 �absolute value� over the
set of structure maximizing P4�q ,Rc�, displayed as a function of the cutoff Rc; points indicated at Rc=0 in the middle and right panels correspond to expected
values based on the local probability analysis. The data in �a� were evaluated using g=200 grid points per dimension, and the data in �b� and �c� using g
=51 grid points per dimension.
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mum and is significantly biased toward open �1 and �2

angles. The maximum �densest shape q4
#� is located at �1

#

=�2
#=137.7� and �1

#=0.0° and is associated with a local
shape probability density P4�q4

# ,0�=1.79. Note that the pres-
ence of a single maximum is not a consequence of the above-
mentioned symmetry properties �these merely imply that if
the maximum is unique, it must satisfy �1

#=�2
# and �1

#=0°�.
This specific shape is 79% more likely �in a local sense� than
any shape taken at random. Here too, the bias may be much
more dramatic when performing pairwise comparisons be-
tween shapes. For example, the densest shape is about 35
times more likely compared to the one centered at �1=�2

=5° and �1=0°.
The finite-cutoff shape probability density P4�q ,Rc� is

displayed in Fig. 7�b� as a function of cos �1, cos �2, and �1

for four different cutoff values Rc. All graphs preserve the
symmetry features described above for P4�q ,0�. The curve
corresponding to the lowest Rc value is again the closest to
the limiting case Rc→0 �Fig. 7�a��. Upon increasing Rc, the
bias in the distribution and the location of the maximum
progressively shift in the direction of closed angles. For Rc

	0.4b, the single maximum becomes split into two
symmetry-related �enantiomeric� maxima with opposite �1

�0 values. For the largest Rc value considered �Rc=0.74b
	R4

�, see below�, these two maxima no longer correspond to
single points but to two regions of the graph.

The dependence of P4�q ,Rc� on the cutoff value is char-
acterized in more detail in Fig. 7�c�, analogous to Fig. 6�c�
for N=3 �see explanations above�. These curves display the
same qualitative features as for N=3, although the numerical
precision is considerably lower �especially for low Rc values�
due to the more limited grid resolution. The fractional cov-
erage function f4

max reaches 1 at a cutoff value R4
�=0.712b for

a specific �symmetry duplicated, i.e., two enantiomers� shape
�barycentric shape q4

�� characterized by �1
�=�2

�=36.0° and
�1

�= �162.4°, and P4�q4
� ,R4

��=1.11. As could be anticipated
from Fig. 7�b�, the �1 and �2 values associated with the most
likely shape �which remain identical to each other� decrease
upon increasing Rc from 0 to R4

�, while the corresponding
single �1 value of 0° splits into two opposite �and increas-
ingly larger� values for Rc	0.4b. Over a sizable range of Rc

values �0
Rc
0.4b�, this most likely shape is consistently
more probable by at least 40% �P4

max� than any shape taken at
random. The function f4

min reaches 1 at a cutoff value R4
��

=1.236. Above this Rc value, all shapes encompass the entire
ensemble. As expected, the ranges of �1, �2, and �1 values
satisfying f4�q ,Rc�=1 widen upon increasing Rc from R4

� to
R4

��.
The results for N=5 beads are displayed in Fig. 8, the

corresponding key parameters being reported in Table II.
Here, the internal coordinate vector q consists of the cosines
of the three angles �1, �2, and �3 along with the two dihedral
angles �1 and �2 defined by the five beads.

The local shape probability density P5�q ,0� is displayed
in Fig. 8�a� in the form of a maximal value �over all possible
�1, �2, and �3 combinations� as a function of the �1 and �2

dihedral angles. It was verified that the full �five-
dimensional� distribution �not shown� satisfies the expected
symmetry properties �Sec. II B�. These translate at the level

of the two-dimensional maximal-value projection to invari-
ances with respect to the changes �1↔�2 and �1 ,�2↔
−�1 ,−�2. The distribution displays a single maximum and is
significantly biased toward flat cis-cis structures. The maxi-
mum �densest shape q5

#� is located at �1
#=�3

#=154.5°, �2
#

=143.7°, and �1
#=�2

#=0.0° and is associated with a local
shape probability density P5�q5

# ,0�=2.94. Here too, the pres-
ence of a single maximum is not a consequence of the above-
mentioned symmetry properties �these merely imply that if
the maximum is unique, it must satisfy �1

#=�3
# and �1

#=�2
#

=0°�. This specific shape is about three times more likely �in
a local sense� than any shape taken at random.

The finite-cutoff shape probability density P5�q ,Rc� is
displayed in Fig. 8�b�, also in the form of a maximal-value
projection, for four different cutoff values. All graphs pre-
serve the symmetry features described above for P5�q ,0�.
The curve corresponding to the lowest Rc value is again the
closest to the limiting case Rc→0 �Fig. 8�a��. Upon increas-
ing Rc, the bias in the distribution progressively shifts from
flat cis-cis structures in the direction of gauche�-gauche�

structures, while the single maximum becomes split into four
symmetry-related �enantiomeric forms and reverse bead or-
der� maxima with �1 ,�2�0 values.

The dependence of P5�q ,Rc� on the cutoff value is char-
acterized in more detail in Fig. 8�c�, analogous to Figs. 6�c�
and 7�c� for N=3,4 �see explanations above�. These curves
display the same qualitative features as for N=3 and 4, al-
though the numerical precision is again considerably lower
�especially for low Rc values�. The fractional coverage func-
tion f5

max reaches 1 at a cutoff value R5
�=0.873b for a specific

shape �barycentric shape q5
�� that is fourfold replicated by

symmetry and is associated with P5�q5
� ,R5

��=1.07. One of
these structures corresponds to �1

�=�3
�=81�, �2

�=67�, �1
�

=166°, and �2
�=−83°. The other three are obtained by the

changes �1
� ,�1

�↔�3
� ,�2

� and/or �1
� ,�2

�↔−�1
� ,−�2

�. As could
be anticipated from Fig. 8�b�, the dihedral angles associated
with the most likely shape tend to shift away from flat cis-cis
upon increasing Rc from 0 to R5

�. Simultaneously, the angles
tend to shift toward lower values. The function f5

min reaches 1
at a cutoff value of R5

��=1.600. Above this Rc value, all
shapes encompass the entire ensemble.

The results for N=6 beads are displayed in Fig. 9, the
corresponding key parameters being reported in Table II.
Here, the internal coordinate vector q consists of the cosines
of the four angles �1, �2, �3, and �4 along with the three
dihedral angles �1, �2, and �3 defined by the six beads.

The local shape probability density P6�q ,0� is displayed
in Fig. 9�a� in the form of the maximal value �over all pos-
sible �1, �2, �3, and �4 combinations� as a function of the �1,
�2, and �3 dihedral angles. It was verified that the full
�seven-dimensional� distribution �not shown� satisfies the ex-
pected symmetry properties �Sec. II B�. These translate at the
level of the three-dimensional maximal-value projection to
invariances with respect to the changes �1↔�3 and
�1 ,�2 ,�3↔−�1 ,−�2 ,−�3. The distribution displays a
single maximum and is significantly biased toward flat cis-
cis-cis structures. The maximum �densest shape q6

#� is lo-
cated at �1

#=�4
#=163.5°, �2

#=�3
#=151.8°, and �1

#=�2
#=�3

#

=0.0° and is associated with a local shape probability density
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P6�q6
# ,0�=10.05. Here too, the presence of a single maxi-

mum is not a consequence of the above-mentioned symmetry
properties �these merely imply that if the maximum is
unique, it must satisfy �1

#=�4
#, �2

#=�3
# and �1

#=�2
#=�3

#=0°�.
This specific shape is about ten times more likely �in a local
sense� than any shape taken at random.

The finite-cutoff shape probability density P6�q ,Rc� is
displayed in Fig. 9�b�, also in the form of a maximal-value
projection, for three different cutoff values Rc. All graphs
preserve the symmetry features described above for P6�q ,0�.
The curve corresponding to the lowest Rc value is again the
closest to the limiting case Rc→0 �Fig. 9�a��. Upon increas-
ing Rc, the bias in the distribution progressively shifts from
flat cis-cis-cis structures in the direction of
gauche�-gauche+-gauche� or gauche�-gauche−-gauche�

structures, while the single maximum becomes split into a
pair �two alternative �2 values� of two symmetry-related
�enantiomeric� maxima with �1 ,�2 ,�3�0 values.

The dependence of P6�q ,Rc� on the cutoff value is char-

acterized in more detail in Fig. 9�c�, analogous to Figs. 6�c�,
7�c�, and 8�c� for N=3, 4, 5 �see explanations above�. These
curves display the same qualitative features as for N=3, 4,
and 5, although the numerical precision is again considerably
lower �especially for low Rc values�. The function f6

max

reaches 1 at a cutoff value R6
�=0.998b for a specific pair of

shapes �barycentric shapes q6
�� that are fourfold replicated by

symmetry and associated with P6�q6
� ,R6

��=1.06. One pair of
these structures corresponds to �1

�=�4
�=66°, �2

�=�3
�=78°,

�1
�=144°, �2

�= �72°, and �3
�=−144°. The other pairs are

obtained by the changes �1
�↔�3

� or/and �1
� ,�2

� ,�3
�↔−�1

� ,
−�2

� ,−�3
�. The evolution of the angles and dihedral angles

associated with the most likely shapes upon increasing Rc

from 0 to R6
� is difficult to assess in detail �numerical noise

for small Rc� but agrees with the trends observed in Fig. 9�b�.
The function f6

min reaches 1 at a cutoff value of R6
��=1.899.

Above this Rc value, all shapes encompass the entire en-
semble.

The approximate relationships of Eqs. �22� and �23� con-
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FIG. 8. �Color� �a� Normalized local shape probability distribution P5�q ,0� �Eq. �19��, where q= �cos �1 ,cos �2 ,cos �3 ,�1 ,�2�, displayed as a maximum
projection onto the two dihedral angles �1 and �2 of the walk. �b� Corresponding normalized finite-cutoff shape probability distribution P5�q ,Rc� �Eq. �16��
displayed as a maximum projection onto the two dihedral angles �1 and �2 of the walk; left to right: Rc=0.16b, 0.32b, 0.40b, and 0.72b, with b being the bond
length. �c� Left: maximum �f5

max�, mean �f5
mean�, and minimum �f5

min� values of the fractional coverage function f5�q ,Rc� �Eq. �17�� over Q5, displayed as a
function of the cutoff Rc. Middle: maximum �P5

min�, mean �P5
mean�, and minimum �P5

max� values of P5�q ,Rc� over Q5 displayed as a function of the cutoff Rc.
Right: maximum, mean, and minimum values of the outer angles �1 and �3, of the central angle �2, and of the two dihedral angles �1 and �2 �absolute values�
over the set of structure maximizing P5�q ,Rc�, displayed as a function of the cutoff Rc; points indicated at Rc=0 in the middle and right panels correspond to
expected values based on the local probability analysis. The data in �a� were evaluated using g=24 grid points per dimension, and the data in �b� and �c� using
g=13 grid points per dimension.
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necting the quantities �N�q ,Rc� or fN�q ,Rc� to �N�q� for
small Rc values �Sec. II E� are illustrated in Fig. 10 for N
=3, . . . ,6, taking the corresponding densest structures qN

#

�Table II� as examples. The approximate expression of Eq.
�23� is seen to capture well the overall trend in the successive
fN�q ,Rc� curves at low Rc. At large Rc, negative deviations
from this approximate expression result from the finiteness

of the R̃N hypersurfaces �fN must converge to one for any
shape, latest when Rc=RN

���. Negative deviations may in the
present case also result from the assumption that the local
random-walk density is constant within the considered hy-
perdisk �while it actually decreases upon going away from
the densest structures�. On the other hand, positive devia-
tions �clearly visible for N=4 when Rc�0.29b, and also
present for N�5 at small Rc values� arise from the neglect in
the hyperdisk approximation of the curvature of RN�r� in
R3N around r�qN

# � �an error that subsists even in the limit
Rc→0�.

Considering the key parameters of the distributions for
N=3, . . . ,6 �Table II up to N=9 for some parameters� and
the nature of the corresponding densest and barycentric
structures, illustrated in Fig. 11, the following observations
can be made.

The central structures associated with the densest shapes
are all planar up to N=6 with bond angles progressively
opening with increasing N �Fig. 11�a��. In contrast, the cen-
tral structures associated with the barycentric shapes are not
planar �except for N=3� and do not present obvious system-
atic trends upon increasing N �Fig. 11�b��. This may, how-
ever, also be due to the relatively low precision in the deter-
mination of these structures for N=5 and 6. Based on the
present results, it is not possible to determine whether the
above properties of the densest and barycentric structures
also hold for larger N values.

The threshold cutoff radii RN
� and RN

�� systematically in-
crease upon increasing N. This is expected since the size of
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FIG. 9. �Color� �a� Normalized local shape probability distribution P6�q ,0� �Eq. �19��, where q= �cos �1 ,cos �2 ,cos �3 ,cos �4 ,�1 ,�2 ,�3�, displayed as a
maximum projection onto the three dihedral angles �1, �2, and �3 of the walk. �b� Corresponding normalized finite-cutoff shape probability distribution
P6�q ,Rc� �Eq. �16�� displayed as a maximum projection onto the three dihedral angles �1, �2, and �3 of the walk; left to right: Rc=0.29b, 0.38b, and 0.76b,
with b being the bond length. �c� Left: maximum �f6

max�, mean �f6
mean�, and minimum �f6

min� values of the fractional coverage function f6�q ,Rc� �Eq. �17�� over
Q6 displayed as a function of the cutoff Rc. Middle: maximum �P6

max�, mean �P6
mean�, and minimum �P6

min� values of P6�q ,Rc� over Q6 displayed as a function
of the cutoff Rc. Right: maximum, mean, and minimum values of the of the outer angles �1 and �4, of the central angles �2 and �3, of the two outer dihedral
angles �1 and �3 �absolute value� and of the central dihedral angle �2 �absolute value� over the set of structure maximizing P6�q ,Rc�, displayed as a function
of the cutoff Rc; points indicated at Rc=0 in the middle and right panels correspond to expected values based on the local probability analysis. The data in �a�
were evaluated using g=12 grid points per dimension, and the data in �b� and �c� using g=5 grid points per dimension.
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the accessible conformational space also increases. As will
be presented in a following article,67 RN

� values can be opti-
mally fitted �for N=3, . . . ,6� by the logarithmic expression
RN

� ��0.7393 log�N�−0.3207�b, while RN
�� rapidly ap-

proaches the linear �analytically derived� expression RN
��

��5 /48�1/2Nb. In contrast to the cutoff radii, the area AR̃N
of

the hypersurface R̃N decreases upon increasing N. This is
due to the fact that this quantity is associated with a
M-dimensional space that has been scaled by N1/2 in all its
dimensions compared to a Cartesian space �Sec. II B�. Thus,
the present decrease in AR̃N

rather accounts for a relative
decrease in flexibility based on a size-consistent reference.
When AR̃N

is amplified by the factor NM/2, the spanned area
increases very rapidly with N.

Finally, the local shape probability density PN�qN
# ,0� as-

sociated with the densest shape is seen to increase upon in-
creasing N. This dependence can be approximately repre-
sented by the equation

PN�qN
# ,0� � exp��2/3��N − 3�� . �27�

This equation is neither very accurate, nor strongly supported
by the data �only 4N values�, but nevertheless captures the
apparent exponential increase in PN�qN

# ,0� with N. Tenta-
tively extrapolating the above sequence according to Eq. �27�
suggests that PN�qN

# ,0� could become as large as about 1028

for N=100. However, this extremely high number should be
interpreted correctly. It represents the ratio of the local prob-
ability of the most likely shape to the corresponding prob-
ability averaged over all possible shapes, i.e., a relative prob-
ability defined by the ratio of two infinitesimal probabilities.
When approximated using a finite discretization scheme,
both probabilities will be seen to decrease very rapidly upon
increasing N because the size of the QN space increases ex-
ponentially with M �Eq. �2��. As a result, the densest shape
becomes �in an absolute sense and just like all other shapes�
increasingly improbable when N increases. For this reason,
the properties of this single shape will never dominate those
of the ensemble �i.e., dominate over those of all other pos-
sible shapes taken together�. However, in a relative sense,
this specific shape becomes overwhelmingly more probable
than all other possible shapes taken individually.

To better appreciate the extent of inhomogeneity in the
distribution of random walks into shapes, the integral Pin,N of
the local shape probability distribution over the most likely
shapes up to a fractional volume vN of QN, scaled by its
value VQN

over the entire QN �Eqs. �24� and �26��, and the
corresponding average Pav,N over the most likely shapes up
to a fractional volume vN of QN �Eqs. �24� and �26�� are
displayed in Figs. 12�a� and 12�c�, respectively, for the non-
self-avoiding random-walk ensemble. For readability, Pin,N is
actually shown in the form of Pin,N−vN, i.e., in excess to a
diagonal line. As expected �Sec. II E�, Pin,N−vN �Fig. 12�a��
evaluates to 0 for vN=0 �no shape selected, Pin,N=vN=0� or
vN=1 �all shapes selected, Pin,N=vN=1�. At intermediate val-
ues, Pin,N−vN is systematically positive indicating that the
fraction of QN encompassed by the selected set of most
likely shapes is larger than the corresponding fraction of the

R̃N hypersurface they cover. For N=3, . . . ,9, the maximum
of the curve is close to 0.5 �shifting to the left upon increas-
ing N�, and the corresponding value ranges between 0.12 and
0.25 �increasing upon increasing N�. For example, the maxi-
mal value Pin,9−v9=0.25 at v9=0.40 indicates that the subset
of most likely shapes covering 40% of Q9 actually encom-
pass 50% the random walks of W9 �25% in excess of 40%�.
As also expected �Sec. II E�, Pav,N �Fig. 12�c�� evaluates to
PN�qN

# ,0� for vN=0 �densest shape� and to 1 for vN=1 �all
shapes selected�. The functions monotonotically decrease
upon increasing vN and become consistently higher upon in-
creasing N. Thus, the average of the local probability P�q ;0�
over the selected set of most likely shapes is consistently
higher than the corresponding average over all shapes for
vN�1 and the effect becomes more pronounced upon in-
creasing N. For example, the value Pav,9=1.60 at v9=0.40
indicates that the subset of most likely shapes covering 40%
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FIG. 10. Fractional coverage functions fN�q ,Rc� �Eq. �17�� associated with
the densest shapes qN

# �Table II� for the random-walk ensembles WN with
N=3, . . . ,6 beads, displayed as a function of the cutoff distance Rc. The
numerically determined functions �solid lines� are compared to the corre-
sponding approximate estimates from Eq. �23� �dashed lines�. The inset
represents a close-up of the low Rc region. The number of grid points per
dimension was set to g=104, 200, 24, 12 for N=3, . . . ,6. The values of
�N�q#� used in Eq. �23� can be deduced from the data in Table II via Eqs. �2�
and �19�.
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FIG. 11. �Color online� �a� Central structures associated with the densest
shape. �b� Central structures associated with the barycentric shape. The dif-
ferent structures are associated to the random-walk ensembles WN with
different number of beads N=3, . . . ,6. All structures are drawn according to
the internal coordinates q# and q� reported in Table II. For N=4–6, only one
of the 2 or 4 alternative barycentric shapes is represented �N=4: �1

=162.4°; N=5:�1=166°, �2=−83°; N=6: �1=144°, �2=72°, and �1=
−144°�. The parameters of q# for N=3, . . . ,6 were refined to a precision of
at least 1°. The parameters of q� are of more limited precisions, especially
for N=5,6.
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of Q9 have an average probability that is 60% higher than
the corresponding average over all possible shapes of Q9.

The preceding discussion concerned exclusively non-
self-avoiding walks. Key parameters of the shape probability
distributions over the self-avoiding walk ensemble are also
reported in Table II, while the corresponding curves for Pin,N

and Pav,N are displayed in Figs. 12�b� and 12�d�, respectively.
For N=3, . . . ,6, the densest structures qN

# of the self-
avoiding walk ensembles are identical to those of the non-
self-avoiding walk ensembles �because these are self-
avoiding�. However, the corresponding local probabilities
PN�q# ;0� as well as the areas AR̃N

are systematically lower
�for the same N�. The barycentric structures qN

� are also self-
avoiding. It is therefore probable that qN

� and RN
� are also

identical for the two types of ensembles �but not guaranteed
because the boundary of QN contains both self-avoiding and
non-self-avoiding structures�. On the other hand, it can be
shown67 that the RN

�� values are smaller for the self-avoiding
walk ensemble. Finally the Pin,N and Pav,N curves �along with
the above observations� suggest that the inhomogeneity in
the shape probability distributions is less significant in the
self-avoiding compared to the non-self-avoiding ensemble
�at identical N�.

V. DISCUSSION

The ideal random-walk model is a ubiquitous model in
science, providing a very reasonable approximate description
of many phenomena involving weakly correlated successive
displacements. In the structural context relevant to polymer
science, structural biology, and biopolymer dynamics this
model accounts for the statistical �ensemble� properties of a

polymer chain in three dimensions in the idealized situation
where interatomic interactions are restricted to a generic con-
nectivity constraint fixing the distance between successive
sites �e.g., atom or reference point of a monomer� along the
chain. The random-walk ensemble is then defined as the en-
semble of chain conformations in which the directions of the
�pseudo�bonds connecting these successive sites are isotropi-
cally distributed and uncorrelated among each other. Equiva-
lently, this ensemble is also the one in which the internal
degrees of freedom of the chain �bond-angle cosines and
dihedral angles� are homogeneously distributed.

Because the random-walk ensemble appears to be the
paramount of homogeneity, isotropy, and randomness, it may
seem counterintuitive that its analysis in terms of shape dis-
tribution �at a low-resolution level, as done in previous
works7–11 or at a high-resolution level, as done in the present
study� reveals inhomogeneity, anisotropy, and ordering fea-
tures. However, the paradox is only apparent if one realizes
that these features are actually introduced by the arbitrary
definition selected for the concept of shape, i.e., by the spe-
cific properties of a corresponding structure-to-shape coordi-
nate transformation.

At the low-resolution level, shapes may be characterized
by single-structure observables such as the end-to-end dis-
tance, radius of gyration, radius of gyration tensor aniso-
tropy, or number of contacts. As shown in previous
studies7–11 and in the present work, the distributions of these
observables over the random-walk ensemble are already
highly inhomogeneous. The distribution of the simplest ob-
servable, the end-to-end distance, can be evaluated analyti-
cally for an arbitrary number N of beads in the chain �see the
Appendix�. The root-mean-square value of the radius of gy-
ration can also be given an analytical expression for an arbi-
trary N �see the Appendix�. For the radius of gyration tensor
anisotropy recent �analytical, computational, and experimen-
tal� work revealed that the average shape over the random-
walk ensemble is not spherical but a prolate ellipsoid with a
ratio of the mean square principal radii of gyration of ap-
proximately 9:2.3:1 �Refs. 11, 13, and 18� �high N limit; in
good agreement with the present ratio of 9.4:2.6:1 for N=9�.
This ratio corresponds to a ratio of about 3.1:1.6:1 between
the principal axes of the ellipsoid, in good qualitative agree-
ment with the result of 4.1:2.3:1 obtained experimentally for
DNA.18 Finally, the present results for the reduced number of
contacts suggest a relatively low compactness �only about
25% of the theoretically possible numbers of contacts being
realized on average�. When the above low-resolution observ-
ables are expressed in an appropriate reduced form �Sec.
II D�, the corresponding distributions and averages converge
to unique �i.e., N-independent� expressions in the limit N
→�. These limiting expressions already represent very good
approximations for relatively low values of N �Figs. 2–5� and
are therefore typically the most relevant for practical pur-
poses.

At the high-resolution level, the definition of shapes re-
quires the specification of �i� a pairwise metric for the deter-
mination of the difference �distance� between two structures
and �ii� an algorithm for classifying an arbitrary ensemble of
structures into a corresponding ensemble of shapes based on
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FIG. 12. �Color online� ��a� and �b�� Integral Pin,N of the local shape prob-
ability distribution over the most likely shapes up to a fractional volume vN

of QN, scaled by its value VQN
over the entire QN �Eqs. �24� and �25��, for

the non-self-avoiding �a� and self-avoiding �b� random-walk ensembles WN

with N=3, . . . ,9. ��c� and �d�� Average Pav,N of the local shape probability
distribution over the most likely shapes up to a fractional volume vN of QN

�Eqs. �24� and �26��, for the non-self-avoiding �c� and self-avoiding �d�
random-walk ensembles WN with N=3, . . . ,9. For readability, Pin,N is
shown in the form of Pin,N−vN, i.e., in excess to a diagonal line. The data
were evaluated using grid-based sampling in the internal-coordinate space.
The number of grid points per dimension was set to g=104, 200, 24, 12, 8,
4, and 4 for N=3, . . . ,9.
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the knowledge on all pairwise distances �along with specific
assignment parameters�. The present study has focused ex-
clusively on the most commonly used comparison metric,
namely, the RMSD,39,51–55 and on one possible classification
scheme involving a single assignment parameter �cutoff dis-
tance� and a rather simple shape definition scheme �collec-
tion of all structures within the given cutoff distance of a
central structure�. Alternative metrics �e.g., unit-vector
RMSD,41 universal RMSD,43 distance-matrix root-mean-
square difference,36,56 � measure,40 or TM-align parameter46�
and more complex shape assignment algorithms �e.g.,
clustering27–34� are also commonly used.

However, even if derived in the context of one specific
metric and assignment scheme, the main conclusions of the
present work certainly also pertain to any other metrics or
assignment schemes in a qualitative sense. Given the above
choices of metric and shape definition, the main observations
concerning the high-resolution shape analysis of the random-
walk ensemble may be summarized as follows.

The local shape probability distribution within the
random-walk ensemble �i.e., the local density of structures in
the immediate neighborhood of a given central structure,
relative to its average over all possible central structures� is
by no means homogeneous across all possible shapes. Even
in the absence of interatomic interactions �beyond the mere
connectivity constraint�, some shapes are intrinsically more
probable, while others �e.g., those defined by a central struc-
ture with one or more bond angles equal to 0 or �� have a
vanishing probability. Over the limited range of sizes �N
=3, . . . ,6� that could be probed in the present study, the bias
in favor of the most probable �densest� shape increases in the
sequence 1.28, 1.79, 2.94, and 10.05, as measured by the
probability of this shape relative to the corresponding aver-
age over all possible shapes. In other words, given a random
structure with N=6 beads and prompted to make a guess for
a shape to which this structure belongs, one would have
about a tenfold higher chance of success by proposing the
densest shape than by proposing any shape at random. Ten-
tatively extrapolating the above sequence according to Eq.
�27� suggests that for N=100, the densest shape could be-
come as much as 1028 times more probable compared to the
average. This number represents a relative probability �one
shape relative to the average over all shapes�. Of course, in
an absolute sense, the probability of this shape, as well as
that of any shape, decreases even faster. In other words, this
number should not be interpreted as meaning that one shape
will dominate the properties of the entire ensemble for large
N but simply that one shape will become overwhelmingly
likely compared to any other one �although it becomes in-
creasingly less likely compared to the union of all other
ones�. Over the range N=3, . . . ,6, the central structures as-
sociated with the densest shape were all found to be planar
with bond angles progressively opening upon increasing N
�Fig. 11�a��. Based on the present results, it is not possible to
determine whether these features also hold for larger N val-
ues.

The finite-cutoff shape probability distribution �i.e., the
integrated density of structures within a specified cutoff dis-
tance from a given central structure, relative to its average

over all possible central structures� as well as the fractional
coverage function �i.e., the integrated density of structures
within a specified cutoff distance from a given central struc-
ture, relative to its value at infinite cutoff� evidence similar
qualitative features for all values of N considered. Three re-
gimes are observed upon increasing the cutoff Rc: �i� for Rc

below some threshold value RN
� , all shapes only encompass

part of the ensemble; �ii� for Rc above some threshold value
RN

��	RN
� , all shapes encompass the entire ensemble; �iii� for

intermediate values RN
� 
Rc
RN

��, a single shape �Rc=RN
� ;

barycentric shape�, and then an increasingly larger set of
shapes �Rc	RN

� �, encompasses the entire ensemble. A more
detailed analysis of the properties of RN

� and RN
�� will be

presented in a following article.67 Over the range N
=3, . . . ,6, the central structures associated with the barycen-
tric shapes are not planar �except for N=3� and do not appear
to present obvious systematic trends �Fig. 11�b��. This may,
however, also be due to the relatively low precision in the
determination of these structures for N=5 and 6.

In view of the limited number of beads considered in the
present work �N=3, . . . ,6�, these results can only be extrapo-
lated to longer polymer chains �e.g., proteins� in a qualitative
manner. It is nevertheless quite revealing to attempt such an
extrapolation because the determination of polymer shapes
and the evaluation of their relative probabilities is a core
problem in structural biology and biopolymer dynamics. Two
prototypical examples are given below.

As a first example, schemes have been designed to clas-
sify experimentally determined three-dimensional protein
structures �e.g., via x-ray crystallography or NMR spectros-
copy� into a limited number of protein shapes19–22 �usually
termed folds in this case�. The assignment of individual
structures to common folds is generally performed on the
basis of pairwise distance �typically RMSD� comparisons be-
tween the different structures in a database. In this specific
context, the present results suggest that the same analysis
applied to the random-walk ensemble �i.e., in the total ab-
sence of the interatomic interactions characteristic of a spe-
cific protein� would also lead to the identification of random-
walk “folds,” thereby suggesting that part of what is called a
protein fold is contained in the nature of the assignment
scheme used to define it rather in the physics of protein sys-
tems.

As a second example, peptide conformational ensembles
generated through computer simulation techniques �e.g., mo-
lecular dynamics �MD�� are often analyzed by clustering so
as to identify a limited number of peptide shapes27–34 �usu-
ally termed states in this case�. This clustering of individual
structures into common states is also generally performed on
the basis of pairwise distance �typically RMSD� comparisons
between the configurations sampled along the simulation. In
addition, the populations of the various states are then com-
monly interpreted in terms of corresponding relative free en-
ergies. In this specific context, the present results suggest
that the same analysis applied to the random-walk ensemble
�i.e., in the total absence of the interatomic interactions char-
acteristic of a specific peptide� would also lead to the iden-
tification random-walk “states” and associated relative free
energies, thereby suggesting that part of what is considered
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to represent the peptide conformational landscape �and asso-
ciated free-energy surface� is contained in the nature of the
clustering scheme used to defined it rather in the physics of
peptide systems. Note that the above bias is entirely distinct
in nature from the so-called metric-tensor effects in MD
simulations.68–78 The latter effects arise from the dependence
of the kinetic energy on the atomic coordinates in MD simu-
lations involving constraints. Owing to this bias, MD simu-
lations of a chain in the absence of interatomic interactions
�besides the bond-length constraints� will not exactly sample
the random-walk ensemble. Monte Carlo �MC�
simulations,79–81 in contrast, are exempt of such effects.

As illustrated by the two above examples, the inhomo-
geneity of the shape probability distribution within the
random-walk ensemble will depend on the chosen pairwise
metric and cutoff value �or on the corresponding resolution
parameters in more complex assignment schemes�, i.e., on
choices that characterize the way one has decided to look at
structures rather than the physics of the system itself. This
bias, most easily identified in the shape analysis of the
random-walk ensemble, will remain present as an underlying
artifact in the analysis of real polymer chain ensembles. As a
consequence, part of what is called a polymer �e.g., protein�
shape �e.g., fold or state� may actually reside “in the eye of
the beholder” rather than in the nature of the interactions
between the constituting atoms. By analogy, one could say
that the “ideal-gas” model of shape analysis �i.e., the non-
self-avoiding random-walk ensemble seen as the baseline
model in the absence of interatomic interactions specific of a
given system, beyond the generic connectivity constraint�
does not present a homogeneous distribution in the different
shapes �as defined by the specific metric and cutoff�, and that
this inhomogeneity should be taken into account when draw-
ing conclusions from such an analysis as applied to real
structural ensembles. In other words, shape analysis should
be concerned with the excess probability of a shape relative
to its corresponding probability in the random-walk en-
semble rather than with the corresponding absolute probabil-
ity. The corresponding baseline correction could, in prin-
ciple, be evaluated by running the specific shape analysis
over the random-walk ensemble.

From a Bayesian perspective,82–85 one could interpret the
covalent connectivity as the “prior knowledge” on the model.
In the absence of “additional information” to complement
this prior knowledge, the most likely shape probability dis-
tribution is just the inhomogeneous distribution derived in
the present work for the random-walk ensemble �Figs. 6–9�,
the most likely shapes being the corresponding densest
shapes �Fig. 11�a��. For example, the optimal answer to the
question “what is the shape �in a local sense, in three dimen-
sions and based on a RMSD metric� of a triatomic mol-
ecule,” with the prior knowledge that it involves two bonds
of identical lengths and no additional experimental informa-
tion, is the shape corresponding to an angle of 105.5° �which
coincidentally turns out to be identical to the corresponding
angle of 105.5° obtained by ab initio calculations86 and very
close to that of 106° obtained by neutron scattering87 in the
water molecule�. However, the shape analysis of real poly-
mer ensembles should ideally characterize solely the addi-

tional information �shape distribution induced by the effect
of interatomic interactions in a specific polymer�, without
being biased by the prior knowledge �heterogeneous shape
distribution associated with the random-walk ensemble�.

From another perspective, one might interpret the het-
erogeneity in the shape probability density PN�q ,Rc� within
the random-walk ensemble as the cause of a corresponding
entropic bias SN�q ,Rc�=kB ln PN�q ,Rc�, where kB is Boltz-
mann’s constant. �Note that due to the chosen normalization
for PN in Eq. �14�, SN may be positive or negative.� How-
ever, it should be kept in mind that this entropy is an “en-
tropy of observation.” It is not related to the physics the
system but to the properties of the shape-assignment
procedure.59,60

Due to the limited number of beads considered in the
present work �N=3, . . . ,6�, the nature and magnitude of the
bias in the context of real �bio�polymers is difficult to assess.
It is nevertheless interesting to speculate about the possibility
that structural motives commonly found e.g., in proteins
�such as helices and sheets� might be to some extent favored
by this bias in the shape distribution �in addition to the en-
thalpic and entropic effects related to interatomic interactions
and solvation�. This does not necessarily need to imply that
these motives should represent the densest shapes for large N
but merely that their probabilities as determined by physical
�enthalpic and entropic� effects may be artificially enhanced
by the present entropy of observation. One might also con-
sider the possibility that a similar bias exists in the interpre-
tation of experimental data. For example, reflection intensi-
ties from crystal of fiber diffraction experiments are
commonly used to refine models for the three-dimensional
structure of biomolecules. In a similar way as described in
the present work, it is likely that there exists a specific �non-
uniform� diffraction pattern associated with the random-walk
ensemble, thereby suggesting that part of what is considered
to be experimental information stems again from the nature
of the diffraction experiment. This possibility has already
been partly explored previously.88,89

Finally, it is interesting to draw a parallel between the
present results and the work of Chan and Dill concerning
random walks on cubic lattices.90–92 Their work considered
self-avoiding random walks �excluded-volume constraint� on
cubic lattices �constraints on the allowed pseudoangle and
pseudodihedral values� and with a specified number t of to-
pological contacts �nonconnected beads of the walk that are
adjacent on the lattice; compactness constraint�, along with a
shape definition based on patterns of topological contacts
�secondary structure�. The main conclusions �restated in the
wording of the present article� were that �i� excluded-volume
constraints �along with the connectivity constraints� promote
structuring, i.e., higher shape probabilities for regular shapes
�e.g., helical or sheet patterns of topological contacts� com-
pared to the average shape probability over all possible
�regular and nonregular� shapes and �ii� increasing compact-
ness constraints �along with the connectivity and excluded-
volume constraints� promote an increasing amount of struc-
turing �i.e., increasing t amplifies the bias toward regular
shapes; high compactness being most relevant in the context
of globular macromolecules, e.g., proteins�. The first conclu-

214904-20 Müller et al. J. Chem. Phys. 130, 214904 �2009�

Downloaded 13 Jun 2012 to 141.5.11.5. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



sion should probably be reassessed in view of the results of
the present article, suggesting that more probable shapes al-
ready exist in the absence of any excluded-volume con-
straints �this could be done, e.g., by comparing the properties
of non-self-avoiding and self-avoiding walks on cubic lat-
tices�. The second conclusion is not affected by the results of
the present article, since it relies on a comparison between
properties of different walk ensembles �depending parametri-
cally on t�.

VI. CONCLUSION

The present work represents a first attempt to investigate
and characterize the heterogeneous probability distribution
of high-resolution shapes within the random-walk ensemble.
The results are probably more qualitatively than quantita-
tively useful due to the use of a simplified assignment pro-
cedure and the restriction to short chains. This work could be
extended along three main lines: �i� the consideration of
more complex shape assignment schemes, e.g., various
forms of structural clustering27–29,31–34 �including intuitively
more appealing and practically more relevant schemes lead-
ing to nonoverlapping shape definitions�, �ii� the consider-
ation of alternative metrics,36,40,41,43,46,56 and �iii� the consid-
eration of longer chains �beyond N=6�, more relevant to
biopolymers �e.g., peptides, proteins, oligosaccharides, and
polysaccharides�. The latter extension using the systematic
�grid-based� approach employed in the present work appears
clearly impossible beyond N�10, considering present-day
computational resources. This scheme could, however, be
somewhat extended by reducing the problem dimensionality
�e.g., considering chains with rigid bond angles, i.e., reduc-
ing the problem to dihedral-angle degrees of freedom
sampled in terms of three or six relevant conformations�.
Alternative approaches could involve heuristic �nonsystem-
atic� schemes, specifically designed for the preferential sam-
pling of the densest shapes, such as, e.g., MC �random�
sampling,80 quasi-MC or low-discrepancy sampling,93,94 or
evolutionary optimization algorithms.95 The application of
common fold classification19–22 or clustering
algorithms27–29,31–34 to the random-walk ensemble might also
be useful in characterizing this bias.

Clearly, this study only represents a preliminary step to-
ward a precise characterization of the intrinsic �observation�
bias involved in any high-resolution shape analysis as those
commonly used in structural biology, biopolymer dynamics,
and possibly also, in the interpretation of polymer diffraction
data in terms of structure. However, it is to our knowledge
the first investigation to date �with the possible exception of
the above-mentioned work of Chan and Dill90–92� pointing
toward the possible existence of such a bias.

ACKNOWLEDGMENTS

This work was financed by the National Foundation for
Science, Higher Education and Technological Development
of the Republic of Croatia �EMBO Installation Grant, B.Z.�
and by the Ministry of Science, Education and Sports of the
Republic of Croatia �Unity through Knowledge Fund Grant
1A, B.Z.�. The authors would like to thank Halvor Hansen

for useful algorithmic suggestions and help in generating the
figures of this article, Michel Cuendet for his careful reading
of the manuscript �including many insightful comments�, as
well as the members of the IGC group �ETH Zürich, Swit-
zerland� and MedILS institute �Split, Croatia� for useful dis-
cussions.

APPENDIX: ANALYTICAL RESULTS

In this appendix, expressions are derived for the prob-
ability distribution PN

E�rE� of the reduced end-to-end distance
rE �Eq. �9�� and for the root-mean-square value �rG

2 �N
1/2 of the

reduced radius of gyration rG �Eq. �10�, along with an ex-
pression for the corresponding probability distribution
P3

G�rG� for N=3� over the �non-self-avoiding� random-walk
ensemble WN �Sec. II C�. Although these derivations rely on
well-known analytical approaches,8–10 some of the final ex-
pressions reported here have, to our knowledge, not been
explicitly formulated.

For these derivations, it is convenient to introduce the
3�N−1� dimensional vector u� �un �n=1, . . . ,N−1�, where
un�rn+1−rn is the Cartesian displacement between beads n
and n+1. The transformations r→u�r� and u→r�u� are
trivial, keeping in mind the bond-length constraints as well
as the six constraints imposed to the r components of the first
three beads �mapping to three constraints on the u compo-
nents corresponding to the first two displacements�. How-
ever, in order to evaluate the distribution of an observable �
that is translationally invariant, i.e., can be written ��u� and
rotationally invariant i.e., independent of the specific values
of the three constraints imposed on u, it is actually easier to
also integrate over the three constrained u components.

Using this approach, the distribution PN
���� of the ob-

servable � over WN can be written as

PN
���o� =� d3�N−1�u�N�u�����u� − �o� �A1�

with

�N�u� � �
n=1

N−1

�4�b2�−1��un − b� . �A2�

Consider first the reduced end-to-end distance rE as an ob-
servable �, defined by Eq. �9�. Introducing the �three-
dimensional� end-to-end vector R of a walk, defined as

R�u� � rN − r1 = 

n=1

N−1

un, �A3�

and the function

g�R,rE� � ���N − 1�−1/2b−1�R� − rE� , �A4�

Equation �A1� can be rewritten in the specific case as

PN
E�rE� =� d3�N−1�u�N�u�g�R�u�,rE� . �A5�

The function g�R ,rE� can be expanded in a Fourier series, as
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g�R,rE� = �2��−3� d3kRĝ�kR,rE�exp�ikR · R� �A6�

with the coefficients

ĝ�kR,rE� �� d3Rg�R,rE�exp�− ikR · R� . �A7�

Inserting Eq. �A4� into the latter expression and expanding
the integral in spherical coordinates with the z-axis along kR

gives

ĝ�kR,rE� = 2��
0

�

dRR2���N − 1�−1/2b−1R − rE�

��
0

�

d� sin � exp�− ikRR cos ��

= 4��
0

�

dRR2���N − 1�−1/2b−1R − rE�

��kRR�−1sin�kRR� . �A8�

Making the change in variable R→ R̃� �N−1�−1/2b−1R and

contracting the resulting R̃ integral to R̃=rE using the defini-
tion of the �-function further leads to

ĝ�kR,rE� = 4��N − 1�b2rEkR
−1 sin�kR�N − 1�1/2brE� . �A9�

Using this result within Eq. �A6�, Eq. �A5� can be rewritten
as

PN
E�rE� = �2�2�−1�N − 1�b2rE

�� d3kRkR
−1 sin�kR�N − 1�1/2brE�ĥ�kR� �A10�

with

ĥ�kR� �� d3�N−1�u�N�u�exp�ikR · R�u�� . �A11�

Using Eqs. �A2� and �A3�, noting that the resulting
3�N−1�-dimensional integral can be factored into a product
of N−1 identical three-dimensional integrals and evaluating
this integral by expansion in spherical coordinates, one finds

ĥ�kR� = ��kRb�−1sin�kRb��N−1. �A12�

Inserting this expression into Eq. �A10�, expanding the re-
sulting integral in spherical coordinates �the integrand actu-
ally only depends on the norm of kR�, one gets

PN
E�rE� = 2�−1�N − 1�b2rE�

0

�

dkRkR sin�kR�N − 1�1/2brE�

���kRb�−1sin�kRb��N−1. �A13�

This result can be further simplified by making the change of

variable kR→ k̃R�kRb, leading to

PN
E�rE� = 2�−1�N − 1�rE�

0

�

dk̃Rk̃R sin�k̃R�N − 1�1/2rE�

��k̃R
−1 sin k̃R�N−1. �A14�

Equation �A14� can be evaluated in an iterative way for suc-
cessive values of N �starting from N=3�. This leads �after
introduction of the constraint PN

E�rE�=0 for rE�0� to a series
of piecewise-defined polynomials, i.e., functions defined as
the union of polynomials over �N−ON� /2+2 successive in-
tervals in R, where ON evaluates to one for N odd and zero
otherwise. These functions can be written as

PN
E�rE� = �N − 1�−1/2P̃N

E��N − 1�1/2rE� �A15�

with

P̃N
E�x� � �

0 if x � 0

�n=1
�N−ON�/2


m=1

N−2

cN,n,mxm if max�0,2n − 3 + ON� � x � 2n − 1 + ON

0 if x 	 N − 1,
� �A16�

where the coefficients �cN,n,m �N=1, . . . ,10,n=1, . . . ,
�N−ON� /2,m=1, . . . ,N−2� are listed in Table III. The
PN

E�rE� functions are either discontinuous �N=3�, continuous
to the first derivative �N=4�, or continuous to the second
derivative �N�5�. The corresponding average values of rE

are given by

�rE�N � �
0

�

drErEPN
E�rE� = c̃N�N − 1�−1/2, �A17�

where the coefficients �c̃N �N=1, . . . ,10� are also listed in
Table III. These distributions are displayed in Fig. 2 and the

corresponding averages listed in Table I for N=3, . . . ,10.
Finally, the limiting distribution P�

E�rE� for N→� is obtained
by inserting the approximation �valid for large N�

�k̃R
−1 sin k̃R�N−1 � �1 − �1/6�k̃R

2�N−1

� exp�− �1/6��N − 1�k̃R
2� �A18�

into Eq. �A14�, both approximations resulting from Taylor

expansions up to second order around k̃R=0. Using this lim-
iting expression, one obtains
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P�
E�rE� = 2�−1�N − 1�rE��rE�� dk̃Rk̃R sin�k̃R�N − 1�1/2rE�

�exp�− �1/6��N − 1�k̃R
2�

= �54/��1/2rE
2��rE�exp�− �3/2�rE

2� , �A19�

where � is the Heaviside function. The corresponding aver-
age is

�rE�� � �
0

�

drErEP�
E�rE� = �3�/8�−1/2 � 0.9213. �A20�

This distribution is displayed in the panel of Fig. 2 corre-
sponding to N=10.

Consider next the reduced radius of gyration rG as an
observable �, defined by Eq. �10�. By straightforward sum
manipulations, this definition may be rewritten as

rG�r� = �N − 1�−1/2N−1b−1�

n=1

N



m	n

N

�rm − rn�2�1/2

. �A21�

Reformulating in terms of the u vectors, one obtains

rG�u� = �N − 1�−1/2N−1b−1�

n=1

N



m	n

N 

l=n

m−1

ul�2�1/2

= �N − 1�−1/2N−1b−1�

n=1

N−1

n�N − n�un
2

+ 2

n=1

N−1



m	n

N−1

n�N − m�un · um�1/2

. �A22�

Recalling that all bond lengths are equal to b and that distinct
bond vectors are uncorrelated in their directions, i.e.,
�un ·um�=b2�n,m, one obtains

�rG
2 �N

1/2 = �N − 1�−1/2N−1�

n=1

N−1

n�N − n��1/2

= ��1/6��1 + 1/N��1/2. �A23�

The limiting average �rG��
1/2 for N→� is then

�rG
2 ��

1/2 = 6−1/2 � 0.4082. �A24�

The minimum possible value rG,N
min of rG for a chain of length

N is reached when all bond angles are equal to 0. In this case,
straightforward application of Eq. �10� leads, after simplifi-
cation, to the expression

TABLE III. Coefficients �cN,n,m �N=1, . . . ,10,n=1, . . . , �N−ON� /2,m=1, . . . ,N−2� of the piecewise-defined polynomials �Eqs. �A15� and �A16�� representing
the probability distribution PN

E�rE� of the reduced end-to-end distance �Eq. �9�� over the �non-self-avoiding� random-walk ensembles WN with N=3, . . . ,10
The coefficients c̃N involved in the corresponding average �rE�N �Eq. �A17�� are also listed.

N c̃N n cN,n,1 cN,n,2 cN,n,3 cN,n,4 cN,n,5 cN,n,6 cN,n,7 cN,n,8

3 4/3 1 1 ¯ ¯ ¯ ¯ ¯ ¯ ¯

4 13/8 1 0 3/2 ¯ ¯ ¯ ¯ ¯ ¯

4 ¯ 2 9/4 �3/4 ¯ ¯ ¯ ¯ ¯ ¯

5 28/15 1 0 2 �3/4 ¯ ¯ ¯ ¯ ¯

5 ¯ 2 4 �2 1/4 ¯ ¯ ¯ ¯ ¯

6 1199/576 1 0 25/16 0 �5/16 ¯ ¯ ¯ ¯

6 ¯ 2 �25/48 25/8 �25/16 5/24 ¯ ¯ ¯ ¯

6 ¯ 3 625/96 �125/32 25/32 �5/96 ¯ ¯ ¯ ¯

7 239/105 1 0 3/2 0 �3/8 5/64 ¯ ¯ ¯

7 ¯ 2 �15/8 21/4 �45/16 9/16 �5/128 ¯ ¯ ¯

7 ¯ 3 81/8 �27/4 27/16 �3/16 1/128 ¯ ¯ ¯

8 113 149 /46 080 1 0 539/384 0 �49/192 0 7/384 ,,, ¯

8 ¯ 2 49/1536 637/512 245/768 �147/256 245/1536 �7/512 ¯ ¯

8 ¯ 3 �8869/1920 2303/256 �931/192 147/128 �49/384 7/1280 ¯ ¯

8 ¯ 4 117 649/7680 �16 807/1536 2401/768 �343/768 49/1536 �7/7680 ¯ ¯

9 1487/567 1 0 4/3 0 �2/9 0 1/48 �7/2304 ¯

9 ¯ 2 14/45 2/5 7/6 �1 7/24 �3/80 7/3840 ¯

9 ¯ 3 �434/45 46/3 �49/6 19/9 �7/24 1/48 �7/11 520 ¯

9 ¯ 4 1024/45 �256/15 16/3 �8/9 1/12 �1/240 1/11 520 ¯

10 14 345 663/
5 160 960

1 0 2601/2048 0 �387/2048 0 27/2048 0 �1/2048

10 ¯ 2 �9/10 240 3267/2560 �189/10 240 �81/512 �63/2048 81/2560 �63/10 240 1/2560
10 ¯ 3 13 113/10 240 �1755/1024 30 429/10 240 �1863/1024 1071/2048 �81/1024 63/10 240 �1/5120
10 ¯ 4 �1 314 459/71 680 13 185/512 �138 321/10 240 1881/512 �1179/2048 27/512 �27/10 240 1/17 920
10 ¯ 5 4 782 969/143 360 �531 441/20 480 177 147/20 480 �6561/4096 729/4096 �243/20 480 9/20 480 �1/143 360
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rG,N
min =

1

2
� N + ON

N�N − 1 + ON��1/2

. �A25�

The corresponding maximum possible value rG,N
max of rG is

reached when all bond angles are equal to �. In this case,
straightforward application of Eq. �10� leads, after simplifi-
cation, to the expression

rG,N
max = �12�−1/2�N + 1�1/2. �A26�

The distribution PN
G�rG� is easily derived in the special case

N=3. In this case, Eq. �A1� becomes

P3
G�rG

o � =� d6u�3�u���rG�u� − rG
o � �A27�

with �Eq. �A22��

rG�u� = �N − 1�−1/2N−1b−12�1/2��u1
2 + u2

2 + u1 · u2�1/2.

�A28�

Chosing u1 along the z-axis and u2 in the xz-plane, this can
be rewritten in spherical coordinates

P3
G�rG

o � = �1/2��
0

�

d� sin ����1/3��2 + cos ��1/2 − rG
o � .

�A29�

Integrating this expression results in

P3
G�rG

o �	0 if rG � 1/3 or rG 	 �1/3�1/2

9rG otherwise.
� �A30�

Analytical forms for PN
G�rG� could not be derived for N�4.
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