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Abstract

In many areas of science and engineering researchers consider systems that can be solely
examined by their input and output characteristics without any knowledge of their internal
workings. Such black-box systems are the topic of the present thesis. In many practical cases,
a black box comprises a complex mathematical model, a computer simulation, a real-world
experiment, or a combination of any of these. In this thesis we take an interdisciplinary
approach to the characterization, optimization, and sampling of black-box systems. We focus
on systems with high-dimensional real-valued input variables and output patterns that can be
transformed by some function into a scalar real-valued quantity. Throughout this thesis we
conceptualize the black-box system as a landscape. Inspired by our shared visual experience of
natural terrains and sceneries, we consider the real-valued input variables as a high-dimensional
landscape domain. Neighborhood or nearness in this landscape domain must be provided by
a suitable distance metric. We interpret the scalar output quantity as a height or elevation
over the landscape domain. The landscape metaphor encourages a characterization of black-
box systems in terms of topographical features, such as valleys, ridges, mountain peaks, and
plateaus. In order to underline that we view black-box systems as high-dimensional, complex
landscapes we introduce the notion of the black-box landscape. After a general review of the
landscape paradigm, spanning the disciplines of biology, physics, chemistry, and optimization,
we present a number of statistical landscape descriptors that probe different properties of
black-box landscapes. The core of the thesis is concerned with black-box optimization. We
improve the performance of the arguably best state-of-the-art optimizer, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), in various aspects. The general performance is
increased by considering quasi-random instead of pseudo-random sampling. For multi-funnel
landscape topologies we introduce parallel CMA-ES schemes that can outperform standard
CMA-ES. We also revisit Gaussian Adaptation, an optimization and sampling scheme that
has been largely ignored in the black-box optimization community. Our improved Gaussian
Adaptation scheme shows remarkable performance on the considered benchmarks and ranks
among the best known black-box optimizers. An important conceptual result is that we can
provide an explicit link between black-box optimization and black-box (or indirect) sampling
through Gaussian Adaptation. We show that the same idea of adaptation has emerged in these
disparate fields, and we argue that a unifying framework for sampling and optimization might
constitute an important contribution. We further consider geometric configurations in two
different contexts: Geometry optimization problems of atomic clusters are proposed as novel
benchmarks for black-box optimization. We design a balanced set of problems that should be
included in future black-box optimization benchmarks. We also revisit the configuration space
of chain molecules with respect to a certain distance measure, the Root Mean Square Deviation
(RMSD) after optimal superposition. Because RMSD is the most important distance metric
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in structural biology, we quantify the neighborhood structure that is induced by the RMSD for
the Random Walk polymer model. Based on numerical results from black-box optimization
runs, we are also able to formulate a conjecture about an upper bound of the RMSD between
any two Random Walks of arbitrary length. In the course of the thesis, two software libraries
for black-box sampling and optimization, GaALib and pCMALib, have been developed that
might prove valuable for the scientific community.
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Zusammenfassung

Viele Systeme und Modelle in Wissenschaft und Technik kénnen aufgrund ihres hohen Kom-
plexitatsgrades nur noch beziiglich ihrer Ein- und Ausgangseigenschaften beschrieben und
analysiert werden. In vielen Féllen ist detailliertes Wissen iiber interne Systemabldufe und
-zusammenhénge nicht mehr zuginglich. Solche, so genannte Black-Box-Systeme sind das
Thema der vorliegenden Arbeit. Komplexe, mathematische Modelle, Computersimulationen,
aufwendige Laborexperimente sowie beliebige Kombinationen von Labor- und Computerex-
perimenten lassen sich als Black-Box-Systeme modellieren. Die vorliegende Arbeit prasentiert
einen interdisziplindren Ansatz zur Charakterisierung, Optimierung und zum randomisierten
Abtasten solcher Systeme, wobei das Hauptaugenmerk auf Modellen mit hochdimensionalen,
reellwertigen Eingangsgrossen und skalaren, reellwertige Ausgangsgrossen liegt. Eine Beson-
derheit dieser Arbeit liegt in der Betrachtungsweise eines Black-Box-Systems als hochdi-
mensionale, abstrakte Landschaft: die Black-Box-Landschaft. Diese Metapher ermoglicht
einen anschaulichen, topographisch inspirierten Zugang zur Systemanalyse. Die reelle Ein-
gangsgrossen definieren darin einen hochdimensionalen Raum, die skalare Ausgangsgrosse eine
Hohenangabe fiir jeden Punkt im Raum. Nachbarschaft oder Nahe in einer solchen Land-
schaft wird durch ein geeignetes Abstandsmass, z.B. die Euklidische Distanz, bestimmt. Eine
Charakterisierung von Black-Box-Systemen kann nun mit Hilfe topographischer Begriffe, wie
zum Beispiel Téler, Grate, Gipfel oder Plateaus, erfolgen. Das Landschaftsparadigma ist ein
zentraler Bestandteil der Molekularphysik, der Evolutionsbiologie sowie der kombinatorischen
Optimierung. Nach einer Analyse der wichtigsten Arbeiten aus diesen Wissenschaftsgebieten
stellen wir eine Reihe von statistischen Verfahren vor, mit denen sich verschiedene Merk-
male von Black-Box-Landschaften beschreiben lassen. Ein wichtiger Bestandteil dieser Ar-
beit ist die effiziente Optimierung von Black-Box-Systemen. Wir verbessern verschiedene
Komponenten einer der besten Black-Box-Optimierungsmethoden, der Evolutionsstrategie
mit Kovarianzmatrixanpassung (Covariance Matrix Adaptation Evolution Strategy, CMA-
ES). Das Abtastverfahren der Strategie wird durch die Verwendung von Quasi-Zufallszahlen
anstelle von Pseudozufallszahlen fiir die Generierung von Stichproben gesteigert. Fiir die
effiziente Exploration von Black-box-Landschaften, die mehrere tiefe, trichterférmige Téler
aufweisen, d.h. fiir Systeme, die weit auseinander liegende Bereiche im Eingangsraum besitzen,
die &hnlich optimale Ausgangsgrossen liefern, fiihren wir parallele CMA-ES-Suchmethoden
ein. Diese Strategien konnen die Effizenz im Vergleichen zu sequentiellen Varianten der
CMA-ES fiir bestimmte Modellprobleme steigern. Dariiber hinaus greifen wir die Methode
der Gauss’schen Anpassung (Gaussian Adaptation, GaA) wieder auf, einem Optimierungs-
und Abtastverfahren, dem bislang in der Wissenschaftsgemeinde wenig Beachtung geschenkt
wurde. Wir verbessern das urspriingliche Verfahren und demonstrieren seine Effektivitat auf
einer grossen Klasse von Testproblemen. Dartiber hinaus weisen wir nach, dass die Methode
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der Gauss’schen Anpassung die Moglichkeit eroffnet, die Optimierung und Stichprobennahme
fir Black-Box-Systeme zu vereinheitlichen. Geometrische Konfigurationsprobleme werden in
dieser Arbeit in zweierlei Hinsicht beriicksichtigt. Zum einen entwerfen wir ein neuartiges
Set von geometrischen Optimierungsproblemen, das auf der Energieminimierung atomarer
Cluster beruht. Wir analysieren die Topographie der resultierenden Energielandschaften und
zeigen, dass die behandelten Probleminstanzen als anspruchsvolle Benchmarks fiir Black-Box-
Optimierungsmethoden dienen kénnen. Zum zweiten beschiftigen wir uns mit dem Kon-
figurationsraum von Kettenmolekiilen in Bezug auf eine bestimmte Distanz, die mittlere
quadratische Abweichung (Root Mean Square deviation, RMSD) nach optimaler Superposi-
tion. Da RMSD die wichtigste Distanzmetrik der Strukturbiologie darstellt, quantifizieren wir
die von ihr induzierte Nachbarschaftstruktur fiir das einfachste Polymermodell, das Random-
Walk-Modell. Dariiber hinaus ermoglicht eine Kombination von numerischen Black-Box-
Optimierungsexperimenten und geometrischen Uberlegungen das Aufstellen einer Vermutung
iiber eine obere Schranke fiir den RMSD zwischen zwei beliebigen Random-Walks beliebiger
Lénge. Im Laufe der Arbeit wurden des weiteren zwei offentlich zugénglich Softwarebiblio-
theken fiir Black-Box-Optimierung und Black-box-Stichprobennahme entwickelt, GaALib und
pCMALIib, die der Wissenschaftsgemeinde mdoglicherweise von Nutzen sein kénnen.
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Introduction

“Science? What’s science ever done for us?”
Moe Szyslak in: The Simpsons, Lisa the Skeptic, Episode no. 186, 1997

In many areas of science, engineering, and economics researchers and decision makers are
faced with the task of characterizing and optimizing a system that can solely be examined
through its input and output characteristics, without any knowledge of its internal workings.
Such systems are generally referred to as black-box systems. Fig. 1.1 sketches the black-box
concept.

Mathematical model
Output

Computer simulation

Real-world experiment

Figure 1.1: Sketch of the black-box paradigm. An input is provided to a black box. The black box
can comprise a mathematical model, a computer experiment, a real-world experiment, or
a mixture of any of these components. The output is the only observable of the system.

In many practical cases, a black box comprises a complex mathematical model, a computer
simulation, a real-world experiment, or a combination of any of these. In practice, the as-
sumption of complete lack of knowledge about the internal characteristics is unrealistic. The
black-box model rather expresses our inability to comprehend the complex interactions and
causal connections present in the system. Thorough understanding of a black-box system is



1 Introduction

usually provided by investigating its transfer characteristics of the black-box. Such analysis
comprises inference about the relationship between input and corresponding output. Major
objectives in black-box analysis are (i) the quantification of how variation of the output can
be explained by the variation (of subsets) of input patterns (black-box characterization), (ii)
retrieval of a specific element among the set of all possible inputs that is optimal with respect
to some properties of the output (black-bozr optimization), and (iii) generation of input pat-
terns according to some probability distribution (black-box sampling).

In this thesis we take an interdisciplinary approach to the characterization, optimization,
and sampling of black-box systems. We focus on systems with high-dimensional, real-valued
input variables and output patterns that can be transformed by some function into a scalar,
real-valued quantity. Multi-objective problems can only be tackled by using a scalarization
approach that combines many objectives into a single output function. We assume that we
can efficiently generate input patterns to the black box. This implies that we know the speci-
fication of feasible inputs to the black box. We also assume that the black box can compute
the output efficiently for all feasible input patterns, i.e., the black box returns a value within
a realistic problem-dependent time span. We furthermore take for granted that the black
box is oblivious to previously presented input patterns. This means that a current output of
the black box only takes the current input into account and does not depend on the history
of the input patterns. This, however, does not exclude the possibility of noisy output. We
do not require that the black box always returns identical output for identical input. The
output can be corrupted by (unknown) measurement or numerical noise or by any uncon-
trollable (unknown) input to the black box (for instance, human intervention). Important
instances that fit this black-box definition are complex technical devices, computer algorithms,
mathematical models, or scientific experiments. For such systems, simulation-optimization,
(Bayesian) parameter identification or model reduction are common scientific tasks.

Throughout this thesis we conceptualize the black-box system as a landscape. Inspired by
our shared visual experience of natural terrains and sceneries, we consider the real-valued
input variables as a high-dimensional landscape domain. Neighborhood or nearness in this
landscape domain must be provided by a suitable distance metric. We interpret the scalar
output quantity as a height or elevation over the landscape domain. The landscape metaphor
encourages a characterization of black-box systems in terms of topographical features such
as valleys, ridges, mountain peaks, and plateaus. We introduce the notion of the black-box
landscape in order to underline our view of black-box systems as high-dimensional, complex
landscapes.

Many scientific disciplines use the landscape paradigm. The fitness landscape imagery is at
the very heart of evolutionary biology and protein engineering. In molecular physics, the
energy landscape perspective provides a unifying theme for understanding complex physical
processes and phenomena. The landscape metaphor is also present in operations research,
most prominently in the context of combinatorial optimization. All these fields influenced the
present work in a number of aspects.



In the present work, we use computation as the fundamental scientific tool to examine black-
box problems. The majority of the considered scientific questions is tackled by running com-
puter simulations and inferring knowledge from the gathered empirical data. In a number
of situations, we will, however, comment on known theoretical results or open mathematical
problems.

Main Contributions
We consider the following results as the main contributions of this thesis:

To the best of our knowledge, this thesis includes the first review of the landscape paradigm
spanning the disciplines of biology, physics, chemistry, and optimization. Chapter 2 has been
written because no adequate single reference could be found.

In the field of black-box optimization, we improve various aspects of the performance of the
arguably best state-of-the-art optimizer, the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES). The general performance is increased by considering quasi-random instead of
pseudo-random sampling. We introduce parallel CMA-ES schemes that can outperform stan-
dard CMA-ES for multi-funnel landscape topologies. We also revisit Gaussian Adaptation, a
optimization and sampling scheme that has been largely neglected by the black-box optimiza-
tion community. Our improved Gaussian Adaptation scheme shows remarkable performance
on the considered benchmarks and ranks among the best known black-box optimizers.

An important conceptual result is that we can make an explicit link between black-box opti-
mization and black-box (or indirect) sampling through Gaussian Adaptation. We show that
the same idea of adaptation has emerged in these largely disparate fields, and we argue that a
unifying framework for sampling and optimization might constitute an important contribution.

We also contribute to the fields of black-box characterization and black-box optimization
benchmarking. We present a number of statistical landscape descriptors that can serve as
features in a future statistical landscape classification framework. Novel benchmark problems
are derived from geometry optimization of atomic clusters.

Finally, we revisit the configuration space of chain molecules with respect to a certain distance
measure, the Root Mean Square Deviation (RMSD) after optimal superposition. RMSD is
the most important distance metric in structural biology. We consider the simplest linear
chain, the Random Walk model, that defines the base line for more complex polymer models.
We quantify the neighborhood structure that is induced by the RMSD for the Random Walk
model. Based on numerical results from CMA-ES black-box optimization runs, we are able to
formulate a conjecture about an upper bound for the RMSD between any two Random Walks
of arbitrary length.



1 Introduction

Previous Work

The present work is based on a number of previous scientific contributions. The charac-
terization of continuous black-box landscapes has been influenced by Saltelli and co-workers
in the field of sensitivity analysis (Saltelli et al., 2000), Lunacek and Whitley in evolution-
ary computation (Lunacek and Whitley, 2006; Lunacek et al., 2008), Stadler and co-workers
in combinatorial optimization (Stadler, 1996; Reidys and Stadler, 2002), and Kauffman and
Weinberger in theoretical biology (Kauffman and Weinberger, 1989; Weinberger, 1990). Our
work in black-box optimization builds on two key sources: the works of Hansen (Hansen and
Ostermeier, 1996; Hansen, 2000; Hansen and Ostermeier, 2001; Hansen et al., 2003) from the
field of evolutionary computation, and Kjellstrom (Kjellstrom, 1969; Kjellstrom and Taxen,
1981; Kjellstrom, 1991; Kjellstrom and Taxen, 1992) from electrical engineering. Haario and
co-workers (Haario et al., 1999, 2001), Neal (Neal, 2003), as well as Andrieu (Andrieu and
Thoms, 2008) provide the foundation for our black-box sampling contribution. For cluster
landscapes, an invaluable source of information is provided by the works of Wales (Wales,
2005). Cohn and Kumar’s article introducing novel pair potentials has been instrumental for
designing one of the presented benchmarks (Cohn and Kumar, 2009). The analysis of linear
chain landscapes does not build on specific prior literature. It is a combined effort by Phillippe
Hiinenberger, Bojan Zagrovié, and the author of this thesis (Miiller et al., 2009).

Structure of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Landscapes

Chapter 2 introduces the landscape paradigm. Starting from preliminary mathematical def-
initions we revisit the majority of landscape instances in physics, chemistry, biology, and
combinatorial optimization. We also comment on black-box landscape properties and heuris-
tic search. We note that such a review of the landscape paradigm in science does not exist
in the scientific literature. Finally, the chapter introduces a list of model landscapes along
with the IEEE CEC 2005 benchmark test suite. These are instrumental for the empirical
performance evaluation of several methods.

Chapter 3: Characterization of Black-box landscapes

In Chapter 3 we introduce a set of statistical black-box landscape descriptors that can probe
different properties of a landscape, such as the global landscape topology, input separability,
and landscape ruggedness. As a proof of concept we apply the descriptors to the CEC 2005
benchmark functions with known properties and analyze the quality of the estimators.



Chapter 4: Optimization of Black-box landscapes

Chapter 4 presents the core of this thesis. We first present the state-of-the-art black-box
optimizer CMA-ES and propose alternative restart and sampling schemes for it. We then
introduce the concept of parallel CMA-ES and present the design and performance of one
such instance, the Particle Swarm CMA-ES. Furthermore, we revisit the concept of Gaussian
Adaptation and supplement the basic algorithm by a general-purpose parameterization, stop-
ping criteria, and a restart strategy. All novel black-box algorithms are benchmarked on the
benchmark test suite. Parts of this chapter are published in (Miiller et al., 2009b; Miiller and
Shalzarini, 2010¢,b).

Chapter 5: Black-box Sampling

Gaussian adaptation plays an important role in Chapter 5 as well. We show that minor changes
in the algorithm turn it into to an adaptive Markov-Chain Monte Carlo sampler. We show
the strengths and weaknesses of this novel black-box sampler on selected target distributions.
Parts of this chapter are published in (Miiller and Sbalzarini, 2010b; Miiller, 2010).

Chapter 6: Atomic Cluster Landscapes for Black-box Optimization

In Chapter 5 we consider geometry optimization of atomic clusters as novel benchmarks for
black-box optimization. The proposed Cohn-Kumar and Lennard-Jones clusters exhibit dif-
ferent landscape topologies, thus spanning a wide range of problem difficulties. We argue that
the presented problems should be included in future benchmark studies in order to improve
the generality of black-box heuristics. Parts of this chapter are published in (Miller and
Sbalzarini, 2009) or submitted for publication (Miiller and Sbalzarini, 2010a).

Chapter 7: Analysis of Linear Chain Landscapes

We consider linear chains in form of (self-avoiding) random walks in Chapter 7. We investigate
the degree of inhomogeneity that is introduced in the random walk landscape domain by using
RMSD as a distance measure. An extended version of this investigation is published in (Miiller
et al., 2009). We also investigate the maximum RMSD problem, which consists of finding the
pair of structures that maximizes RMSD among all possible structures. Based on data from
black-box optimization runs, we conjecture a closed-form upper bound for the RMSD between
any two linear chains of the Random Walk type.

Chapter 8: Conclusion and Future Work

We conclude this thesis in Chapter 8. We outline how the results of this thesis suggest
several opportunities for future research, ranging from theoretical issues to concrete practical
applications.



1 Introduction

Appendix

In the course of this thesis, we developed a number of well-tested software packages for black-
box sampling and optimization. We present two software libraries in the Appendix: GaALib
and pCMALib. GaALib comprises a set of MATLAB functions and scripts that implement
all aspects of the Gaussian Adaptation scheme. It can be used for black-box optimization,
sampling, and volume computation. pCMALib is a parallel FORTRANO90 library that imple-
ments both sequential and parallel CMA-ES in an efficient manner. All aspects of pCMALib
are described in a manual-like style. We also present parallel scaling results that are published
in (Miiller et al., 2009a).



Landscapes

”Will you take us to Mount Splashmore?”
Lisa and Bart Simpson, in: The Simpsons, Brush with Greatness, Episode no.

31, 1991

The notion of a landscape has been a valuable and highly influential concept in many ar-
eas of science. Inspired by our shared visual experience of natural terrains and sceneries,
the landscape metaphor has been employed by researchers across disciplines to explain com-
plex phenomena in a comprehensive manner. Sewall Wright introduced in his seminal paper
(Wright, 1932) the concept of the adaptive or fitness landscape to modern evolutionary biol-
ogy. Wright used fitness landscapes to illustrate the relationship between genetic or phenotypic
traits of organisms and their associated evolutionary fitness. The evolution of a species can
hence be imagined as an adaptive walk across hills and valleys of its fitness landscape, eventu-
ally settling around a peak. It is striking that more than 50 years later Stillinger and Weber
employed a similar analogy to describe the packing structure and phase transitions in liquids
and solids (Stillinger and Weber, 1984). Although the notion of the potential energy surfaces
(PES) instead of potential energy landscapes (PEL) is used in the original article, Stillinger
and Weber have the same metaphor in mind as Wright, this time, however, to explain the
behavior of ensembles of atoms and molecules across thermodynamic regimes. Stillinger and
Weber popularized the idea that static and (thermo-)dynamic features of molecular systems
can be largely understood by analyzing the topography of the underlying energy landscape.
A visual comparison of the original sketches from (Wright, 1932) and (Stillinger and Weber,
1984) emphasizes the strong similarity (Fig. 2.1).



2 Landscapes

“ . - ; o Fig. 1. Schematic representation of the poten-
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tiveness. dashed curves.

Figure 2.1: a. Sketch of a two-dimensional fitness landscape from Sewall Wright’s 1932 publication
on the role of mutation, inbreeding, crossbreeding and selection in evolution (Wright,
1932). b. Stillinger and Weber’s sketch of a potential energy landscape of atomic systems
(Stillinger and Weber, 1984).

Astonishingly few researchers, however, explicitly highlight the close conceptual relationship
between fitness and energy landscapes. The works of Peter Stadler and co-workers are a
notable exception (see, e.g., (Schuster and Stadler, 1994; Stadler and Stadler, 2002; Reidys
and Stadler, 2002)) together with the influential review on ultrametricity in physics by Rammal
and co-workers (Rammal et al., 1986) and Sherrington’s introductory notes in a special issue on
landscapes in Physica D (Sherrington, 1997). Despite the great value of metaphors and mental
images in science, they can be, at the same time, subject of profound confusion due to their
inherent subjective nature. As Peter Wolynes wrote in his philosophical article on landscapes
(Wolynes, 2001): “Of all intellectuals, scientists are the most distrustful of metaphors and
images. This, of course, is our tacit acknowledgment of the power of these mental constructs,
which shape the questions we ask and the methods we use to answer these questions.” It is,
therefore, crucial that we first provide a formal definition of landscapes. We then present
important landscape properties and geometrical concepts that allow a more refined view on
landscape topographies and their practical use. After revisiting fundamental instances of the
landscape paradigm in biology, (bio-)chemistry, and physics we eventually build a conceptual
bridge to the field of optimization. Starting from a review of the landscape perspective in
combinatorial optimization problems we develop a novel landscape perspective for black-box
optimization. We close this chapter with an introduction of synthetic benchmark landscapes
that are then used throughout this thesis.



2.1 Definitions and characteristics

2.1 Definitions and characteristics

We start with the most general definition of a landscape:
Definition 2.1. A landscape L is a triple (X, d, f) consisting of
1. a set X CR",
2. a distance function d: X x X — RS‘,
3. a scalar function f: X — R.

Depending on the scientific context, the set (or domain) X has different composition and
meaning. In evolutionary biology X can, e.g., be a finite set of genes. Each gene is a se-
quence or string of letters over the alphabet {A,C,G, T} that represents the four different
nucleotides. In a physical system, X may represent the positions of a collection of n atoms
in three-dimensional space. There, elements of X are often called configurations, states, or
micro-states with X C R3". In optimization research, X’ represents the set of (feasible) solu-
tions, e.g. binary strings or real-valued vectors of a certain dimension n. In this context, X" is
also termed search space. X can also represent the set of free parameters of a mathematical
model, hence leading to the notion of a parameter space. In statistical models, X specifies
factors or input variables.

The function d adds structure to the domain X. It can be, for instance, a mathematical
metric (with the usual properties of non-negativity, positive definiteness, symmetry, and
sub-additivity), a measure based on an order parameter in a physical system, or some other
dissimilarity index. When X is, e.g., the set of binary strings of length n, a natural metric is
the Hamming distance dg. The distance dy is defined as the number of positions where the
digits in two binary strings are different. The distance ranges between zero for identical strings
and n for strings that are different everywhere. The Euclidean distance dg is often used when
X C R", where the range is again between zero for identical vectors and a maximum that is
attained by the vectors defining the diameter diam(X’). For the three-dimensional unit cube
X =[0,1)?, the diameter in Euclidean distance is v/3. It is noteworthy that the diameter of X
is not always known a priori for a complicated domain or distance measure, thus hampering
the interpretation of absolute distance values. This problem will be studied for linear chains
in Chapter 7.

The function d can also be defined by so-called move sets. A move set defines allowed moves
or transitions from one element x € X to another y € X in a single step. A distance can
then be defined by the minimal number of steps it takes to move from x to y. In evolutionary
biology, the move set could, e.g., be a point mutation in a gene per evolutionary time unit. In
the binary string case the move set consisting of single bit flips is equivalent to the Hamming
distance. We comment on the apparent connection between move sets and optimization algo-
rithms in Section 2.3.1. In physics, the pair (X, d) is often called configuration space (Rammal
et al., 1986; Reidys and Stadler, 2002), a term that plays a central role in Chapters 6 and 7
of this thesis.
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The scalar function f, the third component of L, is generally interpreted as height of the
landscape. The height f is a general mapping from the domain X to the real numbers. It
assigns a real value to each element of X. In evolutionary biology, f is called the fitness and
can, e.g., be experimentally measured by the reproductive success of an individual organism.
In optimization, f is called fitness function, cost function, or objective function. The standard
term in physics is energy, most often potential energy or free energy, denoted by h, E, or F.

Black-box landscapes

Definition 2.1 offers the most general definition of a landscape. In this thesis, we particularly
focus on Black-box landscapes, defined as follows:

Definition 2.2. A Black-box landscape Lg is the triple (X,dx, f) consisting of
1. a set X CR",
2. a metricd: X x X — R{,
3. a scalar black-box function f: X — R.

In this thesis, we mostly consider landscapes whose support is a compact (convex) subset of
the n—dimensional space of real numbers. Most often X' is box-constrained, i.e. X = [l,u] C
R™ with the vectors ,u € R™ defining the lower and upper bounds. In practice, even for
unconstrained optimization problems box constraints are often imposed by the modeler in
order to restrict analysis to certain x values of interest. These constraints also simplify certain
mathematical operations, such as drawing uniform samples from the landscape domain.

A natural metric in such domains is the Euclidean distance dg:

(2.1)

with vectors x,y € X C R", or the Mahalanobis distance

d(x,y) = /(x— y)C 1 (x—y)T, (2.2)

where C is a positive definite, symmetric matrix.

A central concept in this thesis is the notion of the black-box function f. The name implies that
we consider f a black box, i.e., the only information we can retrieve from f is a real value for
any given query x € X. The black-box metaphor represents our general ignorance about the
underlying system. Most often we do not know the analytic form of f, nor do we assume any
mathematical property about f such as, e.g., convexity or continuity. The function f can be
noisy, discontinuous, or non-differentiable. The concept of a black box conveniently addresses
many problems of practical relevance in science and engineering. For example, researchers
are often faced with fitting free parameters of a complicated mathematical or technical model
in order to match the model output with noisy real-world measurements. The cost function

10



2.1 Definitions and characteristics

that measures the dissimilarity between model output and data can be considered a black-box
function. Hence, the set of free parameters, a distance measure between parameter vectors,
and the black-box function define a black-box landscape.

A similar yet more formal concept of a black box is known under the term oracle in theoretical
computer science. Theoretical computer scientists “imagine an oracle as a device that solves
certain problems for us, i.e. that, for any instance o, supplies a solution 7. We make no
assumption on how a solution is found” (Grotschel et al., 1993) pp. 26.

One key problem with the landscape paradigm is our limited ability to comprehend and visu-
alize more than three or four dimensions. The topography of geographical landscapes, such as
the Swiss Alps, is completely specified by a two-dimensional coordinate system and a height
or elevation associated with each point in the coordinate system. It comes as no surprise that
the original fitness and energy landscape sketches in Fig. 2.1 are two-dimensional. Many land-
scapes in science are, however, high-dimensional. In order to fully appreciate the landscape
metaphor even in the high-dimensional case, we have to resort to useful collective terms that
are able to characterize landscape topologies and are, at least to some extent, measurable.

Landscape characteristics

Landscape characteristics are such key topographic features that can be used to characterize
high-dimensional landscapes. Although many of these features are not accessible in a black-
box scenario we provide them here for completeness.

One property of landscapes is the scale with which the height or elevation f varies over
the whole domain X. Do values of f span over several orders of magnitude? Are they
bounded from above or below? A comprehensive summary of the range of f can be achieved
by deriving or estimating the moments of the distribution of f values, such as expectation
values and variances, with respect to some measure. Under the assumptions that lower and
upper bounds of the fitness range exist, these bounds correspond to the fitness values at the
locations of the global minimum and global mazimum, respectively.

Definition 2.3. Let X be the domain of the landscape and the mapping f : X — R. The
mapping f has a global minimum at X iff f(Xmin) < f(X)Vx € X. The mapping [ has a
global mazimum at Xmaez 3 f(Xmas) > f(X)Vx € X.

In general, global optima are hard to find. A considerable amount of work in this thesis is
dedicated to the efficient search for global minima of black-box landscapes, as we will see in
Chapter 4. Even in cases where the locations of global optima are known, they often provide
only limited information about the overall geometric topology of the landscape surface. In
many cases, it is easier and more informative to analyze features associated with local optima.

Definition 2.4. Let X be the domain of the landscape and the mapping f : X — R. Let N'(x)
be the neighborhood of x. Then f has a local minimum at x'°¢ iff f(x'°¢) < f(x)Vx € N(x"°).
The mapping f has a local mazimum at x'° iff f(x'¢) > f(x)Vx € N(x"°).

11
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The neighborhood N (x) is induced by the distance measure d. For example, when X is the
set of binary strings of length n and dg the Hamming distance then we can define N'(x'°¢) =
{x € {0,1}" | du(x,x"°¢) = c}. In the simplest case ¢ = 1, which we call the 1-neighborhood.
The distance, and hence the neighborhood, can also be defined via more complicated move
sets. When X C R™ and f is a smooth function with continuous first and second derivatives,
a local minimum/maximum can be characterized by the usual optimality conditions:

Definition 2.5. Let X C R™ and f : X — R. Then f has a stationary point at x"°¢ iff
Vf(x'¢) = 0 where Vf denotes the n-dimensional gradient vector with components:

loc\ __ 6f

(2.3)

The mapping f has a local minimum at x'°¢ if, in addition, the Hessian n x n matriz H(x'°°),
the symmetric matriz of second derivatives with elements

82f(XlOC)

Hi (e locy —
»J (X ) 61‘181}]

Lji=1,...,n (2.4)
is positive definite. For a local maximum H must be negative definite at x'°¢. A first-order

saddle point is located at x'°¢ if H has n-1 positive eigenvalues and exactly one negative eigen-
value.

In the context of optimization problems or probability distributions the optima are often
called modes leading to the term multi-modal landscapes in the presence of multiple optima.
In the following we focus on using a collection of local minima for landscape characterization.
The argumentation also holds for local maxima for a landscape with negated f. Consider
a landscape with multiple local minima and imagine that we have an algorithm that finds
for each point in the domain a local minimum by following the steepest descent path. Then
we can tesselate the domain of the landscape into disjoint regions, each containing the set of
points that lead to the same local minimum. We refer to such a region as catchment basin,
basin of attraction, or just basin. Figure 2.2 shows a sketch of a landscape tessellated into 6
basins. In the following we give a formal definition:

Definition 2.6. Let £ = (X,d, f) be a landscape with K local minima x¥*):1¢ with k =
1,..., K. Let M be an algorithm that proceeds from each x € X to a local minimum via the
steepest descent path. Then the catchment basin Cy, is defined as:

Cr={xex | x®le = M(x)}. (2.5)

The boundary By of basin Cy is the set of all x that have at least one point'y € N (x) with
y €Ci,i 7& k.

One situation hampers the generality of the basin definition on smooth landscapes: the ex-
istence of regions of constant f or landscape neutrality. In such regions a steepest descent
algorithm fails to proceed. We assume that the algorithm M has a mechanism to detect
these regions. The algorithm then assigns points on the plateau to an arbitrary neighboring
basin. On black-box landscapes the situation is even more complicated when f is noisy or

12
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Figure 2.2: Sketch of a tesselation of a 2D domain into 6 basins of attraction Cx. The black dots (e)
represent the corresponding minima, the lines the boundaries separating the basins.

discontinuous. We also assume that the (black-box) algorithm M can handle these instances
and that M provides a unique basin assignment.

Two important properties of a basin are its depth and its size or volume. We define basin
depth, sometimes also termed barrier height, in the following way:

Definition 2.7. Let L = (X,d, f) be a landscape with K local minima x(k):loc - catchment
basins Cy, and boundaries By with k =1,..., K. The basin depth, or barrier height, T(Cy) is
defined as

T(Ck) = min f(x) — f(xFle) k=1,... K. (2.6)

xEB

When & C R™ and f is a smooth function with continuous first and second derivatives,
T(Cy) is the fitness difference between the basin minimum and the lowest-lying saddle point
or maximum separating the minimum from a neighboring basin. Although the notion of basin
size or volume is intuitive, a clear mathematical definition depends on the properties of X.
Size could, e.g., be defined as the number of configurations within a basin when X is a finite
set.
Partitioning the landscape domain into basins of attraction offers many insights into landscape
topology. A complete tessellation would enable use to derive the total number of minima of
the landscape, including global minima. Another property is the distribution of basin depths
and sizes. Interesting questions related to basin depths and sizes are: What is the distribu-
tion of basin depths compared to the global range of f values? Does the landscape domain
contain many basins of the same size or are there dominating large basins and a few small
ones? The specific distribution of basin sizes could, e.g., tell us how likely it is to hit the
basin that includes the global minimum. The number of basins and their size distribution are

13



2 Landscapes

also related to the effort for an algorithm to enumerate all basins. More complex landscape
features account for the spatial arrangement of the basins and its relation to (i) the height of
the associated local minima and (ii) the basin depths. A prominent example is the hierarchical
arrangement of basins into super-basins or funnels. A one-dimensional sketch of a funneled
landscape is shown in Fig. 2.3. A funnel is characterized by the following properties: (i)

1 DG(f)

R Eer ;C:3§C4§ Cs i Co i Oy
X

>

Figure 2.3: Sketch of a funneled landscape in 1D. The dotted lines mark the transition regions between
the basins Ci. Cs contains the global minimum and is the funnel “bottom”. The height of
the minima in neighboring basins decreases toward the funnel bottom. The corresponding
disconnectivity graph (DG) is shown in red. As an example the minimal basin depth is
labeled for basin Cs.

The depth of individual basins within a funnel is considerably smaller than the total range
of f across the whole landscape. (ii) The height of the minima of the basins decreases with
decreasing distance to the center or bottom of the funnel. If all basins in a landscape are
arranged in this way, we call it a single-funnel landscape, otherwise a multi-funnel landscape.
When knowledge about basin arrangement, local minima height, and basin depth is known,
the landscape can be visualized using disconnectivity graphs (DG) or barrier trees as shown
in Fig. 2.3. The vertical axis corresponds to the fitness or energy scale, the horizontal axis to
a general coordinate that is able to separate the different minima. Lines are drawn upward
starting from every local minimum. The lines of neighboring basin are joined to the trunk
of the tree (or an internal node) at the f level that corresponds to the height of the basin
minimum plus the basin depth. For physical systems, the shape of the resulting tree can offer
insights into thermodynamic properties, as we will see in Chapter 6.

We emphasize again that the notion of a funnel is rather a metaphor than a precise math-
ematical object. We do not specify how exactly the global range of f values and the basin
depths have to be related, nor do we prescribe how distance to the funnel bottom and the
decrease of minima height are correlated. We will, however, encounter numerous examples
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of funneled landscapes where we give more details about specific funnel structures and their
implications for landscape characterization and optimization.

A complete partitioning of the landscape domain into basins along with knowledge of local
minima height, basin depth, and basin volume would provide an almost complete characteri-
zation of the landscape. This ideal situation, however, is almost never achievable in practice.
The number of minima (and hence the number of basins) of many landscapes scales exponen-
tially in the problem dimension. Hence, even enumerating all minima cannot be achieved in
polynomial time or space. Researchers have to either restrict the landscape partitioning to a
small subregion of the domain or have to resort to techniques that describe landscapes in a
coarser way. A ubiquitous notion is landscape ruggedness or landscape roughness. Ruggedness
is an intrinsically local property of a landscape that can vary across the domain. In the general
case, we imagine the degree of ruggedness of a subdomain of a landscape as the presence or
absence of correlation between the fitness values of neighboring points in the subdomain. For
some landscapes the correlation length can be determined analytically, for others it has to be
estimated empirically. Note that the distance defined on the landscape plays a decisive role
for ruggedness. It is conceivable that the landscape is considerably rougher for some distance
measure than for others. If knowledge about the locations of local minima is at hand, rugged-
ness can also be related to the number of minima within a landscape subdomain.
Ruggedness is an average property over a certain neighborhood and hence does not account for
how individual coordinates or certain combinations of coordinates influence f. For example, it
might be valuable to determine how a change in individual variables is related to a change in
fitness. This is the scope of sensitivity analysis. Sensitivity analysis studies how the variation
in landscape height can be apportioned, qualitatively or quantitatively, to different sources of
variation in the landscape domain. Both local and global techniques are available. If a land-
scape represents some parameterized mathematical model, then sensitivity analysis can also
be seen as a way to provide information about the importance of model parameters. Several
sensitivity analysis techniques also allow quantifying the interaction structure between vari-
ables. For some landscapes, changing one variable will not affect the effect of other variables
on the fitness. Such landscapes are called separable. Consider an n-dimensional landscape
domain. The separability property then allows characterizing each dimension independently
and then combining the n one-dimensional characteristics into a global n—dimensional one.
Searching for the global minimum in an n-dimensional separable landscape amounts to solving
n one-dimensional minimization problems. Note that for discrete landscapes non-separability
is also related to epistasis, an important concept in genetics. Epistasis is the phenomenon
where the effects of one gene are modulated by one or several other genes.

2.2 Landscape paradigms in science

The landscape paradigm has been so influential in modern science that it is instructive to
briefly present the most important landscape instances. We first outline landscapes in biology
covering a wide range of length and time scales.This leads to a natural transition to the energy
landscapes in physics and chemistry that are subject of Section 2.2.2. This section also serves
to link two key aspects of this thesis: landscapes and optimization algorithms.
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2.2.1 Landscapes in biology

The landscape metaphor has been introduced by Sewall Wright in his presentation at the
Sixth International Congress of Genetics in 1932. Wright was an evolutionary biologist and
created the adaptive landscape picture to illustrate his “Shifting Balance Theory” of evolu-
tionary change. The details of this controversial theory are beyond the scope of this thesis
and can be found in (Wright, 1932). Important to us, however, is the way Wright imagined
the phenomenon of evolution as a dynamic process over a landscape. His key idea was the
following: Imagine a population of a species, each having a collection of different genes shaping
the “genotypic space” X. Each individual in the population comprises an instance of these
genes at a specific point in time. This list of genes, the genotype, is a point x in the high-
dimensional space X. Each gene collection induces a specific phenotype that is associated
with a certain evolutionary fitness f(x). Hence, the population of individuals can be imagined
as a point cloud on a fitness surface over the genotypic space. The population can move in
the genotypic space by sequential genetic changes (mutation or recombination) over several
generations. When natural selection acts on the population over time, only individuals with
high fitness may survive. Ultimately, the population will cluster (or “adapt”) around fitness
peaks in the landscape. In Fig. 2.1a these peaks are denoted by a +. A closer look at this
figure also reveals that Wright did not label the axes of the landscape domain. Wright was
aware that there is no easy way to project the high-dimensional genotypic space into two or
three dimensions. For him, the landscape was just a metaphor. He imagined that individuals
with similar genotypes should be close in this landscape and have, at least to a certain ex-
tent, similar fitness. Unfortunately, neglecting the axis labels in his original landscape sketch
caused considerable confusion throughout the scientific community until today. Kaplan even
advocates in his recent philosophical paper “The end of the adaptive landscape metaphor?”
(Kaplan, 2008) that the fitness landscape picture should be given up entirely and replaced by
more formal modeling, even at the expense of being less intuitive. In our view, this criticism is
only partially valid as there have been many attempts to formalize the landscape concept more
rigorously. Gillespie introduced the mutational landscape in this article “Molecular Evolution
over the Mutational Landscape” (Gillespie, 1984) which challenges Wright’s evolutionary the-
ory while keeping the landscape metaphor. The mutational landscape is an alternative model
for molecular evolution based on extreme value theory that, with some modifications, is highly
valuable to explain data from real molecular evolution experiments, such as single-stranded
virus DNA (Rokyta et al., 2005).

The landscape paradigm has not only been useful in evolutionary biology. It conquered
branches of biology that investigate systems on totally different time and length scales. The
most prominent example arose in the context of “epigenetics” in developmental biology. The
word “epigenetics”, coined by Conrad Hal Waddington, was used to describe events that could
not be understood by genetic principles. Waddington defined epigenetics as “the branch of
biology which studies the causal interactions between genes and their products, which bring
the phenotype into being” (Waddington, 1942). In 1957, he proposed the metaphor of an
epigenetic landscape to illustrate the process of cellular decision-making during development.
Waddington’s original sketch is shown in Fig. 2.4. Waddington used this picture to illustrate
how cells, despite their identical genetical material, can nonetheless differentiate into different
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Figure 2.4: Waddington’s original sketch of the epigenetic landscape (Waddington, 1957). The marble
represents a cell in early developmental stage. The specific trajectory it takes on the
landscape will irreversibly lead to a local minimum in the landscape that determines its
“fate”, i.e., into what tissue type it will differentiate.

phenotypes due to epigenetic modifications. The collection of possible modifications acting
on cells form an epigenetic landscape with valleys and ridges. A cell during developmental
phase can take specific permitted trajectories, leading to local landscape minima that define
different phenotypes or cell fates. This metaphor is very lively even today. A modern view of
the molecular mechanisms underlying the epigenetic landscape can be found in Goldberg and
co-workers’ recent essay “Epigenetics: A Landscape takes Shape” (Goldberg et al., 2007).

One of the most fascinating biological systems where the landscape metaphor had a lasting
impact are proteins. Proteins are ubiquitous in living organisms and are considered the build-
ing blocks of life. They exhibit an amazing variety of three-dimensional structure, size, and
biological function. Proteins are chain molecules composed from 20 distinct amino acids,
each having different biophysical properties. The specific sequence of the amino acids in the
chain dictates the three-dimensional structure or shape of the protein. Key structural motifs
in proteins are helices, sheets, and coils (see Fig. 2.5 for an example). The “central dogma”
of molecular biology (Crick, 1970) states that proteins are the sole products of the inherited
genetic information. Each gene, a string of some length over the alphabet {A, C, G, T}, codes
for a specific protein. A gene is partitioned into triplets, called codons. Each codon is specific
for a distinct amino acid. Because only 20 different amino acids occur in real proteins out of
the 43 = 64 possible codons, the genetic code is said to be degenerate. By the time Wright
introduced the fitness landscape paradigm, all this detailed molecular information was not
known. It was not until 1970 when John Maynard Smith took up Wright’s evocative land-
scape imagery and created the concept of a “protein space” (Maynard-Smith, 1970). Back
then, there was considerable debate about the tremendous disparity between the number of
naturally occurring proteins and the much larger number of genetically encodable proteins.
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Figure 2.5: Cartoon representation of the Phage 22 tail spike protein (PDB entry 1TYU), consisting
of helices (red), sheets (yellow), and coils (green) as structural elements.

Maynard Smith’s seminal idea was to envision protein evolution as an adaptive walk through
protein space, where functional proteins may change to fitter variants through single amino-
acid substitutions. Fitness can be any specific functional property, such as the capacity to
catalyze a specific reaction or bind a specific ligand. For a protein of length n the space com-
prises 20™ elements. If neighborhood is defined by site-specific single amino-acid differences,
each protein has 19n neighbors. Due to the fact that mutations occur on the nucleotides in
the genes, the degeneracy of the genetic code implies that the protein fitness landscape is
intrinsically different from its genetic counterpart, most prominently through the existence of
large regions of fitness neutrality. This observation led the japanese biologist Motoo Kimura
to the formulation of his “neutral theory of molecular evolution” in the late 1960’s, a corner
stone of modern evolutionary biology (Kimura, 1983).

The concept of a protein fitness landscape is, however, more than just a useful metaphor.
Over the past decades this imagery catalyzed an incredible amount of both theoretical and
experimental research. Due to the fact that many biological and chemical properties of pro-
teins are accessible in laboratory experiments, the possibility emerged to test and validate
theoretical landscape models through controlled measurements. One of the earliest attempts
was made by Kauffman (Kauffman, 1993) and further developed by Kauffman and coworkers
in the context of the immune response of higher organisms (Kauffman and Perelson, 1988;
Kauffman and Weinberger, 1989). One fundamental task within the complex immune system
machinery is to efficiently identify molecules, so-called antigens, that have not been produced
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natively by the body. To this end, the organism has to evolve specific proteins (antibodies)
that have a high binding affinity to intruding antigens. This process is called maturation.
Kauffman and co-workers used the NK-model of a rugged fitness landscape for the maturation
of the immune response. Inspired by physical spin glasses, Kauffman and Weinberger defined
the model in the following way: “The NK model is meant to apply to systems of many, N,
parts, where the functional contribution of each part depends upon the “state”, among A
alternatives, of that part, and is epistatically affected by an average of K other parts” (Kauff-
man and Weinberger, 1989). More formally, the NK-model is intended to capture interactions
between the bits in a binary string (alleles, chromosomes, proteins), giving rise to landscapes
that are tunable in terms of epistasis and ruggedness. This model can be used to describe
the epistatic nature of genes. In the context of the immune response, they chose the system
to be the variable (V) region in an antibody molecule. The N parts are the amino acids with
A=20 alternatives per state and the fitness of a V region is its binding affinity for an incoming
antigen. They imagined the maturation of the immune response as an adaptive walk on an
“affinity landscape”. The NK-model provided a means of abstracting the complex immune
response process. It predicted, through careful design of a particular model instance and
parameter tuning, a number of qualitative features of antibody affinity evolution, such as the
speed of adaptation and the existence of conserved patterns within the V region (Kauffman
and Weinberger, 1989). For a recent study where the NK model has been successfully used for
the analysis of a DNA-protein affinity landscape, we refer to (Rowe et al., 2010). We comment
on more formal optimization studies on the NK model in Section 2.3.

Binding affinity is not the only property that can determine the evolutionary fitness of a pro-
tein and, hence, its associated landscape. For enzymatic proteins, fitness might be defined as
the capacity to catalyze a specific reaction. Maintaining structural and functional stability
over a wide range of temperatures might also be a valuable objective. The evolution of antibi-
otic resistance in bacteria through specific enzymes is another example (Carneiro and Hartl,
2010). For decades, molecular biologist have sought after tools and techniques to decipher
the complex interactions between the composition and organization of proteins and any of
its functional properties. Despite paramount advances in some areas of protein research, a
true molecular-level understanding of why one protein performs a certain task better than an-
other remains largely elusive. This fact also hampers the possibility of rationally engineering
and improving protein functions for dedicated biological or pharmaceutical purposes. It is
amazing that the idea of evolutionary optimization, which has been so successful in technical
applications, has been brought back to biology through the method of directed evolution. In
their excellent review “Exploring protein fitness landscapes by directed evolution”, Romero
and Arnold state: “Directed evolution circumvents our profound ignorance of how a protein’s
sequence encodes its function by using iterative rounds of random mutation and artificial se-
lection to discover new and useful proteins. Proteins can be tuned to adapt to new functions
or environments by simple adaptive walks involving small numbers of mutations.” (Romero
and Arnold, 2009). Directed evolution is, hence, an experimental tool for finding local max-
ima in the protein fitness landscape. A typical iteration of a directed evolution experiment
involves three steps: diversification, selection, and amplification. The first step is concerned
with the creation of a diverse pool of candidate proteins by randomization techniques such as
DNA shuffling or error-prone PCR. The second step uses screening techniques to isolate and
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select candidates with improved functional properties. Finally, the identified candidates are
subject to a replication process that increases their abundance by orders of magnitude. The
abundant protein candidates are then subject to biochemical analysis and re-entry into the
directed evolution cycle in the next round. The directed evolution technique established itself
as a standard tool in molecular biology labs since the mid-nineties. Interestingly, Rammal and
co-workers already commented on the possibility of such a technique under the term “evolutive
biotechnology” or “simulated evolution” (Rammal et al., 1986), where they refer to presenta-
tions by P.W. Anderson and Manfred Eigen at the 1984 Founding Workshops of the Santa Fe
Institute (Pines, 1988). Rammal et al. also point out that for proteins the landscape picture
naturally arises not only on the evolutionary but also on the molecular scale: The structure
and dynamics of protein chains are governed by atomic and molecular forces within the chain
and its interaction with the environment. It has been proven extremely fruitful to picture the
dynamical behavior of a protein as a walk across a complex high-dimensional energy landscape,
a perspective we consider next.

2.2.2 Energy landscapes in chemistry and physics

The concept of an energy landscape is fundamental to many areas of (bio-)chemistry and
physics. Imagining the dynamical behavior of a molecular system as a process over a high-
dimensional energy landscape has been a key concept to elucidate complex patterns occurring
in nature. In protein biophysics, the energy landscape perspective is intimately connected
with one of the grand challenges in the area: the protein folding problem. What is this grand
challenge? We have introduced proteins as concatenations of amino acids, forming linear
chains. In a living cell, proteins are produced by ribosomes. When a protein leaves this
molecular machinery, its configuration is more or less unstructured and it is considered to
be in the unfolded or denatured state. A protein’s function, however, is largely determined
by its three-dimensional shape. In order to attain this functional conformation, a protein
undergoes considerable configurational rearrangement, a process called protein folding (see
Fig. 2.6). Since Christian B. Anfinsen’s Nobel prize-winning experiments, it is known that,
at least for small globular proteins, the native or folded structure is determined only by the
protein’s amino acid sequence (Anfinsen, 1973). Anfinsen’s dogma, sometimes also called the
thermodynamic hypothesis, states that at the environmental conditions at which folding oc-
curs, the native structure is a stable, unique, and accessible minimum of the energy surface.
For many years, it has been a mystery how a protein with its huge number of conformational
degrees of freedom can find this stable minimum at high speeds that are observed in laboratory
experiments. Cyrus Levinthal has formulated this conundrum in his famous thought experi-
ment, Levinthal’s paradox. Imagine a protein chain consisting of 100 amino acids. Each bond
between amino acids, the peptide bond, defines two angles between consecutive amino acids.
In Levinthal’s model, each of these angles can attain only three possible values. Even this
simplified chain has already 3% possible configurations, more than the number of atoms in the
universe. It seems thus rather unlikely that a protein finds the configuration corresponding to
the stable minimum by random sampling. Also, in real proteins, the degrees of freedom are
continuous variables, and the previous discretization does not hold. The “paradox” that most
small proteins fold spontaneously in milliseconds or even microseconds, despite the huge con-
formational space, arose from the imagination that the energy landscape guiding the search to

20



2.2 Landscape paradigms in science

U N

Figure 2.6: Sketch of the protein folding process. A long unstructured chain, the unfolded state (U),
transforms into a folded native (N) state, e.g., a helical structure.

the stable configuration looks like a “golf course”, as depicted in Fig. 2.7 a. Finding the native
conformation seemed much like finding the proverbial “needle in the haystack”. Levinthal’s
paradox has been resolved by the intriguing hypothesis of a “funneled energy landscape” (see
Fig. 2.7 b). Starting from theoretical works by Hans Frauenfelder, Joseph Bryngelson, and
Peter Wolynes in the 1980’s (Bryngelson and Wolynes, 1989; Frauenfelder, H. and Sligar, S.
G. and Wolynes, P. G., 1991), this hypothesis culminated in what some researchers called the
“new view” on protein folding (Dill and Chan, 1997). The old view on protein folding consid-
ered the metaphor of “pathways” that proteins take from the unfolded to the native state. The
new view was associated with the funneled energy landscape perspective that explained the
folding process as the guided movement of denatured conformations starting from the “rim”
of a funnel down to the bottom where the native state was located. Both the review by Dill
(Dill and Chan, 1997) and the essay by Wolynes (Wolynes, 2001) excellently summarize the
implications of the energy landscape perspective for protein folding research. The strength
of the funneled-landscape hypothesis is that it provides guidance for the implementation and
interpretation of laboratory protein folding experiments. Features of the folding funnel can
nowadays be probed experimentally (Mello and Barrick, 2004). The speed of folding can be
measured and associated with the ruggedness or roughness of the energy landscape (Nevo
et al., 2005; Kapon et al., 2008). The importance of a funneled energy landscape has also been
recognized for the assembly of multi-domain proteins, i.e., proteins that consist of different
modular regions (Faraldo-Gomez and Roux, 2007). Recent studies extend the energy land-
scape perspective from single-protein folding to protein-protein interactions (Hunjan et al.,
2008). Moreover, Clark advocates that the single folding-funnel perspective needs to be ex-
tended to a double-funnel topology in order to fully account for the behavior of proteins under
physiological conditions (Clark, 2004). The second funnel represents protein aggregates, i.e.,
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a b

Figure 2.7: a. Sketch of Levinthal’s “golf-course” landscape. N represents the region of the native
state of the protein that is surrounded by a flat energy plateau. b. A rugged but funneled
energy landscape that surrounds the native state (N). Both figures/Landscapes are taken
from (Dill and Chan, 1997).

clumps of dense protein configurations that are neither in the native state nor in the unfolded
state but are often observed in experiments (see Fig. 2.8).

Besides protein folding and the physical perspective on protein dynamics, there are also
other branches of chemistry and physics that have adopted the landscape metaphor, most
prominently in studies of liquids and solids. We have already referred to the paper by Still-
inger and Weber (Stillinger and Weber, 1984) that contained probably the first sketch of a
multi-dimensional energy surface (Fig. 2.1b). However, some ideas presented in that paper
can be traced back at least to the 1960’s (see references in (Stillinger and Weber, 1984) and
(Goldstein, 1969)). What is the purpose of the energy landscape perspective in liquid or
solid-state systems, and what are the differences to the previous protein energy landscape pic-
ture? In our considerations of protein folding we have avoided to clearly define which physical
energy we actually mean. Because folding takes place at physiological temperature, the native
state is a minimum of a free energy surface. The free energy is a thermodynamic concept
that includes two contributions, the potential energy or Hamiltonian of the system and the
entropy. It is beyond the scope of this thesis to give an introduction to thermodynamics,
but we rather convey the general idea. In essence, the potential energy includes all energetic
terms arising from the interactions between atoms in a given state, such as the Coulomb and
Van der Waals energies. Entropy measures the flexibility of the system to adopt different
molecular configurations at finite temperature T° > 0. It is hence a property of an ensemble
of configurations rather than a single one. At absolute zero temperature (7' = 0) the free
and the potential energies coincide. Because proteins, which can be considered a particular
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Figure 2.8: Clark’s double-funnel perspective on protein folding in the cellular context. The first
funnel (green) shows the traditional folding funnel. The second funnel (blue) represents
non-native protein aggregates that are often observed in experiments (Clark, 2004).

instance of soft matter, operate at physiological temperature ranges, entropic contributions
cannot be neglected. The protein folding process must hence be considered as a minimization
over the free energy surface. For simpler forms of solid matter, such as pure substances in bulk
or small atomic clusters, Stillinger and Weber advocated the potential energy landscape as a
unifying concept for a deeper understanding of atomic arrangements. From a wide variety of
experimental techniques it had been known that periodic crystalline order provided the most
stable arrangement for many pure substances in the solid phase. While perfect crystals are a
rarity in our natural environment, many kinds of dense matter appear as more or less defective
crystals, i.e. arrangements that show regular packing with voids or interstitials at some lattice
positions. Stillinger and Weber’s ingenious idea was to envision these arrangements as local
minima of the potential energy landscape. Consider a system of N atoms in three dimensions
at T' = 0. The potential energy FE is hence a function of 3N atom positional coordinates.
Depending on the physical properties of the atoms the system may exhibit different stable
packings, the so-called inherent structures of the system (Stillinger and Weber, 1984). The
height of the potential energy barriers between inherent structures, the number of transition
paths over saddles between them, and the overall topography of the PEL can be used to
explain the melting and freezing behavior of the system at finite temperature. The landscape
perspective also offers a way why some materials are “structure seekers” and others are “glass
formers”. When cooled down at a certain rate, some materials form regular packing structures,
whereas others relax to a disordered state that lacks periodicity but behaves like a solid. The
reason why this is so has been a long-standing riddle in physical chemistry. From an energy
landscape perspective such behavior is conceivable, and R. Steven Berry and co-workers intro-
duced the notion of structure seekers and glass formers (see e.g. citeBall:1996), which made
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the semantic meaning precise in terms of the energy landscape (Cox et al., 2006): “In short,
“structure-seeker” means “able to relax to one of a set of structures very small compared
with the set of all local minima”, and “glass-former” means “relaxes to any of a very large
fraction of the available local minima”.” The global topology of the energy landscape of a
structure seeker can be imagined as a single funnel, whereas glass formers have a multi-funnel
or unfunneled topology. Numerous experimental and computational studies have adopted
the energy landscape perspective for a wide variety of molecular systems. Numerical studies
nowadays use both classical and quantum-mechanical energy formulations for different bulk
materials and clusters. A famous instance are Lennard-Jones clusters, i.e., clusters of up to
200 atoms that interact via the Lennard-Jones (LJ) pair potential. This pair potential is the
simplest model for the interactions between noble-gas atoms such as Argon. We will consider
the landscapes arising from this potential in Chapter 6. Recent studies also applied inherent
structure analysis to simplified protein models (Kim and Keyes, 2007) and all-atom models
of proteins (Rao and Karplus, 2010), hence closing the circle of the two landscape paradigms
presented here. A superb summary of energy landscape studies for clusters and biomolecules
with an extensive list of references can be found in David Wales’ book (Wales, 2005). It is
also noteworthy that Berry and collaborators popularized the landscape paradigm through
the Telluride Energy Landscape workshops that regularly take place in Telluride, Colorado,
since 1984.

Since the past decade the landscape metaphor enjoys widespread use in other fields of physics
and chemistry as well. “Synchronisation landscapes” are used to elucidate the properties and
nonlinear dynamics of complex networks (Zhou, 2003; Nishikawa and Motter, 2010). Rabitz
and co-workers introduced the notion of the “Quantum Control Landscape” for the analysis
of quantum-mechanical observables as a function of controls (Chakrabarti and Rabitz, 2007).
Topological properties of such landscapes are studied in (Hsieh et al., 2008, 2009). The rela-
tionship between the structure of quantum control landscapes and optimization complexity is
considered in (Moore et al., 2008). We explore the general relationship between landscapes
and optimization in the next section.

2.3 Landscapes in optimization

Thus far, we have seen fundamental landscape instances in the natural sciences. The beauty
of the landscape concept is that these “natural” landscapes are a subset of the more general
class of landscapes that arise from distinct combinations of optimization problems and search
algorithms. For example, the domain of the genetic fitness landscapes is inherently discrete as
we consider strings of length n over the finite alphabet {4, C,G,T}. Together with a fitness
assignment for each string, finding the combination of letters that maximizes or minimizes
the fitness defines a combinatorial optimization problem. Adding a distance or neighborhood
relation between strings leads to a combinatorial optimization landscape (Reidys and Stadler,
2002). We have previously introduced some notions of distance, such as the Hamming distance
associated with single-site changes of letters or distances based on abstract move sets. For a
general optimization problem these move sets can be associated with iterations of an optimiza-
tion algorithm applied to the specific problem instance. However, before developing this idea
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further we have to raise an important question: When and why is the landscape perspective
valuable for optimization problems? The answer to this question is intimately related to the
computational complexity of the studied problem class and the employed algorithm.

Computational complexity and algorithm classes

Over the past decades, computer scientists and mathematicians have developed a formidable
classification scheme for optimization problems. This scheme is related to the resources, both in
terms of memory and computational time, an algorithm needs to solve all problems in a specific
class. This is the realm of computational complexity and algorithm classes. Consider for
instance one of the best-studied combinatorial optimization problems, the Traveling Salesman
Problem (TSP): Given a list of n cities and their pairwise distances, the task of the “salesman”
is to find a the shortest possible tour that visits each city exactly once and returns to the city
the tour started from. TSP belongs to the complexity class of NP-complete problems. The
acronym NP refers to Nondeterministic Polynomial time. The characteristic of NP-complete
problems is the following: Any given solution to such a problem can be quickly verified,
but there is no known efficient way to locate a solution in the first place. Efficiency here
refers to the required resources as a function of the problem (or input) size n. Indeed, the
time required to find the optimal solution using any currently known algorithm must grow
faster than any polynomial in n. Simplified versions of the protein folding problem are also
in the class of NP-complete problems (Hart and Istrail, 1997). A ubiquitous technique in
computational complexity is the method of reduction. Proving that a certain problem is NP-
complete can be done by first showing that it is NP and then transforming (reducing) it to
a problem that is already known to be NP-complete (such as TSP). Hence, algorithms that
tackle TSP can also be used for other problems. Belonging to the NP class does, however,
not imply that any instance of the problem is hard, rather that there exist hard instances.
Two approaches have been developed to deal with NP-complete problems: approximation
algorithms and heuristics. Approximation algorithms are problem-specific methods that find
sub-optimal solutions in polynomial time with provable solution quality. This means that the
found approximations are optimal up to a constant factor, for instance within 10% of the
optimal solution. Approximation algorithms are sometimes also used when exact polynomial-
time algorithms are known, but are still too expensive for a given input size. Heuristics,
on the other hand, are computational methods that can often be applied to a wider range
of problems at the expense of providing no guarantees about the goodness of the solutions
found. Heuristics often rely on iteratively improving intermediate candidate solutions until
some stopping criteria are met. The methods we present in Chapter 4 belong to this class.
Heuristics are applied whenever exact or approximation algorithms are too expensive or are
not known. In such situations, the landscape paradigm can provide information that explains
the success of a heuristic or guides the design of effective algorithms for a large number of
problem instances.
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Landscapes of NP-complete problems

Probably the best-studied subclass of TSP is the symmetric TSP, where the distances be-
tween cities are symmetric, i.e., traveling from city A to B takes the same amount of time
as traveling from B to A. The first landscape analysis of symmetric TSP appeared in the
Operations Research community in the early 1990’s through the works of Kenneth D. Boese
and co-workers (Boese et al., 1994; Boese, 1995). Studying specific landscape characteristics
enabled them to develop a new, effective stochastic multi-start heuristic for solving certain
instances of TSP (Boese et al., 1994). The principal idea behind their contributions was the
analysis of the relationship between the cost of a tour and distance to nearby local and global
minima. A large sample of sub-optimal tours t; was generated on a well-known n = 532
cities instance (ATT532) for which the optimal tour had been solved using a branch-and-cut
algorithm (Padberg and Rinaldi, 1987). The sub-optimal solutions were obtained by local
search methods that iteratively improve candidate solutions through the application of spe-
cific operators. Most of these operators or move sets were of the k-opt type (Croes, 1958; Lin
and Kernighan, 1973). The simplest k-opt variant is 2-opt (Croes, 1958), which deletes two
nonadjacent edges of the current tour and then reconnects the two resulting paths into a new
tour. This specific move set induces a distance on the landscape, for instance the minimum
number of 2-opts needed to transform ¢; into t;. Boese and co-workers simplifed this by using
as a distance the number n of shared edges in tours ¢; and t;. This number approximates
the minimal number of 2-opt moves between any two tours by a factor of at most two (Boese
et al., 1994). The cost of a tour was defined in the usual way as the length of the total tour.
The landscape analysis of the TSP instance revealed two surprising results: (i) There is a

x 103

32.60 7 3
3240 . ’ -
3220 <L ’ S —
3200
3180
31.60
3140 —

3120

Cost

31.00 —

30.80 —

30.60 —

3040 —

3020 —

30.00 —

2080 |- : . . B

29.60 |- . —

160.00 180.00 200.00 220.00

Distance to optimal

Figure 2.9: 2500 random 2-opt local minima for ATT532. Tour cost is plotted vs. distance to global
minimum (from (Boese, 1995))

correlation between the distance to the optimal solution and the cost of a tour (see Fig. 2.9),
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and (ii) there is a strong correlation between the mean distance to other solutions and the
cost of a tour, independent of the employed operators. These observations led the authors to
formulate the big valley hypothesis for the TSP landscape: Low-cost solutions are located in
a single valley around the optimal solution. The data also inspired the authors to design an
adaptive multi-start strategy that exploits this big-valley structure to obtain a considerable
performance increase compared to standard multi-start strategies. The big-valley structure
is synonymous in our terminology to a single-funnel landscape. An alternative expression is
the notion of a globally convexr landscape, a term that has first been introduced by Hu and
co-workers (Hu et al., 1989) in an attempt to generalize the notion of convexity from functional
analysis. Correlation analysis between cost (or fitness) and distance between solutions has also
been essential in the study of Kauffman’s NK model as mentioned earlier. Kauffman himself
provided the first cost-distance plots in (Kauffman, 1993). The fitness function of the general
NK model is defined as:

n

Faic(s) =D fi(si, N (s0)) - (2.7)

i=1

The function fyk assigns real values to binary strings s of fixed length n > 0 and s =
(81,...,8n) € {0,1}™. The total fitness fyk is the sum of n local fitness functions f;. Each
local fitness function depends on the main variable s; and its neighborhood A (s;), that spec-
ifies k positions in the string. For a given neighborhood structure, the local fitness function
fi is determined by a fitness lookup table that specifies the function value f; for each of the
2F+1 possible assignments to the variables s; and A(s;). The main parameters of the NK
model are n and k. They define the size of the search space and the number of neighbors.
The beauty of the NK models lies in the fact that, for a fixed n, the parameter k£ can be used
to tune the landscape from a simple additive function (k = 0) to a purely random landscape
(k= N —1). The parameter k reflects the interaction strength (epistasis) between different
sites. Weinberger proved that finding the global minimum of fyk is NP complete for £ > 2
(Weinberger, 1996). Nonetheless, Kauffman showed that for a specific instance of the NK
model with n = 96, there is still considerable correlation between the fitness of local optima
and their mutual Hamming distance for £ = 2. Using this information, an adaptive local
search heuristic might still be able to find the global minimum efficiently. The correlation
structure is, however, lost for k = 4 (Kauffman, 1993), limiting the success of local search
procedures on this instance. A more recent study on the interplay between search operators
and NK landscapes can be found in (Merz, 2005).

Correlation between fitness and distance as a general measure of problem difficulty has been
popularized in (Jones and Forrest, 1995). They called this measure Fitness-distance correla-
tion (FDC) and successfully showed that it can explain the performance of genetic algorithms
on a set of combinatorial benchmark problems. Ever since, FDC analysis has been applied to
many landscapes arising from combinations of search heuristics and NP-complete problems,
such as the Graph Bi-Partitioning problem (Merz and Freisleben, 1998) or the unconstrained
binary Quadratic Assignment problem (Merz, 2004). An interesting approach relating land-
scape topology and design of search algorithms has been proposed by Ikeda and Kobayashi for
the Job-shop Scheduling Problem (JSP) (Tkeda and Kobayashi, 2000). The job-shop schedul-
ing problem consists of optimally assigning jobs to resources at particular times. The most
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Figure 2.10: Relation between the disagreement rate of job order (distance) to the optimum (y-axis)
and the makespan (fitness) for FT10 (from (Ikeda and Kobayashi, 2000)).

basic version is as follows: Given n jobs ji,ja,...,J, of varying sizes. All jobs need to be
scheduled on m identical machines, such as to minimize the total length of the schedule, or the
make span. There are many problem variations, including constraints on the order of the jobs
or online vs. offline scenarios. ITkeda and Kobayashi realized that the “big valley structure”
hypothesis does not apply to many test problems of JSP, including the problems in the well-
known Fisher-Thompson (FT) library (Fisher and Thompson, 1963). An FDC plot of instance
FT10 is shown in Fig. 2.10. It indicates that the landscape has multiple near-optimal solutions
that are widely separated in solution space. At the same time, empirical evidence from several
studies suggested that local search heuristics including genetic algorithms, notoriously fail on
these instances. In order to qualitatively explain both the observed problem topology and
the reduced algorithm performance Ikeda and Kobayashi extended the “big valley structure”
hypothesis to a double-funnel topology, called the UV-structure. UV landscapes consist of a
U-shaped valley which is broad and shallow and a V-valley which is narrow and deep that
contains the global minimum. Local search methods or population-based heuristics are likely
to explore the U-shaped valley, hence failing to find the minimum in the V — shaped. In
order to remedy this behavior of standard heuristics on multi-funnel topologies, Tkeda and
Kobayashi proposed the Innately Split Model (ISM). The ISM starts local searches in several
groups that are initially spread across the landscape domain. When searches come close
to each other, one of them is removed and randomly restarted somewhere else. This simple
strategy increases the probability of exploring the V-shaped valley, while avoiding unnecessary
searches in the U-shaped valley. Applying this model to JSP instances drastically increased
the search performance (Ikeda and Kobayashi, 2000).

The combinatorial landscape studies presented so far have all been empirical in nature. The
analysis of possibly representative problem instances led to the development of novel heuris-
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tics that showed improved performance on a wider class of problem instances. A different,
more rigorous approach are autocorrelation analyses of landscapes by Edward D. Weinberger
(Weinberger, 1990). Weinberger’s fundamental contribution was to make the notion of land-
scape ruggedness precise. His method is based on generating random walks on the landscape
and estimating the autocorrelation function between fitness and walk length. A formal def-
inition of this autocorrelation can be found in Eq. (3.10). Weinberger provided both a first
mathematical treatise of the topic and numerical simulations on NK fitness landscapes. Al-
though mostly focused on biological fitness landscapes, he also commented on the hardness
of general optimization problems. For NK landscapes, his autocorrelation framework also
confirmed the sharp increase in problem difficulty from k& = 2 and k = 4, as previously
discussed. In a series of papers throughout the past two decades Peter F. Stadler and co-
workers extended the idea of autocorrelation analysis, culminating in a general algebraic
or spectral theory of landscapes (see e.g. (Schuster and Stadler, 1994; Stadler, 1995, 1996;
Reidys and Stadler, 2002)). Stadler investigated both classical combinatorial optimization
landscapes and biological fitness landscapes, mostly related to RNA evolution. Within his
theory, he analytically derived autocorrelation functions for many NP-complete problems. He
found that specific combinations of NP problems and neighborhood definitions for a random
walk lead to so-called elementary landscapes with exponential autocorrelation function. A
comprehensive list of known autocorrelation coefficients, a derived quantity of the autocorre-
lation function, for combinatorial landscapes can be found in (Angel and Zissimopoulos, 2000).

Spectral landscape theory is to date the most rigorous approach toward a better understanding
of combinatorial optimization landscapes. An analog for continuous black-box landscapes (see
Def. 2.2) does not exist, and will probably never exist. This is due to the generality of
the landscape definition and the lack of underlying assumptions. Nonetheless, inspiration
can be drawn from the wealth of works presented in the areas of science and combinatorial
optimization, and some techniques may be transferred to the field of continuous black-box
optimization.

2.3.1 Continuous black-box landscapes and their impact on optimization

Continuous black-box optimization problems are ubiquitous in science and engineering. They
occur in many practical applications ranging from simple parameter identification in data
model fitting to intrinsic design-parameter optimization in complex technical systems. The
diversity of these real-world problems hampers a clean classification of problem structure
and complexity. We advocate that the landscape perspective offers a way to establish a
more refined analysis of continuous black-box optimization problems. It is conceivable that
“archetypal” landscape topologies are also present in many instances of black-box problems.
We summarize the key topologies we encountered so far in Fig. 2.11. The simplest topology
is a convex (and hence single-funnel) structure (Fig. 2.11a). This landscape has only one
minimum, which is the global one. If one knows in advance that both the landscape domain
and the objective function are convex, there is a wealth of exact and efficient techniques
for finding the global minimum. We refer to the excellent book of Boyd and Vandenberghe
for an overview (Boyd and Vandenberghe, 2004). A globally convex single-funnel landscape
topology (Fig. 2.11b) cousists of a number of local minima that can be seen as high-frequency

29



2 Landscapes

a d
f(x) f(x)
b 4 X > e A X >
f(x) ()
o x ¢ x
N
f(x) f(x)

Figure 2.11: Sketches of archetypal landscape topologies. a. Convex single-funnel landscape. b.
Globally convex single-funnel landscape. c. Double-funnel landscape with a broad sub-
optimal funnel. d. Multi-modal landscape with minimum at the boundary and no funnel
structure. e. Same as d but with a deep, needle-like minimum. f. Golf-course or needle-
in-the-haystack topology with large regions of neutrality.

perturbations to an underlying convex structure (the big valley structure). Hu and co-workers
(Hu et al., 1989) attempted to make this notion precise by establishing the “d-convexity”
property of a function on convex domains. The idea of J-convexity is to allow non-convex
variations of the function on a length scale d that is small compared to the size of the domain.
For all pairs of points separated by more than §, convexity must hold in the usual sense. For
our purposes, however, this definition is not practical, as we comment on in the next section.
Another archetypal landscape structure is the double-funnel topology (Fig. 2.11c) that we
have seen in the case of Clark’s folding/aggregation energy landscape and the UV-structure
of the JSP instances. Whenever the funnel that contains the global minimum covers a much
smaller domain than the other funnels, it poses considerable challenges for the success of local
search heuristics, since most searches are drawn toward the bottom of the sub-optimal fun-
nel. In the black-box optimization community such a landscape is also called deceiving. The
double-funnel case is the simplest instance of the class of multi-funnel landscapes. Fig. 2.11d
and e show multi-modal landscapes with no global funnel structure. The notoriously hard
golf-course landscape or needle-in-the-haystack topology is depicted in Fig. 2.11f, where large
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2.3 Landscapes in optimization

flat regions surround a single narrow minimum.

Despite the tremendous number of novel black-box optimization heuristics published in the
past two decades, limited attention has been paid to the question what global topology a
certain problem instance has, how to measure it, and how success or failure of a certain
algorithm can be related to landscape topology. Few notable exceptions exist. Hansen and
Kern (Hansen and Kern, 2004) pointed out that for CMA-ES “a strong asymmetry of the
underlying function jeopardizes a successful detection and can lead to a failure.” However,
“if the local optima can be interpreted as perturbations of an underlying unimodal func-
tion”, CMA-ES performs well. Lunacek and co-workers investigated in their paper “The
impact of global structure on search” (Lunacek et al., 2008) the performance of heuristics on
double-funnel landscapes. Kobayashi and co-workers explicitly took into account landscape
topology for both algorithm design and interpretation of performance (see for instance (Ikeda
and Kobayashi, 2000; Sakuma and Kobayashi, 2001)). Wang and Li (Wang and Li, 2008)
generalized the NK model from the discrete to the continuous domain using the concept of
linkage function that defines the interaction (epistasis) between variables. They introduced a
number of continuous NK models with tunable epistasis strength and tested the capabilities
of several search heuristics on these landscapes. They were also the first to apply the FDC
measure for continuous fitness landscapes.

Given the lack of a common framework for continuous landscape analysis, we dedicate Chap-
ter 3 to this topic. We try to extend the present approaches within a statistical sampling
framework. Prior to this analysis we introduce traditional black-box test functions and a
benchmark suite that serve as test beds throughout this thesis.

2.3.2 Classical black-box optimization problem landscapes

Besides countless real-world applications of black-box heuristics, the design of novel algorithms
has traditionally been accompanied by numerical simulations on sets of benchmark functions.
Over the past 50 years, a surprisingly limited number of benchmark problems has formed the
common basis for algorithmic performance evaluation. These function are often named after
the author who defined or used them for the first time. In bio-inspired continuos optimiza-
tion, prominent examples are the Rastrigin, Rosenbrock, Ackley and Griewank function along
with the test sets provided by Kenneth de De Jong (De Jong, 1975) and Hans-Paul Schwefel
(Schwefel, 1993). Many of these functions have specific features that allow drawing conclusions
about the search and convergence behavior of the tested search strategies. In the following we
introduce the benchmark problems used in this thesis.

Sphere function

The sphere function is the prototypical quadratic function that is fundamental both for theo-
retical and empirical convergence studies of black-box algorithms. This separable function is
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defined as:

n

fSphere(x) = Z (E? . (28)

i=1

The global minimum is at the origin 0 with fsphere(0) = 0. For practical purposes, search is
often restricted to x € [—5,5]". For the sphere function, an impressive body of theoretical
work exists with progress rates and convergence proofs of Evolution Strategies. We refer to
the excellent book of Hans-Georg Beyer for an overview (Beyer, 2001).

Rosenbrock function

Another standard test function is the generalized Rosenbrock (valley) or banana function,
Fig. 2.12, right):
n—1
frosen(x) = Y (100(zi41 — 27)° + (2 — 1)%) . (2.9)

i=1

The global minimum is at 1 with fresen(1) = 0. Search is usually constrained to x € [—2, 2]".
Rosenbrock’s function is multi-modal for n > 3, and it exhibits the interesting topology of a
curved valley. On a global length scale (||z;]| > 1), the first summand dominates and attracts
most search heuristics toward the origin. On smaller length scales (||z;|| < 1), however, the
second term dominates and forms a bent parabolic valley that leads from the origin to the
global minimum at 1. On this function it is therefore favorable to constantly reorient the
search direction along the valley.

Rastrigin function

The Rastrigin function (Fig. 2.12 left) can be considered as the prototypical multi-modal
function with an underlying globally convex (or even more, quadratic) topology. It is defined
as:

fRast(X) = An + z": (mf — Acoswaz;) . (2.10)

i=1

Standard settings for amplitude and frequency are A = 10 and w = 2w. The global minimum
is at 0 with frast(0) = 0, and the domain is restricted to x € [—5,5]". Far away from the
minimum the quadratic term dominates and the basin depths decrease. Close to the minimum
the cosine term renders the landscape highly rugged with basins of depth ~ A. Within the
prescribed domain the Rastrigin function contains 11™ basins. The interior basins all have unit
volume, the basins at the boundary have a location-dependent volume. For instance, at an
n-dimensional corner the basin size is 0.25". Because the amplitude A is considerably smaller
than the total scale of function values, and each minimum has several neighboring minima
(under Euclidean distance) that are lower in fitness, we consider the Rastrigin function a
single-funnel landscape.
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Figure 2.12: Rastrigin (left) and Rosenbrock (right) function in 2D

Lunacek’s double-funnel functions

Lunacek and co-workers (Lunacek et al., 2008) introduced two functions that have a parametriz-
able double-funnel topology. The first function is the Double Sphere fps:

n

fps(x) = min (Z (zi —p1)?,dn+ SZ (x; — ,u2)2> (2.11)

i=1

with py = 2.5 and pg = —2.5. The domain is restricted to x € [—5,5]™. The landscape can be
tuned with the parameters s and d, where s controls the size and d the depth of the second
funnel. Lunacek and co-workers further proposed to consider s the primary control variable
for tests and to ensure that the two funnels always intersect at the origin. For any fixed d, this

can be achieved by choosing o = —+/(u? — d) /s. The second function is constructed from

d:
' d:
d:
d:

oo
ENIAR N

Figure 2.13: The influence of d and s on the double-sphere function. Increasing d creates more dif-
ference between the basin depths (left). When s = 0 (middle), the two basins have the

same size. Decreasing s creates a larger sub-optimal basin (right) (from (Lunacek et al.,
2008)).
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fps(z) and a Rastrigin function as:

n

for(x) = fps(z) + 102 (1 —cos2m (x; — p1)) - (2.12)

=1

This Double-Rastrigin function fpr(z) is a prototypical rugged double-funnel landscape with
similar basin size distribution as the original Rastrigin function.

Kjellstrém’s function

This multi-modal function has been proposed by (Kjellstrom and Taxen, 1992). We hence
propose to call this function Kjellstrom’s function fijen. It is defined as:

n

5
frien(x) = [J(1 + h(x:)), () = 0.01 Z[cos(jxi +b)], (2.13)

i=1

with b = [by,...,b5] = [1.982,5.720,1.621,0.823,3.222] and x € [0,27]". In the original
publication the location of the global minimum x,,;, is said to be roughly at x; ni, = 2.34,7 =
1,...,n. We numerically determined the more accurate value of x;nin = 2.34861543,i =
1,...,n with the minimum value fgjen(Xmin) =~ 0.96916908™. Figure 2.14 depicts the one-
dimensional Kjellstrom function. In 1D, fkjen has 5 minima. The global maximum Xmax
(located at a value slightly larger than x = 7) divides the search space into two parts: The
region X < Xmax covers a bit more than half of the space (solid green bar in Fig. 2.14).
This region contains, on average, lower function values than the other region, which simplifies
searching for the global minimum zy,;,. The basin sizes vary from ~ 0.5 to ~ 1.5. The n-
dimensional fkjen is the Cartesian product of n 1D functions. Kjellstrom’s function is, hence,
a separable multi-modal function with 5™ basins and no funneled topology.

Black-box optimization benchmark suites

A common shortcoming of many empirical optimization studies using classical benchmark
functions is the lack of a standard protocol of how to perform the numerical simulations.
Each publication usually considers its own subset of test functions, number of allowed func-
tion evaluations, number of repetitions of the experiments, dimensionality of the problems,
and performance measures. This makes it impossible to compare results across publications.
One of the earliest attempts to standardize these benchmarks was a contest on numerical
optimization at the International Conference of Evolutionary Computation in 1996 (Bersini
et al., 1996). Whitley and co-workers (Whitley et al., 1995) developed guidelines for the
design of meaningful test suites and showed that standard test functions do not follow these
guidelines. Three key requirements were proposed: Test suites should contain (i) landscapes
that are resistant to “hill-climbing” methods, (ii) non-linear, non-separable landscapes, and
(iii) non-separable and scalable landscapes. Hill-climbing methods are iterative local search
methods that choose strictly improving steps in order to reach the next optimum. Highly
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Figure 2.14: The multi-modal function fxjen in 1D. The global minimum X, is contained in a locally
convex region (blue dashed bar) that belongs to a sub-region of the space (solid green
bar) that is slightly larger than 7. The global maximum Xmax separates this region from
the right part of the space. The red dotted bar spans the full search space of length 27

multi-modal landscapes are resistant to such methods because a hill climber possibly needs to
explore all modes for successfully finding the global minimum. From our previous examples
we see that the property of simultaneous non-linearity and non-separability is not satisfied
by the Sphere, the Rastrigin and the Kjellstrom functions. There is no non-linear interac-
tion between the variables. Hence, global optimization can be reduced to n one-dimensional
search problems. Non-separability can easily be achieved by rotating the landscape domain.
The property of scalability is concerned with the computational cost of evaluating the func-
tion for increasing dimensionality. Consider the problem fi(z1,22) where both variables
interact with each other. An m-dimensional generalization with a linear scaling behavior
can be constructed through expanded functions where only pairs of variables interact, e.g.,
folz1, .. 2n) = fi(z1,22) + ... + fi(xn—1,2z,). The Rosenbrock function is an example of a
scalable function.

It was, however, not before the 2005 IEEE Congress on Evolutionary Computation that a
comprehensive and well balanced suite of test functions was agreed on. This IEEE CEC 2005
benchmarks considered many of the above criteria (Suganthan et al., 2005). The test suite
has been designed by experts for the IEEE CEC 2005 Special Session on Real-Parameter
Optimization. It is intended to define a standard benchmark for real-parameter optimization
algorithms, along with standardized evaluation criteria and testing procedures, thus allowing
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Figure 2.15: 2D landscapes of CEC functions fi—fs

performance comparisons of different optimization algorithms across publications. The suite
consists of 25 functions with different properties. The names of the functions are listed in
Table 2.1. Functions f1 to f5 are unimodal, {6 to f12 are basic multi-modal. Functions 13 is a
expanded function consisting of two different functions. Function f14 is an expanded function
consisting of two-dimensional Scaffer’s F6 functions with different parameterizations. Func-
tions f15 to 25 are composite test functions that are formed by superposition of more than
two standard test functions. From a landscape perspective we consider {1113 and {1525
multi-funnel instances (see Fig. 2.15 to Fig. 2.17 for 2D versions of all CEC landscapes). In
order to prevent exploitation of search space symmetry, all problems are shifted and many of
them are rotated. This means that the global minimum is never located in the center of the
search domain. Moreover, the global minimum of each function is different from the common
zero value. Rotation of the search space makes almost all problems non-separable. Functions
f4 and f17 are corrupted by addition of a noise term that vanishes at the global minimum.
All problems are box-constrained, except functions 7 and 25, which are unconstrained. An
advantageous feature of the IEEE CEC 2005 test suite is the existence of comparison groups
of similar functions, allowing sensitivity tests of search algorithms with respect to chang-
ing features of the problem. The functions f1-{3 are all quadratic functions with different
condition numbers of the Hessian H (Xpmin). The function 4 is the same as {2 with an ad-
ditional noise term. Function f10 is a rotated version of f9 that is essentially the Rastrigin
function with shifted global minimum. We refer to the 50-page technical report of the test
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Figure 2.16: 2D landscapes of CEC functions fr—f14 and fos

suite (Suganthan et al., 2005) for a full list of comparison groups and exact function definitions.

An important issue of the suite is the experimental protocol. All 25 functions are supposed
to be evaluated 25 times for n = 10,30,50 dimensions. The allowed budget of function
evaluations (FES) is restricted to MAX_FES= 10*n for each run. This reflects the limited
resources often encountered in real-world applications, where an acceptable solution should
be found within a restricted number of black-box evaluations. The benchmark settings are
summarized in Table 2.2. Furthermore, the benchmark suite specifies the level of accuracy e
for the optimal solutions. An algorithm is considered to have solved a certain problem if it
reaches an objective value f(x) < f(Xmin) + € (see Table 2.3). Since 2005, a large number
of algorithms has been tested on this benchmark suite. It was thus the natural choice for
our work, which started in 2007. We note, however, that recently a more flexible test bed
has been introduced: the COCO (Comparing Continuous Optimisers) platform for Black-
Box Optimisation Benchmarking (BBOB), presented at two GECCO workshops in 2009 and
2010. In COCO/BBOB, both noise-free and noisy test functions are provided, including Lu-
nacek’s Double-Rastrigin landscape and a function created by Gallagher’s landscape generator
(Gallagher and Yuan, 2006). The COCO platform moreover includes scripts for automatic
post-processing and presentation of the results in a unified manner. More details can be found
at http://coco.gforge.inria.fr/doku.php. Testing our techniques and algorithms within
the COCO platform will be a topic of future research.
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Figure 2.17: 2D landscapes of CEC functions fi5—fa3

All available standardized continuous black-box benchmark test cases are based on synthetic
test functions. A benchmark test suite that includes real-world problems from science and
engineering is thus far not available. It is, however, conceivable that algorithms that perform
well on synthetic problems may show reduced performance in real-world applications. Recent
investigations on space mission design problems support this hypothesis (Vasile, 2010). In
Chapter 6 we therefore propose the energy landscapes of certain atomic cluster instances as
real-world optimization benchmarks. Following the design principles of the IEEE CEC 2005
benchmark suite, we introduce a diverse set of problems along with a standardized experimen-
tal protocol. We argue that these benchmarks should be included in future benchmark studies
in order to test the effectiveness and generality of continuous black-box optimizers.
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Function Name
fi Shifted Sphere Function
f2 Shifted Schwefel’s Problem 1.2
f3 Shifted Rotated High Conditioned Elliptic Function
fa Shifted Schwefel’s Problem 1.2 with Noise in Fitness
fs Schwefel’s Problem 2.6 with Global Optimum on Bounds
fe Shifted Rosenbrock Function
I Shifted Rotated Griewank Function without Bounds
fs Shifted Rotated Ackley Function with Global Optimum on Bounds
fo Shifted Rastrigin Function
fio Shifted Rotated Rastrigin Function
fi1 Shifted Rotated Weierstrass Function
f12 Schwefel’s Problem 2.13
fi3 Expanded Extended Griewank plus Rosenbrock Function (F8F2)
f1a Shifted Rotated Expanded Scaffer’s F6
fis Hybrid Composition Function 1
fie Rotated Hybrid Composition Function 1
fi7 Rotated Hybrid Composition Function 1 with Noise in Fitness
fis Rotated Hybrid Composition Function 2
f19 Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum
f20 Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds
fa1 Rotated Hybrid Composition Function 3
fa2 Rotated Hybrid Composition Function 3 with High Condition Number Matrix
fas Non-Continuous Rotated Hybrid Composition Function 3
f2a Rotated Hybrid Composition Function 4
fas Rotated Hybrid Composition Function 4 without Bounds

Table 2.1: Names of the test functions according to the CEC 2005 test suite (Suganthan et al., 2005).

Table 2.2: Benchmark settings according to the CEC 2005 test suite (Suganthan et al., 2005).

Problems fi— fs

Runs per problem | 25

Dimensionality n | 10, 30, 50

MAX_FES 10%-n

Termination If FES = MAX_FES or
ferr($> < 10-%

Initialization Uniform random position
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Function fi(Xmin) + € Function fi(Xmin) + €
fi —450 + 1le—6 f1a —300 + le—2
f2 —450 + 1le—6 fis 120 4+ le—2
I3 —450 + 1le—6 f1e 120 4+ le—2
fa —450 + 1le—6 fi7 120 + le—1
fs —310 + 1le—6 f1s 10 + le—1
fe 390 + 1le—2 fi9 10 + 1le—1
fr —180 + le—2 f20 10 + le—1
fs —140 + 1le—2 fa1 360 + le—1
fo —330 + le—2 fa2 360 + le—1
f1o —330 4 le—2 fas 360 + le—1
f11 90 + le—2 foa 260 + le—1
f12 —460 + le—2 fas 260 + le—1
fis —130 + le—2

Table 2.3: Fixed accuracy levels according to the CEC 2005 test suite (Suganthan et al., 2005).
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"Mmmm, ... free samples”
Homer Simpson, in: The Simpsons, Lisa gets an “A”, Episode no. 210, 1998

We propose to characterize continuous black-box landscapes within a statistical sampling
framework. The presented methods only require evaluations of the black-box function. De-
pending on the specific sampling strategy, we provide statistical estimators that address the
following aspects of landscapes: global landscape topology, separability or variable epistasis,
and landscape ruggedness. We focus on estimators that are easy to implement, easy to inter-
pret, and computationally efficient. We consider black-box landscapes L defined by a triple
(X,dg, f) where X is box-constrained with X = [l,u] C R™. The vectors l,u € R™ define
the lower and upper bounds. For unconstrained problems the techniques can be applied to
any box-shaped region of interest of the landscape. Distances between points in the landscape
domain are measured using the Euclidean distance dg. In order to test the discriminative
power of the different techniques, they are applied to the full set of CEC 2005 benchmark
functions. It is obvious that the accuracy of any of the presented methods will be limited by
sample size. If the landscape exhibits fine structures below the sampling limit, they cannot
be detected. Some of the presented methods have been introduced as “predictive measures of
problem difficulty” in combinatorial optimization. We do not follow this notion here. In fact,
it has been proven that, for certain problem classes, computing a general predictive measure
is as hard as solving the problem itself (He et al., 2007). We rather envision the introduced
statistical fingerprints as useful features based on which landscapes can be classified within a
statistical learning framework.
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3.1 Characterization of global topology

We present two techniques to characterize the global topology of a landscape: (i) Fitness-
Distance Correlation (FDC) and (ii) Dispersion moments. Both techniques rely on a set of
samples that is drawn uniformly at random from [1, u].

3.1.1 Fitness-distance correlation

Fitness-distance correlation has been introduced by Boese (Boese et al., 1994) for the anal-
ysis of TSP and by Jones and Forrest (Jones and Forrest, 1995) as a “measure of problem
difficulty” for the performance of genetic algorithms on combinatorial optimization problems.
For continuous black-box problems, Wang and Li proposed this measure independently of
us (Wang and Li, 2008). Given a uniform random sample xU) e X,j =1,...,8 from the
landscape, we evaluate the objective function at the sampled points and denote the values by
f(j) eR,j7=1,...,5. In the original definition of FDC the location of the global minimum
Xmin 1S assumed to be known a priori. While in a benchmark scenario this information is
available, X,y is approximated by Xpi, = argmin, ) f(x(j)),j =1,...,5 in the general case.
Using the distances d\¥) = dE (Xmin, x(j)) (or d9) = dE (Xmin, x(j))7 respectively), we define the
fitness-distance correlation coefficient rgp:

C
TFD = F'D 5 (31)
SFSD

with

f(J d(]) d), (3.2)

Mm

CFD =

and f, d, sp and sp the means and standard deviations of the fitness and distance samples,
respectively. Although this measure is simple, it has been elucidative in a number of applica-
tions. The coefficient rrp is expected to be near 1 for globally convex, single-funnel topologies
and around 0 for needle-in-the-haystack problems and problems without any global structure.
A negative value of rpp indicates a “deceiving” landscape, i.e., a landscape on which a sam-
pler or optimizer perceives larger objective function values closer to the minimum than farther
away.

3.1.2 Function dispersion

Function dispersion has been introduced by Lunacek and Whitley (Lunacek and Whitley,
2006) in order to explain the search performance of CMA-ES. The dispersion of a black-
box landscape is quantified by uniformly random samples x) € X,j = 1,...,S from the
landscape and a target percentage p. The dispersion dis™(sp, S, f) of f is calculated as the
mean pairwise Fuclidean distance between the best s, = p.S samples. A given p implicitly
corresponds to a certain fitness threshold. The quantity of interest is the change in dispersion
with decreasing p. In order to limit the number of distance computations, Lunacek and
Whitely propose to fix the value s, to 100 and decrease p (and hence the fitness thresh-
old) by increasing the sample size S until the FES budget is exhausted. The samples sizes
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S =100-2%...,100 - 2'2 have been used for landscapes in up to n = 100 dimensions in (Lu-
nacek and Whitley, 2006). This corresponds to p = 100%, . .., 0.0024%. The mean dispersion
difference A% (f) = dis™ (100,100 - 2'2, f) — dis™ (100,100 - 2°, f) is used as an indicator to
classify and compare functions. A negative value of A%} (f) implies that the best fitness values
of f are localized in a small sub-region of the search space, a A} (f) value around 0 indicates
that the best fitness values of f are either spread over the entire search space or localized in
distinct, remote funnels.

In order to be able to compare the dispersion values of objective functions with differently
constrained search spaces, all sample points x/) are mapped from [l,u] to the [0,1]" hy-
percube and distances are evaluated in the hypercube. For p = 100% the estimator dis™
reduces to the hypercube line picking problem, i.e., to finding the average distance between
two randomly chosen points in the cube. Closed-form solutions for this problem only exist for
n < 5 (Weisstein, 2009).

The quantity dis™(sp, S, f) represents only the first moment of the distance distribution that
can be monitored for a given p. We also analyzed the values of higher dispersion moments
of the distributions such as variance, skewness, and kurtosis. We denote the variance of the
distance distribution by dis¥ (s, S, f) for a given p. This quantity is used to define the variance
dispersion difference AY, (f) analogously to the mean dispersion difference. In Section 3.4 we
will present results both for AL (f) and AY, (f).

3.2 Separability and variable importance

Detecting importance of variables and interactions among variables in complex models is a
ubiquitous task in model building and analysis, commonly referred to as Sensitivity Analysis
(Saltelli et al., 2000). In some cases, only a small subset of the variables or parameters of
a model have significant effects on the system behavior. Likewise, some variables may be
varied independently without affecting the influence of the others. An effective method to
“screen” variable importance and interactions has been proposed by Morris (Morris, 1991).
His method relies on a specific factorial design where only one parameter at a time (OAT) is
changed. Consider the hypercube [0, 1]" as landscape domain covered by a regular, equidistant
grid. Let 1/(g—1) be the smallest spacing between two parallel lines of the grid. The “level” of
the grid is called g and is assumed to be even. Let x = [z1,...,a;,...,%,] be a n-dimensional
vector positioned at a grid point. We define the elementary effect on the it variable as

fx+ Aei) — f(i)

Ei: )
A

(3.3)

where e; is the canonical unit vector in the it direction. In Morris’ standard method the step
size A is chosen A = ¢/(2(g — 1)) with g > 3, hence defining a global SA method. Morris’
goal was to calculate as many elementary effects as possible with the least number of model
evaluations. He realized that it is possible to calculate n elementary effects from n+ 1 samples
by creating a “trajectory” of length n + 1 in the following way: One starts at a random grid
point x(9 chooses a random canonical direction e;, and moves with step size £A along the

43



3 Characterization of Black-box Landscapes

Lx@) A e
1 ®
A Ix®
0
X o A
< <D
O e d
0 A 1

Figure 3.1: Two example trajectories of the Morris’ method in 2D with g = 4.

direction. Two constraints have to be fulfilled: (i) Each canonical direction is only chosen
once and (ii) if an attempted step leads to a point outside the domain, the reverse direction is
chosen. If the new point x(!) satisfies the constraints, it is used as the starting point for the
next step. A 2D illustration of this process is given in Fig. 3.1. From a complete trajectory
(x© .. x0) .. x(™) one elementary effect can be calculated for each variable:

f(x(j)) — f(x(j—l))
A b

E; = (3.4)

assuming the i*" direction has been chosen in step j. Campolongo (Campolongo et al., 2004)
has shown that defining the elementary effect as the absolute value of the function difference
is more informative than the original definition, hence

7Y — f(xi—1

B % (3.5)
This is the definition we consider here. In order to avoid aliasing effects between the grid spac-
ing and the frequencies present in the objective function, we further abandon the restriction of
the starting point being located at a grid point. We rather choose a starting point uniformly at
random in the landscape domain. A is chosen to be the limit limg_,~ g/(2(¢9—1)) = 1/2. This
implies that the samples from all trajectories represent an unbiased, yet correlated uniform
sample from the domain. This is an appealing property as both FDC and function dispersion
can be calculated from these samples as well. The allowed FES budget dictates the number of
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trajectories T' that can be calculated. For each variable we calculate means p; and standard
deviations o; of the resulting 7' elementary effects E; " according to:

1z
_ *,t
= TZEi , (3.6)
t=1
, Z
op = ﬁZ(E:’t—Ni)2' (3.7)
t=1

The p; are used to identify the relative importances of the different variables. A larger pu;
indicates that a change in the i*? variable anywhere in the landscape domain has, on average,
a larger effect on the objective function variation. The o; can be used to identify variable
interactions. A large o; implies that the effect of varying the i*" variable heavily depends
on the position in space, thus suggesting an interaction between different parameters. The
quantity o; can only be used to assess whether a variable interacts with any other variable.
More refined information about which groups of variables are interacting cannot be obtained
from o;. For general landscape analysis, it is convenient to define condensed quantities that
are independent of the dimension and of the absolute scale of the fitness function. We therefore
suggest using the normalized total importance variation ¢,, and the normalized total interaction
variation ¢, as useful landscape descriptors. The quanitiy ¢,, is defined as:

t, = ni1§:(w>2 (3.8)

i1 273

with fi; being the average importance u;. We define ¢, as:

1 n o — & 2
to-: e B 39

i=1

with 0; being the average interaction o;. A small value of ¢, indicates that all variables are
about equally important. For optimization this suggests that globally there is no preferred
search direction. A small value of ¢, suggests that the problem is separable. Thus, for
identifying optimal fitness values, n one-dimensional optimization runs might be a successful
strategy on such landscapes.

3.3 Landscape ruggedness

In order to assess the ruggedness of a real-valued black-box landscape, we follow Weinberger’s
strategy of the Random Walk autocorrelation function (Weinberger, 1990), which has been
introduced in the context of combinatorial landscapes. The general idea is to quantify the
fitness correlation between “neighboring” positions in the landscape. Consider the continuous
unit hypercube as landscape domain X. We suggest to explore the continuous landscape
domain by a random walk with fixed step length. We start the random walk at some point
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x(® € X and evaluate the fitness f(© = f(x%). The next direction is chosen uniformly at
random from the unit hypersphere, and a step of fixed length s is performed in this direction.
The new sample point x(V) € X, f(1) = f(x!) is then added to the random walk trajectory.
If x™) falls outside the landscape domain, a new random directions is chosen until x() e
X. The random walk is continued until the FES budget S is exhausted. Based on the
continuous random walk trajectory (X(O), x@ 7x(s_l)) and the corresponding fitness
values (f(o), o f9 0 87D the autocorrelation function can be computed as

B[ @)/ (@U+9)] = B[f@]E[f (@0+9)
Var(fz)) |

prw (k) = (3.10)

for any lag k < S — 1. E[] and Var[-] are estimators for the sample mean and the sample
variance, respectively. The correlation length 7 = —m is used as a condensed statisti-
cal fingerprint of the landscape. A large 7 implies long-distance correlations between fitness
values, thus suggesting a smooth landscape. Conversely, a low value indicates a highly rugged

landscape where little correlation is present between neighboring samples.

A crucial choice in the present method is the step length s. This length defines the neigh-
borhood N (x(j)) of the samples. In combinatorial optimization, the standard choice is a
Hamming distance of 1. In continuous spaces, it is not clear how to choose s. Fortunately,
we can use a result from computational geometry for setting s. A fundamental problem in
computational geometry is the estimation of the volume of a high-dimensional convex body
K that is given by a membership oracle. This oracle (or black box) returns “yes” for a
given sample x\7) iff xU) € K and “no” otherwise. In order to estimate the volume of K,
randomized algorithms are used to generate samples from K. An efficient way (albeit not the
most efficient way) to sample from K is given by the lazy ball walk. This walk is identical
to the random walk presented above except that the steps are not selected from the surface
of the sphere or radius s but from entire volume of the ball with radius s (Lovasz, 1999). In
order to sample the entire K as fast and efficiently as possible, the optimal ball radius s is
1

dimension-dependent and must satisfy s < Tn (Lovész, 1999). We thus suggest to use the
1

standard setting s = 5 NG for the fixed step size random walk.

Note that the points generated by this random walk represent an unbiased uniform sample
from the landscape domain that can also be used to derive dispersion and FDC information.
Also, this landscape estimator is not restricted to box-constrained problems. The random
walk method equally works for arbitrary convexr landscape domains.

3.4 Characterization of the CEC 2005 benchmark test suite

We test the presented statistical landscape descriptors on all functions of the CEC 2005 bench-
mark test suite except fr; and fo5. The latter problems are unconstrained and our statistical
characterization framework is hence not applicable unless some user-specific region of interest
is defined. However, note that apart from the missing constraints fo5 is identical to faq. We
choose the CEC 2005 benchmark because (i) the global topology, separability, and ruggedness
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properties of most functions are known a priori, and (ii) it allows researchers to relate algo-
rithmic performance to the calculated landscape descriptors. We thus consider n = 10, 30, 50
with the standard restriction on the FES budget (MAX_FES = 10%n) and 25 repetitions per
run.

Fitness-distance correlation. We first present scatter plots of the fitness and distance data
for all considered CEC functions in Fig. 3.2. We focus on the 10-dimensional case. The scatter
plots look similar also in higher dimensions (data not shown). Visual inspection of the plots
in Fig. 3.2 reveals a rich diversity of patterns. Function f; can be clearly identified as the
sphere function. Fitness-distance plots of fg, fo9, and fi9 show strong positive correlations.
For functions fg, fi11, and f14 the spherical scatter patterns suggest a complete absence of
correlation. Functions fo—f5, fi2, and f13 show a similar pattern, suggesting weak correlations

x10 4X10 x 10

s f1 2

2

5 1

Figure 3.2: Fitness f; versus distance to the global minimum dg(Xmin, X) for all CEC functions except
f7 and fas in n = 10 dimensions. The FES budget is limited to 10*n. The pooled samples
from all 25 repetitions are shown.
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between fitness and distance in all these cases. The scatter plots for f1s—f24 reveal that many
samples far away from the minimum have considerably lower objective function values than
samples close to the global minimum, characterizing these problems as “deceiving”. An unique
scatter plot pattern is observed for the triplet fi5—f17. For samples with low objective function
values, two distinct distance regimes are visible, which may suggest a double-funnel topology
of the landscape.

We summarize the calculated FDC coefficients rpp in Fig. 3.3. The data suggest a rough

n = 10 n =30 n = 50

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
CEC Func. f CEC Func. f CEC Func. f

Figure 3.3: Estimated FDC coefficients (mean and std) for all CEC functions except fr and fas in
n = 10, 30, 50 dimensions. The FES budget is limited to 10*n. The black dotted line and
the red dashed line represent the classification thresholds (see main text).

classification of the functions into three classes: (i) highly correlated rgp > 0.75, (ii) weakly
correlated 0.75 > rpp > 0.15, and (iii) uncorrelated or anti-correlated rpp < 0.15 across all
dimensions. Only functions fig, fi9, and fo4 change class in higher dimensions.

The functions f1, f¢ and f9 — f19 belong to the first class. This suggests a global single-funnel
topology. The shifted sphere function f; is expected to follow this classification. The shift-
ed/rotated Rosenbrock function fg, however, is multimodal. Nonetheless, the rpp suggests
that this multi-modality only appears at small length scales. The Rastrigin pair fo/f1¢ is also
expected to give large rpp values because of its globally spherical structure. Comparing the
two functions of this pair also reveals that the rotation in fi19 does not significantly change
the estimated rpp values.

In all dimensions, the set of weakly correlated functions comprises functions fo—f5, fi2—fi3,
and fi15—f17. While fo—f5 are unimodal functions, the others are highly multimodal with little
or no globally convex structure. rgp values cannot discriminate these functions. The similar
rep values for function pair fa/fs and fi/f17 indicate that the measure is robust against
noise. Among all hybrid functions (fi4—f25), the rpp suggest that the triplet fi5—f17 has the
highest degree of global correlation.

The class of un-/anti-correlated contains fs, fi1, fi4, and faoo—fa3 across all dimensions. For
these functions, a low fitness-distance correlation is expected. For instance, fg is a needle
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problem and f14’s global minimum is surrounded by regions of alternating high and low objec-
tive function values whose amplitude decreases with increasing distance (see Fig. 2.16). The
rpp values for the pair fig/f19 change from anti-correlation in n = 10 to weak correlation in
n = 30,50. This indicates that certain topological features that have been picked up by the
measure in n = 10 dimensions cannot be detected any more in higher dimensions.

Dispersion moments. We present the results for the mean dispersion difference AT (f) =
dis™(100,10*n, f) — dis™ (100,100, f) in Fig. 3.4 and for the variance dispersion difference
Vi (f) = dis¥ (100, 10%n, f) — dis¥ (100, 100, f) in Fig. 3.5.

n =10 n = 30 n = 50
0
-0.2
Afi
-0.4
-0.6
Ob 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
CEC Func. f CEC Func. f CEC Func. f

Figure 3.4: Estimated Ag(f) (mean and std) for all CEC functions except f7 and fa25 in n = 10, 30, 50
dimensions. The FES budget is limited to 10%n.
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Figure 3.5: Estimated Ag;;(f) (mean and std) for all CEC functions except f7 and fas in n = 10, 30, 50
dimensions. The FES budget is limited to 10*n.

The dispersion results mostly confirm the previous analysis using FDC. Across all dimensions,
the functions f1 fs, fo, f10, and f13 have a mean dispersion < —0.5, suggesting a global single-
funnel topology. Likewise, the functions fs, f11, and f14 being highly dispersive agree with their
observed low FDC. The smooth unimodal functions fo—f5 have a dispersion pattern similar to
the hybrid functions, suggesting that the mean dispersion difference alone cannot discriminate
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between these very different topologies. In combination with the variance dispersion difference
AY.(f), however, a notable difference for the triplet fi5—f17 is observed.These functions have
a double-funnel topology. It is, hence, expected that the set of all pairwise distances between
selected samples both contain very small and very large distances. The variance at the lowest
threshold should thus be higher than the initial variance. This signal is picked up by AY (f),
most prominently in n = 30 (see middle panel in Fig. 3.5.) Like FDC, the mean dispersion
difference is robust against noise and rotation of the landscape domain.

Morris’ method. The summary statistics of the two Morris’ based landscape descriptors ¢,
and t, are presented in Fig. 3.6. As expected, the resulting pattern is different from the
previous landscape descriptors. For all dimensions, fs has the largest value for ¢,, followed
by fiz and fz2. No difference is observed between the class of unimodal, multi-modal, and
hybrid functions. Noise lowers the estimated t,, considerably, as reflected by the comparisons
of the fo/fs and fi6/f17 values. The indicator for separability ¢, can detect the separable
functions f; and f9 in all dimensions (see Fig. 3.7 for the o; spectrum of fg). In addition,
low t, values are also observed for fi4 and f17. High ¢, values are observed for fg, fi13, and
foo. The function fas is a rotated version of fo;. The corresponding rotation matrix has a

n =10 n =30 n = 50
0.8
0.6
tu
0.4
0.2
00 5 1b 15 Zb 25
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Figure 3.6: Estimated mean ¢, and ¢, values for all CEC functions except f7r and f25 in n = 10, 30, 50
dimensions. The FES budget is limited to 10%n.

high condition number, thus increasing variable interactions. Schwefel’s double-sum function
f2 (see Fig. 2.15) also shows high ¢, values across all dimensions. Its spectrum of Morris’
interaction variables o; is depicted in Fig. 3.7 for n = 10. o; decreases with increasing index
1, relating to the properties of the quadratic form that defines fo (Suganthan et al., 2005).
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Figure 3.7: Variable interactions o; for all variables i of function f2 and fy9 in n = 10 dimensions. fs
shows decreasing interactions with increasing variable index. Function f9 is separable.

Random walk autocorrelation. Landscape ruggedness is probed using the objective function
autocorrelation of a random walk. The estimated correlation length 7 serves as an indicator
for the smoothness of the landscape. The smaller 7 the more rugged the landscape. The
computed autocorrelation coefficients prw(1) and the 7 values are summarized in Fig. 3.8
for n = 10. In higher dimensions the observed pattern is similar. The quadratic functions
f1—f3 have the largest measured correlation length. Noise reduces the correlation length (drop
for fy and fi7). The needle problem fg, the fractal Weierstrass function fi1, and f14 show
the smallest correlation lengths. For functions fig and fi6, the applied rotation increases the
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Figure 3.8: Correlation length 7 and autocorrelation coefficient prw (1) (means and standard devia-
tions) for all CEC functions in n = 10.

correlation length compared to fo and f15. At least in the single-funnel case