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Abstract

In many areas of science and engineering researchers consider systems that can be solely
examined by their input and output characteristics without any knowledge of their internal
workings. Such black-box systems are the topic of the present thesis. In many practical cases,
a black box comprises a complex mathematical model, a computer simulation, a real-world
experiment, or a combination of any of these. In this thesis we take an interdisciplinary
approach to the characterization, optimization, and sampling of black-box systems. We focus
on systems with high-dimensional real-valued input variables and output patterns that can be
transformed by some function into a scalar real-valued quantity. Throughout this thesis we
conceptualize the black-box system as a landscape. Inspired by our shared visual experience of
natural terrains and sceneries, we consider the real-valued input variables as a high-dimensional
landscape domain. Neighborhood or nearness in this landscape domain must be provided by
a suitable distance metric. We interpret the scalar output quantity as a height or elevation
over the landscape domain. The landscape metaphor encourages a characterization of black-
box systems in terms of topographical features, such as valleys, ridges, mountain peaks, and
plateaus. In order to underline that we view black-box systems as high-dimensional, complex
landscapes we introduce the notion of the black-box landscape. After a general review of the
landscape paradigm, spanning the disciplines of biology, physics, chemistry, and optimization,
we present a number of statistical landscape descriptors that probe different properties of
black-box landscapes. The core of the thesis is concerned with black-box optimization. We
improve the performance of the arguably best state-of-the-art optimizer, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), in various aspects. The general performance is
increased by considering quasi-random instead of pseudo-random sampling. For multi-funnel
landscape topologies we introduce parallel CMA-ES schemes that can outperform standard
CMA-ES. We also revisit Gaussian Adaptation, an optimization and sampling scheme that
has been largely ignored in the black-box optimization community. Our improved Gaussian
Adaptation scheme shows remarkable performance on the considered benchmarks and ranks
among the best known black-box optimizers. An important conceptual result is that we can
provide an explicit link between black-box optimization and black-box (or indirect) sampling
through Gaussian Adaptation. We show that the same idea of adaptation has emerged in these
disparate fields, and we argue that a unifying framework for sampling and optimization might
constitute an important contribution. We further consider geometric configurations in two
different contexts: Geometry optimization problems of atomic clusters are proposed as novel
benchmarks for black-box optimization. We design a balanced set of problems that should be
included in future black-box optimization benchmarks. We also revisit the configuration space
of chain molecules with respect to a certain distance measure, the Root Mean Square Deviation
(RMSD) after optimal superposition. Because RMSD is the most important distance metric
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in structural biology, we quantify the neighborhood structure that is induced by the RMSD for
the Random Walk polymer model. Based on numerical results from black-box optimization
runs, we are also able to formulate a conjecture about an upper bound of the RMSD between
any two Random Walks of arbitrary length. In the course of the thesis, two software libraries
for black-box sampling and optimization, GaALib and pCMALib, have been developed that
might prove valuable for the scientific community.
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Zusammenfassung

Viele Systeme und Modelle in Wissenschaft und Technik können aufgrund ihres hohen Kom-
plexitätsgrades nur noch bezüglich ihrer Ein- und Ausgangseigenschaften beschrieben und
analysiert werden. In vielen Fällen ist detailliertes Wissen über interne Systemabläufe und
-zusammenhänge nicht mehr zugänglich. Solche, so genannte Black-Box-Systeme sind das
Thema der vorliegenden Arbeit. Komplexe, mathematische Modelle, Computersimulationen,
aufwendige Laborexperimente sowie beliebige Kombinationen von Labor- und Computerex-
perimenten lassen sich als Black-Box-Systeme modellieren. Die vorliegende Arbeit präsentiert
einen interdisziplinären Ansatz zur Charakterisierung, Optimierung und zum randomisierten
Abtasten solcher Systeme, wobei das Hauptaugenmerk auf Modellen mit hochdimensionalen,
reellwertigen Eingangsgrössen und skalaren, reellwertige Ausgangsgrössen liegt. Eine Beson-
derheit dieser Arbeit liegt in der Betrachtungsweise eines Black-Box-Systems als hochdi-
mensionale, abstrakte Landschaft: die Black-Box-Landschaft. Diese Metapher ermöglicht
einen anschaulichen, topographisch inspirierten Zugang zur Systemanalyse. Die reelle Ein-
gangsgrössen definieren darin einen hochdimensionalen Raum, die skalare Ausgangsgrösse eine
Höhenangabe für jeden Punkt im Raum. Nachbarschaft oder Nähe in einer solchen Land-
schaft wird durch ein geeignetes Abstandsmass, z.B. die Euklidische Distanz, bestimmt. Eine
Charakterisierung von Black-Box-Systemen kann nun mit Hilfe topographischer Begriffe, wie
zum Beispiel Täler, Grate, Gipfel oder Plateaus, erfolgen. Das Landschaftsparadigma ist ein
zentraler Bestandteil der Molekularphysik, der Evolutionsbiologie sowie der kombinatorischen
Optimierung. Nach einer Analyse der wichtigsten Arbeiten aus diesen Wissenschaftsgebieten
stellen wir eine Reihe von statistischen Verfahren vor, mit denen sich verschiedene Merk-
male von Black-Box-Landschaften beschreiben lassen. Ein wichtiger Bestandteil dieser Ar-
beit ist die effiziente Optimierung von Black-Box-Systemen. Wir verbessern verschiedene
Komponenten einer der besten Black-Box-Optimierungsmethoden, der Evolutionsstrategie
mit Kovarianzmatrixanpassung (Covariance Matrix Adaptation Evolution Strategy, CMA-
ES). Das Abtastverfahren der Strategie wird durch die Verwendung von Quasi-Zufallszahlen
anstelle von Pseudozufallszahlen für die Generierung von Stichproben gesteigert. Für die
effiziente Exploration von Black-box-Landschaften, die mehrere tiefe, trichterförmige Täler
aufweisen, d.h. für Systeme, die weit auseinander liegende Bereiche im Eingangsraum besitzen,
die ähnlich optimale Ausgangsgrössen liefern, führen wir parallele CMA-ES-Suchmethoden
ein. Diese Strategien können die Effizenz im Vergleichen zu sequentiellen Varianten der
CMA-ES für bestimmte Modellprobleme steigern. Darüber hinaus greifen wir die Methode
der Gauss’schen Anpassung (Gaussian Adaptation, GaA) wieder auf, einem Optimierungs-
und Abtastverfahren, dem bislang in der Wissenschaftsgemeinde wenig Beachtung geschenkt
wurde. Wir verbessern das ursprüngliche Verfahren und demonstrieren seine Effektivität auf
einer grossen Klasse von Testproblemen. Darüber hinaus weisen wir nach, dass die Methode
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der Gauss’schen Anpassung die Möglichkeit eröffnet, die Optimierung und Stichprobennahme
für Black-Box-Systeme zu vereinheitlichen. Geometrische Konfigurationsprobleme werden in
dieser Arbeit in zweierlei Hinsicht berücksichtigt. Zum einen entwerfen wir ein neuartiges
Set von geometrischen Optimierungsproblemen, das auf der Energieminimierung atomarer
Cluster beruht. Wir analysieren die Topographie der resultierenden Energielandschaften und
zeigen, dass die behandelten Probleminstanzen als anspruchsvolle Benchmarks für Black-Box-
Optimierungsmethoden dienen können. Zum zweiten beschäftigen wir uns mit dem Kon-
figurationsraum von Kettenmolekülen in Bezug auf eine bestimmte Distanz, die mittlere
quadratische Abweichung (Root Mean Square deviation, RMSD) nach optimaler Superposi-
tion. Da RMSD die wichtigste Distanzmetrik der Strukturbiologie darstellt, quantifizieren wir
die von ihr induzierte Nachbarschaftstruktur für das einfachste Polymermodell, das Random-
Walk-Modell. Darüber hinaus ermöglicht eine Kombination von numerischen Black-Box-
Optimierungsexperimenten und geometrischen Überlegungen das Aufstellen einer Vermutung
über eine obere Schranke für den RMSD zwischen zwei beliebigen Random-Walks beliebiger
Länge. Im Laufe der Arbeit wurden des weiteren zwei öffentlich zugänglich Softwarebiblio-
theken für Black-Box-Optimierung und Black-box-Stichprobennahme entwickelt, GaALib und
pCMALib, die der Wissenschaftsgemeinde möglicherweise von Nutzen sein können.
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1
Introduction

“Science? What’s science ever done for us?”
Moe Szyslak in: The Simpsons, Lisa the Skeptic, Episode no. 186, 1997

In many areas of science, engineering, and economics researchers and decision makers are
faced with the task of characterizing and optimizing a system that can solely be examined
through its input and output characteristics, without any knowledge of its internal workings.
Such systems are generally referred to as black-box systems. Fig. 1.1 sketches the black-box
concept.

Mathematical model

Computer simulation
Input Output

Real-world experiment

Figure 1.1: Sketch of the black-box paradigm. An input is provided to a black box. The black box
can comprise a mathematical model, a computer experiment, a real-world experiment, or
a mixture of any of these components. The output is the only observable of the system.

In many practical cases, a black box comprises a complex mathematical model, a computer
simulation, a real-world experiment, or a combination of any of these. In practice, the as-
sumption of complete lack of knowledge about the internal characteristics is unrealistic. The
black-box model rather expresses our inability to comprehend the complex interactions and
causal connections present in the system. Thorough understanding of a black-box system is
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1 Introduction

usually provided by investigating its transfer characteristics of the black-box. Such analysis
comprises inference about the relationship between input and corresponding output. Major
objectives in black-box analysis are (i) the quantification of how variation of the output can
be explained by the variation (of subsets) of input patterns (black-box characterization), (ii)
retrieval of a specific element among the set of all possible inputs that is optimal with respect
to some properties of the output (black-box optimization), and (iii) generation of input pat-
terns according to some probability distribution (black-box sampling).

In this thesis we take an interdisciplinary approach to the characterization, optimization,
and sampling of black-box systems. We focus on systems with high-dimensional, real-valued
input variables and output patterns that can be transformed by some function into a scalar,
real-valued quantity. Multi-objective problems can only be tackled by using a scalarization
approach that combines many objectives into a single output function. We assume that we
can efficiently generate input patterns to the black box. This implies that we know the speci-
fication of feasible inputs to the black box. We also assume that the black box can compute
the output efficiently for all feasible input patterns, i.e., the black box returns a value within
a realistic problem-dependent time span. We furthermore take for granted that the black
box is oblivious to previously presented input patterns. This means that a current output of
the black box only takes the current input into account and does not depend on the history
of the input patterns. This, however, does not exclude the possibility of noisy output. We
do not require that the black box always returns identical output for identical input. The
output can be corrupted by (unknown) measurement or numerical noise or by any uncon-
trollable (unknown) input to the black box (for instance, human intervention). Important
instances that fit this black-box definition are complex technical devices, computer algorithms,
mathematical models, or scientific experiments. For such systems, simulation-optimization,
(Bayesian) parameter identification or model reduction are common scientific tasks.

Throughout this thesis we conceptualize the black-box system as a landscape. Inspired by
our shared visual experience of natural terrains and sceneries, we consider the real-valued
input variables as a high-dimensional landscape domain. Neighborhood or nearness in this
landscape domain must be provided by a suitable distance metric. We interpret the scalar
output quantity as a height or elevation over the landscape domain. The landscape metaphor
encourages a characterization of black-box systems in terms of topographical features such
as valleys, ridges, mountain peaks, and plateaus. We introduce the notion of the black-box
landscape in order to underline our view of black-box systems as high-dimensional, complex
landscapes.

Many scientific disciplines use the landscape paradigm. The fitness landscape imagery is at
the very heart of evolutionary biology and protein engineering. In molecular physics, the
energy landscape perspective provides a unifying theme for understanding complex physical
processes and phenomena. The landscape metaphor is also present in operations research,
most prominently in the context of combinatorial optimization. All these fields influenced the
present work in a number of aspects.
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In the present work, we use computation as the fundamental scientific tool to examine black-
box problems. The majority of the considered scientific questions is tackled by running com-
puter simulations and inferring knowledge from the gathered empirical data. In a number
of situations, we will, however, comment on known theoretical results or open mathematical
problems.

Main Contributions

We consider the following results as the main contributions of this thesis:

To the best of our knowledge, this thesis includes the first review of the landscape paradigm
spanning the disciplines of biology, physics, chemistry, and optimization. Chapter 2 has been
written because no adequate single reference could be found.

In the field of black-box optimization, we improve various aspects of the performance of the
arguably best state-of-the-art optimizer, the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES). The general performance is increased by considering quasi-random instead of
pseudo-random sampling. We introduce parallel CMA-ES schemes that can outperform stan-
dard CMA-ES for multi-funnel landscape topologies. We also revisit Gaussian Adaptation, a
optimization and sampling scheme that has been largely neglected by the black-box optimiza-
tion community. Our improved Gaussian Adaptation scheme shows remarkable performance
on the considered benchmarks and ranks among the best known black-box optimizers.

An important conceptual result is that we can make an explicit link between black-box opti-
mization and black-box (or indirect) sampling through Gaussian Adaptation. We show that
the same idea of adaptation has emerged in these largely disparate fields, and we argue that a
unifying framework for sampling and optimization might constitute an important contribution.

We also contribute to the fields of black-box characterization and black-box optimization
benchmarking. We present a number of statistical landscape descriptors that can serve as
features in a future statistical landscape classification framework. Novel benchmark problems
are derived from geometry optimization of atomic clusters.

Finally, we revisit the configuration space of chain molecules with respect to a certain distance
measure, the Root Mean Square Deviation (RMSD) after optimal superposition. RMSD is
the most important distance metric in structural biology. We consider the simplest linear
chain, the Random Walk model, that defines the base line for more complex polymer models.
We quantify the neighborhood structure that is induced by the RMSD for the Random Walk
model. Based on numerical results from CMA-ES black-box optimization runs, we are able to
formulate a conjecture about an upper bound for the RMSD between any two Random Walks
of arbitrary length.
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1 Introduction

Previous Work

The present work is based on a number of previous scientific contributions. The charac-
terization of continuous black-box landscapes has been influenced by Saltelli and co-workers
in the field of sensitivity analysis (Saltelli et al., 2000), Lunacek and Whitley in evolution-
ary computation (Lunacek and Whitley, 2006; Lunacek et al., 2008), Stadler and co-workers
in combinatorial optimization (Stadler, 1996; Reidys and Stadler, 2002), and Kauffman and
Weinberger in theoretical biology (Kauffman and Weinberger, 1989; Weinberger, 1990). Our
work in black-box optimization builds on two key sources: the works of Hansen (Hansen and
Ostermeier, 1996; Hansen, 2000; Hansen and Ostermeier, 2001; Hansen et al., 2003) from the
field of evolutionary computation, and Kjellström (Kjellström, 1969; Kjellström and Taxen,
1981; Kjellström, 1991; Kjellström and Taxen, 1992) from electrical engineering. Haario and
co-workers (Haario et al., 1999, 2001), Neal (Neal, 2003), as well as Andrieu (Andrieu and
Thoms, 2008) provide the foundation for our black-box sampling contribution. For cluster
landscapes, an invaluable source of information is provided by the works of Wales (Wales,
2005). Cohn and Kumar’s article introducing novel pair potentials has been instrumental for
designing one of the presented benchmarks (Cohn and Kumar, 2009). The analysis of linear
chain landscapes does not build on specific prior literature. It is a combined effort by Phillippe
Hünenberger, Bojan Žagrović, and the author of this thesis (Müller et al., 2009).

Structure of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Landscapes

Chapter 2 introduces the landscape paradigm. Starting from preliminary mathematical def-
initions we revisit the majority of landscape instances in physics, chemistry, biology, and
combinatorial optimization. We also comment on black-box landscape properties and heuris-
tic search. We note that such a review of the landscape paradigm in science does not exist
in the scientific literature. Finally, the chapter introduces a list of model landscapes along
with the IEEE CEC 2005 benchmark test suite. These are instrumental for the empirical
performance evaluation of several methods.

Chapter 3: Characterization of Black-box landscapes

In Chapter 3 we introduce a set of statistical black-box landscape descriptors that can probe
different properties of a landscape, such as the global landscape topology, input separability,
and landscape ruggedness. As a proof of concept we apply the descriptors to the CEC 2005
benchmark functions with known properties and analyze the quality of the estimators.
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Chapter 4: Optimization of Black-box landscapes

Chapter 4 presents the core of this thesis. We first present the state-of-the-art black-box
optimizer CMA-ES and propose alternative restart and sampling schemes for it. We then
introduce the concept of parallel CMA-ES and present the design and performance of one
such instance, the Particle Swarm CMA-ES. Furthermore, we revisit the concept of Gaussian
Adaptation and supplement the basic algorithm by a general-purpose parameterization, stop-
ping criteria, and a restart strategy. All novel black-box algorithms are benchmarked on the
benchmark test suite. Parts of this chapter are published in (Müller et al., 2009b; Müller and
Sbalzarini, 2010c,b).

Chapter 5: Black-box Sampling

Gaussian adaptation plays an important role in Chapter 5 as well. We show that minor changes
in the algorithm turn it into to an adaptive Markov-Chain Monte Carlo sampler. We show
the strengths and weaknesses of this novel black-box sampler on selected target distributions.
Parts of this chapter are published in (Müller and Sbalzarini, 2010b; Müller, 2010).

Chapter 6: Atomic Cluster Landscapes for Black-box Optimization

In Chapter 5 we consider geometry optimization of atomic clusters as novel benchmarks for
black-box optimization. The proposed Cohn-Kumar and Lennard-Jones clusters exhibit dif-
ferent landscape topologies, thus spanning a wide range of problem difficulties. We argue that
the presented problems should be included in future benchmark studies in order to improve
the generality of black-box heuristics. Parts of this chapter are published in (Müller and
Sbalzarini, 2009) or submitted for publication (Müller and Sbalzarini, 2010a).

Chapter 7: Analysis of Linear Chain Landscapes

We consider linear chains in form of (self-avoiding) random walks in Chapter 7. We investigate
the degree of inhomogeneity that is introduced in the random walk landscape domain by using
RMSD as a distance measure. An extended version of this investigation is published in (Müller
et al., 2009). We also investigate the maximum RMSD problem, which consists of finding the
pair of structures that maximizes RMSD among all possible structures. Based on data from
black-box optimization runs, we conjecture a closed-form upper bound for the RMSD between
any two linear chains of the Random Walk type.

Chapter 8: Conclusion and Future Work

We conclude this thesis in Chapter 8. We outline how the results of this thesis suggest
several opportunities for future research, ranging from theoretical issues to concrete practical
applications.
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1 Introduction

Appendix

In the course of this thesis, we developed a number of well-tested software packages for black-
box sampling and optimization. We present two software libraries in the Appendix: GaALib
and pCMALib. GaALib comprises a set of MATLAB functions and scripts that implement
all aspects of the Gaussian Adaptation scheme. It can be used for black-box optimization,
sampling, and volume computation. pCMALib is a parallel FORTRAN90 library that imple-
ments both sequential and parallel CMA-ES in an efficient manner. All aspects of pCMALib
are described in a manual-like style. We also present parallel scaling results that are published
in (Müller et al., 2009a).
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2
Landscapes

”Will you take us to Mount Splashmore?”
Lisa and Bart Simpson, in: The Simpsons, Brush with Greatness, Episode no.
31, 1991

The notion of a landscape has been a valuable and highly influential concept in many ar-
eas of science. Inspired by our shared visual experience of natural terrains and sceneries,
the landscape metaphor has been employed by researchers across disciplines to explain com-
plex phenomena in a comprehensive manner. Sewall Wright introduced in his seminal paper
(Wright, 1932) the concept of the adaptive or fitness landscape to modern evolutionary biol-
ogy. Wright used fitness landscapes to illustrate the relationship between genetic or phenotypic
traits of organisms and their associated evolutionary fitness. The evolution of a species can
hence be imagined as an adaptive walk across hills and valleys of its fitness landscape, eventu-
ally settling around a peak. It is striking that more than 50 years later Stillinger and Weber
employed a similar analogy to describe the packing structure and phase transitions in liquids
and solids (Stillinger and Weber, 1984). Although the notion of the potential energy surfaces
(PES) instead of potential energy landscapes (PEL) is used in the original article, Stillinger
and Weber have the same metaphor in mind as Wright, this time, however, to explain the
behavior of ensembles of atoms and molecules across thermodynamic regimes. Stillinger and
Weber popularized the idea that static and (thermo-)dynamic features of molecular systems
can be largely understood by analyzing the topography of the underlying energy landscape.
A visual comparison of the original sketches from (Wright, 1932) and (Stillinger and Weber,
1984) emphasizes the strong similarity (Fig. 2.1).
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2 Landscapes

are connected to (mapped onto) minima 
by solutions to the multidimensional 

equation 

ar/as = -VF(r) (1) 

where the vector r comprises all 3N 
atomic coordinates and where s is a 
virtual "time coordinate" for the de- 
scent (4). Starting at any randomly cho- 
sen r(s = 0), the solution r(s) as s --> 

locates the requisite minimum. The dot- 
ted lines in Fig. 1 outline the regions 
containing all points that map onto the 
same interior minimum. Notice from 
Fig. 1 that boundaries separating neigh- 
boring regions pass through saddle 

points on the (I hypersurface. 
Having introduced this division of the 

configuration space, a primary goal will 
be to describe motion within and transi- 
tions between the regions and how that 
motion depends on temperature. 

Computer Simulation 

The complicated topography of the FI 
surface (Fig. 1) profoundly influences 

experimental measurements for the sub- 
stance under consideration. But such 
measurements have very limited capaci- 
ty to determine the topography and to 
follow details of the system's dynamical 
motion across the "eI-scape." Digital 
computer simulation offers an insightful 
alternative, at least for small (and one 

hopes representative) collections of 102 

to 103 atoms. Our own work in this area 
has relied on a computer to solve classi- 
cal Newtonian equations of motion, sub- 

ject to suitable initial and boundary con- 

ditions, with analytical potential func- 
tions that have been selected to repre- 
sent specific materials of interest. As the 
classical dynamical trajectory is being 
generated the computer is required to 

carry out in parallel and frequently an- 
other set of tasks, namely to identify the 
I minimum onto which the instanta- 
neous dynamical configuration would 

map by the steepest-descent construc- 
tion (Eq. 1). This parallel activity sup- 
plies a running record of the fiducial 
minima over whose regions the Newto- 
nian dynamics takes the system. This 
would be analogous to a listing of names 
of counties passed over during a trans- 
continental flight from New York to San 
Francisco. 

If initial conditions for the dynamics 
so decree, the system can be trapped at 
low total energy in the neighborhood of a 

single minimum. In that event the map- 
ping yields a consistently monotonous 
result. But at higher energy, escape over 
saddle points becomes possible and the 

984 

running mapping onto minima reveals 
kinetic details about transitions between 

contiguous regions. Figures 2 and 3 pro- 
vide a case in point. They refer to a 

computer simulation for an amorphous 
alloy at low temperature (174 K) com- 

prising 120 nickel atoms and 30 phospho- 
rous atoms. Figure 2 shows how the 

potential energy per atom, 4, varies with 
time during a 3.1-picosecond interval, 
along the classical dynamical trajectory 
executed by this 150-atom system in its 
450-dimensional configuration space. 
The thermal motion of the atoms in this 
solid deposit consists primarily of har- 
monic motion; but more than that is 

Fig. 1. Schematic representation of the poten- 
tial energy surface for an N-atom system. 
Minima are shown as filled circles and saddle 
points as crosses. Potential energy is constant 
along the continuous curves. Regions belong- 
ing to different minima are indicated by 
dashed curves. 

-5.35 

-5.40 

-5.45 

-5.50 

Step number 

Fig. 2. Time variation of (), the potential 
energy per atom, in a 150-atom nickel-phos- 
phorous amorphous deposit, as simulated by 
computer. Temperature is 174 K. The 104 

computer time steps shown correspond to 3.1 
picoseconds of elapsed time. The quantity 4) 
is shown on a reduced basis; the energy unit 
used is 1.855 kilocalories per mole. 

present. Figure 3 shows, for exactly the 
same interval, the value of () at the 

nearby potential energy minima. Obvi- 

ously the system has not merely execut- 
ed vibrations around a single minimum 
but has undergone ten transitions be- 
tween neighboring minima. In this case 
all the minima visited correspond to 

amorphous packings of the given set of 
atoms. 

If the temperature is increased for the 
nickel plus phosphorus system to which 
Figs. 2 and 3 refer, the transition rate 
between regions surrounding distinct 
minima increases dramatically. This 

temperature-dependent rate can be ana- 
lyzed with an Arrhenius plot (logarithm 
of rate versus 1/7) to estimate the mean 
barrier, height. For the few cases that 
have been carefully examined this way, 
the mean barrier height for liquids turns 
out only to be about half of that which 

emerges from a corresponding Arrhenius 

plot for self-diffusion rates. The implica- 
tion is that many transitions "get no- 
where," that is, either involve motion 
into and out of culs-de-sac in the config- 
uration space or must dynamically be 
followed by a surmounting of higher bot- 
tleneck barriers for diffusion to occur. 

Certainly, computer modeling of bulk 
matter involving only 102 to 103 atoms 

requires care in interpretation. Never- 

theless, the modest kinds of mapping-to- 
minima calculations just illustrated ap- 
parently produce several results of gen- 
eral validity. Included among them are 
the following: 

1) Transitions are localized. The 
atomic arrangements for two successive- 

ly visited packings (such as those indi- 
cated in Fig. 3) normally differ only by 
rearrangement of a small set of atoms 
that form a compact grouping in three- 
dimensional space. Most of the material 

present stays put, or at most responds 
elastically to the local rearrangement. 
Evidently, overall restructuring requires 
a sequence of many localized transitions. 

2) The transition rate is an extensive 

quantity, that is, the rate is proportional 
to the system size at least in the macro- 

scopic limit. This feature follows from 

point 1 above. By doubling the size of 
the system (while holding temperature 
and composition fixed), the number of 
sites at which localized transitions could 
occur also doubles. Consequently, the 
mean residence time in any given mini- 
mum region becomes halved. In con- 

junction with results from small-system 
computer simulation, this extensivity re- 

quires truly formidable transition rates 
for macroscopic samples of matter. For 

example, one estimate (2) implies that 1 
mole of liquid argon near its melting 
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Figure 2.1: a. Sketch of a two-dimensional fitness landscape from Sewall Wright’s 1932 publication
on the role of mutation, inbreeding, crossbreeding and selection in evolution (Wright,
1932). b. Stillinger and Weber’s sketch of a potential energy landscape of atomic systems
(Stillinger and Weber, 1984).

Astonishingly few researchers, however, explicitly highlight the close conceptual relationship
between fitness and energy landscapes. The works of Peter Stadler and co-workers are a
notable exception (see, e.g., (Schuster and Stadler, 1994; Stadler and Stadler, 2002; Reidys
and Stadler, 2002)) together with the influential review on ultrametricity in physics by Rammal
and co-workers (Rammal et al., 1986) and Sherrington’s introductory notes in a special issue on
landscapes in Physica D (Sherrington, 1997). Despite the great value of metaphors and mental
images in science, they can be, at the same time, subject of profound confusion due to their
inherent subjective nature. As Peter Wolynes wrote in his philosophical article on landscapes
(Wolynes, 2001): “Of all intellectuals, scientists are the most distrustful of metaphors and
images. This, of course, is our tacit acknowledgment of the power of these mental constructs,
which shape the questions we ask and the methods we use to answer these questions.” It is,
therefore, crucial that we first provide a formal definition of landscapes. We then present
important landscape properties and geometrical concepts that allow a more refined view on
landscape topographies and their practical use. After revisiting fundamental instances of the
landscape paradigm in biology, (bio-)chemistry, and physics we eventually build a conceptual
bridge to the field of optimization. Starting from a review of the landscape perspective in
combinatorial optimization problems we develop a novel landscape perspective for black-box
optimization. We close this chapter with an introduction of synthetic benchmark landscapes
that are then used throughout this thesis.
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2.1 Definitions and characteristics

2.1 Definitions and characteristics

We start with the most general definition of a landscape:

Definition 2.1. A landscape L is a triple (X , d, f) consisting of

1. a set X ⊆ Rn,

2. a distance function d: X × X → R+
0 ,

3. a scalar function f : X → R.

Depending on the scientific context, the set (or domain) X has different composition and
meaning. In evolutionary biology X can, e.g., be a finite set of genes. Each gene is a se-
quence or string of letters over the alphabet {A,C,G, T} that represents the four different
nucleotides. In a physical system, X may represent the positions of a collection of n atoms
in three-dimensional space. There, elements of X are often called configurations, states, or
micro-states with X ⊆ R3n. In optimization research, X represents the set of (feasible) solu-
tions, e.g. binary strings or real-valued vectors of a certain dimension n. In this context, X is
also termed search space. X can also represent the set of free parameters of a mathematical
model, hence leading to the notion of a parameter space. In statistical models, X specifies
factors or input variables.

The function d adds structure to the domain X . It can be, for instance, a mathematical
metric (with the usual properties of non-negativity, positive definiteness, symmetry, and
sub-additivity), a measure based on an order parameter in a physical system, or some other
dissimilarity index. When X is, e.g., the set of binary strings of length n, a natural metric is
the Hamming distance dH. The distance dH is defined as the number of positions where the
digits in two binary strings are different. The distance ranges between zero for identical strings
and n for strings that are different everywhere. The Euclidean distance dE is often used when
X ⊆ Rn, where the range is again between zero for identical vectors and a maximum that is
attained by the vectors defining the diameter diam(X ). For the three-dimensional unit cube
X = [0, 1]3, the diameter in Euclidean distance is

√
3. It is noteworthy that the diameter of X

is not always known a priori for a complicated domain or distance measure, thus hampering
the interpretation of absolute distance values. This problem will be studied for linear chains
in Chapter 7.

The function d can also be defined by so-called move sets. A move set defines allowed moves
or transitions from one element x ∈ X to another y ∈ X in a single step. A distance can
then be defined by the minimal number of steps it takes to move from x to y. In evolutionary
biology, the move set could, e.g., be a point mutation in a gene per evolutionary time unit. In
the binary string case the move set consisting of single bit flips is equivalent to the Hamming
distance. We comment on the apparent connection between move sets and optimization algo-
rithms in Section 2.3.1. In physics, the pair (X , d) is often called configuration space (Rammal
et al., 1986; Reidys and Stadler, 2002), a term that plays a central role in Chapters 6 and 7
of this thesis.
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2 Landscapes

The scalar function f , the third component of L, is generally interpreted as height of the
landscape. The height f is a general mapping from the domain X to the real numbers. It
assigns a real value to each element of X . In evolutionary biology, f is called the fitness and
can, e.g., be experimentally measured by the reproductive success of an individual organism.
In optimization, f is called fitness function, cost function, or objective function. The standard
term in physics is energy , most often potential energy or free energy , denoted by h, E, or F .

Black-box landscapes

Definition 2.1 offers the most general definition of a landscape. In this thesis, we particularly
focus on Black-box landscapes, defined as follows:

Definition 2.2. A Black-box landscape LB is the triple (X , dX, f) consisting of

1. a set X ⊆ Rn,

2. a metric d: X × X → R+
0 ,

3. a scalar black-box function f : X → R.

In this thesis, we mostly consider landscapes whose support is a compact (convex) subset of
the n−dimensional space of real numbers. Most often X is box-constrained, i.e. X = [l,u] ⊂
Rn with the vectors l,u ∈ Rn defining the lower and upper bounds. In practice, even for
unconstrained optimization problems box constraints are often imposed by the modeler in
order to restrict analysis to certain x values of interest. These constraints also simplify certain
mathematical operations, such as drawing uniform samples from the landscape domain.
A natural metric in such domains is the Euclidean distance dE:

dE(x,y) =
√

(x− y) (x− y)T =

√√√√
n∑

i=1

(xi − yi)2
, (2.1)

with vectors x,y ∈ X ⊆ Rn, or the Mahalanobis distance

dM(x,y) =
√

(x− y)C−1(x− y)T , (2.2)

where C is a positive definite, symmetric matrix.
A central concept in this thesis is the notion of the black-box function f . The name implies that
we consider f a black box, i.e., the only information we can retrieve from f is a real value for
any given query x ∈ X . The black-box metaphor represents our general ignorance about the
underlying system. Most often we do not know the analytic form of f , nor do we assume any
mathematical property about f such as, e.g., convexity or continuity. The function f can be
noisy, discontinuous, or non-differentiable. The concept of a black box conveniently addresses
many problems of practical relevance in science and engineering. For example, researchers
are often faced with fitting free parameters of a complicated mathematical or technical model
in order to match the model output with noisy real-world measurements. The cost function
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2.1 Definitions and characteristics

that measures the dissimilarity between model output and data can be considered a black-box
function. Hence, the set of free parameters, a distance measure between parameter vectors,
and the black-box function define a black-box landscape.

A similar yet more formal concept of a black box is known under the term oracle in theoretical
computer science. Theoretical computer scientists “imagine an oracle as a device that solves
certain problems for us, i.e. that, for any instance σ, supplies a solution τ . We make no
assumption on how a solution is found” (Grötschel et al., 1993) pp. 26.

One key problem with the landscape paradigm is our limited ability to comprehend and visu-
alize more than three or four dimensions. The topography of geographical landscapes, such as
the Swiss Alps, is completely specified by a two-dimensional coordinate system and a height
or elevation associated with each point in the coordinate system. It comes as no surprise that
the original fitness and energy landscape sketches in Fig. 2.1 are two-dimensional. Many land-
scapes in science are, however, high-dimensional. In order to fully appreciate the landscape
metaphor even in the high-dimensional case, we have to resort to useful collective terms that
are able to characterize landscape topologies and are, at least to some extent, measurable.

Landscape characteristics

Landscape characteristics are such key topographic features that can be used to characterize
high-dimensional landscapes. Although many of these features are not accessible in a black-
box scenario we provide them here for completeness.

One property of landscapes is the scale with which the height or elevation f varies over
the whole domain X . Do values of f span over several orders of magnitude? Are they
bounded from above or below? A comprehensive summary of the range of f can be achieved
by deriving or estimating the moments of the distribution of f values, such as expectation
values and variances, with respect to some measure. Under the assumptions that lower and
upper bounds of the fitness range exist, these bounds correspond to the fitness values at the
locations of the global minimum and global maximum, respectively.

Definition 2.3. Let X be the domain of the landscape and the mapping f : X → R. The
mapping f has a global minimum at xmin iff f(xmin) ≤ f(x)∀x ∈ X . The mapping f has a
global maximum at xmax iff f(xmax) ≥ f(x)∀x ∈ X .

In general, global optima are hard to find. A considerable amount of work in this thesis is
dedicated to the efficient search for global minima of black-box landscapes, as we will see in
Chapter 4. Even in cases where the locations of global optima are known, they often provide
only limited information about the overall geometric topology of the landscape surface. In
many cases, it is easier and more informative to analyze features associated with local optima.

Definition 2.4. Let X be the domain of the landscape and the mapping f : X → R. Let N (x)
be the neighborhood of x. Then f has a local minimum at xloc iff f(xloc) < f(x)∀x ∈ N (xloc).
The mapping f has a local maximum at xloc iff f(xloc) > f(x)∀x ∈ N (xloc).
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2 Landscapes

The neighborhood N (x) is induced by the distance measure d. For example, when X is the
set of binary strings of length n and dH the Hamming distance then we can define N (xloc) =
{x ∈ {0, 1}n | dH(x,xloc) = c}. In the simplest case c = 1, which we call the 1-neighborhood.
The distance, and hence the neighborhood, can also be defined via more complicated move
sets. When X ⊆ Rn and f is a smooth function with continuous first and second derivatives,
a local minimum/maximum can be characterized by the usual optimality conditions:

Definition 2.5. Let X ⊆ Rn and f : X → R. Then f has a stationary point at xloc iff
∇f(xloc) = 0 where ∇f denotes the n-dimensional gradient vector with components:

∇f(xloci ) =
∂f

∂xi
. (2.3)

The mapping f has a local minimum at xloc if, in addition, the Hessian n×n matrix H(xloc),
the symmetric matrix of second derivatives with elements

Hi,j(x
loc) =

∂2f(xloc)

∂xi∂xj
, i,j = 1, . . . , n (2.4)

is positive definite. For a local maximum H must be negative definite at xloc. A first-order
saddle point is located at xloc if H has n-1 positive eigenvalues and exactly one negative eigen-
value.

In the context of optimization problems or probability distributions the optima are often
called modes leading to the term multi-modal landscapes in the presence of multiple optima.
In the following we focus on using a collection of local minima for landscape characterization.
The argumentation also holds for local maxima for a landscape with negated f . Consider
a landscape with multiple local minima and imagine that we have an algorithm that finds
for each point in the domain a local minimum by following the steepest descent path. Then
we can tesselate the domain of the landscape into disjoint regions, each containing the set of
points that lead to the same local minimum. We refer to such a region as catchment basin,
basin of attraction, or just basin. Figure 2.2 shows a sketch of a landscape tessellated into 6
basins. In the following we give a formal definition:

Definition 2.6. Let L = (X , d, f) be a landscape with K local minima x(k),loc with k =
1, . . . ,K. Let M be an algorithm that proceeds from each x ∈ X to a local minimum via the
steepest descent path. Then the catchment basin Ck is defined as:

Ck = {x ∈ X | x(k),loc =M(x)} . (2.5)

The boundary Bk of basin Ck is the set of all x that have at least one point y ∈ N (x) with
y ∈ Ci, i 6= k.

One situation hampers the generality of the basin definition on smooth landscapes: the ex-
istence of regions of constant f or landscape neutrality . In such regions a steepest descent
algorithm fails to proceed. We assume that the algorithm M has a mechanism to detect
these regions. The algorithm then assigns points on the plateau to an arbitrary neighboring
basin. On black-box landscapes the situation is even more complicated when f is noisy or
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Figure 2.2: Sketch of a tesselation of a 2D domain into 6 basins of attraction Ck. The black dots (•)
represent the corresponding minima, the lines the boundaries separating the basins.

discontinuous. We also assume that the (black-box) algorithm M can handle these instances
and that M provides a unique basin assignment.

Two important properties of a basin are its depth and its size or volume. We define basin
depth, sometimes also termed barrier height , in the following way:

Definition 2.7. Let L = (X , d, f) be a landscape with K local minima x(k),loc, catchment
basins Ck, and boundaries Bk with k = 1, . . . ,K. The basin depth, or barrier height, T (Ck) is
defined as

T (Ck) = min
x∈Bk

f(x)− f(x(k),loc) k = 1, . . . ,K . (2.6)

When X ⊆ Rn and f is a smooth function with continuous first and second derivatives,
T (Ck) is the fitness difference between the basin minimum and the lowest-lying saddle point
or maximum separating the minimum from a neighboring basin. Although the notion of basin
size or volume is intuitive, a clear mathematical definition depends on the properties of X .
Size could, e.g., be defined as the number of configurations within a basin when X is a finite
set.
Partitioning the landscape domain into basins of attraction offers many insights into landscape
topology. A complete tessellation would enable use to derive the total number of minima of
the landscape, including global minima. Another property is the distribution of basin depths
and sizes. Interesting questions related to basin depths and sizes are: What is the distribu-
tion of basin depths compared to the global range of f values? Does the landscape domain
contain many basins of the same size or are there dominating large basins and a few small
ones? The specific distribution of basin sizes could, e.g., tell us how likely it is to hit the
basin that includes the global minimum. The number of basins and their size distribution are
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also related to the effort for an algorithm to enumerate all basins. More complex landscape
features account for the spatial arrangement of the basins and its relation to (i) the height of
the associated local minima and (ii) the basin depths. A prominent example is the hierarchical
arrangement of basins into super-basins or funnels. A one-dimensional sketch of a funneled
landscape is shown in Fig. 2.3. A funnel is characterized by the following properties: (i)

f(x)

x

C2C1 C3 C4 C5 C6 C7

T (C2)

DG(f)

Figure 2.3: Sketch of a funneled landscape in 1D. The dotted lines mark the transition regions between
the basins Ck. C3 contains the global minimum and is the funnel “bottom”. The height of
the minima in neighboring basins decreases toward the funnel bottom. The corresponding
disconnectivity graph (DG) is shown in red. As an example the minimal basin depth is
labeled for basin C2.

The depth of individual basins within a funnel is considerably smaller than the total range
of f across the whole landscape. (ii) The height of the minima of the basins decreases with
decreasing distance to the center or bottom of the funnel. If all basins in a landscape are
arranged in this way, we call it a single-funnel landscape, otherwise a multi-funnel landscape.
When knowledge about basin arrangement, local minima height, and basin depth is known,
the landscape can be visualized using disconnectivity graphs (DG) or barrier trees as shown
in Fig. 2.3. The vertical axis corresponds to the fitness or energy scale, the horizontal axis to
a general coordinate that is able to separate the different minima. Lines are drawn upward
starting from every local minimum. The lines of neighboring basin are joined to the trunk
of the tree (or an internal node) at the f level that corresponds to the height of the basin
minimum plus the basin depth. For physical systems, the shape of the resulting tree can offer
insights into thermodynamic properties, as we will see in Chapter 6.

We emphasize again that the notion of a funnel is rather a metaphor than a precise math-
ematical object. We do not specify how exactly the global range of f values and the basin
depths have to be related, nor do we prescribe how distance to the funnel bottom and the
decrease of minima height are correlated. We will, however, encounter numerous examples
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of funneled landscapes where we give more details about specific funnel structures and their
implications for landscape characterization and optimization.

A complete partitioning of the landscape domain into basins along with knowledge of local
minima height, basin depth, and basin volume would provide an almost complete characteri-
zation of the landscape. This ideal situation, however, is almost never achievable in practice.
The number of minima (and hence the number of basins) of many landscapes scales exponen-
tially in the problem dimension. Hence, even enumerating all minima cannot be achieved in
polynomial time or space. Researchers have to either restrict the landscape partitioning to a
small subregion of the domain or have to resort to techniques that describe landscapes in a
coarser way. A ubiquitous notion is landscape ruggedness or landscape roughness. Ruggedness
is an intrinsically local property of a landscape that can vary across the domain. In the general
case, we imagine the degree of ruggedness of a subdomain of a landscape as the presence or
absence of correlation between the fitness values of neighboring points in the subdomain. For
some landscapes the correlation length can be determined analytically, for others it has to be
estimated empirically. Note that the distance defined on the landscape plays a decisive role
for ruggedness. It is conceivable that the landscape is considerably rougher for some distance
measure than for others. If knowledge about the locations of local minima is at hand, rugged-
ness can also be related to the number of minima within a landscape subdomain.
Ruggedness is an average property over a certain neighborhood and hence does not account for
how individual coordinates or certain combinations of coordinates influence f . For example, it
might be valuable to determine how a change in individual variables is related to a change in
fitness. This is the scope of sensitivity analysis. Sensitivity analysis studies how the variation
in landscape height can be apportioned, qualitatively or quantitatively, to different sources of
variation in the landscape domain. Both local and global techniques are available. If a land-
scape represents some parameterized mathematical model, then sensitivity analysis can also
be seen as a way to provide information about the importance of model parameters. Several
sensitivity analysis techniques also allow quantifying the interaction structure between vari-
ables. For some landscapes, changing one variable will not affect the effect of other variables
on the fitness. Such landscapes are called separable. Consider an n-dimensional landscape
domain. The separability property then allows characterizing each dimension independently
and then combining the n one-dimensional characteristics into a global n−dimensional one.
Searching for the global minimum in an n-dimensional separable landscape amounts to solving
n one-dimensional minimization problems. Note that for discrete landscapes non-separability
is also related to epistasis, an important concept in genetics. Epistasis is the phenomenon
where the effects of one gene are modulated by one or several other genes.

2.2 Landscape paradigms in science

The landscape paradigm has been so influential in modern science that it is instructive to
briefly present the most important landscape instances. We first outline landscapes in biology
covering a wide range of length and time scales.This leads to a natural transition to the energy
landscapes in physics and chemistry that are subject of Section 2.2.2. This section also serves
to link two key aspects of this thesis: landscapes and optimization algorithms.
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2.2.1 Landscapes in biology

The landscape metaphor has been introduced by Sewall Wright in his presentation at the
Sixth International Congress of Genetics in 1932. Wright was an evolutionary biologist and
created the adaptive landscape picture to illustrate his “Shifting Balance Theory” of evolu-
tionary change. The details of this controversial theory are beyond the scope of this thesis
and can be found in (Wright, 1932). Important to us, however, is the way Wright imagined
the phenomenon of evolution as a dynamic process over a landscape. His key idea was the
following: Imagine a population of a species, each having a collection of different genes shaping
the “genotypic space” X . Each individual in the population comprises an instance of these
genes at a specific point in time. This list of genes, the genotype, is a point x in the high-
dimensional space X . Each gene collection induces a specific phenotype that is associated
with a certain evolutionary fitness f(x). Hence, the population of individuals can be imagined
as a point cloud on a fitness surface over the genotypic space. The population can move in
the genotypic space by sequential genetic changes (mutation or recombination) over several
generations. When natural selection acts on the population over time, only individuals with
high fitness may survive. Ultimately, the population will cluster (or “adapt”) around fitness
peaks in the landscape. In Fig. 2.1a these peaks are denoted by a +. A closer look at this
figure also reveals that Wright did not label the axes of the landscape domain. Wright was
aware that there is no easy way to project the high-dimensional genotypic space into two or
three dimensions. For him, the landscape was just a metaphor. He imagined that individuals
with similar genotypes should be close in this landscape and have, at least to a certain ex-
tent, similar fitness. Unfortunately, neglecting the axis labels in his original landscape sketch
caused considerable confusion throughout the scientific community until today. Kaplan even
advocates in his recent philosophical paper “The end of the adaptive landscape metaphor?”
(Kaplan, 2008) that the fitness landscape picture should be given up entirely and replaced by
more formal modeling, even at the expense of being less intuitive. In our view, this criticism is
only partially valid as there have been many attempts to formalize the landscape concept more
rigorously. Gillespie introduced the mutational landscape in this article “Molecular Evolution
over the Mutational Landscape” (Gillespie, 1984) which challenges Wright’s evolutionary the-
ory while keeping the landscape metaphor. The mutational landscape is an alternative model
for molecular evolution based on extreme value theory that, with some modifications, is highly
valuable to explain data from real molecular evolution experiments, such as single-stranded
virus DNA (Rokyta et al., 2005).

The landscape paradigm has not only been useful in evolutionary biology. It conquered
branches of biology that investigate systems on totally different time and length scales. The
most prominent example arose in the context of “epigenetics” in developmental biology. The
word “epigenetics”, coined by Conrad Hal Waddington, was used to describe events that could
not be understood by genetic principles. Waddington defined epigenetics as “the branch of
biology which studies the causal interactions between genes and their products, which bring
the phenotype into being” (Waddington, 1942). In 1957, he proposed the metaphor of an
epigenetic landscape to illustrate the process of cellular decision-making during development.
Waddington’s original sketch is shown in Fig. 2.4. Waddington used this picture to illustrate
how cells, despite their identical genetical material, can nonetheless differentiate into different
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Figure 2.4: Waddington’s original sketch of the epigenetic landscape (Waddington, 1957). The marble
represents a cell in early developmental stage. The specific trajectory it takes on the
landscape will irreversibly lead to a local minimum in the landscape that determines its
“fate”, i.e., into what tissue type it will differentiate.

phenotypes due to epigenetic modifications. The collection of possible modifications acting
on cells form an epigenetic landscape with valleys and ridges. A cell during developmental
phase can take specific permitted trajectories, leading to local landscape minima that define
different phenotypes or cell fates. This metaphor is very lively even today. A modern view of
the molecular mechanisms underlying the epigenetic landscape can be found in Goldberg and
co-workers’ recent essay “Epigenetics: A Landscape takes Shape” (Goldberg et al., 2007).

One of the most fascinating biological systems where the landscape metaphor had a lasting
impact are proteins. Proteins are ubiquitous in living organisms and are considered the build-
ing blocks of life. They exhibit an amazing variety of three-dimensional structure, size, and
biological function. Proteins are chain molecules composed from 20 distinct amino acids,
each having different biophysical properties. The specific sequence of the amino acids in the
chain dictates the three-dimensional structure or shape of the protein. Key structural motifs
in proteins are helices, sheets, and coils (see Fig. 2.5 for an example). The “central dogma”
of molecular biology (Crick, 1970) states that proteins are the sole products of the inherited
genetic information. Each gene, a string of some length over the alphabet {A,C,G, T}, codes
for a specific protein. A gene is partitioned into triplets, called codons. Each codon is specific
for a distinct amino acid. Because only 20 different amino acids occur in real proteins out of
the 43 = 64 possible codons, the genetic code is said to be degenerate. By the time Wright
introduced the fitness landscape paradigm, all this detailed molecular information was not
known. It was not until 1970 when John Maynard Smith took up Wright’s evocative land-
scape imagery and created the concept of a “protein space” (Maynard-Smith, 1970). Back
then, there was considerable debate about the tremendous disparity between the number of
naturally occurring proteins and the much larger number of genetically encodable proteins.
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Figure 2.5: Cartoon representation of the Phage 22 tail spike protein (PDB entry 1TYU), consisting
of helices (red), sheets (yellow), and coils (green) as structural elements.

Maynard Smith’s seminal idea was to envision protein evolution as an adaptive walk through
protein space, where functional proteins may change to fitter variants through single amino-
acid substitutions. Fitness can be any specific functional property, such as the capacity to
catalyze a specific reaction or bind a specific ligand. For a protein of length n the space com-
prises 20n elements. If neighborhood is defined by site-specific single amino-acid differences,
each protein has 19n neighbors. Due to the fact that mutations occur on the nucleotides in
the genes, the degeneracy of the genetic code implies that the protein fitness landscape is
intrinsically different from its genetic counterpart, most prominently through the existence of
large regions of fitness neutrality. This observation led the japanese biologist Motoo Kimura
to the formulation of his “neutral theory of molecular evolution” in the late 1960’s, a corner
stone of modern evolutionary biology (Kimura, 1983).

The concept of a protein fitness landscape is, however, more than just a useful metaphor.
Over the past decades this imagery catalyzed an incredible amount of both theoretical and
experimental research. Due to the fact that many biological and chemical properties of pro-
teins are accessible in laboratory experiments, the possibility emerged to test and validate
theoretical landscape models through controlled measurements. One of the earliest attempts
was made by Kauffman (Kauffman, 1993) and further developed by Kauffman and coworkers
in the context of the immune response of higher organisms (Kauffman and Perelson, 1988;
Kauffman and Weinberger, 1989). One fundamental task within the complex immune system
machinery is to efficiently identify molecules, so-called antigens, that have not been produced
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natively by the body. To this end, the organism has to evolve specific proteins (antibodies)
that have a high binding affinity to intruding antigens. This process is called maturation.
Kauffman and co-workers used the NK-model of a rugged fitness landscape for the maturation
of the immune response. Inspired by physical spin glasses, Kauffman and Weinberger defined
the model in the following way: “The NK model is meant to apply to systems of many, N,
parts, where the functional contribution of each part depends upon the “state”, among A
alternatives, of that part, and is epistatically affected by an average of K other parts” (Kauff-
man and Weinberger, 1989). More formally, the NK-model is intended to capture interactions
between the bits in a binary string (alleles, chromosomes, proteins), giving rise to landscapes
that are tunable in terms of epistasis and ruggedness. This model can be used to describe
the epistatic nature of genes. In the context of the immune response, they chose the system
to be the variable (V) region in an antibody molecule. The N parts are the amino acids with
A=20 alternatives per state and the fitness of a V region is its binding affinity for an incoming
antigen. They imagined the maturation of the immune response as an adaptive walk on an
“affinity landscape”. The NK-model provided a means of abstracting the complex immune
response process. It predicted, through careful design of a particular model instance and
parameter tuning, a number of qualitative features of antibody affinity evolution, such as the
speed of adaptation and the existence of conserved patterns within the V region (Kauffman
and Weinberger, 1989). For a recent study where the NK model has been successfully used for
the analysis of a DNA-protein affinity landscape, we refer to (Rowe et al., 2010). We comment
on more formal optimization studies on the NK model in Section 2.3.

Binding affinity is not the only property that can determine the evolutionary fitness of a pro-
tein and, hence, its associated landscape. For enzymatic proteins, fitness might be defined as
the capacity to catalyze a specific reaction. Maintaining structural and functional stability
over a wide range of temperatures might also be a valuable objective. The evolution of antibi-
otic resistance in bacteria through specific enzymes is another example (Carneiro and Hartl,
2010). For decades, molecular biologist have sought after tools and techniques to decipher
the complex interactions between the composition and organization of proteins and any of
its functional properties. Despite paramount advances in some areas of protein research, a
true molecular-level understanding of why one protein performs a certain task better than an-
other remains largely elusive. This fact also hampers the possibility of rationally engineering
and improving protein functions for dedicated biological or pharmaceutical purposes. It is
amazing that the idea of evolutionary optimization, which has been so successful in technical
applications, has been brought back to biology through the method of directed evolution. In
their excellent review “Exploring protein fitness landscapes by directed evolution”, Romero
and Arnold state: “Directed evolution circumvents our profound ignorance of how a protein’s
sequence encodes its function by using iterative rounds of random mutation and artificial se-
lection to discover new and useful proteins. Proteins can be tuned to adapt to new functions
or environments by simple adaptive walks involving small numbers of mutations.” (Romero
and Arnold, 2009). Directed evolution is, hence, an experimental tool for finding local max-
ima in the protein fitness landscape. A typical iteration of a directed evolution experiment
involves three steps: diversification, selection, and amplification. The first step is concerned
with the creation of a diverse pool of candidate proteins by randomization techniques such as
DNA shuffling or error-prone PCR. The second step uses screening techniques to isolate and
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select candidates with improved functional properties. Finally, the identified candidates are
subject to a replication process that increases their abundance by orders of magnitude. The
abundant protein candidates are then subject to biochemical analysis and re-entry into the
directed evolution cycle in the next round. The directed evolution technique established itself
as a standard tool in molecular biology labs since the mid-nineties. Interestingly, Rammal and
co-workers already commented on the possibility of such a technique under the term “evolutive
biotechnology” or “simulated evolution” (Rammal et al., 1986), where they refer to presenta-
tions by P.W. Anderson and Manfred Eigen at the 1984 Founding Workshops of the Santa Fe
Institute (Pines, 1988). Rammal et al. also point out that for proteins the landscape picture
naturally arises not only on the evolutionary but also on the molecular scale: The structure
and dynamics of protein chains are governed by atomic and molecular forces within the chain
and its interaction with the environment. It has been proven extremely fruitful to picture the
dynamical behavior of a protein as a walk across a complex high-dimensional energy landscape,
a perspective we consider next.

2.2.2 Energy landscapes in chemistry and physics

The concept of an energy landscape is fundamental to many areas of (bio-)chemistry and
physics. Imagining the dynamical behavior of a molecular system as a process over a high-
dimensional energy landscape has been a key concept to elucidate complex patterns occurring
in nature. In protein biophysics, the energy landscape perspective is intimately connected
with one of the grand challenges in the area: the protein folding problem. What is this grand
challenge? We have introduced proteins as concatenations of amino acids, forming linear
chains. In a living cell, proteins are produced by ribosomes. When a protein leaves this
molecular machinery, its configuration is more or less unstructured and it is considered to
be in the unfolded or denatured state. A protein’s function, however, is largely determined
by its three-dimensional shape. In order to attain this functional conformation, a protein
undergoes considerable configurational rearrangement, a process called protein folding (see
Fig. 2.6). Since Christian B. Anfinsen’s Nobel prize-winning experiments, it is known that,
at least for small globular proteins, the native or folded structure is determined only by the
protein’s amino acid sequence (Anfinsen, 1973). Anfinsen’s dogma, sometimes also called the
thermodynamic hypothesis, states that at the environmental conditions at which folding oc-
curs, the native structure is a stable, unique, and accessible minimum of the energy surface.
For many years, it has been a mystery how a protein with its huge number of conformational
degrees of freedom can find this stable minimum at high speeds that are observed in laboratory
experiments. Cyrus Levinthal has formulated this conundrum in his famous thought experi-
ment, Levinthal’s paradox. Imagine a protein chain consisting of 100 amino acids. Each bond
between amino acids, the peptide bond, defines two angles between consecutive amino acids.
In Levinthal’s model, each of these angles can attain only three possible values. Even this
simplified chain has already 399 possible configurations, more than the number of atoms in the
universe. It seems thus rather unlikely that a protein finds the configuration corresponding to
the stable minimum by random sampling. Also, in real proteins, the degrees of freedom are
continuous variables, and the previous discretization does not hold. The “paradox” that most
small proteins fold spontaneously in milliseconds or even microseconds, despite the huge con-
formational space, arose from the imagination that the energy landscape guiding the search to
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U N

Figure 2.6: Sketch of the protein folding process. A long unstructured chain, the unfolded state (U),
transforms into a folded native (N) state, e.g., a helical structure.

the stable configuration looks like a “golf course”, as depicted in Fig. 2.7 a. Finding the native
conformation seemed much like finding the proverbial “needle in the haystack”. Levinthal’s
paradox has been resolved by the intriguing hypothesis of a “funneled energy landscape” (see
Fig. 2.7 b). Starting from theoretical works by Hans Frauenfelder, Joseph Bryngelson, and
Peter Wolynes in the 1980’s (Bryngelson and Wolynes, 1989; Frauenfelder, H. and Sligar, S.
G. and Wolynes, P. G., 1991), this hypothesis culminated in what some researchers called the
“new view” on protein folding (Dill and Chan, 1997). The old view on protein folding consid-
ered the metaphor of “pathways” that proteins take from the unfolded to the native state. The
new view was associated with the funneled energy landscape perspective that explained the
folding process as the guided movement of denatured conformations starting from the “rim”
of a funnel down to the bottom where the native state was located. Both the review by Dill
(Dill and Chan, 1997) and the essay by Wolynes (Wolynes, 2001) excellently summarize the
implications of the energy landscape perspective for protein folding research. The strength
of the funneled-landscape hypothesis is that it provides guidance for the implementation and
interpretation of laboratory protein folding experiments. Features of the folding funnel can
nowadays be probed experimentally (Mello and Barrick, 2004). The speed of folding can be
measured and associated with the ruggedness or roughness of the energy landscape (Nevo
et al., 2005; Kapon et al., 2008). The importance of a funneled energy landscape has also been
recognized for the assembly of multi-domain proteins, i.e., proteins that consist of different
modular regions (Faraldo-Gomez and Roux, 2007). Recent studies extend the energy land-
scape perspective from single-protein folding to protein-protein interactions (Hunjan et al.,
2008). Moreover, Clark advocates that the single folding-funnel perspective needs to be ex-
tended to a double-funnel topology in order to fully account for the behavior of proteins under
physiological conditions (Clark, 2004). The second funnel represents protein aggregates, i.e.,
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ba

Figure 2.7: a. Sketch of Levinthal’s “golf-course” landscape. N represents the region of the native
state of the protein that is surrounded by a flat energy plateau. b. A rugged but funneled
energy landscape that surrounds the native state (N). Both figures/Landscapes are taken
from (Dill and Chan, 1997).

clumps of dense protein configurations that are neither in the native state nor in the unfolded
state but are often observed in experiments (see Fig. 2.8).

Besides protein folding and the physical perspective on protein dynamics, there are also
other branches of chemistry and physics that have adopted the landscape metaphor, most
prominently in studies of liquids and solids. We have already referred to the paper by Still-
inger and Weber (Stillinger and Weber, 1984) that contained probably the first sketch of a
multi-dimensional energy surface (Fig. 2.1b). However, some ideas presented in that paper
can be traced back at least to the 1960’s (see references in (Stillinger and Weber, 1984) and
(Goldstein, 1969)). What is the purpose of the energy landscape perspective in liquid or
solid-state systems, and what are the differences to the previous protein energy landscape pic-
ture? In our considerations of protein folding we have avoided to clearly define which physical
energy we actually mean. Because folding takes place at physiological temperature, the native
state is a minimum of a free energy surface. The free energy is a thermodynamic concept
that includes two contributions, the potential energy or Hamiltonian of the system and the
entropy . It is beyond the scope of this thesis to give an introduction to thermodynamics,
but we rather convey the general idea. In essence, the potential energy includes all energetic
terms arising from the interactions between atoms in a given state, such as the Coulomb and
Van der Waals energies. Entropy measures the flexibility of the system to adopt different
molecular configurations at finite temperature T > 0. It is hence a property of an ensemble
of configurations rather than a single one. At absolute zero temperature (T = 0) the free
and the potential energies coincide. Because proteins, which can be considered a particular
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polypeptide chain that has emerged from the exit site.
Nevertheless, the flexible portion of the chain is still short
and has limited conformational freedom. The ‘folding
funnel’ for this short emerged chain is still shallow at this
point: there is very little energetic separation (if any)
between one conformation and another (Figure 3).

As more residues emerge from the ribosome, however,
additional conformational space becomes accessible and,
eventually, enough conformations will be permitted that
one (or more) will be at a significantly lower energy state
than the others. The cotranslational appearance of the
polypeptide chain outside the ribosome therefore corre-
sponds to a specific portion of the folding funnel, and the
chain presumably folds reasonably quickly and efficiently
to this available local energy minimum. In the simplified
example shown in Figure 3, the interactions that stabilize
the conformation of the nascent chain are also present in

the native structure; in reality, this will probably depend
on the topology of the native structure.

As even more of the nascent chain appears during
translation, additional conformational space is added and
additional portions of the funnel become accessible to the
growing polypeptide chain. Eventually, synthesis of the
polypeptide is completed. In the period when the chain is
full length but has not been released from the ribosome,
the chain has a vast number of conformations available
and can access most, although not all, of the full folding
funnel (Figure 3); some portions of the funnel remain
inaccessible because they require the chain to be free from
the conformational restrictions of the ribosome tether.

This gradual cotranslational ‘exposure’ to the folding
funnel might explain why proteins that do not interact
with molecular chaperones still fold to a much higher yield
in the cell than in the test tube. By initiating the folding
process from a defined trajectory rather than from all
possible starting conformations, the chain is predisposed
to fold by a prescribed route. This route might very well
bypass vast segments of conformational space that are
particularly prone to long-lived, aggregation-prone folding
intermediates (Figure 3). Indeed, experimental measure-
ments of the conformations of cotranslational folding
intermediates indicate that some nascent chains adopt
conformations that are distinct from the dominant
conformations that are populated during in vitro refolding
experiments [39,46,47].

It is important to note that the scheme shown in
Figure 3 assumes that the polypeptide chain makes only
native intramolecular contacts during folding and can
build up these contacts vectorially (from the N to the C
terminus). The cotranslational folding process of many
proteins, however, has additional complications. For
example, many protein structures have extensive contacts
between amino acids that are distant from one another in
the primary structure; for example, such contacts fre-
quently occur in parallel b-sheet topologies and complex
antiparallel b-strand topologies. For these proteins, non-
native contacts might develop cotranslationally because
the N-terminal portions of the sequence interact non-
natively to form transiently stable intermediates until the
C-terminal segments (or other subunit polypeptide
chains) required for the native fold appear [46,48].
Presumably, folding to the native structure would require
any early intermediates formed from the N-terminal
sequence to be ‘unraveled’, representing an energy barrier
in the cotranslational folding funnel. Notably, an impli-
cation of the cotranslational funnels is that the rate-
limiting step for cotranslational folding might be distinct
from that observed for refolding in vitro.

Conclusions and future directions
How does a double folding funnel affect our view of protein
folding in the cell? Clearly, the hurdle for polypeptide
chains lies not in ‘skiing’ down the folding funnel, but in
avoiding the aggregation funnel. Short proteins that fold
very quickly in vitro without intermediates [49–51] might
have in vivo folding funnels that maintain more of the
features of the corresponding in vitro refolding funnels,
and therefore do not require any interactions with cell
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Figure 3. Folding funnels describing the folding of a newly synthesized polypeptide
chain in vivo. In this simple example, the chain can assemble native contacts in a
cotranslational manner. (a) Funnel shape as a function of chain length. Short chains
will have both limited conformational entropy and limited energetic differences
between any two conformations, and therefore their funnels will be both narrow
and shallow. As the chain length grows, funnel width and depth increase, and
eventually conformations prone to aggregation will be possible. After translation
termination, but before chain release, the nascent chain might have access to a
conformational ensemble that is close in size to (but still smaller than) the ensemble
populated by in vitro denatured chains. (b) Cotranslational funnels superimposed
on the in vitro folding and aggregation funnels for a free full-length chain. This
funnel diagram indicates that the starting ensemble for cotranslational folding is
not the full breadth of the funnel top, but a select subset of conformations (arrow).
Early conformational bias in these shorter nascent chains is therefore expected to
have a marked effect on intracellular folding yield, and might reduce the need for
molecular chaperone involvement. Abbreviation: aa, amino acid.
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Figure 2.8: Clark’s double-funnel perspective on protein folding in the cellular context. The first
funnel (green) shows the traditional folding funnel. The second funnel (blue) represents
non-native protein aggregates that are often observed in experiments (Clark, 2004).

instance of soft matter, operate at physiological temperature ranges, entropic contributions
cannot be neglected. The protein folding process must hence be considered as a minimization
over the free energy surface. For simpler forms of solid matter, such as pure substances in bulk
or small atomic clusters, Stillinger and Weber advocated the potential energy landscape as a
unifying concept for a deeper understanding of atomic arrangements. From a wide variety of
experimental techniques it had been known that periodic crystalline order provided the most
stable arrangement for many pure substances in the solid phase. While perfect crystals are a
rarity in our natural environment, many kinds of dense matter appear as more or less defective
crystals, i.e. arrangements that show regular packing with voids or interstitials at some lattice
positions. Stillinger and Weber’s ingenious idea was to envision these arrangements as local
minima of the potential energy landscape. Consider a system of N atoms in three dimensions
at T = 0. The potential energy E is hence a function of 3N atom positional coordinates.
Depending on the physical properties of the atoms the system may exhibit different stable
packings, the so-called inherent structures of the system (Stillinger and Weber, 1984). The
height of the potential energy barriers between inherent structures, the number of transition
paths over saddles between them, and the overall topography of the PEL can be used to
explain the melting and freezing behavior of the system at finite temperature. The landscape
perspective also offers a way why some materials are “structure seekers” and others are “glass
formers”. When cooled down at a certain rate, some materials form regular packing structures,
whereas others relax to a disordered state that lacks periodicity but behaves like a solid. The
reason why this is so has been a long-standing riddle in physical chemistry. From an energy
landscape perspective such behavior is conceivable, and R. Steven Berry and co-workers intro-
duced the notion of structure seekers and glass formers (see e.g. citeBall:1996), which made
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the semantic meaning precise in terms of the energy landscape (Cox et al., 2006): “In short,
“structure-seeker” means “able to relax to one of a set of structures very small compared
with the set of all local minima”, and “glass-former” means “relaxes to any of a very large
fraction of the available local minima”.” The global topology of the energy landscape of a
structure seeker can be imagined as a single funnel, whereas glass formers have a multi-funnel
or unfunneled topology. Numerous experimental and computational studies have adopted
the energy landscape perspective for a wide variety of molecular systems. Numerical studies
nowadays use both classical and quantum-mechanical energy formulations for different bulk
materials and clusters. A famous instance are Lennard-Jones clusters, i.e., clusters of up to
200 atoms that interact via the Lennard-Jones (LJ) pair potential. This pair potential is the
simplest model for the interactions between noble-gas atoms such as Argon. We will consider
the landscapes arising from this potential in Chapter 6. Recent studies also applied inherent
structure analysis to simplified protein models (Kim and Keyes, 2007) and all-atom models
of proteins (Rao and Karplus, 2010), hence closing the circle of the two landscape paradigms
presented here. A superb summary of energy landscape studies for clusters and biomolecules
with an extensive list of references can be found in David Wales’ book (Wales, 2005). It is
also noteworthy that Berry and collaborators popularized the landscape paradigm through
the Telluride Energy Landscape workshops that regularly take place in Telluride, Colorado,
since 1984.

Since the past decade the landscape metaphor enjoys widespread use in other fields of physics
and chemistry as well. “Synchronisation landscapes” are used to elucidate the properties and
nonlinear dynamics of complex networks (Zhou, 2003; Nishikawa and Motter, 2010). Rabitz
and co-workers introduced the notion of the “Quantum Control Landscape” for the analysis
of quantum-mechanical observables as a function of controls (Chakrabarti and Rabitz, 2007).
Topological properties of such landscapes are studied in (Hsieh et al., 2008, 2009). The rela-
tionship between the structure of quantum control landscapes and optimization complexity is
considered in (Moore et al., 2008). We explore the general relationship between landscapes
and optimization in the next section.

2.3 Landscapes in optimization

Thus far, we have seen fundamental landscape instances in the natural sciences. The beauty
of the landscape concept is that these “natural” landscapes are a subset of the more general
class of landscapes that arise from distinct combinations of optimization problems and search
algorithms. For example, the domain of the genetic fitness landscapes is inherently discrete as
we consider strings of length n over the finite alphabet {A,C,G, T}. Together with a fitness
assignment for each string, finding the combination of letters that maximizes or minimizes
the fitness defines a combinatorial optimization problem. Adding a distance or neighborhood
relation between strings leads to a combinatorial optimization landscape (Reidys and Stadler,
2002). We have previously introduced some notions of distance, such as the Hamming distance
associated with single-site changes of letters or distances based on abstract move sets. For a
general optimization problem these move sets can be associated with iterations of an optimiza-
tion algorithm applied to the specific problem instance. However, before developing this idea
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further we have to raise an important question: When and why is the landscape perspective
valuable for optimization problems? The answer to this question is intimately related to the
computational complexity of the studied problem class and the employed algorithm.

Computational complexity and algorithm classes

Over the past decades, computer scientists and mathematicians have developed a formidable
classification scheme for optimization problems. This scheme is related to the resources, both in
terms of memory and computational time, an algorithm needs to solve all problems in a specific
class. This is the realm of computational complexity and algorithm classes. Consider for
instance one of the best-studied combinatorial optimization problems, the Traveling Salesman
Problem (TSP): Given a list of n cities and their pairwise distances, the task of the “salesman”
is to find a the shortest possible tour that visits each city exactly once and returns to the city
the tour started from. TSP belongs to the complexity class of NP-complete problems. The
acronym NP refers to Nondeterministic Polynomial time. The characteristic of NP-complete
problems is the following: Any given solution to such a problem can be quickly verified,
but there is no known efficient way to locate a solution in the first place. Efficiency here
refers to the required resources as a function of the problem (or input) size n. Indeed, the
time required to find the optimal solution using any currently known algorithm must grow
faster than any polynomial in n. Simplified versions of the protein folding problem are also
in the class of NP-complete problems (Hart and Istrail, 1997). A ubiquitous technique in
computational complexity is the method of reduction. Proving that a certain problem is NP-
complete can be done by first showing that it is NP and then transforming (reducing) it to
a problem that is already known to be NP-complete (such as TSP). Hence, algorithms that
tackle TSP can also be used for other problems. Belonging to the NP class does, however,
not imply that any instance of the problem is hard, rather that there exist hard instances.
Two approaches have been developed to deal with NP-complete problems: approximation
algorithms and heuristics. Approximation algorithms are problem-specific methods that find
sub-optimal solutions in polynomial time with provable solution quality. This means that the
found approximations are optimal up to a constant factor, for instance within 10% of the
optimal solution. Approximation algorithms are sometimes also used when exact polynomial-
time algorithms are known, but are still too expensive for a given input size. Heuristics,
on the other hand, are computational methods that can often be applied to a wider range
of problems at the expense of providing no guarantees about the goodness of the solutions
found. Heuristics often rely on iteratively improving intermediate candidate solutions until
some stopping criteria are met. The methods we present in Chapter 4 belong to this class.
Heuristics are applied whenever exact or approximation algorithms are too expensive or are
not known. In such situations, the landscape paradigm can provide information that explains
the success of a heuristic or guides the design of effective algorithms for a large number of
problem instances.
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Landscapes of NP-complete problems

Probably the best-studied subclass of TSP is the symmetric TSP , where the distances be-
tween cities are symmetric, i.e., traveling from city A to B takes the same amount of time
as traveling from B to A. The first landscape analysis of symmetric TSP appeared in the
Operations Research community in the early 1990’s through the works of Kenneth D. Boese
and co-workers (Boese et al., 1994; Boese, 1995). Studying specific landscape characteristics
enabled them to develop a new, effective stochastic multi-start heuristic for solving certain
instances of TSP (Boese et al., 1994). The principal idea behind their contributions was the
analysis of the relationship between the cost of a tour and distance to nearby local and global
minima. A large sample of sub-optimal tours tk was generated on a well-known n = 532
cities instance (ATT532) for which the optimal tour had been solved using a branch-and-cut
algorithm (Padberg and Rinaldi, 1987). The sub-optimal solutions were obtained by local
search methods that iteratively improve candidate solutions through the application of spe-
cific operators. Most of these operators or move sets were of the k-opt type (Croes, 1958; Lin
and Kernighan, 1973). The simplest k-opt variant is 2-opt (Croes, 1958), which deletes two
nonadjacent edges of the current tour and then reconnects the two resulting paths into a new
tour. This specific move set induces a distance on the landscape, for instance the minimum
number of 2-opts needed to transform ti into tj . Boese and co-workers simplifed this by using
as a distance the number n of shared edges in tours ti and tj . This number approximates
the minimal number of 2-opt moves between any two tours by a factor of at most two (Boese
et al., 1994). The cost of a tour was defined in the usual way as the length of the total tour.
The landscape analysis of the TSP instance revealed two surprising results: (i) There is a
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Figure 2.9: 2500 random 2-opt local minima for ATT532. Tour cost is plotted vs. distance to global
minimum (from (Boese, 1995))

correlation between the distance to the optimal solution and the cost of a tour (see Fig. 2.9),
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and (ii) there is a strong correlation between the mean distance to other solutions and the
cost of a tour, independent of the employed operators. These observations led the authors to
formulate the big valley hypothesis for the TSP landscape: Low-cost solutions are located in
a single valley around the optimal solution. The data also inspired the authors to design an
adaptive multi-start strategy that exploits this big-valley structure to obtain a considerable
performance increase compared to standard multi-start strategies. The big-valley structure
is synonymous in our terminology to a single-funnel landscape. An alternative expression is
the notion of a globally convex landscape, a term that has first been introduced by Hu and
co-workers (Hu et al., 1989) in an attempt to generalize the notion of convexity from functional
analysis. Correlation analysis between cost (or fitness) and distance between solutions has also
been essential in the study of Kauffman’s NK model as mentioned earlier. Kauffman himself
provided the first cost-distance plots in (Kauffman, 1993). The fitness function of the general
NK model is defined as:

fNK(s) =
n∑

i=1

fi (si,N (si)) . (2.7)

The function fNK assigns real values to binary strings s of fixed length n > 0 and s =
(s1, . . . , sn) ∈ {0, 1}n. The total fitness fNK is the sum of n local fitness functions fi. Each
local fitness function depends on the main variable si and its neighborhood N (si), that spec-
ifies k positions in the string. For a given neighborhood structure, the local fitness function
fi is determined by a fitness lookup table that specifies the function value fi for each of the
2k+1 possible assignments to the variables si and N (si). The main parameters of the NK
model are n and k. They define the size of the search space and the number of neighbors.
The beauty of the NK models lies in the fact that, for a fixed n, the parameter k can be used
to tune the landscape from a simple additive function (k = 0) to a purely random landscape
(k = N − 1). The parameter k reflects the interaction strength (epistasis) between different
sites. Weinberger proved that finding the global minimum of fNK is NP complete for k ≥ 2
(Weinberger, 1996). Nonetheless, Kauffman showed that for a specific instance of the NK
model with n = 96, there is still considerable correlation between the fitness of local optima
and their mutual Hamming distance for k = 2. Using this information, an adaptive local
search heuristic might still be able to find the global minimum efficiently. The correlation
structure is, however, lost for k = 4 (Kauffman, 1993), limiting the success of local search
procedures on this instance. A more recent study on the interplay between search operators
and NK landscapes can be found in (Merz, 2005).

Correlation between fitness and distance as a general measure of problem difficulty has been
popularized in (Jones and Forrest, 1995). They called this measure Fitness-distance correla-
tion (FDC) and successfully showed that it can explain the performance of genetic algorithms
on a set of combinatorial benchmark problems. Ever since, FDC analysis has been applied to
many landscapes arising from combinations of search heuristics and NP-complete problems,
such as the Graph Bi-Partitioning problem (Merz and Freisleben, 1998) or the unconstrained
binary Quadratic Assignment problem (Merz, 2004). An interesting approach relating land-
scape topology and design of search algorithms has been proposed by Ikeda and Kobayashi for
the Job-shop Scheduling Problem (JSP) (Ikeda and Kobayashi, 2000). The job-shop schedul-
ing problem consists of optimally assigning jobs to resources at particular times. The most
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Next we examine how the population converges in terms of the same expres-
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successful case of ft 10. Closer individuals increased favorably as Fig3(left), and 
the opt imum was found at the same time nearest individuals increased. In con-
trast, Fig5(right) shows the variation in an unsuccessful case of abz5, a harder 
instance than ftlO. As closer individuals increased till generation 10, decreased 
gradually, and finally converged to far-locals. The search space and the land-
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know information about where the optimum and far-locals are located in the 
search space. We generated random solutions, and grouped them by I2 distances 
to the opt imum and to one of known far-locals. In the easier instance ftlO, 52% 
of them are closer to the optimum 930 than to a far-local 938. This means, the 
optimum 930 and a far-local 938 are on an equal footing. On the other hand 

Figure 2.10: Relation between the disagreement rate of job order (distance) to the optimum (y-axis)
and the makespan (fitness) for FT10 (from (Ikeda and Kobayashi, 2000)).

basic version is as follows: Given n jobs j1, j2, . . . , jn of varying sizes. All jobs need to be
scheduled on m identical machines, such as to minimize the total length of the schedule, or the
make span. There are many problem variations, including constraints on the order of the jobs
or online vs. offline scenarios. Ikeda and Kobayashi realized that the “big valley structure”
hypothesis does not apply to many test problems of JSP, including the problems in the well-
known Fisher-Thompson (FT) library (Fisher and Thompson, 1963). An FDC plot of instance
FT10 is shown in Fig. 2.10. It indicates that the landscape has multiple near-optimal solutions
that are widely separated in solution space. At the same time, empirical evidence from several
studies suggested that local search heuristics including genetic algorithms, notoriously fail on
these instances. In order to qualitatively explain both the observed problem topology and
the reduced algorithm performance Ikeda and Kobayashi extended the “big valley structure”
hypothesis to a double-funnel topology, called the UV-structure. UV landscapes consist of a
U -shaped valley which is broad and shallow and a V -valley which is narrow and deep that
contains the global minimum. Local search methods or population-based heuristics are likely
to explore the U -shaped valley, hence failing to find the minimum in the V − shaped. In
order to remedy this behavior of standard heuristics on multi-funnel topologies, Ikeda and
Kobayashi proposed the Innately Split Model (ISM). The ISM starts local searches in several
groups that are initially spread across the landscape domain. When searches come close
to each other, one of them is removed and randomly restarted somewhere else. This simple
strategy increases the probability of exploring the V-shaped valley, while avoiding unnecessary
searches in the U-shaped valley. Applying this model to JSP instances drastically increased
the search performance (Ikeda and Kobayashi, 2000).

The combinatorial landscape studies presented so far have all been empirical in nature. The
analysis of possibly representative problem instances led to the development of novel heuris-
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tics that showed improved performance on a wider class of problem instances. A different,
more rigorous approach are autocorrelation analyses of landscapes by Edward D. Weinberger
(Weinberger, 1990). Weinberger’s fundamental contribution was to make the notion of land-
scape ruggedness precise. His method is based on generating random walks on the landscape
and estimating the autocorrelation function between fitness and walk length. A formal def-
inition of this autocorrelation can be found in Eq. (3.10). Weinberger provided both a first
mathematical treatise of the topic and numerical simulations on NK fitness landscapes. Al-
though mostly focused on biological fitness landscapes, he also commented on the hardness
of general optimization problems. For NK landscapes, his autocorrelation framework also
confirmed the sharp increase in problem difficulty from k = 2 and k = 4, as previously
discussed. In a series of papers throughout the past two decades Peter F. Stadler and co-
workers extended the idea of autocorrelation analysis, culminating in a general algebraic
or spectral theory of landscapes (see e.g. (Schuster and Stadler, 1994; Stadler, 1995, 1996;
Reidys and Stadler, 2002)). Stadler investigated both classical combinatorial optimization
landscapes and biological fitness landscapes, mostly related to RNA evolution. Within his
theory, he analytically derived autocorrelation functions for many NP-complete problems. He
found that specific combinations of NP problems and neighborhood definitions for a random
walk lead to so-called elementary landscapes with exponential autocorrelation function. A
comprehensive list of known autocorrelation coefficients, a derived quantity of the autocorre-
lation function, for combinatorial landscapes can be found in (Angel and Zissimopoulos, 2000).

Spectral landscape theory is to date the most rigorous approach toward a better understanding
of combinatorial optimization landscapes. An analog for continuous black-box landscapes (see
Def. 2.2) does not exist, and will probably never exist. This is due to the generality of
the landscape definition and the lack of underlying assumptions. Nonetheless, inspiration
can be drawn from the wealth of works presented in the areas of science and combinatorial
optimization, and some techniques may be transferred to the field of continuous black-box
optimization.

2.3.1 Continuous black-box landscapes and their impact on optimization

Continuous black-box optimization problems are ubiquitous in science and engineering. They
occur in many practical applications ranging from simple parameter identification in data
model fitting to intrinsic design-parameter optimization in complex technical systems. The
diversity of these real-world problems hampers a clean classification of problem structure
and complexity. We advocate that the landscape perspective offers a way to establish a
more refined analysis of continuous black-box optimization problems. It is conceivable that
“archetypal” landscape topologies are also present in many instances of black-box problems.
We summarize the key topologies we encountered so far in Fig. 2.11. The simplest topology
is a convex (and hence single-funnel) structure (Fig. 2.11a). This landscape has only one
minimum, which is the global one. If one knows in advance that both the landscape domain
and the objective function are convex, there is a wealth of exact and efficient techniques
for finding the global minimum. We refer to the excellent book of Boyd and Vandenberghe
for an overview (Boyd and Vandenberghe, 2004). A globally convex single-funnel landscape
topology (Fig. 2.11b) consists of a number of local minima that can be seen as high-frequency
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Figure 2.11: Sketches of archetypal landscape topologies. a. Convex single-funnel landscape. b.
Globally convex single-funnel landscape. c. Double-funnel landscape with a broad sub-
optimal funnel. d. Multi-modal landscape with minimum at the boundary and no funnel
structure. e. Same as d but with a deep, needle-like minimum. f. Golf-course or needle-
in-the-haystack topology with large regions of neutrality.

perturbations to an underlying convex structure (the big valley structure). Hu and co-workers
(Hu et al., 1989) attempted to make this notion precise by establishing the “δ-convexity”
property of a function on convex domains. The idea of δ-convexity is to allow non-convex
variations of the function on a length scale δ that is small compared to the size of the domain.
For all pairs of points separated by more than δ, convexity must hold in the usual sense. For
our purposes, however, this definition is not practical, as we comment on in the next section.
Another archetypal landscape structure is the double-funnel topology (Fig. 2.11c) that we
have seen in the case of Clark’s folding/aggregation energy landscape and the UV-structure
of the JSP instances. Whenever the funnel that contains the global minimum covers a much
smaller domain than the other funnels, it poses considerable challenges for the success of local
search heuristics, since most searches are drawn toward the bottom of the sub-optimal fun-
nel. In the black-box optimization community such a landscape is also called deceiving. The
double-funnel case is the simplest instance of the class of multi-funnel landscapes. Fig. 2.11d
and e show multi-modal landscapes with no global funnel structure. The notoriously hard
golf-course landscape or needle-in-the-haystack topology is depicted in Fig. 2.11f, where large
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flat regions surround a single narrow minimum.

Despite the tremendous number of novel black-box optimization heuristics published in the
past two decades, limited attention has been paid to the question what global topology a
certain problem instance has, how to measure it, and how success or failure of a certain
algorithm can be related to landscape topology. Few notable exceptions exist. Hansen and
Kern (Hansen and Kern, 2004) pointed out that for CMA-ES “a strong asymmetry of the
underlying function jeopardizes a successful detection and can lead to a failure.” However,
“if the local optima can be interpreted as perturbations of an underlying unimodal func-
tion”, CMA-ES performs well. Lunacek and co-workers investigated in their paper “The
impact of global structure on search” (Lunacek et al., 2008) the performance of heuristics on
double-funnel landscapes. Kobayashi and co-workers explicitly took into account landscape
topology for both algorithm design and interpretation of performance (see for instance (Ikeda
and Kobayashi, 2000; Sakuma and Kobayashi, 2001)). Wang and Li (Wang and Li, 2008)
generalized the NK model from the discrete to the continuous domain using the concept of
linkage function that defines the interaction (epistasis) between variables. They introduced a
number of continuous NK models with tunable epistasis strength and tested the capabilities
of several search heuristics on these landscapes. They were also the first to apply the FDC
measure for continuous fitness landscapes.

Given the lack of a common framework for continuous landscape analysis, we dedicate Chap-
ter 3 to this topic. We try to extend the present approaches within a statistical sampling
framework. Prior to this analysis we introduce traditional black-box test functions and a
benchmark suite that serve as test beds throughout this thesis.

2.3.2 Classical black-box optimization problem landscapes

Besides countless real-world applications of black-box heuristics, the design of novel algorithms
has traditionally been accompanied by numerical simulations on sets of benchmark functions.
Over the past 50 years, a surprisingly limited number of benchmark problems has formed the
common basis for algorithmic performance evaluation. These function are often named after
the author who defined or used them for the first time. In bio-inspired continuos optimiza-
tion, prominent examples are the Rastrigin, Rosenbrock, Ackley and Griewank function along
with the test sets provided by Kenneth de De Jong (De Jong, 1975) and Hans-Paul Schwefel
(Schwefel, 1993). Many of these functions have specific features that allow drawing conclusions
about the search and convergence behavior of the tested search strategies. In the following we
introduce the benchmark problems used in this thesis.

Sphere function

The sphere function is the prototypical quadratic function that is fundamental both for theo-
retical and empirical convergence studies of black-box algorithms. This separable function is
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defined as:

fSphere(x) =
n∑

i=1

x2
i . (2.8)

The global minimum is at the origin 0 with fSphere(0) = 0. For practical purposes, search is
often restricted to x ∈ [−5, 5]n. For the sphere function, an impressive body of theoretical
work exists with progress rates and convergence proofs of Evolution Strategies. We refer to
the excellent book of Hans-Georg Beyer for an overview (Beyer, 2001).

Rosenbrock function

Another standard test function is the generalized Rosenbrock (valley) or banana function,
Fig. 2.12, right):

fRosen(x) =
n−1∑

i=1

(
100(xi+1 − x2

i )
2 + (xi − 1)2

)
. (2.9)

The global minimum is at 1 with fRosen(1) = 0. Search is usually constrained to x ∈ [−2, 2]n.
Rosenbrock’s function is multi-modal for n > 3, and it exhibits the interesting topology of a
curved valley. On a global length scale (‖xi‖ > 1), the first summand dominates and attracts
most search heuristics toward the origin. On smaller length scales (‖xi‖ � 1), however, the
second term dominates and forms a bent parabolic valley that leads from the origin to the
global minimum at 1. On this function it is therefore favorable to constantly reorient the
search direction along the valley.

Rastrigin function

The Rastrigin function (Fig. 2.12 left) can be considered as the prototypical multi-modal
function with an underlying globally convex (or even more, quadratic) topology. It is defined
as:

fRast(x) = An+
n∑

i=1

(
x2
i −A cosωxi

)
. (2.10)

Standard settings for amplitude and frequency are A = 10 and ω = 2π. The global minimum
is at 0 with fRast(0) = 0, and the domain is restricted to x ∈ [−5, 5]n. Far away from the
minimum the quadratic term dominates and the basin depths decrease. Close to the minimum
the cosine term renders the landscape highly rugged with basins of depth ≈ A. Within the
prescribed domain the Rastrigin function contains 11n basins. The interior basins all have unit
volume, the basins at the boundary have a location-dependent volume. For instance, at an
n-dimensional corner the basin size is 0.25n. Because the amplitude A is considerably smaller
than the total scale of function values, and each minimum has several neighboring minima
(under Euclidean distance) that are lower in fitness, we consider the Rastrigin function a
single-funnel landscape.
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Figure 2.12: Rastrigin (left) and Rosenbrock (right) function in 2D

Lunacek’s double-funnel functions

Lunacek and co-workers (Lunacek et al., 2008) introduced two functions that have a parametriz-
able double-funnel topology. The first function is the Double Sphere fDS:

fDS(x) = min

(
n∑

i=1

(xi − µ1)
2
, d n+ s

n∑

i=1

(xi − µ2)
2

)
(2.11)

with µ1 = 2.5 and µ2 = −2.5. The domain is restricted to x ∈ [−5, 5]n. The landscape can be
tuned with the parameters s and d, where s controls the size and d the depth of the second
funnel. Lunacek and co-workers further proposed to consider s the primary control variable
for tests and to ensure that the two funnels always intersect at the origin. For any fixed d, this
can be achieved by choosing µ2 = −

√
(µ2

1 − d) /s. The second function is constructed from500 M. Lunacek, D. Whitley, and A. Sutton

d=1
d=2
d=3
d=4

Fig. 1. The impact of d and s on the double-sphere function. Increasing d creates more distinction
between the funnels (left). When s = 0 (middle), the two funnels are the same size. Decreasing
s creates a larger sub-optimal funnel (right).

opposite is true when s is less than one. The overall form of our multi-funnel sphere
function is:

fdouble-sphere(x) = min

(
N∑

i=1

(xi − µ1)
2, d · N + s ·

N∑

i=1

(xi − µ2)
2

)

In order to make s the primary control characteristic for the size of each basin of
attraction, we shifted the mean of the sub-optimal sphere such that the barrier between
them, which is the point at which they intersect, is always located at the origin of the
search space. This configuration requires µ2 = −

√
(µ2

1 − d)/s.
Values s and d control the size and depth of the sub-optimal funnel. The leftmost

graph in Figure 1 is a diagonal slice showing how the different values of d impact
the depth of the sub-optimal funnel. The middle and right-most contour plots illustrate
the impact of s. The two funnels are the same size in the middle graph (e.g. s = 1.0),
but the right-most graph creates a larger sub-optimal funnel (white) using s = 0.7.
We use the quadratic penalty term described by Hansen and Kern [2] to enforce strong
boundaries.

2.2 The Double-Rastrigin

We wanted a double-funnel test problem with properties similar to Rastrigin’s func-
tion because it would isolate global structure as the main difference impacting problem
difficulty on a problem that is well-understood. We create a double-funnel version of
Rastrigin’s function by adding local optima to the double-sphere function. We translate
the cosine term used in Rastrigin’s function by µ1 so that the minimum of the local
optima component is centered at the bottom of the optimal funnel. The overall form of
the double-Rastrigin function is

fdouble-Rastrigin(x) = fdouble-Sphere(x) + 10
N∑

i=1

(1 − cos 2π(xi − µ1))

Figure 2.13: The influence of d and s on the double-sphere function. Increasing d creates more dif-
ference between the basin depths (left). When s = 0 (middle), the two basins have the
same size. Decreasing s creates a larger sub-optimal basin (right) (from (Lunacek et al.,
2008)).
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fDS(x) and a Rastrigin function as:

fDR(x) = fDS(x) + 10
n∑

i=1

(1− cos 2π (xi − µ1)) . (2.12)

This Double-Rastrigin function fDR(x) is a prototypical rugged double-funnel landscape with
similar basin size distribution as the original Rastrigin function.

Kjellström’s function

This multi-modal function has been proposed by (Kjellström and Taxen, 1992). We hence
propose to call this function Kjellström’s function fKjell. It is defined as:

fKjell(x) =
n∏

i=1

(1 + h(xi)), h(xi) = 0.01
5∑

j=1

[cos(jxi + bj)] , (2.13)

with b = [b1, . . . , b5] = [1.982, 5.720, 1.621, 0.823, 3.222] and x ∈ [0, 2π]n. In the original
publication the location of the global minimum xmin is said to be roughly at ximin = 2.34, i =
1, . . . , n. We numerically determined the more accurate value of ximin = 2.34861543, i =
1, . . . , n with the minimum value fKjell(xmin) ≈ 0.96916908n. Figure 2.14 depicts the one-
dimensional Kjellström function. In 1D, fKjell has 5 minima. The global maximum xmax

(located at a value slightly larger than x = π) divides the search space into two parts: The
region x < xmax covers a bit more than half of the space (solid green bar in Fig. 2.14).
This region contains, on average, lower function values than the other region, which simplifies
searching for the global minimum xmin. The basin sizes vary from ≈ 0.5 to ≈ 1.5. The n-
dimensional fKjell is the Cartesian product of n 1D functions. Kjellström’s function is, hence,
a separable multi-modal function with 5n basins and no funneled topology.

Black-box optimization benchmark suites

A common shortcoming of many empirical optimization studies using classical benchmark
functions is the lack of a standard protocol of how to perform the numerical simulations.
Each publication usually considers its own subset of test functions, number of allowed func-
tion evaluations, number of repetitions of the experiments, dimensionality of the problems,
and performance measures. This makes it impossible to compare results across publications.
One of the earliest attempts to standardize these benchmarks was a contest on numerical
optimization at the International Conference of Evolutionary Computation in 1996 (Bersini
et al., 1996). Whitley and co-workers (Whitley et al., 1995) developed guidelines for the
design of meaningful test suites and showed that standard test functions do not follow these
guidelines. Three key requirements were proposed: Test suites should contain (i) landscapes
that are resistant to “hill-climbing” methods, (ii) non-linear, non-separable landscapes, and
(iii) non-separable and scalable landscapes. Hill-climbing methods are iterative local search
methods that choose strictly improving steps in order to reach the next optimum. Highly
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Figure 2.14: The multi-modal function fKjell in 1D. The global minimum xmin is contained in a locally
convex region (blue dashed bar) that belongs to a sub-region of the space (solid green
bar) that is slightly larger than π. The global maximum xmax separates this region from
the right part of the space. The red dotted bar spans the full search space of length 2π

multi-modal landscapes are resistant to such methods because a hill climber possibly needs to
explore all modes for successfully finding the global minimum. From our previous examples
we see that the property of simultaneous non-linearity and non-separability is not satisfied
by the Sphere, the Rastrigin and the Kjellström functions. There is no non-linear interac-
tion between the variables. Hence, global optimization can be reduced to n one-dimensional
search problems. Non-separability can easily be achieved by rotating the landscape domain.
The property of scalability is concerned with the computational cost of evaluating the func-
tion for increasing dimensionality. Consider the problem f1(x1, x2) where both variables
interact with each other. An n-dimensional generalization with a linear scaling behavior
can be constructed through expanded functions where only pairs of variables interact, e.g.,
fn(x1, . . . , xn) = f1(x1, x2) + . . .+ f1(xn−1, xn). The Rosenbrock function is an example of a
scalable function.

It was, however, not before the 2005 IEEE Congress on Evolutionary Computation that a
comprehensive and well balanced suite of test functions was agreed on. This IEEE CEC 2005
benchmarks considered many of the above criteria (Suganthan et al., 2005). The test suite
has been designed by experts for the IEEE CEC 2005 Special Session on Real-Parameter
Optimization. It is intended to define a standard benchmark for real-parameter optimization
algorithms, along with standardized evaluation criteria and testing procedures, thus allowing
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2 Landscapes

 4

2. Definitions of the 25 CEC’05 Test Functions 

2.1 Unimodal Functions: 

2.1.1.  F1: Shifted Sphere Function 

2

1 1

1

( ) _
D

i

i

F z f bias
!

! "#x , ! $z x o , 1 2[ , ,..., ]Dx x x!x        

D: dimensions.  1 2[ , ,..., ]Do o o!o  : the shifted global optimum. 

 
Figure 2-1 3-D map for 2-D function 

 

Properties: 

! Unimodal  

! Shifted 

! Separable 

! Scalable 

! [ 100,100]D% $x , Global optimum: * !x o , 1( *) 1F f_bias!x = - 450 

 

Associated Data files: 

Name:   sphere_func_data.mat  

sphere_func_data.txt 

Variable:  o 1*100 vector  the shifted global optimum 

  When using, cut o=o(1:D) 

 

Name:   fbias_data.mat  

fbias_data.txt 

Variable:  f_bias 1*25 vector, record all the 25 function’s f_biasi 
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2.1.2.   F2: Shifted Schwefel’s Problem 1.2 

2

2 2

1 1

( ) ( ) _
D i

j

i j

F z f bias
! !

! "# #x , ! $z x o , 1 2[ , ,..., ]Dx x x!x       

D: dimensions 

1 2[ , ,..., ]Do o o!o  : the shifted global optimum 

 
Figure 2-2  3-D map for 2-D function 

 

Properties: 

! Unimodal  

! Shifted 

! Non-separable 

! Scalable 

! [ 100,100]D% $x , Global optimum * !x o , *

2 ( ) 2F f_bias!x = - 450 

 

Associated Data files: 

Name:   schwefel_102_data.mat  

schwefel_102_data.txt 

Variable:  o 1*100 vector  the shifted global optimum 

  When using, cut o=o(1:D) 
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2.1.3. F3: Shifted Rotated High Conditioned Elliptic Function 
1

6 21
3 3

1

( ) (10 ) _
iD

D
i

i

F z f bias
!

!

"

" #$x , ( )*" !z x o M , 1 2[ , ,..., ]Dx x x"x      

D: dimensions 

1 2[ , ,..., ]Do o o"o  : the shifted global optimum 

M: orthogonal matrix 

 
Figure 2-3 3-D map for 2-D function 

Properties: 

! Unimodal  

! Shifted 

! Rotated  

! Non-separable 

! Scalable  

! [ 100,100]D% !x , Global optimum * "x o , *

3 ( ) 3F f_bias"x =- 450 

 

Associated Data files: 

Name:   high_cond_elliptic_rot_data.mat  

high_cond_elliptic_rot_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 

Name:  elliptic_M_D10 .mat  elliptic_M_D10 .txt   

Variable:  M 10*10 matrix   

 

Name:  elliptic_M_D30 .mat  elliptic_M_D30 .txt   

Variable:  M 30*30 matrix   

 

Name:  elliptic_M_D50 .mat  elliptic_M_D50 .txt   

Variable:  M 50*50 matrix   
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2.1.4. F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness 

2

4 4

1 1

( ) ( ( ) )*(1 0.4 (0,1) ) _
D i

j

i j

F z N f bias
! !

! " "# #x , ! $z x o , 1 2[ , ,..., ]Dx x x!x    

D: dimensions 

1 2[ , ,..., ]Do o o!o  : the shifted global optimum 

 
Figure 2-4 3-D map for 2-D function 

Properties: 

! Unimodal  

! Shifted 

! Non-separable 

! Scalable 

! Noise in fitness 

! [ 100,100]D% $x , Global optimum * !x o , *

4 ( ) 4F f_bias!x = - 450 

 

Associated Data file: 

Name:   schwefel_102_data.mat  

schwefel_102_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 8

2.1.5. F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds 

1 2 1 2( ) max{ 2 7 , 2 5}, 1,...,f x x x x i n! " # " # !x , * [1,3]!x , *( ) 0f !x  

Extend to D dimensions: 

5 5( ) max{ } _ , 1,...,i iF f bias i D! # " !x A x B , 1 2[ , ,..., ]Dx x x!x  

D: dimensions 

A is a D*D matrix, 
ija are integer random numbers in the range [-500, 500], det( ) 0$A , A

i
 is the 

i
th

 row of A. 

*i i!B A o , o is a D*1 vector, io  are random number in the range [-100,100] 

After load the data file, set 100io ! # , for 1,2,..., / 4i D! % &' ( , 100io ! ,for 3 / 4 ,...,i D D! ' () *  

 
Figure 2-5 3-D map for 2-D function 

Properties: 

! Unimodal  

! Non-separable 

! Scalable 

! If the initialization procedure initializes the population at the bounds, this problem will be 

solved easily. 

! [ 100,100]D+ #x , Global optimum * !x o , *

5 ( ) 5F f_bias!x = - 310 

 

Associated Data file: 

Name:   schwefel_206_data.mat  

schwefel_206_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  A 100*100 matrix  

  When using, cut o=o(1:D)  A=A(1:D,1:D) 

In schwefel_206_data.txt ,the first line is o (1*100 vector),and line2-line101 is 

A(100*100 matrix)  
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2.2 Basic Multimodal Functions 

2.2.1. F6: Shifted Rosenbrock’s Function 
1

2 2 2

6 1 6

1

( ) (100( ) ( 1) ) _
D

i i i

i

F z z z f bias
!

"
#

# ! " ! "$x , 1# ! "z x o , 1 2[ , ,..., ]Dx x x#x  

D: dimensions 

1 2[ , ,..., ]Do o o#o  : the shifted global optimum 

 
Figure 2-6 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Non-separable 

! Scalable 

! Having a very narrow valley from local optimum to global optimum 

! [ 100,100]D% !x , Global optimum * #x o , *

6 ( ) 6F f_bias#x = 390 

 

Associated Data file: 

Name:   rosenbrock_func_data.mat  

rosenbrock_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

f6f5f4

f3f2f1

Figure 2.15: 2D landscapes of CEC functions f1–f6

performance comparisons of different optimization algorithms across publications. The suite
consists of 25 functions with different properties. The names of the functions are listed in
Table 2.1. Functions f1 to f5 are unimodal, f6 to f12 are basic multi-modal. Functions f13 is a
expanded function consisting of two different functions. Function f14 is an expanded function
consisting of two-dimensional Scaffer’s F6 functions with different parameterizations. Func-
tions f15 to f25 are composite test functions that are formed by superposition of more than
two standard test functions. From a landscape perspective we consider f11–f13 and f15–f25
multi-funnel instances (see Fig. 2.15 to Fig. 2.17 for 2D versions of all CEC landscapes). In
order to prevent exploitation of search space symmetry, all problems are shifted and many of
them are rotated. This means that the global minimum is never located in the center of the
search domain. Moreover, the global minimum of each function is different from the common
zero value. Rotation of the search space makes almost all problems non-separable. Functions
f4 and f17 are corrupted by addition of a noise term that vanishes at the global minimum.
All problems are box-constrained, except functions f7 and f25, which are unconstrained. An
advantageous feature of the IEEE CEC 2005 test suite is the existence of comparison groups
of similar functions, allowing sensitivity tests of search algorithms with respect to chang-
ing features of the problem. The functions f1–f3 are all quadratic functions with different
condition numbers of the Hessian H(xmin). The function f4 is the same as f2 with an ad-
ditional noise term. Function f10 is a rotated version of f9 that is essentially the Rastrigin
function with shifted global minimum. We refer to the 50-page technical report of the test
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2.2.2. F7: Shifted Rotated Griewank’s Function without Bounds 
2

7 7

1 1

( ) cos( ) 1 _
4000

DD
i i

i i

z z
F f bias

i! !

! " # #$ %x  , ( )*! "z x o M , 1 2[ , ,..., ]Dx x x!x  

D: dimensions 

1 2[ , ,..., ]Do o o!o  : the shifted global optimum 

M’: linear transformation matrix, condition number=3 

M =M’(1+0.3|N(0,1)|) 

 
Figure 2-7 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Rotated 

! Shifted 

! Non-separable 

! Scalable 

! No bounds for variables x 

! Initialize population in [0,600]D , Global optimum * !x o is outside of the initialization 

range, *

7 ( ) 7F f_bias!x = -180 

 

Associated Data file: 

Name:   griewank_func_data.mat  griewank_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 

Name:  griewank_M_D10 .mat griewank_M_D10 .txt   

Variable:  M 10*10 matrix    

 

Name:  griewank_M_D30 .mat griewank_M_D30 .txt   

Variable:  M 30*30 matrix    

 

Name:  griewank_M_D50 .mat griewank_M_D50 .txt   

Variable:  M 50*50 matrix   
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2.2.3. F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds 

2

8 8

1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20 _

D D

i i

i i

F z z e f bias
D D

!
" "

" # # # $ $ $% %x , ( )*" #z x o M ,  

1 2[ , ,..., ]Dx x x"x , D: dimensions 

1 2[ , ,..., ]Do o o"o  : the shifted global optimum;  

After load the data file, set 2 1 32jo # " # 2 jo  are randomly distributed in the search range, for 

1,2,..., / 2j D" & '( )  

M: linear transformation matrix, condition number=100 

 
Figure 2-8 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Rotated 

! Shifted 

! Non-separable 

! Scalable 

! A’s condition number Cond(A) increases with the number of variables as 2( )O D  

! Global optimum on the bound 

! If the initialization procedure initializes the population at the bounds, this problem will be 

solved easily. 

! [ 32,32]D* #x , Global optimum * "x o , *

8 ( ) 8F f_bias"x = - 140 

 

Associated Data file: 

Name:   ackley_func_data.mat  ackley_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 

Name:  ackley_M_D10 .mat ackley_M_D10 .txt   

Variable:  M 10*10 matrix    

Name:  ackley_M_D30 .mat ackley_M_D30 .txt   

Variable:  M 30*30 matrix   

Name:  ackley_M_D50 .mat ackley_M_D50 .txt   

Variable:  M 50*50 matrix   
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2.2.4. F9: Shifted Rastrigin’s Function 

2

9 9

1

( ) ( 10cos(2 ) 10) _
D

i i

i

F z z f bias!
"

" # $ $%x , " #z x o , 1 2[ , ,..., ]Dx x x"x  

D: dimensions 

1 2[ , ,..., ]Do o o"o  : the shifted global optimum 

 
Figure 2-9 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Separable 

! Scalable 

! Local optima’s number is huge 

! [ 5,5]D& #x , Global optimum * "x o , *

9 ( ) 9F f_bias"x = - 330 

 

Associated Data file: 

Name:   rastrigin_func_data.mat  

rastrigin_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 13

2.2.5.  F10: Shifted Rotated Rastrigin’s Function 

2

10 10

1

( ) ( 10cos(2 ) 10) _
D

i i

i

F z z f bias!
"

" # $ $%x , ( )*" #z x o M , 1 2[ , ,..., ]Dx x x"x     

D: dimensions 

1 2[ , ,..., ]Do o o"o  : the shifted global optimum 

M: linear transformation matrix, condition number=2 

 
Figure 2-10 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Rotated 

! Non-separable 

! Scalable 

! Local optima’s number is huge 

! [ 5,5]D& #x , Global optimum * "x o , *

10 ( ) 10F f_bias"x = - 330 

 

Associated Data file: 

Name:   rastrigin_func_data.mat  

rastrigin_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 

Name:  rastrigin_M_D10 .mat  rastrigin_M_D10 .txt   

Variable:  M 10*10 matrix   

 

Name:  rastrigin_M_D30 .mat   rastrigin_M_D30 .txt   

Variable:  M 30*30 matrix   

 

Name:  rastrigin_M_D50 .mat  rastrigin_M_D50 .txt   

Variable:  M 50*50 matrix   
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2.2.6. F11: Shifted Rotated Weierstrass Function 
max max

11 11

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)] _
D k k

k k k k

i

i k k

F a b z D a b f bias! !
" " "

" # $ % #& & &x ,  

a=0.5, b=3, kmax=20, ( )*" $z x o M   , 1 2[ , ,..., ]Dx x x"x  

D: dimensions 

1 2[ , ,..., ]Do o o"o  : the shifted global optimum 

M: linear transformation matrix, condition number=5 

 
Figure 2-11 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Rotated 

! Non-separable 

! Scalable 

! Continuous but differentiable only on a set of points 

! [ 0.5,0.5]D' $x , Global optimum * "x o , *

11( ) 11F f_bias"x = 90 

 

Associated Data file: 

Name:   weierstrass_data.mat    weierstrass_data.txt 

Variable:  o 1*100 vector   the shifted global optimum 

  When using, cut o=o(1:D) 

 

Name:  weierstrass_M_D10 .mat weierstrass_M_D10 .txt   

Variable:  M 10*10 matrix   

 

Name:  weierstrass_M_D30 .mat weierstrass_M_D30 .txt   

Variable:  M 30*30 matrix   

 

Name:  weierstrass_M_D50 .mat weierstrass_M_D50 .txt   

Variable:  M 50*50 matrix   
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2.2.7. F12: Schwefel’s Problem 2.13 

2

12 12

1

( ) ( ( )) _
D

i i

i

F f bias
!

! " #$x A B x , 1 2[ , ,..., ]Dx x x!x  

1

( sin cos )
D

i ij j ij j

j

a b% %
!

! #$A ,
1

( ) ( sin cos )
D

i ij j ij j

j

x a x b x
!

! #$B , for 1,...,i D!  

D: dimensions 

A, B are two D*D matrix, ija , ijb  are integer random numbers in the range [-100,100], 

1 2[ , ,..., ]D% % %!% ,
j%  are random numbers in the range [ , ]& &" . 

 
Figure 2-12 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Non-separable 

! Scalable 

! [ , ]D& &' "x , Global optimum * !x % , *

12 ( ) 12F f_bias!x = - 460 

 

Associated Data file: 

Name:   schwefel_213_data.mat  

schwefel_213_data.txt 

Variable:  alpha 1*100 vector   the shifted global optimum 

  a 100*100 matrix  

  b 100*100 matrix  

  When using, cut alpha=alpha(1:D) a=a(1:D,1:D) b=b(1:D,1:D)  

In schwefel_213_data.txt, and line1-line100 is a (100*100 matrix),and line101-

line200 is b (100*100 matrix), the last line is alpha(1*100 vector),  16

2.3 Expanded Functions  

Using a 2-D function ( , )F x y as a starting function, corresponding expanded function is: 

1 2 1 2 2 3 1 1( , ,..., ) ( , ) ( , ) ... ( , ) ( , )D D D DEF x x x F x x F x x F x x F x x!" # # # #  

 

2.3.1. F13: Shifted Expanded Griewank’s plus Rosenbrock’s Function (F8F2)  

F8: Griewank’s Function: 
2

1 1

8( ) cos( ) 1
4000

DD
i i

i i

x x
F

i" "

" ! #$ %x  

F2: Rosenbrock’s Function: 
1

2 2 2

1

1

2( ) (100( ) ( 1) )
D

i i i

i

F x x x
!

#
"

" ! # !$x  

1 2 1 2 2 3 1 18 2( , ,..., ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , ))D D D DF F x x x F F x x F F x x F F x x F F x x!" # # # #
 

Shift to 

13 1 2 2 3 1 1 13( ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , )) _D D DF F F z z F F z z F F z z F F z z f bias!" # # # # #x

1" ! #z x o  , 1 2[ , ,..., ]Dx x x"x  

D: dimensions  1 2[ , ,..., ]Do o o"o  : the shifted global optimum 

 
Figure 2-13 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Non-separable 

! Scalable 

! [ 3,1]D& !x , Global optimum * "x o , *

13 ( ) 13F f_bias"x (13)=-130 

 

Associated Data file: 

Name:   EF8F2_func_data.mat  

EF8F2_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum  

  When using, cut o=o(1:D)   
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2.3.2. F14: Shifted Rotated Expanded Scaffer’s F6 Function 

2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))

x y
F x y

x y

! "
# !

! !
 

Expanded to  

14 1 2 1 2 2 3 1 1 14( ) ( , ,..., ) ( , ) ( , ) ... ( , ) ( , ) _D D D DF EF z z z F z z F z z F z z F z z f bias"# # ! ! ! ! !x ,

( )*# "z x o M , 1 2[ , ,..., ]Dx x x#x  

D: dimensions 

1 2[ , ,..., ]Do o o#o  : the shifted global optimum 

M: linear transformation matrix, condition number=3 

 
Figure 2-14 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Shifted 

! Non-separable 

! Scalable 

! [ 100,100]D$ "x , Global optimum * #x o , *

14 ( ) 14F f_bias#x (14)= -300 

 

Associated Data file: 

Name:   E_ScafferF6_func_data.mat  E_ScafferF6_func_data.txt 

Variable:  o 1*100 vector   the shifted global optimum  

  When using, cut o=o(1:D)  

 

Name:  E_ScafferF6_M_D10 .mat E_ScafferF6_M_D10 .txt   

Variable:  M 10*10 matrix   

 

Name:  E_ScafferF6_M_D30 .mat E_ScafferF6_M_D30 .txt   

Variable:  M 30*30 matrix   

 

Name:  E_ScafferF6_M_D50 .mat E_ScafferF6_M_D50 .txt   

Variable:  M 50*50 matrix   
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1
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D
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i
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$
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iM  are all rotation matrices, condition numbers are [100 50 30 10 5 5 4 3 2 2 ]; 

 
Figure 2-24 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Rotated 

! Non-Separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Unimodal Functions give flat areas for the function. 

! [ 5,5]D- (x , Global optimum *

1$x o , *

24 ( ) 24F f_bias$x = 260 

 

 

 

Associated Data file: 
Name:   hybrid_func4_data.mat  

hybrid_func4_data.txt 

Variable:  o 10*100 vector  the shifted optima for 10 functions 

  When using, cut o=o(:,1:D)  

f24

f14f13f12

f11f10f9

f8
f7

Figure 2.16: 2D landscapes of CEC functions f7–f14 and f24

suite (Suganthan et al., 2005) for a full list of comparison groups and exact function definitions.

An important issue of the suite is the experimental protocol. All 25 functions are supposed
to be evaluated 25 times for n = 10, 30, 50 dimensions. The allowed budget of function
evaluations (FES) is restricted to MAX FES= 104 n for each run. This reflects the limited
resources often encountered in real-world applications, where an acceptable solution should
be found within a restricted number of black-box evaluations. The benchmark settings are
summarized in Table 2.2. Furthermore, the benchmark suite specifies the level of accuracy ε
for the optimal solutions. An algorithm is considered to have solved a certain problem if it
reaches an objective value f(x) < f(xmin) + ε (see Table 2.3). Since 2005, a large number
of algorithms has been tested on this benchmark suite. It was thus the natural choice for
our work, which started in 2007. We note, however, that recently a more flexible test bed
has been introduced: the COCO (Comparing Continuous Optimisers) platform for Black-
Box Optimisation Benchmarking (BBOB), presented at two GECCO workshops in 2009 and
2010. In COCO/BBOB, both noise-free and noisy test functions are provided, including Lu-
nacek’s Double-Rastrigin landscape and a function created by Gallagher’s landscape generator
(Gallagher and Yuan, 2006). The COCO platform moreover includes scripts for automatic
post-processing and presentation of the results in a unified manner. More details can be found
at http://coco.gforge.inria.fr/doku.php. Testing our techniques and algorithms within
the COCO platform will be a topic of future research.
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2.4.6. F20: Rotated Hybrid Composition Function with Global Optimum on the Bounds 

All settings are the same as F18  except after load the data file, set 1(2 ) 5jo ! , for 

1, 2,..., / 2j D! " #$ %  

 
Figure 2-20 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Non-separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Sphere Functions give two flat areas for the function. 

! A local optimum is set on the origin 

! Global optimum is on the bound 

! If the initialization procedure initializes the population at the bounds, this problem will be 

solved easily. 

! [ 5,5]D& 'x , Global optimum *

1!x o , *

20 20( ) _F f bias!x =10 

 

Associated Data file: 
Same as F18. 
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Figure 2-15 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Separable near the global optimum (Rastrigin) 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Sphere Functions give two flat areas for the function 

! [ 5,5]D! "x , Global optimum *

1#x o , *

15 ( ) 15F f_bias#x = 120 

 

Associated Data file: 
Name:   hybrid_func1_data.mat  

hybrid_func1_data.txt 

Variable:  o 10*100 vector the shifted optimum for 10 functions 

  When using, cut o=o(:,1:D)  
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2.4.3. F17: F16 with Noise in Fitness 

Let (F16 - f_bias16) be ( )G x , then   

17 17( ) ( )*(1+0.2 N(0,1) ) _F G f bias! "x x    

All settings are the same as F16. 

 
Figure 2-17 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Rotated 

! Non-Separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Sphere Functions give two flat areas for the function. 

! With Gaussian noise in fitness  

! [ 5,5]D# $x , Global optimum *

1!x o , *

17 17( ) _F f bias!x =120 

 

Associated Data file: 
Same as F16.   
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2.4.2. F16: Rotated Version of Hybrid Composition Function F15 

Except iM  are different linear transformation matrixes with condition number of 2, all other 

settings are the same as F15. 

 
Figure 2-16 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Rotated 

! Non-Separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Sphere Functions give two flat areas for the function. 

! [ 5,5]D! "x , Global optimum *

1#x o , *

16 ( ) 16F f_bias#x =120 

 

Associated Data file: 
Name:   hybrid_func1_data.mat  

hybrid_func1_data.txt 

Variable:  o 10*100 vector  the shifted optima for 10 functions 

  When using, cut o=o(:,1:D)  

 

Name:  hybrid_func1_M_D10 .mat  

Variable:  M an structure variable 

Contains M.M1 M.M2, … , M.M10 ten 10*10 matrixes  

Name:  hybrid_func1_M_D10 .txt 

Variable:  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are 

M1, 11-20 lines are M2,....,91-100 lines are M10 

 

Name:  hybrid_func1_M_D30 .mat  

Variable:  M an structure variable contains M.M1,…,M.M10 ten 30*30 matrix  

Name:  hybrid_func1_M_D30 .txt   
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2.4.4. F18: Rotated Hybrid Composition Function 

1 2 ( )f ! x : Ackley’s Function 

2

1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

D D

i i i

i i

f x x e
D D

"
# #

# ! ! ! $ $% %x   

3 4 ( )f ! x : Rastrigin’s Function 

2

1

( ) ( 10cos(2 ) 10)
D

i i i

i

f x x"
#

# ! $%x  

5 6 ( )f ! x : Sphere Function 

2

1

( )
D

i i

i

f x
#

#%x  

7 8 ( )f ! x : Weierstrass Function 

max max

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k

i i

i k k

f a b x D a b" "
# # #

# $ ! &% % %x ,  

a=0.5, b=3, kmax=20 

9 10 ( )f ! x : Griewank’s Function 

2

1 1

( ) cos( ) 1
4000

DD
i i

i

i i

x x
f

i# #

# ! $% 'x   

( =[1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2]; 

) = [2*5/32; 5/32; 2*1; 1; 2*5/100; 5/100; 2*10; 10; 2*5/60; 5/60] 

iM  are all rotation matrices. Condition numbers are [2 3 2 3 2 3 20 30 200 300] 

10 [0,0,...,0]#o  

 
Figure 2-18 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Rotated 

! Non-Separable 

! Scalable 
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2.4.5. F19: Rotated Hybrid Composition Function with narrow basin global optimum 

All settings are the same as F18 except 

! =[0.1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2];, 

" = [0.1*5/32; 5/32; 2*1; 1; 2*5/100; 5/100; 2*10; 10; 2*5/60; 5/60] 

 
Figure 2-19 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Non-separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Sphere Functions give two flat areas for the function. 

! A local optimum is set on the origin 

! A narrow basin for the global optimum 

! [ 5,5]D# $x , Global optimum *

1%x o , *

19 19( )F f_bias%x (19)=10 

 

Associated Data file: 
Same as F18.  
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2.4.8. F22: Rotated Hybrid Composition Function with High Condition Number Matrix 

All settings are the same as F21 except iM ’s condition numbers are [10 20 50 100 200 1000 

2000 3000 4000 5000] 

 
Figure 2-22 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Non-separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Global optimum is on the bound 

! [ 5,5]D! "x , Global optimum *

1#x o , *

22 ( ) 22F f_bias#x =360 

 

Associated Data file: 
Name:   hybrid_func3_data.mat  

hybrid_func3_data.txt 

Variable:  o 10*100 vector  the shifted optima for 10 functions 

  When using, cut o=o(:,1:D)  

 

Name:  hybrid_func3_HM_D10 .mat  

Variable:  M an structure variable 

Contains M.M1 M.M2, … , M.M10 ten 10*10 matrixes  

Name:  hybrid_func3_HM_D10 .txt 

Variable:  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 10*10 matrixes, 1-10 lines are 

M1, 11-20 lines are M2,....,91-100 lines are M10 

 

Name:  hybrid_func3_HM_D30 .mat  

Variable:  M an structure variable contains M.M1,…,M.M10 ten 30*30 matrix  

Name:  hybrid_func3_MH_D30 .txt   

Variable:  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 are ten 30*30 matrixes, 1-30 lines are 

M1, 31-60 lines are M2,....,271-300 lines are M10 
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2.4.9. F23: Non-Continuous Rotated Hybrid Composition Function 

All settings are the same as F21. 

Except 
1

1

1/ 2

(2 ) / 2 1/ 2

j j j

j

j j j

x x o
x

round x x o

! " #$
% &

" '%$(

for 1, 2,..,j D%  

1 0 & 0.5

( ) 0.5

1 0 & 0.5

a if x b

round x a if b

a if x b

" #% '%!
$

% #&
$ ) ' '%(

,  

where a is x ’s integral part and b is x ’s decimal part 

All “round” operators in this document use the same schedule. 

 
Figure 2-23 3-D map for 2-D function 

Properties: 

! Multi-modal  

! Non-separable 

! Scalable 

! A huge number of local optima 

! Different function’s properties are mixed together 

! Non-continuous  

! Global optimum is on the bound 

! [ 5,5]D* "x , Global optimum *

1%x o , *( )f +x f_bias (23)=360 

 

Associated Data file: 

Same as F21. 
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2.4.7. F21: Rotated Hybrid Composition Function 

1 2 ( )f ! x : Rotated Expanded Scaffer’s F6 Function 

2 2 2

2 2 2

(sin ( ) 0.5)
( , ) 0.5

(1 0.001( ))

x y
F x y

x y

" !
# "

" "
 

1 2 2 3 1 1( ) ( , ) ( , ) ... ( , ) ( , )i D D Df F x x F x x F x x F x x!# " " " "x  

3 4 ( )f ! x : Rastrigin’s Function 

2

1

( ) ( 10cos(2 ) 10)
D

i i i

i

f x x$
#

# ! "%x  

5 6 ( )f ! x : F8F2 Function 

 
2

1 1

8( ) cos( ) 1
4000

DD
i i

i i

x x
F

i# #

# ! "% &x  

1
2 2 2

1

1

2( ) (100( ) ( 1) )
D

i i i

i

F x x x
!

"
#

# ! " !%x  

1 2 2 3 1 1( ) 8( 2( , )) 8( 2( , )) ... 8( 2( , )) 8( 2( , ))i D D Df F F x x F F x x F F x x F F x x!# " " " "x  

7 8 ( )f ! x : Weierstrass Function 

max max

1 0 0

( ) ( [ cos(2 ( 0.5))]) [ cos(2 0.5)]
D k k

k k k k

i i

i k k

f a b x D a b$ $
# # #

# " ! '% % %x ,  

a=0.5, b=3, kmax=20 

9 10 ( )f ! x : Griewank’s Function 

2

1 1

( ) cos( ) 1
4000

DD
i i

i

i i

x x
f

i# #

# ! "% &x   

[1,1,1,1,1,2,2,2,2,2]#( , 

) = [5*5/100; 5/100; 5*1; 1; 5*1; 1; 5*10; 10; 5*5/200; 5/200]; 

iM  are all  orthogonal matrix 

 
Figure 2-21 3-D map for 2-D function 

 

f22
f21 f23

f20f19

f17f16f15

f18

Figure 2.17: 2D landscapes of CEC functions f15–f23

All available standardized continuous black-box benchmark test cases are based on synthetic
test functions. A benchmark test suite that includes real-world problems from science and
engineering is thus far not available. It is, however, conceivable that algorithms that perform
well on synthetic problems may show reduced performance in real-world applications. Recent
investigations on space mission design problems support this hypothesis (Vasile, 2010). In
Chapter 6 we therefore propose the energy landscapes of certain atomic cluster instances as
real-world optimization benchmarks. Following the design principles of the IEEE CEC 2005
benchmark suite, we introduce a diverse set of problems along with a standardized experimen-
tal protocol. We argue that these benchmarks should be included in future benchmark studies
in order to test the effectiveness and generality of continuous black-box optimizers.
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2.3 Landscapes in optimization

Function Name

f1 Shifted Sphere Function

f2 Shifted Schwefel’s Problem 1.2

f3 Shifted Rotated High Conditioned Elliptic Function

f4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness

f5 Schwefel’s Problem 2.6 with Global Optimum on Bounds

f6 Shifted Rosenbrock Function

f7 Shifted Rotated Griewank Function without Bounds

f8 Shifted Rotated Ackley Function with Global Optimum on Bounds

f9 Shifted Rastrigin Function

f10 Shifted Rotated Rastrigin Function

f11 Shifted Rotated Weierstrass Function

f12 Schwefel’s Problem 2.13

f13 Expanded Extended Griewank plus Rosenbrock Function (F8F2)

f14 Shifted Rotated Expanded Scaffer’s F6

f15 Hybrid Composition Function 1

f16 Rotated Hybrid Composition Function 1

f17 Rotated Hybrid Composition Function 1 with Noise in Fitness

f18 Rotated Hybrid Composition Function 2

f19 Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum

f20 Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds

f21 Rotated Hybrid Composition Function 3

f22 Rotated Hybrid Composition Function 3 with High Condition Number Matrix

f23 Non-Continuous Rotated Hybrid Composition Function 3

f24 Rotated Hybrid Composition Function 4

f25 Rotated Hybrid Composition Function 4 without Bounds

Table 2.1: Names of the test functions according to the CEC 2005 test suite (Suganthan et al., 2005).

Problems f1 – f25

Runs per problem 25

Dimensionality n 10, 30, 50

MAX FES 104 · n
Termination If FES = MAX FES or

ferr(x) ≤ 10−8

Initialization Uniform random position

Table 2.2: Benchmark settings according to the CEC 2005 test suite (Suganthan et al., 2005).

39



2 Landscapes

Function fi(xmin) + ε Function fi(xmin) + ε

f1 −450 + 1e−6 f14 −300 + 1e−2

f2 −450 + 1e−6 f15 120 + 1e−2

f3 −450 + 1e−6 f16 120 + 1e−2

f4 −450 + 1e−6 f17 120 + 1e−1

f5 −310 + 1e−6 f18 10 + 1e−1

f6 390 + 1e−2 f19 10 + 1e−1

f7 −180 + 1e−2 f20 10 + 1e−1

f8 −140 + 1e−2 f21 360 + 1e−1

f9 −330 + 1e−2 f22 360 + 1e−1

f10 −330 + 1e−2 f23 360 + 1e−1

f11 90 + 1e−2 f24 260 + 1e−1

f12 −460 + 1e−2 f25 260 + 1e−1

f13 −130 + 1e−2

Table 2.3: Fixed accuracy levels according to the CEC 2005 test suite (Suganthan et al., 2005).
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3
Characterization of Black-box Landscapes

”Mmmm, ... free samples”
Homer Simpson, in: The Simpsons, Lisa gets an “A”, Episode no. 210, 1998

We propose to characterize continuous black-box landscapes within a statistical sampling
framework. The presented methods only require evaluations of the black-box function. De-
pending on the specific sampling strategy, we provide statistical estimators that address the
following aspects of landscapes: global landscape topology, separability or variable epistasis,
and landscape ruggedness. We focus on estimators that are easy to implement, easy to inter-
pret, and computationally efficient. We consider black-box landscapes LB defined by a triple
(X , dE, f) where X is box-constrained with X = [l,u] ⊂ Rn. The vectors l,u ∈ Rn define
the lower and upper bounds. For unconstrained problems the techniques can be applied to
any box-shaped region of interest of the landscape. Distances between points in the landscape
domain are measured using the Euclidean distance dE. In order to test the discriminative
power of the different techniques, they are applied to the full set of CEC 2005 benchmark
functions. It is obvious that the accuracy of any of the presented methods will be limited by
sample size. If the landscape exhibits fine structures below the sampling limit, they cannot
be detected. Some of the presented methods have been introduced as “predictive measures of
problem difficulty” in combinatorial optimization. We do not follow this notion here. In fact,
it has been proven that, for certain problem classes, computing a general predictive measure
is as hard as solving the problem itself (He et al., 2007). We rather envision the introduced
statistical fingerprints as useful features based on which landscapes can be classified within a
statistical learning framework.
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3 Characterization of Black-box Landscapes

3.1 Characterization of global topology

We present two techniques to characterize the global topology of a landscape: (i) Fitness-
Distance Correlation (FDC) and (ii) Dispersion moments. Both techniques rely on a set of
samples that is drawn uniformly at random from [l,u].

3.1.1 Fitness-distance correlation

Fitness-distance correlation has been introduced by Boese (Boese et al., 1994) for the anal-
ysis of TSP and by Jones and Forrest (Jones and Forrest, 1995) as a “measure of problem
difficulty” for the performance of genetic algorithms on combinatorial optimization problems.
For continuous black-box problems, Wang and Li proposed this measure independently of
us (Wang and Li, 2008). Given a uniform random sample x(j) ∈ X , j = 1, . . . , S from the
landscape, we evaluate the objective function at the sampled points and denote the values by
f (j) ∈ R, j = 1, . . . , S. In the original definition of FDC the location of the global minimum
xmin is assumed to be known a priori. While in a benchmark scenario this information is
available, xmin is approximated by x̃min = arg minx(j) f(x(j)), j = 1, . . . , S in the general case.
Using the distances d(j) = dE(xmin,x

(j)) (or d(j) = dE(x̃min,x
(j)), respectively), we define the

fitness-distance correlation coefficient rFD:

rFD =
cFD

sFsD
, (3.1)

with

cFD =
1

S

S∑

j=1

(f (j) − f̄)(d(j) − d̄) , (3.2)

and f̄ , d̄, sF and sD the means and standard deviations of the fitness and distance samples,
respectively. Although this measure is simple, it has been elucidative in a number of applica-
tions. The coefficient rFD is expected to be near 1 for globally convex, single-funnel topologies
and around 0 for needle-in-the-haystack problems and problems without any global structure.
A negative value of rFD indicates a “deceiving” landscape, i.e., a landscape on which a sam-
pler or optimizer perceives larger objective function values closer to the minimum than farther
away.

3.1.2 Function dispersion

Function dispersion has been introduced by Lunacek and Whitley (Lunacek and Whitley,
2006) in order to explain the search performance of CMA-ES. The dispersion of a black-
box landscape is quantified by uniformly random samples x(j) ∈ X , j = 1, . . . , S from the
landscape and a target percentage p. The dispersion dism(sb, S, f) of f is calculated as the
mean pairwise Euclidean distance between the best sb = pS samples. A given p implicitly
corresponds to a certain fitness threshold. The quantity of interest is the change in dispersion
with decreasing p. In order to limit the number of distance computations, Lunacek and
Whitely propose to fix the value sb to 100 and decrease p (and hence the fitness thresh-
old) by increasing the sample size S until the FES budget is exhausted. The samples sizes
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3.2 Separability and variable importance

S = 100 · 20, . . . , 100 · 212 have been used for landscapes in up to n = 100 dimensions in (Lu-
nacek and Whitley, 2006). This corresponds to p = 100%, . . . , 0.0024%. The mean dispersion
difference ∆m

dis(f) = dism(100, 100 · 212, f) − dism(100, 100 · 20, f) is used as an indicator to
classify and compare functions. A negative value of ∆m

dis(f) implies that the best fitness values
of f are localized in a small sub-region of the search space, a ∆m

dis(f) value around 0 indicates
that the best fitness values of f are either spread over the entire search space or localized in
distinct, remote funnels.

In order to be able to compare the dispersion values of objective functions with differently
constrained search spaces, all sample points x(j) are mapped from [l,u] to the [0, 1]n hy-
percube and distances are evaluated in the hypercube. For p = 100% the estimator dism

reduces to the hypercube line picking problem, i.e., to finding the average distance between
two randomly chosen points in the cube. Closed-form solutions for this problem only exist for
n < 5 (Weisstein, 2009).

The quantity dism(sb, S, f) represents only the first moment of the distance distribution that
can be monitored for a given p. We also analyzed the values of higher dispersion moments
of the distributions such as variance, skewness, and kurtosis. We denote the variance of the
distance distribution by disv(sb, S, f) for a given p. This quantity is used to define the variance
dispersion difference ∆v

dis(f) analogously to the mean dispersion difference. In Section 3.4 we
will present results both for ∆m

dis(f) and ∆v
dis(f).

3.2 Separability and variable importance

Detecting importance of variables and interactions among variables in complex models is a
ubiquitous task in model building and analysis, commonly referred to as Sensitivity Analysis
(Saltelli et al., 2000). In some cases, only a small subset of the variables or parameters of
a model have significant effects on the system behavior. Likewise, some variables may be
varied independently without affecting the influence of the others. An effective method to
“screen” variable importance and interactions has been proposed by Morris (Morris, 1991).
His method relies on a specific factorial design where only one parameter at a time (OAT) is
changed. Consider the hypercube [0, 1]n as landscape domain covered by a regular, equidistant
grid. Let 1/(g−1) be the smallest spacing between two parallel lines of the grid. The “level” of
the grid is called g and is assumed to be even. Let x = [x1, . . . , xi, . . . , xn] be a n-dimensional
vector positioned at a grid point. We define the elementary effect on the ith variable as

Ei =
f(x + ∆ei)− f(xi)

∆
, (3.3)

where ei is the canonical unit vector in the ith direction. In Morris’ standard method the step
size ∆ is chosen ∆ = g/(2(g − 1)) with g > 3, hence defining a global SA method. Morris’
goal was to calculate as many elementary effects as possible with the least number of model
evaluations. He realized that it is possible to calculate n elementary effects from n+1 samples
by creating a “trajectory” of length n + 1 in the following way: One starts at a random grid
point x(0), chooses a random canonical direction ei, and moves with step size ±∆ along the
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3 Characterization of Black-box Landscapes

x(0) x(1)

x(2)

x(0)

x(1)x(2)

∆

∆

∆

∆

1

1

0

Figure 3.1: Two example trajectories of the Morris’ method in 2D with g = 4.

direction. Two constraints have to be fulfilled: (i) Each canonical direction is only chosen
once and (ii) if an attempted step leads to a point outside the domain, the reverse direction is
chosen. If the new point x(1) satisfies the constraints, it is used as the starting point for the
next step. A 2D illustration of this process is given in Fig. 3.1. From a complete trajectory
(x(0), . . . ,x(j), . . . ,x(n)), one elementary effect can be calculated for each variable:

Ei =
f(x(j))− f(x(j−1))

∆
, (3.4)

assuming the ith direction has been chosen in step j. Campolongo (Campolongo et al., 2004)
has shown that defining the elementary effect as the absolute value of the function difference
is more informative than the original definition, hence

E∗i :=

∣∣∣∣
f(xj)− f(xj−1)

∆

∣∣∣∣ . (3.5)

This is the definition we consider here. In order to avoid aliasing effects between the grid spac-
ing and the frequencies present in the objective function, we further abandon the restriction of
the starting point being located at a grid point. We rather choose a starting point uniformly at
random in the landscape domain. ∆ is chosen to be the limit limg→∞ g/(2(g−1)) = 1/2. This
implies that the samples from all trajectories represent an unbiased, yet correlated uniform
sample from the domain. This is an appealing property as both FDC and function dispersion
can be calculated from these samples as well. The allowed FES budget dictates the number of
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3.3 Landscape ruggedness

trajectories T that can be calculated. For each variable we calculate means µi and standard
deviations σi of the resulting T elementary effects E∗,ti according to:

µi =
1

T

T∑

t=1

E∗,ti , (3.6)

σ2
i =

1

T − 1

T∑

t=1

(E∗,ti − µi)2 . (3.7)

The µi are used to identify the relative importances of the different variables. A larger µi
indicates that a change in the ith variable anywhere in the landscape domain has, on average,
a larger effect on the objective function variation. The σi can be used to identify variable
interactions. A large σi implies that the effect of varying the ith variable heavily depends
on the position in space, thus suggesting an interaction between different parameters. The
quantity σi can only be used to assess whether a variable interacts with any other variable.
More refined information about which groups of variables are interacting cannot be obtained
from σi. For general landscape analysis, it is convenient to define condensed quantities that
are independent of the dimension and of the absolute scale of the fitness function. We therefore
suggest using the normalized total importance variation tµ and the normalized total interaction
variation tσ as useful landscape descriptors. The quanitiy tµ is defined as:

tµ =

√√√√ 1

n− 1

n∑

i=1

(
µi − µ̄i
µ̄i

)2

, (3.8)

with µ̄i being the average importance µi. We define tσ as:

tσ =

√√√√ 1

n− 1

n∑

i=1

(
σi − σ̄i
σ̄i

)2

, (3.9)

with σ̄i being the average interaction σi. A small value of tµ indicates that all variables are
about equally important. For optimization this suggests that globally there is no preferred
search direction. A small value of tσ suggests that the problem is separable. Thus, for
identifying optimal fitness values, n one-dimensional optimization runs might be a successful
strategy on such landscapes.

3.3 Landscape ruggedness

In order to assess the ruggedness of a real-valued black-box landscape, we follow Weinberger’s
strategy of the Random Walk autocorrelation function (Weinberger, 1990), which has been
introduced in the context of combinatorial landscapes. The general idea is to quantify the
fitness correlation between “neighboring” positions in the landscape. Consider the continuous
unit hypercube as landscape domain X . We suggest to explore the continuous landscape
domain by a random walk with fixed step length. We start the random walk at some point
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3 Characterization of Black-box Landscapes

x(0) ∈ X and evaluate the fitness f (0) = f(x0). The next direction is chosen uniformly at
random from the unit hypersphere, and a step of fixed length s is performed in this direction.
The new sample point x(1) ∈ X , f (1) = f(x1) is then added to the random walk trajectory.
If x(1) falls outside the landscape domain, a new random directions is chosen until x(1) ∈
X . The random walk is continued until the FES budget S is exhausted. Based on the
continuous random walk trajectory (x(0), . . . ,x(j), . . . ,x(S−1)) and the corresponding fitness
values (f (0), . . . , f (j), . . . , f (S−1)) the autocorrelation function can be computed as

ρRW(k) =
E[f(x(j))f(x(j+k))]− E[f(x(j)]E[f(x(j+k))]

V ar(f(x(j)))
, (3.10)

for any lag k < S − 1. E[·] and V ar[·] are estimators for the sample mean and the sample
variance, respectively. The correlation length τ = − 1

log ρRW(1) is used as a condensed statisti-

cal fingerprint of the landscape. A large τ implies long-distance correlations between fitness
values, thus suggesting a smooth landscape. Conversely, a low value indicates a highly rugged
landscape where little correlation is present between neighboring samples.

A crucial choice in the present method is the step length s. This length defines the neigh-
borhood N (x(j)) of the samples. In combinatorial optimization, the standard choice is a
Hamming distance of 1. In continuous spaces, it is not clear how to choose s. Fortunately,
we can use a result from computational geometry for setting s. A fundamental problem in
computational geometry is the estimation of the volume of a high-dimensional convex body
K that is given by a membership oracle. This oracle (or black box) returns “yes” for a
given sample x(j) iff x(j) ∈ K and “no” otherwise. In order to estimate the volume of K,
randomized algorithms are used to generate samples from K. An efficient way (albeit not the
most efficient way) to sample from K is given by the lazy ball walk . This walk is identical
to the random walk presented above except that the steps are not selected from the surface
of the sphere or radius s but from entire volume of the ball with radius s (Lovász, 1999). In
order to sample the entire K as fast and efficiently as possible, the optimal ball radius s is
dimension-dependent and must satisfy s < 1√

n
(Lovász, 1999). We thus suggest to use the

standard setting s = 1
2
√
n

for the fixed step size random walk.

Note that the points generated by this random walk represent an unbiased uniform sample
from the landscape domain that can also be used to derive dispersion and FDC information.
Also, this landscape estimator is not restricted to box-constrained problems. The random
walk method equally works for arbitrary convex landscape domains.

3.4 Characterization of the CEC 2005 benchmark test suite

We test the presented statistical landscape descriptors on all functions of the CEC 2005 bench-
mark test suite except f7 and f25. The latter problems are unconstrained and our statistical
characterization framework is hence not applicable unless some user-specific region of interest
is defined. However, note that apart from the missing constraints f25 is identical to f24. We
choose the CEC 2005 benchmark because (i) the global topology, separability, and ruggedness
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properties of most functions are known a priori, and (ii) it allows researchers to relate algo-
rithmic performance to the calculated landscape descriptors. We thus consider n = 10, 30, 50
with the standard restriction on the FES budget (MAX FES = 104n) and 25 repetitions per
run.

Fitness-distance correlation. We first present scatter plots of the fitness and distance data
for all considered CEC functions in Fig. 3.2. We focus on the 10-dimensional case. The scatter
plots look similar also in higher dimensions (data not shown). Visual inspection of the plots
in Fig. 3.2 reveals a rich diversity of patterns. Function f1 can be clearly identified as the
sphere function. Fitness-distance plots of f6, f9, and f10 show strong positive correlations.
For functions f8, f11, and f14 the spherical scatter patterns suggest a complete absence of
correlation. Functions f2–f5, f12, and f13 show a similar pattern, suggesting weak correlations

f1

f6f5

f4f3f2

f22f21 f23

f20f19f17

f15

f18

f24

f14

f13

f12

f11

f10f9

f8

f16

Figure 3.2: Fitness fi versus distance to the global minimum dE(xmin,x) for all CEC functions except
f7 and f25 in n = 10 dimensions. The FES budget is limited to 104n. The pooled samples
from all 25 repetitions are shown.
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between fitness and distance in all these cases. The scatter plots for f18–f24 reveal that many
samples far away from the minimum have considerably lower objective function values than
samples close to the global minimum, characterizing these problems as “deceiving”. An unique
scatter plot pattern is observed for the triplet f15–f17. For samples with low objective function
values, two distinct distance regimes are visible, which may suggest a double-funnel topology
of the landscape.

We summarize the calculated FDC coefficients rFD in Fig. 3.3. The data suggest a rough
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Figure 3.3: Estimated FDC coefficients (mean and std) for all CEC functions except f7 and f25 in
n = 10, 30, 50 dimensions. The FES budget is limited to 104n. The black dotted line and
the red dashed line represent the classification thresholds (see main text).

classification of the functions into three classes: (i) highly correlated rFD > 0.75, (ii) weakly
correlated 0.75 > rFD > 0.15, and (iii) uncorrelated or anti-correlated rFD < 0.15 across all
dimensions. Only functions f18, f19, and f24 change class in higher dimensions.

The functions f1, f6 and f9− f10 belong to the first class. This suggests a global single-funnel
topology. The shifted sphere function f1 is expected to follow this classification. The shift-
ed/rotated Rosenbrock function f6, however, is multimodal. Nonetheless, the rFD suggests
that this multi-modality only appears at small length scales. The Rastrigin pair f9/f10 is also
expected to give large rFD values because of its globally spherical structure. Comparing the
two functions of this pair also reveals that the rotation in f10 does not significantly change
the estimated rFD values.

In all dimensions, the set of weakly correlated functions comprises functions f2–f5, f12–f13,
and f15–f17. While f2–f5 are unimodal functions, the others are highly multimodal with little
or no globally convex structure. rFD values cannot discriminate these functions. The similar
rFD values for function pair f2/f4 and f16/f17 indicate that the measure is robust against
noise. Among all hybrid functions (f14–f25), the rFD suggest that the triplet f15–f17 has the
highest degree of global correlation.

The class of un-/anti-correlated contains f8, f11, f14, and f20–f23 across all dimensions. For
these functions, a low fitness-distance correlation is expected. For instance, f8 is a needle
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problem and f14’s global minimum is surrounded by regions of alternating high and low objec-
tive function values whose amplitude decreases with increasing distance (see Fig. 2.16). The
rFD values for the pair f18/f19 change from anti-correlation in n = 10 to weak correlation in
n = 30, 50. This indicates that certain topological features that have been picked up by the
measure in n = 10 dimensions cannot be detected any more in higher dimensions.

Dispersion moments. We present the results for the mean dispersion difference ∆m
dis(f) =

dism(100, 104n, f) − dism(100, 100, f) in Fig. 3.4 and for the variance dispersion difference
∆v

dis(f) = disv(100, 104n, f)− disv(100, 100, f) in Fig. 3.5.
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Figure 3.4: Estimated ∆m
dis(f) (mean and std) for all CEC functions except f7 and f25 in n = 10, 30, 50

dimensions. The FES budget is limited to 104n.
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Figure 3.5: Estimated ∆v
dis(f) (mean and std) for all CEC functions except f7 and f25 in n = 10, 30, 50

dimensions. The FES budget is limited to 104n.

The dispersion results mostly confirm the previous analysis using FDC. Across all dimensions,
the functions f1 f6, f9, f10, and f13 have a mean dispersion < −0.5, suggesting a global single-
funnel topology. Likewise, the functions f8, f11, and f14 being highly dispersive agree with their
observed low FDC. The smooth unimodal functions f2–f5 have a dispersion pattern similar to
the hybrid functions, suggesting that the mean dispersion difference alone cannot discriminate
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3 Characterization of Black-box Landscapes

between these very different topologies. In combination with the variance dispersion difference
∆v

dis(f), however, a notable difference for the triplet f15–f17 is observed.These functions have
a double-funnel topology. It is, hence, expected that the set of all pairwise distances between
selected samples both contain very small and very large distances. The variance at the lowest
threshold should thus be higher than the initial variance. This signal is picked up by ∆v

dis(f),
most prominently in n = 30 (see middle panel in Fig. 3.5.) Like FDC, the mean dispersion
difference is robust against noise and rotation of the landscape domain.

Morris’ method. The summary statistics of the two Morris’ based landscape descriptors tµ
and tσ are presented in Fig. 3.6. As expected, the resulting pattern is different from the
previous landscape descriptors. For all dimensions, f6 has the largest value for tµ followed
by f13 and f22. No difference is observed between the class of unimodal, multi-modal, and
hybrid functions. Noise lowers the estimated tµ considerably, as reflected by the comparisons
of the f2/f4 and f16/f17 values. The indicator for separability tσ can detect the separable
functions f1 and f9 in all dimensions (see Fig. 3.7 for the σi spectrum of f9). In addition,
low tσ values are also observed for f14 and f17. High tσ values are observed for f6, f13, and
f22. The function f22 is a rotated version of f21. The corresponding rotation matrix has a
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Figure 3.6: Estimated mean tµ and tσ values for all CEC functions except f7 and f25 in n = 10, 30, 50
dimensions. The FES budget is limited to 104n.

high condition number, thus increasing variable interactions. Schwefel’s double-sum function
f2 (see Fig. 2.15) also shows high tσ values across all dimensions. Its spectrum of Morris’
interaction variables σi is depicted in Fig. 3.7 for n = 10. σi decreases with increasing index
i, relating to the properties of the quadratic form that defines f2 (Suganthan et al., 2005).
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Figure 3.7: Variable interactions σi for all variables i of function f2 and f9 in n = 10 dimensions. f2
shows decreasing interactions with increasing variable index. Function f9 is separable.

Random walk autocorrelation. Landscape ruggedness is probed using the objective function
autocorrelation of a random walk. The estimated correlation length τ serves as an indicator
for the smoothness of the landscape. The smaller τ the more rugged the landscape. The
computed autocorrelation coefficients ρRW(1) and the τ values are summarized in Fig. 3.8
for n = 10. In higher dimensions the observed pattern is similar. The quadratic functions
f1–f3 have the largest measured correlation length. Noise reduces the correlation length (drop
for f4 and f17). The needle problem f8, the fractal Weierstrass function f11, and f14 show
the smallest correlation lengths. For functions f10 and f16, the applied rotation increases the
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Figure 3.8: Correlation length τ and autocorrelation coefficient ρRW(1) (means and standard devia-
tions) for all CEC functions in n = 10.

correlation length compared to f9 and f15. At least in the single-funnel case (f10) this suggests
that finding the global minimum is easier in the rotated problem than in the original one. The
triplet f18–f20 shows a high average correlation length, but also a large standard deviation.
This suggests that these landscapes are composed of distinct regions with high and low fitness
autocorrelation.
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3.5 Conclusions

We have introduced a set of statistical measures that allow characterizing continuous black-box
landscapes. The following aspects of landscapes can be quantified: global landscape topology,
variable importance, separability, and landscape ruggedness. Fitness-distance correlation and
dispersion differences have been employed to study the global landscape topology. The Morris
method, an OAT screening scheme that belongs to the class of global sensitivity analysis algo-
rithms, has been introduced and enhanced in the present context. This allows probing variable
importance and separability. We derived two dimension-independent scalar quantities that
allow comparison between different landscapes: the normalized total importance variation tµ
and the normalized total interaction variation tσ. Finally, a measure of ruggedness based on
random walk autocorrelation has been introduced for continuous landscapes. This involves
the correlation length of objective function values gathered by a specific geometric random
walk.

We have applied all landscape descriptors to the complete function set of the IEEE CEC
benchmark test suite in n = 10, 30, and 50 dimensions. Our results have shown that the CEC
2005 benchmark functions cover a wide spectrum of FDC coefficient values. This contradicts
recent results of Vanneschi and co-workers (Vanneschi et al., 2010) who claim that the CEC
2005 test functions only have FDC coefficients close to one or zero. Fitness-distance correla-
tion and dispersion differences can discriminate between functions with global single-funnel
topology, such as the Rastrigin function, and highly unstructured problems like the needle
problem f8. However, the highly anisotropic ellipsoidal function f3, although smooth and
unimodal, cannot be discriminated from multi-funnel problems. Lunacek and Whitley argued
that function dispersion is a predictive measure for the performance of CMA-ES (Lunacek and
Whitley, 2006). CMA-ES can, however, efficiently solve the function f3 (see Section 4.2.3).
Our results thus challenge the general validity of Lunacek and Whitley’s conclusions. The
other landscape descriptors largely meet our expectations. The modified Morris method and
its derived quantities can robustly identify separable functions across all dimensions, and the
random walk autocorrelation coefficient captures the ruggedness of the landscapes.

We expect the presented landscape descriptors to be useful in a variety of situations. In model
development and analysis, the Morris method can be used in the traditional sense for model
reduction. Model parameters that show low µi and σi can be fixed to appropriate constants.
In optimization, an initial screen with a set of uniform samples in the landscape domain can
be conducted, and the landscape descriptors can be applied in order to inform the modeler
about the underlying problem landscape and provide guidance about (i) which optimizer to
choose for the given problem and (ii) how to set internal strategy parameters of the optimizer.
For instance, when the correlation length is low, robust stochastic optimizers may be preferred
over schemes that rely on local information, such as approximate gradient descent schemes.

Finally, we argue that the presented statistical quantities can be used as landscape finger-
prints or features in a classification scenario. We envision an unsupervised statistical learning
framework that, given a list of samples and associated features, can infer a classification of
black-box landscapes.
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4
Optimization of Black-box Landscapes

Homer: “Kids, there’s three ways to do things. The right way, the wrong way
and the Max Power way.”
Bart: “Isn’t that the wrong way?.”
Homer: “Yeah, but faster!”
in: The Simpsons, Homer to the Max, Episode no. 216, 1999

4.1 Introduction

We now focus on the arguably most important landscape feature, the location of global op-
tima. A large class of problems in science and engineering can be formulated as black-box
optimization tasks. Typical instances include data fitting to nonlinear models and determi-
nation of design parameters in complex computer models. These problems often share the
following characteristics: (i) Only zeroth-order information is available (a black-box or oracle).
(ii) The budget of black-box evaluations is limited. (iii) The underlying global topology of the
landscape is unknown. (iv) The landscape can be high-dimensional (n � 10), discontinuous,
and corrupted by noise. Because the diversity of real-world problems prohibits a unifying
mathematical classification, the development of search heuristics has been largely “driven by
practical success whereas the aspect of theoretical analysis is neglected.” (Jens Jägersküpper,
2008). This has led to an enormous variety of sophisticated and/or problem-specific algorithms
with little or no theoretical justification. Nevertheless, there have been considerable attempts
to identify and establish general design principles for efficient black-box optimization methods.
We next sketch the most important concepts and relate them to our landscape perspective.
After these introducing remarks, we present our main contributions to the field of black-box
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optimization.

The development of black-box algorithms dates back to 1950’s. Box and Wilson introduced
the response surface methodology in their seminal paper “On the Experimental Attainment
of Optimum Conditions” (Box and Wilson, 1951). Their goal was to optimize experimental
conditions of chemical or biological processes. The controllable parameters are, for instance,
temperature, pressure, time of reaction, and proportions of reactants. Their idea was to
estimate a statistical model, the “response surface”, in a local region of parameter space and use
the estimated gradients for a steepest ascent step on the response surface. At the next location
a new response surface is estimated. In a follow-up paper Box also suggested to consider
evolutionary operations, such as variation and selection, in order to improve parameters in
industrial processes (Box, 1957). Brooks was among the first to realize that randomization is
key for a successful black-box method (Brooks, 1958). In his “Discussion of random methods
for seeking maxima” he envisioned several optimization methods that are very close to modern
heuristics. Hooke and Jeeves described the “pattern search” method (Hooke and Jeeves, 1961)
where the term “direct search” method is introduced equivalently to our notion of a black-
box algorithm. Nelder and Mead introduced the downhill simplex method (Nelder and Mead,
1965) where the shape of a simplex is continuously adapted in order to converge to a local
minimum. Rastrigin (Rastrigin, 1963, 1972) introduced the fixed step-size random search
(FSSRS) method. There, at each generation a single candidate solution that has a fixed
distance to the previous one is sampled randomly and is accepted if its objective function
value is better than the previous one. Schumer and Steiglitz realized that adaptation of the
step size is fundamental for effective random search (Schumer and Steiglitz, 1968). Adaptation
is coupled to the probability of accepting a new sample, Pacc, where Pacc ≈ 0.27 is optimal
under certain assumptions. Both fixed and adaptive step size random search (ASSRS) use
uniformly distributed search directions. When a multivariate normal distribution is employed
instead, ASSRS is equivalent to the well-known (1+1)-Evolution Strategy (ES) (Rechenberg,
1973; Schwefel, 1975), which started the field of Evolutionary Computation. From experiments
on Rosenbrock’s function, Schumer and Steiglitz commented on the influence of the landscape
topography on the search performance. They concluded that “ASSRS is not very effective as a
ridge follower, but shows its superiority in multidimensional problems without narrow valleys
or ridges. Combining directional adaptation with step size adaptation may result in removing
this limitation” (Schumer and Steiglitz, 1968). This suggestion is realized in Variable-Metric
Algorithms that are ubiquitous in optimization.

Variable-metric approaches in optimization

All variable metric approaches are iterative algorithms that share the idea of adapting a posi-
tion vector and a quadratic form. At each step, the quadratic form defines a metric between
gradients that reflect the local structure of the landscape. Davidon introduced in an Ar-
gonne National Laboratory Research and Development Report in 1959 the “Variable Metric
Method” as first-order method for general non-linear, real-valued minimization (see (Davidon,
1991) for a commented reprint). The key idea is to “learn” the inverse of an appropriate Hes-
sian matrix H from analytic gradient vectors at all visited locations of the landscape domain.
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The entries of the inverse Hessian encode both the current step size and the search direc-
tion, thus representing a continuously changing metric. In 1970, Broyden (Broyden, 1970),
Fletcher (Fletcher, 1970), Goldfarb (Goldfarb, 1970), and Shanno (Shanno, 1970) indepen-
dently derived an efficient update rule for the inverse Hessian that is now referred to as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. These types of methods are also called
Quasi-Newton methods because they approximate the second-order Newton method where
the full Hessian is explicitly calculated. The BFGS method and its limited-memory variant
(Nocedal, 1980), where only a limited number of previous gradients is taken into account,
are nowadays state-of-the-art in first-order real-valued function minimization. Variable metric
approaches are also instrumental in the fields of convex and combinatorial optimization, as
well as in linear programming (Goffin, 1984). The most prominent algorithm is the Ellipsoid
method where an ellipsoid, described by a center vector and a quadratic form, is iteratively
adapted. For real-valued convex minimization, the ellipsoid method generates a sequence of
ellipsoids with changing orientation and position whose volume uniformly decreases at every
step, while ensuring that the minimizer of the convex function is enclosed in the volume. A
precursor of this method has been published by Shor (Shor, 1970). Yudin and Nemirovski
(Yudin and Nemirovski, 1976) and Shor (Shor, 1976) studied the full ellipsoid method as an
approximation algorithm. For linear programming, Khachiyan proved polynomial run time of
the ellipsoid method (Khachiyan, 1979). We refer to (Grötschel et al., 1993; Papadimitriou and
Steiglitz, 1998) for further details. To the best of our knowledge, the explicit use of the term
“variable metric” in the context of black-box optimization has been introduced in (Suttorp
et al., 2009) and the habilitation thesis of Hansen (Hansen, 2010b). Two classes of variable
metric algorithms emerged in the black-box optimization field: (i) Methods that sequentially
learn an explicit local quadratic approximation of the objective function, and (ii) stochastic
methods that adapt the covariance matrix of a multivariate search distribution. Methods of
the first kind are also called “trust region methods”. Powell’s “Unconstrained Optimization by
Quadratic Approximation” (UOBYQA) method (Powell, 2002) and its successor NEWUOA
(Powell, 2006) are important representatives. Kjellström’s Gaussian Adaptation (GaA) algo-
rithm (Kjellström and Taxen, 1981) and Hansen’s Evolution Strategy with Covariance Matrix
Adaptation (CMA-ES ) (Hansen and Ostermeier, 2001; Hansen et al., 2003; Hansen, 2008) be-
long to the second class. These state-of-the-art black-box methods, along with our extensions
and improvements, are the topic of Sections 4.2 and 4.4.

Design principles for black-box optimization

The variable-metric approach is one prerequisite for an algorithm to yield certain invariance
properties with respect to the underlying landscape structure. Achieving invariance properties
constitutes a useful design principle for black-box search. Invariance has been proposed by
Hansen (Hansen, 2000) in the ES context. In his habilitation thesis (Hansen, 2010b) Hansen
states: “In search, invariance properties induce equivalence classes of objective functions, on
which the performance of the search algorithm is identical. Consequently, any result observed
on a real world problem, or on a test function, does not only hold for this single problem
instance, but inevitably generalizes to the complete class of problems induced by the invari-
ance property, thereof the tested problem is an element. Hence stronger statements on the
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performance of the search algorithm can be made – a greater number of empirical facts is
covered. The drawback to invariance properties in search is that whenever an invariance prop-
erty is achieved, some information cannot be exploited anymore.” Two kinds of invariance
properties are common: invariance under function value transformations and invariance un-
der search space transformations. We revisit the invariance properties of CMA-ES and GaA
in Sections 4.2 and 4.4. Further definitions and examples can be found in (Hansen, 2000)
and (Hansen, 2010b). Our landscape perspective also suggests an additional design principle:
robust performance on problems with a multi-funnel structure. It is conceivable that such
insensitivity is harder to achieve than the other design principles. In fact, complete indepen-
dence of search performance and landscape topology can only be achieved by pure random
search. This is also the essence of the No-Free-Lunch theorem (Wolpert and Macready, 1997).
We argue that strategies that explore the landscape in parallel and in a collaborative manner
can relax the negative effect of multi-funnel structure on search performance. This is exploited
in the parallel CMA-ES schemes developed in Section 4.3

4.2 The Covariance Matrix Adaptation Evolution Strategy

Since their first formulation in the 1960’s by Rechenberg and Schwefel (Rechenberg, 1973),
Evolution Strategies (ES) have been among the best-studied black-box optimization paradigms
for non-convex, real-valued functions. A particularly successful instance is the Evolution Strat-
egy with Covariance Matrix Adaptation (CMA-ES ). It has proven its usefulness in hundreds
of real-world applications (Hansen, 2009b) and is considered the state of the art in black-box
optimization. We revisit key algorithmic mechanisms of CMA-ES and present our enhance-
ments to the method. We also present extensive numerical benchmark results that have been
obtained with pCMALib, our novel parallel Fortran90 library that implements a family of
CMA-ES methods. Technical details about this library are summarized in Appendix A2.

4.2.1 Canonical CMA-ES

Since CMA-ES is a Evolution Strategy, it is straightforward to view the search process as
the evolution of a population on a fitness landscape. The population consists of individuals
(samples, candidate solutions) that possess a phenotypic fitness arising from the underlying
landscape. The evolutionary principles of selection, mutation, and recombination act on the
population, resulting in a change of its location and overall “shape” from generation to gen-
eration. The population is eventually climbing up a nearby fitness mountain and converges
to its peak. Figure 4.1 sketches this process on a unimodal landscape. Mathematically, the
evolutionary search process is modeled as follows: The population is represented by a multi-
variate normal distribution N with mean m ∈ Rn and covariance C ∈ Rn×n. At each iteration
(generation) of the algorithm, the members of a new population are sampled from this dis-
tribution. The normal distribution is appealing because (i) it is completely specified by its
first two moments and (ii) Jaynes’ maximum entropy principle (Jaynes, 1957) implies that, for
given fixed mean and covariance, the normal distribution is the least biased choice among all
distributions with the same mean and covariance. The latter concept is thoroughly discussed
in Section 4.4. The number of samples, i.e., the population size λ, is constant over time. The

56



4.2 The Covariance Matrix Adaptation Evolution Strategy

x1

x2

Figure 4.1: Illustration of the evolution of a CMA-ES population on a unimodal fitness landscape.
The white dots represent the population members, the gray ellipsoids the population
covariances. The white dashed line is the evolution path.

sampling radius is controlled by the overall standard deviation (step size) σ. Let x
(g)
k be the

kth individual at generation g. The new individuals at generation g + 1 are sampled as:

x
(g+1)
k ∼m(g) + σ(g)N

(
0,C(g)

)
k = 1, . . . , λ . (4.1)

Selection is realized by ranking the λ sample points in order of ascending fitness, and choosing
the µ best individuals. This procedure is called truncation selection. The means of the
sampling distribution is updated using weighted intermediate recombination of these selected
candidates:

m(g+1) =

µ∑

i=1

wix
(g+1)
i:λ (4.2)

with
µ∑

i=1

wi = 1, w1 ≥ w2 ≥ . . . ≥ wµ > 0 , (4.3)

where the wi are positive weights and x
(g+1)
i:λ denotes the ith-ranked individual of the λ sampling

points x
(g+1)
k . Super-linearly decreasing weights with wi = log(λ−1

2 + 1) − log(i) are the
standard choice. An ES with this selection scheme is termed (µw/µ, λ)-ES. Because selection
only depends on the relative ranking of individuals within a population, CMA-ES is invariant
to any strictly monotonic (that is, order-preserving) transformation of the objective function.
It is important to note that such a scheme does not per se ensure that the mean fitness
decreases in every generation. In order for CMA-ES to search efficiently, local correlation
between fitness and sample locations must be present.
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Covariance Matrix Update

A fundamental ingredient of CMA-ES is its mechanism to learn meaningful search directions.
This is realized by adapting the covariance matrix of the sample distribution. The goal of
the covariance adaptation is to increase the likelihood of reproducing previously successful
steps. Three sub-procedures are dedicated to covariance matrix adaptation: a rank-µ update,
a rank-one update, and cumulation.

Rank-µ update. The rank-µ update of the covariance matrix has been introduced in (Hansen
et al., 2003). One possibility for such an update is to use the empirical covariance matrix of
the selected samples:

C(g+1)
emp =

1

µ− 1

µ∑

i=1

(
x

(g+1)
i − 1

µ

µ∑

j=1

x
(g+1)
j

)(
x

(g+1)
i − 1

µ

µ∑

j=1

x
(g+1)
j

)T
. (4.4)

However, such an update comprises information about successful positions rather than direc-
tions. The idea in CMA-ES hence is to consider the true mean of the sample distribution
rather than the empirical mean of the selected samples. Including also the corresponding
weights leads to the rank-µ update used in CMA-ES:

C(g+1)
µ =

µ∑

i=1

wi

(
x

(g+1)
i:λ −m(g)

)(
x

(g+1)
i:λ −m(g)

)T
(4.5)

This update can be interpreted as a weighted estimator for the distribution of selected steps.
This information is combined with the previous covariance matrix by introducing the learning
rate ccov:

C(g+1) = (1− ccov)C(g) + ccov
1

σ(g)2
C(g+1)
µ

= (1− ccov)C(g) + ccov

µ∑

i=1

wiy
(g+1)
i:λ y

(g+1)T

i:λ ,
(4.6)

where y
(g+1)
i:λ = (x

(g+1)
i:λ −m(g))/σ(g).

Rank-One update and cumulation. Rank-one update has been introduced in (Hansen and
Ostermeier, 2001). It uses only a single selected step for covariance matrix adaptation. In
order to exploit correlations between consecutive steps the evolution path of the search process
is considered. The evolution path is the trace that the strategy has taken over a number
of generations. It can be expressed as a sum over consecutive steps of the mean value m(g)

(Hansen, 2008). Recursive construction of the evolution path p
(g+1)
c ∈ Rn with p

(0)
c = 0, is

referred to as cumulation:

p(g+1)
c = (1− cc)p(g)

c +
√
cc(2− cc)µeff

m(g+1) −m(g)

σ(g)
, (4.7)
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where cc ≤ 1 is the backward time horizon, and µeff is a measure paraphrased as variance-
effective selection mass:

µeff =

(
µ∑

i=1

w2
i

)−1

. (4.8)

Combined adaptation. Combining rank-µ update and rank-one update with cumulation re-
sults in the final covariance matrix update rule:

C(g+1) = (1− ccov)C(g) +
ccov

µcov
p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one-update

+ccov

(
1− 1

µcov

)

×
µ∑

i=1

wiy
(g+1)
i:λ

(
y

(g+1)
i:λ

)T

︸ ︷︷ ︸
rank-µ-update

,
(4.9)

with µcov ≥ 1 denoting the relative weight of the two updates.

Step-Size Control

As suggested in ASSRS and the (1+1)-ES, the idea of step size adaptation is also adopted in
CMA-ES. The information contained in the evolution path is used to control the overall scale
σ(g) of the sampling distribution. A long evolution path implies that recent consecutive steps
are pointing in a similar direction, i. e., they are correlated. In these cases CMA-ES increases
σ(g). Likewise, a short evolution path implies consecutively anti-correlated steps, suggesting
a decrease of the step-size. Similar to Eq. (4.7), a recursive formula for the step-size evolution
path pσ can be constructed:

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeff C(g)−

1
2 m(g+1) −m(g)

σ(g)
, (4.10)

with p
(0)
σ = 0. The backward time horizon of the evolution path is cσ < 1. When cσ = 1,

only the most recent step contributes to the cumulation. The difference m(g+1) −m(g) gives
the current step, and

√
cσ(2− cσ)µeff/σ

(g) is a normalization constant. The transformation

C(g)−
1
2 can be found by eigendecomposition of the covariance matrix. This renders the ex-

pected length of p
(g+1)
σ independent of the current direction. The step-size adaptation rule

is derived from the idea that the optimal length of the evolution path, ||p(g+1)
σ ||, is equal to

its expected length under random selection. This length is, in fact, the expected length of
a standard normal random vector E||N (0, I)||. The step size adaptation mechanism, hence,
reads:

σ(g+1) = σ(g) exp

(
cσ
dσ

(
||p(g+1)

σ ||
E||N (0, I)|| − 1

))
, (4.11)

where dσ is a damping factor.
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Step size and covariance matrix adaptation render CMA-ES approximately invariant to any
linear transformations of the landscape domain. For instance, if the objective function is
an ellipsoid with condition number > 1, CMA-ES is able to learn the eigenvectors of the
underlying quadratic topology. This implies that search progress on any ellipsoid is, after
a burn-in phase, identical to the progress on the sphere function. From the variable metric
perspective, CMA-ES can also be interpreted as a method that learns the optimal Mahalanobis
distance (Eq. (2.2)) for the search directions, given the current mean, step size, and covariance
matrix.

Parameter Settings, Modes of Operations and Boundary Handling

CMA-ES has several internal strategy parameters. Over the past decade, Hansen and co-
workers derived standard parameter settings based on both theoretical arguments on quadratic
functions and extensive numerical experimentation on more complex model landscapes, such
as Rastrigin and Rosenbrock function (see (Hansen, 2008) and (Hansen, 2010b) for a complete
list of parameter settings). In practice, the only remaining parameters that are of interest to
the user are the population size λ and the initial step size σ(0). The default population size is
λ = 4 + b3 lnnc, where n is the dimension of the problem. For multi-modal and noisy land-
scapes, CMA-ES also requires parametric rules that define convergence or divergence of the
search trajectory. This is realized by storing the history of previous positions, fitness values,
and condition numbers of the covariance matrix, and providing tolerances for these values
(Hansen, 2008). When any of the tolerance criteria are met and the available FES budget is
not exhausted, CMA-ES is restarted. Together with the free parameters λ and σ(0) different
modes of operation can then be defined. Auger and Hansen suggest two strategies: CMA-ES
with iteratively increasing population size (IPOP-CMA-ES) (Auger and Hansen, 2005b) and
Local Restart CMA-ES (LR-CMA-ES) (Auger and Hansen, 2005a). In IPOP-CMA-ES, the
default population size λ is doubled at each restart. In box-constrained optimization, the
initial σ(0) is set to 50% of the largest box length. LR-CMA-ES always uses the default
population size and a small σ(0) (0.5% of the largest box length) in order to perform local
search. Both algorithms have been tested on the IEEE CEC 2005 benchmark contest where
IPOP-CMA-ES has shown the best performance among all tested algorithms. We revisit the
IPOP-CMA-ES results in Section 4.2.3.

Another important ingredient in CMA-ES is boundary handling. Most black-box problems are
formulated with box constraints. When sampling new candidate solutions from a multivariate
normal distribution it is possible that samples are placed outside the feasible region. How to
handle these infeasible solutions is a research topic in its own right. We refer to (Kramer, 2010)
for a recent review in the ES context. Several constraint handling techniques for CMA-ES are
available. The simplest approach is to discard out-of-bounds samples and re-sample until the
candidate point lies within the feasible region. This can, however, become inefficient especially
in high dimensions, since the probability of hitting the feasible region decreases with dimen-
sionality. Other approaches thus rely on adding an artificial penalty to the original objective
function. This penalty usually is a monotonically increasing function of the Euclidian distance
between the sample point and the nearest boundary. In CMA-ES, a sophisticated mechanism
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4.2 The Covariance Matrix Adaptation Evolution Strategy

is available to estimate the optimal scale of the penalty from samples of the objective function
(Hansen, 2008; Hansen et al., 2009). We use this boundary handling throughout the thesis.

4.2.2 Novel CMA-ES variants

We present three novel CMA-ES variants. The first one, Low-discrepancy CMA-ES, uses
specific number sequences instead of pseudo-random numbers for the generation of normal
variates. The second, Best Local Restart CMA-ES, considers an alternative restart strategy
that is applicable in cases where the black-box landscape contains deep narrow funnels. The
third strategy, memetic CMA-ES, hybridizes CMA-ES with gradient-based techniques.

Low-discrepancy CMA-ES

In every CMA-ES generation, the population of candidate solutions x
(g+1)
k is drawn from a

multivariate normal distribution N
(
m(g), σ(g)2C(g)

)
. The general numerical procedure to

draw these samples is

x
(g+1)
k ∼m(g) + σ(g)AN

(
0, In

)
k = 1, . . . , λ , (4.12)

where A is the Cholesky matrix, such that C = AAT . Samples from the n-dimensional

standard multivariate normal distribution N
(
0, In

)
can be generated independently for each

dimension. A standard normal variate N (0, 1) is numerically generated as the Box-Muller
transformation (Box and Muller, 1958) of a standard uniform random number. In the com-
puter, independent uniform random numbers are approximated by pseudo-random number
generators (PRNG) such as the Mersenne Twister (Matsumoto and Nishimura, 1998). Such
pseudo-random number sequences are deterministic by construction, but they are considered a
sufficient proxy for true randomness. Low-discrepancy sequences share the property of deter-
ministic generation, but they are designed to produce a stream of numbers that fill the space
as evenly as possible, rather than appearing random. Figure 4.2 shows pseudo-random and
low-discrepancy (LD) samples of size 1e4 in the unit square. Conceptually, the “discrepancy”
of a sequence measures how uniformly all partitions of the unit hypercube are filled. If some
regions are densely covered and others sparsely with big gaps between neighboring samples,
the sample is considered highly discrepant. Several different sequences are available, such as
Halton sequences (Halton, 1960), Faure sequences (Faure, 1992) and Sobol’ sequences (Sobol,
1967). LD sequences are also referred to as Quasi-random numbers. The “quasi” indicates
that they are not random, but are often used as a replacement for random numbers, for
instance, in the numerical approximation of high-dimensional integrals in physics (Morokoff
and Caflisch, 1995; Schlier, 2004) and finance (Caflisch et al., 1997; Joy et al., 1996) and in
the context of continuous optimization (Biester et al., 1995; Kucherenko and Sytsko, 2005;
Drew and de Mello, 2006; Liu and Owen, 2006). Another important area of application is
variance-based sensitivity analysis (Saltelli et al., 2000).
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Figure 4.2: The first 104 samples of MATLAB’s Sobol sequences, and pseudo-random numbers gen-
erated by MATLAB’s rand function in the unit square.

Although initially designed for uniformly covering the unit hypercube, it is possible to trans-
form LD sequences into quasi-normal variates that retain the LD property. The Box-Muller
transform is, however, not a good choice here.Rather Moro’s inversion (Moro, 1995) or Ack-
lam’s inversion (Acklam, 2009) should be used. Quasi-normal samples show faster convergence
to the true statistical moments and better covering of the tails of the Gaussian (Krykova,
2003). It is, thus, conceivable that a replacement of the standard pseudo-random sampling
in CMA-ES by low-discrepancy sampling schemes may be beneficial for search performance.
The working hypothesis for this low-discrepancy CMA-ES (LD-CMA-ES) is that, on aver-
age, the quasi-random samples cover the landscape domain more evenly, leading to faster and
more robust convergence. The numerical routines are largely taken from (Burkardt, 2009) and
implemented in pCMALib. Several combinations of samplers and transformations are imple-
mented. By default we use Sobol sequences with Acklam’s inversion. Numerical benchmark
results are presented in Section 4.2.3. Note that Teytaud independently proposed the same
idea in his DCMA (Derandomized CMA) scheme (Teytaud and Gelly, 2007; Teytaud, 2008),
where specific types of Halton sequences are used.

Best Local Restart CMA-ES

IPOP-CMA-ES and LR-CMA-ES are two restart variants that have been proven useful in
practice. Common to both approaches is the idea of independent restarts. When any of
the convergence criteria are met, CMA-ES is restarted totally oblivious to the information
gathered in previous runs. The idea of such a setting is to consider the individual runs as
random variables that have a certain probability of finding the global minimum. Independent
restarts thus increase the probability of success in the general case. It is, however, conceivable
that landscapes exist where such strategies fail. Consider a landscape topology that contains a
number of deep, narrow funnels with rugged local structure and multiple local basins. Due to
its small initial step size LR-CMA-ES is able to enter any of the funnels, but might prematurely
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converge to a local basin before reaching the funnel bottom. IPOP-CMA-ES with increasing
population will preferably enter and explore the widest funnel (Lunacek et al., 2008), which
not necessarily contains the global minimum. Best Local Restart CMA-ES (BLR-CMA-ES) is
designed to explore such landscapes efficiently. BLR-CMA-ES has three key components: First
and foremost, local restarts are not conducted independently. At each restart, the starting
point x(0) is chosen to be the best candidate solution found so far rather than a random
point. Only when several consecutive restarts converge to the same candidate solution, a
random restart is done. Figure 4.3 sketches the possible search behavior of BLR-CMA-ES.
The population size in BLR-CMA-ES is kept constant over restarts and scales linearly with

the problem dimension. We suggest λBLR = 5n. By default, a constant initial step size σ
(0)
BLR

of 0.5% of the largest box length is used, representing the same setting as in LR-CMA-ES. If

the correlation length τ of the landscape is known, σ
(0)
BLR may be set accordingly. These default

f(x)

x

Figure 4.3: Sketch of a multi-funnel landscape. Two independent BLR-CMA-ES trajectories are de-
picted. The green dots mark the starting points of each BLR-CMA-ES instance. The
blue dots indicate the best candidate solutions found before convergence. These candidate
solutions serve as starting points for succeeding CMA-ES runs. The right BLR-CMA-ES
run explores the sub-optimal funnel. The left BLR-CMA-ES run produces monotonically
improving restart points until the bottom of the optimal funnel is reached (red dot).

settings have been derived from extensive numerical experiments on the black-box problems
presented in Chapter 7. CEC 2005 benchmark results of BLR-CMA-ES with alternative
parameter settings are available in (Ofenbeck, 2009).

Memetic CMA-ES

Memetic algorithms are algorithms that combine global evolutionary variation operators with
local search mechanisms. The term “memetic” is derived from the word meme, which has
been coined by Richard Dawkins in “The selfish gene” (Dawkins, 1967). A meme is a ben-
eficial cultural “gene” that is not inherited by reproduction, but rather by participation of
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the individual in society and culture. In the optimization context, the local search of an
individual in the population simulates this process of acquiring beneficial information from
its social context (i.e., the local landscape). Memetic algorithms are particularly popular in
combinatorial optimization. In the continuous case, memetic algorithms can be used whenever
some smoothness about the objective function can be assumed. In principle, local search can
be conducted by any suitable local descent method. However, memetic algorithms are often
only of practical relevance when analytic gradient information is explicitly available. Efficient
first-order optimization methods can then be used for the local search. Such information
is often available for model energy landscapes in physics and chemistry. We thus explored
the possibility of combining such information into CMA-ES, resulting in a memetic CMA-ES
(M-CMA-ES). Due to our focus on black-box methods, we only present the key idea of M-
CMA-ES. Details can be found elsewhere (Ofenbeck, 2009; Misteli and Ofenbeck, 2010).

In M-CMA-ES, each candidate solution x
(g+1)
k in the current population is subject to a steepest

descent or a Quasi-Newton minimization. The resulting minimizer is denoted x
(g+1) ∗
k . This

f(x)

x

Figure 4.4: Model of a double-funnel landscape with one optimal narrow rugged funnel and a broad
sub-optimal funnel. When strict local descent is applied to every search point, the resulting
landscape is a double staircase (red) which is much simpler to optimize.

procedure can be understood as a transformation of the fitness landscape (Wales and Doye,
1997) as visualized in Fig. 4.4. Any sequence of neighboring basins with decreasing fitness
will be transformed into a staircase, thus removing local multi-modality. Selection is realized

by ranking the λ sample points in order of ascending fitness of the minimizers x
(g+1) ∗
k rather

than the fitness of the initial samples x
(g+1)
k . Again, the µ best individuals are chosen for

recombination. Two choices are possible to update the mean of the sampling distribution:
In the Baldwinian view of evolution, the information about the locations of the minima are
not transferred to the next generation, hence Eq. (4.2) is applied. In the Lamarckian view
of evolution, the minima locations are inherited by the next generation, leading to weighted
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intermediate recombination of the selected minima:

m(g+1) =

µ∑

i=1

wix
(g+1) ∗
i:λ , (4.13)

with standard weights wi. A meaningful hybridization of local descent and CMA-ES can only
be achieved if we ensure that the local minimizers are within the likely sampling space of the
current multivariate normal distribution. Then, the above averaging makes sense, and CMA-
ES can learn the correlation structure of neighboring local minima. For high-dimensional,
highly multi-modal landscapes, however, there is no efficient way to achieve this.

The large number of gradient evaluations potentially required by steepest descent methods to
arrive at a local minimum can be reduced by Quasi-Newton methods. The large, non-local
steps of these methods would, however, invalidate the hybridization with CMA-ES. This can be
avoided by restricting Quasi-Newton steps to an ellipsoidal region defined by the current mean
and covariance matrix of CMA-ES (Misteli and Ofenbeck, 2010). M-CMA-ES is available in
pCMALib using the BFGS module (Nocedal, 1980) as a gradient-based minimizer. M-CMA-
ES has been applied to the Lennard-Jones cluster problem (Ofenbeck, 2009).

4.2.3 Benchmark results for low-discrepancy CMA-ES

We now quantify the performance of low-discrepancy CMA-ES on the IEEE CEC 2005 bench-
mark test suite (see Section 2.3.2. The performance of BLR-CMA-ES will be investigated in
Chapter 7 in the context of linear chain problems. M-CMA-ES cannot be benchmarked on
the present test suite because, for the majority of the problems, analytic gradients are not
known or do not exist.

We present three sets of numerical results: (i) the original data for IPOP-CMA-ES pro-
duced by Hansen’s MATLAB implementation and reported in (Auger and Hansen, 2005b)
(Table 4.1), (ii) IPOP-CMA-ES as implemented in pCMALib (Table 4.2), and (iii) low-
discrepancy IPOP-CMA-ES as implemented in pCMALIb (Table 4.3). Comparison between
the first two tables validates the expected performance of CMA-ES in pCMALib. Note that
this comparison serves as a high-level validation of the algorithmic implementation. Further
validation scenarios can be found in (Baumgartner, 2008; Müller et al., 2009a). The latter
two tables provide a means to analyze the performance of LD sampling.

From the wealth of resulting data we mainly focus on statistics about the number of FES
needed to solve a certain problem (see Tables 2.2 and 2.3 for the precise conditions of suc-
cess). We measure algorithm performance using two orthogonal quantities (Suganthan et al.,
2005), the Success Rate = #successful runs/#runs and the Success Performance =
mean(FES for successful runs) ·#runs/#successful runs. The Success Rate is an es-
timator for the probability of success ps, while the Success Performance (Succ. Perf.) is an
estimator for the speed of convergence.
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Comparison between MATLAB’s and pCMALib’s CMA-ES. For the unimodal functions
f1–f3 and the basic multi-modal functions f6 and f7, the performance of the two implementa-
tions agrees well across all dimensions. The empirical success rate, the success performance,
and as well as min, median, max, and mean FES are reproduced by our implementation up to
statistical variations. Larger variations exist for the f4 (f2 with multiplicative noise) in n = 30
as well as for f5 in n = 50, where our implementation has a non-zero ps. This can be explained
by the fact that in the original experiment the starting point for f4 minimizations has been set
incorrectly (see erratum at http://www.lri.fr/~hansen/cec2005ipopcmaes.txt). In this
erratum it is also stated that “On some function the boundary setting was omitted, but this
has most probably no impact on the results.” Our results on the pair of Rastrigin functions
f9/f10 disprove this statement. While the results in Table 4.1 suggest that f9/f10 can be
solved even in n = 50, we never observed any success with our pCMALib implementation
when using the correct boundary settings. This could be reproduced also with Hansen’s
MATLAB implementation with correct boundary settings, which confirms our observation:
IPOP-CMA-ES fails to solve f9/f10 for n > 15. Inspection of the best solutions found by
IPOP-CMA-ES reveals that in many dimensions the algorithm converges to the optimal posi-
tion, while it gets stuck at the boundary in the others. The same is true for the performance
of IPOP-CMA-ES on f12, the highly-multi-modal Schwefel function, in n = 30. The success
rate of IPOP-CMA-ES also decreases to 0 there when correct boundary settings are used.

Taken together, three main conclusions can be drawn from the numerical data. First, some
of the published results of IPOP-CMA-ES are not correct. Second, the current boundary
handling mechanism in CMA-ES (Hansen et al., 2009) needs to be revisited in order to effi-
ciently solve constrained Rastrigin-like functions. Third, pCMALib is likely to be a correct
implementation of (IPOP-)CMA-ES. The latter conclusion is also supported by the validation
scenarios presented in (Baumgartner, 2008).

Performance of IPOP-CMA-ES with and without LD sequences. The data in Tables 4.2
and 4.3 provide strong evidence that LD sampling improves the performance of IPOP-CMA-
ES. We observe the same or better success rates and performances for all successfully solved
functions in all dimensions, except f5 in n = 30, 50 dimensions. The minimum of this uni-
modal function is located at the boundary of the domain, suggesting that for this type of
problem, pseudo-random sampling might be better. The set of unimodal functions f1–f3 can
be solved faster with LD sampling. The noisy f4 can be solved in all dimensions with ps = 1,
while standard IPOP-CMA-ES can only solve it with ps = 0.28 for n = 30 and fails in n = 50
dimensions. The highly multi-modal Weierstrass function f11 can be solved for n = 10 with
a remarkable rate of ps = 0.84 (compared to ps = 0.32 without LD sampling). LD sampling
also enables IPOP-CMA-ES to solve the shifted/rotated Rastrigin f10 in n = 30, once.
These results confirm our hypothesis that LD sampling leads to faster and more robust per-
formance of CMA-ES. This is also in agreement with Teytaud and Gelly’s benchmark results
on other test functions using CMA-ES with Halton sequences (Teytaud and Gelly, 2007). The
reduced performance on f5, where the global minimum is at the boundary, needs further in-
vestigation. Nonetheless, these results lead us to decide that the standard parameter settings
in pCMALib use quasi-random sampling with Sobol’ sequences and Acklam’s inversion rather
than PRNG’s. We recommend this also for other CMA-ES implementations.
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n=10

Func. min median max mean std ps Succ. Perf.

f1 1.44e+03 1.63e+03 1.71e+03 1.61e+03 6.14e+01 1.00 1.61e+03

f2 2.20e+03 2.35e+03 2.60e+03 2.38e+03 1.06e+02 1.00 2.38e+03

f3 5.84e+03 6.51e+03 7.20e+03 6.50e+03 2.92e+02 1.00 6.50e+03

f4 2.52e+03 2.88e+03 3.22e+03 2.90e+03 1.68e+02 1.00 2.90e+03

f5 5.36e+03 5.83e+03 6.72e+03 5.85e+03 2.89e+02 1.00 5.85e+03

f6 5.67e+03 8.55e+03 2.26e+04 1.08e+04 5.00e+03 1.00 1.08e+04

f7 1.49e+03 5.83e+03 1.33e+04 4.67e+03 2.83e+03 1.00 4.67e+03

f8 - - - - - 0.00 -

f9 2.33e+04 7.85e+04 - 5.75e+04 2.11e+04 0.76 7.57e+04

f10 2.68e+04 5.15e+04 - 5.98e+04 1.81e+04 0.92 6.50e+04

f11 3.05e+04 - - 6.31e+04 2.56e+04 0.24 2.63e+05

f12 2.37e+03 3.10e+04 - 2.88e+04 2.78e+04 0.88 3.27e+04

n=30

Func. min median max mean std ps Succ. Perf.

f1 4.15e+03 4.50e+03 4.72e+03 4.50e+03 1.33e+02 1.00 4.50e+03

f2 1.20e+04 1.31e+04 1.36e+04 1.30e+04 3.52e+02 1.00 1.30e+04

f3 4.15e+04 4.27e+04 4.42e+04 4.27e+04 6.06e+02 1.00 4.27e+04

f4 1.94e+04 - - 2.36e+04 4.79e+03 0.40 5.90e+04

f5 1.91e+04 6.83e+04 1.03e+05 6.59e+04 1.85e+04 1.00 6.59e+04

f6 3.76e+04 4.83e+04 1.55e+05 6.00e+04 2.81e+04 1.00 6.00e+04

f7 4.12e+03 4.97e+03 1.99e+04 6.11e+03 4.02e+03 1.00 6.11e+03

f8 - - - - - 0.00 -

f9 2.75e+05 - - 2.85e+05 6.87e+03 0.36 7.90e+05

f10 2.87e+05 - - 2.90e+05 2.44e+03 0.12 2.42e+06

f11 1.99e+05 - - 1.99e+05 0.00e+00 0.04 4.98e+06

f12 1.67e+04 - - 7.19e+04 7.54e+04 0.32 2.25e+05

n=50

Func. min median max mean std ps Succ. Perf.

f1 6.54e+03 6.89e+03 7.13e+03 6.88e+03 1.42e+02 1.00 6.88e+03

f2 3.00e+04 3.11e+04 3.29e+04 3.13e+04 6.55e+02 1.00 3.13e+04

f3 1.15e+05 1.17e+05 1.18e+05 1.17e+05 6.77e+02 1.00 1.17e+05

f4 - - - - - 0.00 -

f5 - - - - - 0.00 -

f6 1.15e+05 1.36e+05 3.59e+05 1.58e+05 6.68e+04 1.00 1.58e+05

f7 7.32e+03 8.00e+03 1.01e+04 8.03e+03 5.56e+02 1.00 8.03e+03

f8 - - - - - 0.00 -

f9 4.06e+05 - - 4.35e+05 2.22e+04 0.28 1.55e+06

f10 4.32e+05 - - 4.52e+05 2.00e+04 0.12 3.76e+06

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

Table 4.1: Number of FES (min, median, maximum, mean, and standard deviation) for IPOP-CMA-
ES to reach f(xmin) + ε as measured by (Auger and Hansen, 2005b). We show the results
for f1–f12 in n = 10, 30, 50 within MAX FES = 104n. The results for f13–f25 are not shown
since none of these functions could ever be solved by IPOP-CMA-ES. The second-to-last
column shows the empirical success rates ps, the last column the success performance.
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n=10

Func. min median max mean std ps Succ. Perf.

f1 1.55e+03 1.69e+03 1.85e+03 1.68e+03 6.72e+01 1.00 1.68e+03

f2 2.19e+03 2.38e+03 2.53e+03 2.38e+03 1.08e+02 1.00 2.38e+03

f3 6.23e+03 6.57e+03 7.36e+03 6.63e+03 3.11e+02 1.00 6.63e+03

f4 2.24e+03 2.54e+03 2.85e+03 2.56e+03 1.56e+02 1.00 2.56e+03

f5 5.21e+03 5.69e+03 6.46e+03 5.76e+03 3.20e+02 1.00 5.76e+03

f6 5.36e+03 7.54e+03 3.54e+04 1.05e+04 6.87e+03 1.00 1.05e+04

f7 1.38e+03 2.05e+03 1.26e+04 4.11e+03 3.20e+03 1.00 4.11e+03

f8 - - - - - 0.00 -

f9 4.64E+04 8.27E+04 - 7.09E+04 1.71E+04 0.80 8.87E+04

f10 2.47E+04 8.16E+04 - 6.82E+04 2.26E+04 0.80 8.52E+04

f11 2.63E+04 - - 5.86E+04 2.39E+04 0.32 1.83E+05

f12 2.52E+03 5.37E+04 - 3.23E+04 3.34E+04 0.72 4.48E+04

n=30

Func. min median max mean std ps Succ. Perf.

f1 4.41e+03 4.68e+03 5.14e+03 4.70e+03 2.10e+02 1.00 4.70e+03

f2 1.23e+04 1.28e+04 1.33e+04 1.27e+04 2.81e+02 1.00 1.27e+04

f3 4.19e+04 4.37e+04 4.46e+04 4.36e+04 6.82e+02 1.00 4.36e+04

f4 2.02e+04 - - 6.20e+04 9.21e+04 0.28 2.21e+05

f5 1.94e+04 6.51e+04 8.99e+04 6.57e+04 1.66e+04 1.00 6.57e+04

f6 3.31e+04 4.99e+04 1.40e+05 6.10e+04 2.92e+04 1.00 6.10e+04

f7 4.53e+03 5.03e+03 1.86e+04 6.64e+03 4.39e+03 1.00 6.64e+03

f8 - - - - - 0.00 -

f9 - - - - - 0.00 -

f10 - - - - - 0.00 -

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

n=50

Func. min median max mean std ps Succ. Perf.

f1 6.86e+03 7.35e+03 8.72e+03 7.50e+03 4.25e+02 1.00 7.50e+03

f2 2.94e+04 3.09e+04 3.16e+04 3.09e+04 5.28e+02 1.00 3.09e+04

f3 1.15e+05 1.17e+05 1.20e+05 1.18e+05 1.21e+03 1.00 1.18e+05

f4 - - - - - 0.00 -

f5 4.99e+05 - - 5.00e+05 6.71e+00 0.20 2.50e+06

f6 8.88e+04 1.30e+05 3.14e+05 1.49e+05 6.01e+04 1.00 1.49e+05

f7 7.26e+03 8.01e+03 3.08e+04 1.08e+04 7.35e+03 1.00 1.08e+04

f8 - - - - - 0.00 -

f9 - - - - - 0.00 -

f10 - - - - - 0.00 -

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

Table 4.2: Number of FES (min, median, maximum, mean, and standard deviation) for IPOP-CMA-
ES of pCMALib to reach f(xmin) + ε. We show the results for f1–f12 in n = 10, 30, 50
within MAX FES = 104n. The results for f13–f25 are not shown since none of these
functions could ever be solved by IPOP-CMA-ES. The second-to-last column shows the
empirical success rates ps, the last column the success performance.
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n=10

Func. min median max mean std ps Succ. Perf.

f1 1.25e+03 1.38e+03 1.53e+03 1.37e+03 6.08e+01 1.00 1.37e+03

f2 1.80e+03 1.97e+03 2.06e+03 1.96e+03 7.70e+01 1.00 1.96e+03

f3 5.23e+03 5.46e+03 6.34e+03 5.52e+03 2.29e+02 1.00 5.52e+03

f4 1.84e+03 2.08e+03 2.37e+03 2.08e+03 1.29e+02 1.00 2.08e+03

f5 4.40e+03 4.78e+03 5.21e+03 4.79e+03 1.77e+02 1.00 4.79e+03

f6 5.01e+03 9.02e+03 1.79e+04 1.00e+04 4.55e+03 1.00 1.00e+04

f7 1.17e+03 1.44e+03 4.91e+03 2.94e+03 1.75e+03 1.00 2.94e+03

f8 - - - - - 0.00 -

f9 1.85e+04 3.69e+04 - 4.21e+04 1.75e+04 0.88 4.78e+04

f10 9.99e+03 3.74e+04 - 4.49e+04 1.72e+04 0.96 4.68e+04

f11 9.83e+03 4.75e+04 - 4.45e+04 2.69e+04 0.84 5.29e+04

f12 2.17e+03 1.31e+04 - 1.76e+04 1.79e+04 0.88 2.00e+04

n=30

Func. min median max mean std ps Succ. Perf.

f1 3.55e+03 3.67e+03 3.80e+03 3.67e+03 7.51e+01 1.00 3.67e+03

f2 1.06e+04 1.10e+04 1.17e+04 1.11e+04 2.85e+02 1.00 1.11e+04

f3 3.73e+04 3.94e+04 4.07e+04 3.93e+04 6.68e+02 1.00 3.93e+04

f4 3.55e+04 3.92e+04 7.46e+04 5.30e+04 1.69e+04 1.00 5.30e+04

f5 1.57e+04 2.43e+05 - 2.34e+05 5.72e+04 0.92 2.55e+05

f6 3.77e+04 4.91e+04 1.27e+05 5.85e+04 2.61e+04 1.00 5.85e+04

f7 3.62e+03 4.04e+03 3.02e+04 5.56e+03 5.59e+03 1.00 5.56e+03

f8 - - - - - 0.00 -

f9 - - - - - 0.00 -

f10 2.12e+05 - - 2.12e+05 0.00e+00 0.04 5.30e+06

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

n=50

Func. min median max mean std ps Succ. Perf.

f1 5.57e+03 5.85e+03 6.75e+03 5.95e+03 2.85e+02 1.00 5.95e+03

f2 2.63e+04 2.72e+04 2.80e+04 2.73e+04 4.83e+02 1.00 2.73e+04

f3 1.07e+05 1.09e+05 1.12e+05 1.09e+05 1.11e+03 1.00 1.09e+05

f4 1.84e+05 1.94e+055 2.09e+05 1.94e+05 5.34e+03 1.00 1.94e+05

f5 - - - - - 0.00 -

f6 1.11e+05 1.19e+05 2.78e+05 1.32e+05 4.34e+04 1.00 1.32e+05

f7 5.64e+03 6.18e+03 8.01e+03 6.42e+03 5.96e+02 1.00 6.42e+03

f8 - - - - - 0.00 -

f9 - - - - - 0.00 -

f10 - - - - - 0.00 -

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

Table 4.3: Number of FES (min, median, maximum, mean, and standard deviation) for low-
discrepancy IPOP-CMA-ES of pCMALib to reach f(xmin) + ε. We show the results for
f1–f12 in n = 10, 30, 50 within MAX FES = 104n. The results for f13–f25 are not shown
since none of these functions could ever be solved by IPOP-CMA-ES. The second-to-last
column shows the empirical success rates ps, the last column the success performance.
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4.3 Parallel CMA-ES

CMA-ES has been designed for efficient search on landscapes with a single-funnel topology. On
multi-funnel landscapes, the only mechanism to escape from sub-optimal funnels is to restart
at a random position in the landscape. This iterated local search idea is well known in the
field of heuristic search. Both for combinatorial and continuous problems, it is often considered
the only practical solution. For black-box optimization, we offer an alternative approach here:
Parallel CMA-ES . The concept of parallel CMA-ES is to simultaneously explore the landscape
with multiple CMA-ES instances. Figure 4.5 sketches this general idea. In the evolutionary

x1

C2

C1

C3

C4

C5 C6

x2

xmin

Figure 4.5: Sketch of a parallel CMA-ES scheme. Multiple CMA-ES runs explore a model landscape
with 6 basins Ci, i = 1, . . . , 6. C3 contains the global minimum. The red individual of
the CMA-ES instance in C6 denotes the currently best solution. The black dashed lines
indicate that all CMA-ES instances can exchange information about their current states.

computation community, this concept of parallel evolution of several populations is referred
to as “coarsely grained parallel” or parallel island model (see (Alba, 2005) for a summary on
parallel search heuristics). In parallel CMA-ES, little might be gained by independent parallel
landscape exploration of S CMA-ES instances. When an unlimited budget of FES is available,
such a scheme is equivalent to S sequential CMA-ES runs with identical starting points and the
same sequence of pseudo-/quasi-random numbers. An essential ingredient in parallel CMA-
ES is the exchange of information between the different populations. Each CMA-ES instance
explores a different part of the landscape and communicates certain landscape characteristics
and/or internal state variables to other CMA-ES instances. This global information can be
used by each instance for improving its individual search performance. Different paradigms
are conceivable. For instance, if a large coverage of the landscape is desirable, the different
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instances can be dynamically forced to explore disjoints parts of the search space, reminiscent
to the classical tabu search paradigm (Glover, 1989). We can also adopt an approximate
branch-and-bound scheme where different parts of the landscape are explored in parallel and
their current fitness is globally communicated. Landscape regions that yield worse solutions
than other, already explored, parts are discarded, and search proceeds in other directions.
Such a scheme can, however, only be approximate because the usual complete enumeration
of the search space is not feasible in a black-box setting. We concretize this idea in Particle
Swarm CMA-ES .

4.3.1 Particle Swarm CMA-ES

Particle Swarm CMA-ES (PS-CMA-ES) extends the canonical CMA-ES by collaborative con-
cepts from Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995). PSO is a
population-based optimization method in which particles “fly” over the search landscape and
employ a cooperative strategy to move toward one another based on knowledge of local and
global best particle positions. PS-CMA-ES combines the robust local search performance of
CMA-ES with the global exploration power of PSO, using multiple (S) CMA-ES instances
to explore different parts of the landscape in parallel. Swarm intelligence is introduced by
considering individual CMA-ES instances as lumped particles that communicate with each
other. This includes non-local information in individual CMA-ES instances, which influences
their search directions and positions. We draw some inspiration from PSO, which will be in-
troduced first. We then describe the algorithm, provide numerical performance measurements,
and present recent developments and future research opportunities.

Particle Swarm Optimization

Each particle in standard PSO is described by its position p ∈ Rn and its velocity v ∈ Rn
(Kennedy and Eberhart, 1995). While moving through search space, a swarm of particles
evaluates the fitness function and updates its velocity according to an update rule that incor-
porates both local and global information. The local information of each particle is given by
the best solution this particle has found so far (pl,best). The global information corresponds
to the best solution any member of the swarm has found so far (pg,best). The velocities of all
particles at time t+ 1 are updated from the old velocities and the positions at time t as:

v(t+1) = v(t) + c1r1

(
p

(t)
l,best − p(t)

)
+ c2r2

(
p

(t)
g,best − p(t)

)
. (4.14)

The new positions are computed using an explicit Euler integrator with a time step of 1, thus:

p(t+1) = p(t) + v(t+1) . (4.15)

The uniform random numbers r1, r2 ∈ [0, 1] introduce a stochastic element to the algorithm,
and c1 and c2 weight the influence of local vs. global information (Kennedy and Eberhart,
1995). Since its inception in 1995, thousands of articles on PSO have been published. We
refer to (Banks et al., 2007) for a recent review. A physical view on PSO, linking the algorithm
to Newtonian mechanics, is provided in (Mikki and Kishk, 2007).
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The PS-CMA-ES algorithm

We hypothesize that exchange of information between parallel CMA-ES runs enhances the
performance of CMA-ES on multi-modal functions, in particular functions with multiple fun-
nels. Global swarm information is included both in the covariance adaptation mechanism of
CMA-ES and in the placement of the population mean. Each CMA-ES instance already ex-
ploits local information. We set c1 = 0 in PS-CMA-ES. The parameters c2 and r2 are replaced
by a more elaborate weighting rule.

Adapting the covariance matrix. We adjust the covariance matrix of CMA-ES such that
it is more likely to sample good candidates in direction of the current global best position
pg,best ∈ Rn in the swarm. This is achieved by mixing the CMA covariance matrix from
Eq. (4.9) with a PSO covariance matrix that is influenced by global information:

C(g+1) = cp C
(g+1)
CMA + (1− cp) C

(g+1)
PSO , (4.16)

where the mixing weight cp ∈ [0, 1] is a new strategy parameter. C
(g+1)
CMA follows the original

adaptation rule as given in Eq. (4.9). C
(g+1)
PSO is a rotated version of C

(g)
CMA such that the largest

eigenvector bmain of C
(g)
CMA is aligned with the vector pg = pg,best−m(g) that points from the

current mean m(g) toward the global best position pg,best. The vector bmain hence is the analog

of the velocity direction vector in PSO. C
(g)
CMA can be decomposed as C

(g)
CMA = B D2 BT , such

that the rotated covariance matrix can be constructed by rotating its eigenvectors (columns

of B). This yields the orthogonal matrix B
(g)
rot = R B ∈ Rn×n of the rotated eigenvectors.

C
(g+1)
PSO is then given by:

C
(g+1)
PSO = B

(g)
rot

(
D(g)

)2 (
B

(g)
rot

)T
. (4.17)

The rotation matrix R ∈ Rn×n is uniquely and efficiently computed using Givens Rotations
(Golub and Van Loan, 1996). The Givens rotation matrix G describes a unique rotation of a
vector onto one axis. An n-dimensional rotation is performed as a sequence of two-dimensional
rotations for all possible pairs (i, j) of axes (Rudolph, 1992):

R(n×n) =
n−1∏

i=1

n∏

j=i+1

Rij . (4.18)

Rij is an n × n matrix describes the unique rotation in the plane spanned by the axes (i, j).
It can be considered as a rank-two correction to the identity:

Rij,Rplane
=
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where the 2× 2 matrix Rplane = GT
p Gb. Gp is the Givens rotation of the elements i and j of

pg, and Gb is the Givens rotation of the elements i and j of bmain. The complete procedure
to compute the rotation matrix R ∈ Rn×n is summarized in Algorithm 1.

Algorithm 1: Efficient computation of the n-dimensional rotation matrix
using Givens rotations

Input: Two n-dimensional vectors bmain and pg

Result: Rotation matrix R, such that R bmain = apg

Initialization: p = pg , b = bmain

for i = (n− 1),−1, 1 do
for j = n,−1, (i+ 1) do

pplane =

(
p(i)

p(j)

)
bplane =

(
b(i)

b(j)

)

Gp = Givens(pplane) Gb = Givens(bplane)

p← Rij,Gp p b← Rij,Gb
b

Rp ← Rij,Gp Rp Rb ← Rij,Gb
Rb

end

end

R = RT
pRb

Biasing the mean value. In order to enable individual swarm particles (i.e., CMA-ES in-
stances) in PS-CMA-ES to escape from local minima, we bias the mean value in addition to
rotating the covariance matrix in direction of the global best solution. After the recombination
step of each CMA-ES generation, the updated mean value for the next generation g + 1 is
biased as:

m(g+1) ←m(g+1) + bias . (4.20)

The bias changes the evolution path p
(g+1)
c update for future generations, since the path will

be computed with respect to the biased mean value. The biasing rules can be used to include
prior knowledge about the structure of the problem, e.g., the correlation length of the fitness
landscape. In our benchmark tests, we discriminate the following 3 exploration scenarios that
are coupled to the step size σ of each individual CMA-ES instance, a natural measure for its
mode of exploration:

1. The CMA-ES instance that produced pg,best and all CMA-ES instances with step sizes
σ > ||pg|| are not biased at all, thus: bias = 0. Using no bias in these cases avoids
catapulting the global best member out of the funnel containing the potential global
optimum and prevents very explorative runs from overshooting the target.

2. CMA-ES instances that have converged to local minima far from pg,best are characterized
by a ratio σ/||pg|| that is smaller than tc||pg||, tc < 1. These instances are strongly biased
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in order to allow them to escape from the current funnel, thus: bias = bpg. Using a
large bias prevents these instances from converging back into the same local minimum
again.

3. CMA-ES instances that are not converged, and thus still exploring the space, are given
a bias equal to the step-size- to-distance ratio: bias = σ/||pg||pg. Using such a small
bias prevents clustering of swarm members and preserves the explorative power of the
method.

This set of biasing rules, summarized in Algorithm 2, introduces two new strategy parameters:
the convergence threshold tc and the biasing factor b.

Algorithm 2: Standard rules for biasing the mean value

Input: Mean value m(g+1) and global best direction pg

Result: Biased mean value m(g+1)

if σ < ||pg|| and instance has not produced pg then
if σ
||pg|| ≤ tc||pg|| then

bias = bpg

else
bias = σ

||pg|| pg

end

else
bias = 0

end

m(g+1) = m(g+1) + bias

Strategy parameters. In PS-CMA-ES, all swarm members communicate with each other. A
swarm of size S thus requires S(S − 1) communications. The PSO update (broadcasting the
global best solution, rotating the covariance matrices, and biasing the mean values of all CMA
instances) must, however, not be performed at each iteration. Too frequent updates would
prevent the CMA-ES instances from learning the local covariance matrix. Too infrequent up-
dates would lead to premature convergence, with several CMA-ES instances stopping in local
minima before the first swarm information is exchanged. Clearly, a problem-specific tradeoff
has to be found for the communication interval Ic between PSO updates, constituting the
main strategy parameter of the PS-CMA-ES. In the limit Ic →∞, PS-CMA-ES is equivalent
to S parallel standard CMA-ES runs.

Other strategy parameters are the swarm size S, the biasing parameters tc and b, and the
mixing weight cp in Eq. (4.16). Both tc and b have been considered random variables at first,
but the setting tc = 0.1 and b = 0.5 was found a more robust choice on most test functions.
The weight cp can, e.g., be randomized, self-adapted, or determined by a preliminary grid
search. The swarm size could be chosen to reflect the dimensionality of the problem or also
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using a grid search. It determines the overall population size and the computational overhead
of the algorithm. Therefore, S should be chosen as low as possible, but as high as necessary
to significantly increase exploration power. For S = 1, PS-CMA-ES is equivalent to standard
CMA-ES.

Restart strategies. It is possible that some CMA-ES instances converge to local minima
before reaching the next time point of global communication. There are several possibilities
how to handle these instances. A generic idea is to restart these CMA-ES instances at random
locations in the landscape. In most cases, however, we are faced with a limited budget of FES.
This implies that the restarted CMA-ES instances consume FES that are then not available
any more to better CMA-ES instances. The standard setting in PS-CMA-ES thus is to idle all
converged CMA-ES runs until every swarm member has converged. If the FES budget is not
exhausted at this point, all swarm members are restarted. This strategy introduces a second
level of competition: Runs that evolve faster toward a low-lying landscape region are allowed
to consume more FES.

4.3.2 Numerical results and comparison to related algorithms

Determination of standard strategy parameters We use grid search to determine good
values for the strategy parameters introduced in Section 4.3.1. This determination of strategy
parameters can be considered as an unbiased training of the algorithm. The strategy param-
eters of individual CMA-ES instances are set according to (Hansen, 2008). Pseudo-random
numbers are used for sampling. The initial step-size σ is varied between 20% and 50% of the
constrained region of the minimization problem. Table 4.4 summarizes all strategy parame-
ters tested in the grid search. All 144 combinations are tested for functions f1–f25 in n = 10
dimensions. The benchmark requires 25 repetitions per problem (Suganthan et al., 2005),
leading to a total of 25 · 25 · 144 = 90 000 PS-CMA-ES runs in total.

Parameter Tested values

step size σ 0.2, 0.3, 0.4, 0.5

swarm size S 6, 10, 15

mixing weight cp 0.3, 0.5, 0.7

communication interval Ic 150, 200, 250, ∞

Table 4.4: Values of the PS-CMA-ES strategy parameters tested in the grid search.

The grid search revealed an initial step size of σ = 0.2 to be the most beneficial one. A
swarm size of at least S = 10, a mixing weight of cp = 0.5 or 0.7, and swarm updates every
200 to 250 generations performed well on the test functions. Although there might be better
configurations for individual test cases, we consider σ = 0.2, S = 16, cp = 0.7, and Ic = 200
the standard setting of PS-CMA-ES. In order to test the generality of this parameter set, we
use these values also for tests in 30 and 50 dimensions.
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Performance of PS-CMA-ES. As in the previous section, we present the success tables of
PS-CMA-ES with and without LD sampling. Because the majority of functions that are
highly multi-modal/multi-funnel cannot be solved within the given FES budget we use the
mean (over all 25 repetitions of each problem) function value error after MAX FES=104n as
a measure of algorithmic performance. Using this measure, we compare the performance of
PS-CMA-ES to that of LR-CMA-ES and IPOP-CMA-ES, as well as to the performance of the
Particle Swarm Guided ES (PSGES) (Hsieh et al., 2007), a method that shares similar design
principles with PS-CMA-ES. We take the performance results of the reference algorithms
from the corresponding original publications (Auger and Hansen, 2005a,b; Hsieh et al., 2007).
PSGES data are only available for n = 10.

We first analyze Table 4.5 for PS-CMA-ES without LD sampling. For n = 10, PS-CMA-ES
successfully solves 11 test functions. Among all algorithms ever tested on this benchmark, only
IPOP-CMA-ES is able to solve the same number of functions. PS-CMA-ES fails to solve f3, a
shifted ellipsoid with high condition number. It also needs one order of magnitude more func-
tion evaluations than IPOP-CMA-ES to solve f1, f2, and f4–f7. These results are expected
since for smooth unimodal landscape topologies, parallel CMA-ES is not needed. However,
PS-CMA-ES outperforms IPOP-CMA-ES on the Rastrigin pair f9/f10 in terms of both suc-
cess rate and success performance. This strong result implies that even on highly multi-modal
landscapes with single-funnel topology, collaborative CMA-ES instances are meaningful. The
performance on f11/f12 is comparable to that of IPOP-CMA-ES. PS-CMA-ES, however, is the
only CMA-ES variant that solves the multi-funnel, hybrid composition function f15 (Fig. 4.6).
To date, there are only three other algorithms that can also solve this problem (see (Hansen,
2006) for summary statistics of all tested algorithms). It is also noteworthy that alternative
parameter settings, tested during the grid search, enabled PS-CMA-ES to solve 12 test prob-
lems in n = 10, including the hybrid composition function f16, the rotated version of f15.
To our knowledge, there has been no other algorithm so far that solved any of the functions
f16–f25. For n = 30, PS-CMA-ES can solve f1/f2, and f7 with ps = 1, and f7, f9/f10 with
ps = 0.04. These results are outperformed by IPOP-CMA-ES, except for the pair f9/f10 that
cannot be solved by IPOP-CMA-ES when boundaries are set correctly. In n = 50 dimensions,
PS-CMA-ES only solves f1 and f7.

The observed benefits of LD sampling in IPOP-CMA-ES can be transferred to PS-CMA-ES.
Table 4.6 summarizes the results for PS-CMA-ES with identical settings and LD sampling. In
n = 10 dimensions, this PS-CMA-ES can solve 12 test functions, including the high-conditional
ellipsoid f3 (ps = 0.32). All other functions are solved faster and with equal or higher success
rate than when using pseudo-random numbers. These results constitute the best performance
among all algorithms ever tested on the CEC 2005 benchmark (Hansen, 2006). In n = 30
dimensions, LD sampling enables PS-CMA-ES to solve f1/f2 andf7with ps = 1.0. Function
f5 cannot be solved with this scheme, in contrast to PS-CMA-ES with pseudo-random num-
bers. However, f9/f10 can be solved with higher success rate, as well as f12. Only two other
algorithms could solve f12 in this dimension (Hansen, 2006); IPOP-CMA-ES with correct
boundary settings fails. For n = 50, LD sampling allows solving the pair f9/f10 at least once,
in addition to f1, f2, and f7.
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Figure 4.6: Two-dimensional version of the function f16 from the CEC benchmark test suite (Sug-
anthan et al., 2005). The global topology is a double funnel separated by the central
ridge region (in gray). The global and several local minima are contained in funnel 1,
several deep local minima in funnel 2. This topology is hard since a search heuristic can
be trapped in the broad funnel 2.

The CEC 2005 benchmark results also confirm that PS-CMA-ES inherits several invariance
properties from CMA-ES. Although f3 suggests that collaborative CMA-ES instances are
less favorable for highly stretched unimodal topologies, PS-CMA-ES shows no decrease in
performance on the pair f9/f10, where f10 is a rotated non-separable version of f9. In fact,
PS-CMA-ES performs even better on f10 in all tested dimensions. This may be explained by
the increased correlation length of function f10 as compared to f9 Fig. 3.8.
Robustness against noise can be probed on the pair f2/f4. For n = 10, success rate and
performance of PS-CMA-ES are similar. In higher dimensions, however, PS-CMA-ES is not
able to reach the required accuracy for solving f4. We infer that, for unimodal topologies,
noise affects PS-CMA-ES more than it does for IPOP-CMA-ES.
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n=10

Func. min median max mean std ps Succ. Perf.

f1 2.13e+04 2.34e+04 2.44e+04 2.33e+04 8.39e+02 1.00 2.33e+04

f2 3.20e+04 3.56e+04 3.75e+04 3.56e+04 1.26e+03 1.00 3.56e+04

f3 - - - - - 0.00 -

f4 3.54e+04 3.91e+04 4.10e+04 3.86e+04 1.72e+03 1.00 3.86e+04

f5 7.38e+04 7.99e+04 8.28e+04 7.93e+04 2.49e+03 1.00 7.93e+04

f6 4.47e+04 8.60e+04 9.49e+04 8.20e+04 1.29e+04 1.00 8.20e+04

f7 2.10e+04 2.42e+04 2.63e+04 2.41e+04 1.38e+03 1.00 2.41e+04

f8 - - - - - 0.00 -

f9 4.48e+04 7.81e+04 8.07e+04 7.04e+04 1.38e+04 1.00 7.04e+04

f10 4.66e+04 7.87e+04 - 7.35e+04 1.17e+04 0.96 7.66e+04

f11 4.05e+04 - - 4.57e+04 3.77e+03 0.16 2.86e+05

f12 2.98e+04 6.08e+04 - 5.61e+04 1.81e+04 0.72 7.79e+04

f13 - - - - - 0.00 -

f14 - - - - - 0.00 -

f15 9.17e+04 - - 9.17e+04 0.00e+00 0.04 2.29e+06

n=30

Func. min median max mean std ps Succ. Perf.

f1 6.41e+04 6.64e+04 6.95e+04 6.65e+04 1.26e+03 1.00 6.65e+04

f2 2.43e+05 2.55e+05 2.63e+05 2.55e+05 5.65e+03 1.00 2.55e+05

f3 - - - - - 0.00 -

f4 - - - - - 0.00 -

f5 2.96e+05 - - 2.96e+05 0.00e+00 0.04 7.39e+06

f6 - - - - - 0.00 -

f7 6.75e+04 7.35e+04 7.76e+04 7.33e+04 2.05e+03 1.00 7.33e+04

f8 - - - - - 0.00 -

f9 2.63e+05 - - 2.63e+05 0.00e+00 0.04 6.56e+06

f10 2.62e+05 - - 2.62e+05 0.00e+00 0.04 6.55e+06

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

n=50

Func. min median max mean std ps Succ. Perf.

f1 1.00e+05 1.03e+05 1.05e+05 1.03e+05 1.08e+03 1.00 1.03e+05

f2 - - - - - 0.00 -

f3 - - - - - 0.00 -

f4 - - - - - 0.00 -

f5 - - - - - 0.00 -

f6 - - - - - 0.00 -

f7 1.09E+05 1.13E+05 1.32E+05 1.15E+05 5.82E+03 1.00 1.15E+05

f8 - - - - - 0.00 -

f9 - - - - - 0.00 -

f10 - - - - - 0.00 -

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

Table 4.5: Number of FES (min, median, maximum, mean, and standard deviation) for PS-CMA-ES
without LD sampling to reach the required accuracy for f1-f15 in n = 10 and f1–f12 in
n = 30, 50 within MAX FES = 104n. Columns 7 and 8 give the empirical success rate ps
and the success performance.
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n=10

Func. min median max mean std ps Succ. Perf.

f1 1.89e+04 1.97e+04 2.07e+04 1.98e+04 4.05e+02 1.00 1.98e+04

f2 2.72e+04 2.88e+04 3.00e+04 2.87e+04 8.27e+02 1.00 2.87e+04

f3 9.28e+04 - - 9.83e+04 3.29e+03 0.32 3.07e+05

f4 2.80e+04 3.01e+04 3.16e+04 3.02e+04 1.02e+03 1.00 3.02e+04

f5 6.50e+04 6.64e+04 6.88e+04 6.68e+04 9.52e+02 1.00 6.68e+04

f6 4.63e+04 7.54e+04 8.39e+04 7.28e+04 9.72e+03 1.00 7.28e+04

f7 1.86e+04 1.92e+04 2.10e+04 1.97e+04 7.56e+02 1.00 1.97e+04

f8 - - - - - 0.00 -

f9 1.48e+04 7.41e+04 8.02e+04 6.30e+04 1.64e+04 1.00 6.30e+04

f10 4.82e+04 7.67e+04 7.92e+04 6.75e+04 1.36e+04 1.00 6.75e+04

f11 3.00e+04 - - 3.08e+04 7.39e+02 0.12 2.57e+05

f12 2.44e+04 3.91e+04 9.94e+04 4.81e+04 2.46e+04 1.00 4.81e+04

f13 - - - - - 0.00 -

f14 - - - - - 0.00 -

f15 9.15e+04 - - 9.35e+04 2.20e+03 0.12 7.79e+05

n=30

Func. min median max mean std ps Succ. Perf.

f1 5.13e+04 5.36e+04 5.38e+04 5.36e+04 6.62e+02 1.00 5.36e+04

f2 1.94e+05 2.05e+05 2.06e+05 2.04e+05 3.73e+03 1.00 2.04e+05

f3 - - - - - 0.00 -

f4 - - - - - 0.00 -

f5 - - - - - 0.00 -

f6 - - - - - 0.00 -

f7 5.49e+04 5.87e+04 6.46e+04 5.91e+04 2.02e+03 1.00 5.91e+04

f8 - - - - - 0.00 -

f9 1.70e+05 - - 2.17e+05 4.87e+04 0.16 1.36e+06

f10 1.65e+05 2.51e+05 - 2.15e+05 2.96e+04 0.64 3.36e+05

f11 - - - - - 0.00 -

f12 2.28e+05 - - 2.28e+05 0.00e+00 0.04 5.70e+06

n=50

Func. min median max mean std ps Succ. Perf.

f1 8.36e+04 8.45e+04 8.64e+04 8.49e+04 7.55e+02 1.00 8.49e+04

f2 5.00e+05 5.00e+05 5.00e+05 5.00e+05 0.00e+00 1.00 5.00e+05

f3 - - - - - 0.00 -

f4 - - - - - 0.00 -

f5 - - - - - 0.00 -

f6 - - - - - 0.00 -

f7 8.81e+04 9.48e+04 9.70e+04 9.43e+04 2.23e+03 1.00 9.43e+04

f8 - - - - - 0.00 -

f9 3.34e+05 - - 3.34e+05 0.00e+00 0.04 8.35e+06

f10 3.34e+05 - - 3.58e+05 3.36e+04 0.08 4.47e+06

f11 - - - - - 0.00 -

f12 - - - - - 0.00 -

Table 4.6: Number of FES (min, median, maximum, mean, and standard deviation) for PS-CMA-
ES with LD sampling to reach the required accuracy for f1-f15 in n = 10 and f1–f12 in
n = 30, 50 within MAX FES = 104n. Columns 7 and 8 give the empirical success rate ps
and the success performance.
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PS-CMA-ES performance on multi-modal/multi-funnel landscapes. We analyze the per-
formance of PS-CMA-ES (with LD sampling) on the subset f8–f25 that only includes hard
multi-modal/multi-funnel functions with exponentially many minima. The majority of these
functions cannot be solved within the allowed FES budget. We thus use the mean (over all
25 repetitions of each problem) best ever found function value error after MAX FES=104n to
rank the different methods for performance comparison. The summary statistics are given in
Table 4.7 for n = 10, Table 4.8 for n = 30, and Table 4.9 for n=50.

Compared to LR-CMA-ES, IPOP-CMA-ES, and PSGES (n=10 only), PS-CMA-ES achieves
the best average rank over all functions and all dimensions. In n = 10, PS-CMA-ES is always
ranked first or second, except for f22 where it is outperformed by IPOP- and LR-CMA-ES.
The average rank is 1.77. In n = 30, PS-CMA-ES is ranked first or second, except for f18,
f20 and f23. In n = 50, PS-CMA-ES is ranked first or second, except for f19. The average
rank for n = 30, 50 is 1.5. PS-CMA-ES shows remarkable performance on the triplet f15–f17.
Function f16 is the rotated version of f15, and f17 is a noisy version of f16, suggesting that
PS-CM-ES is robust against rotation and addition of noise on multi-funnel landscapes. In
some cases, the mean error is orders of magnitudes lower than that of IPOP-CMA-ES.

Func. PS-CMA-ES LR-CMA-ES IPOP-CMA-ES PSGES

f8 2.00e+01 (1) 2.00e+01 (1) 2.00e+01 (1) 2.09e+01 (4)

f9 3.98e-02 (1) 4.49e+01 (4) 2.39e-01 (2) 3.46e+00 (3)

f10 7.73e-09 (1) 4.08e+01 (4) 7.96e-02 (2) 1.46e+01 (3)

f11 8.54e-01 (1) 3.65e+00 (3) 9.34e-01 (2) 1.35e+01 (4)

f12 1.10e+00 (1) 2.09e+02 (3) 2.93e+01 (2) 3.60e+02 (4)

f13 3.67e-01 (1) 4.94e-01 (2) 6.96e-01 (3) 8.21e-01 (4)

f14 3.40e+00 (2) 4.01e+00 (3) 3.01e+00 (1) 5.00e+00 (4)

f15 8.67e+01 (1) 2.11e+02 (2) 2.28e+02 (3) 3.26e+02 (4)

f16 9.28e+01 (1) 1.05e+02 (2) 9.31e+04 (4) 2.01e+02 (3)

f17 1.12e+02 (1) 5.49e+02 (3) 1.23e+02 (2) 3.03e+03 (4)

f18 3.60e+02 (2) 4.97e+02 (3) 3.32e+02 (1) 7.15e+02 (4)

f19 3.25e+02 (1) 5.16e+02 (3) 3.26e+02 (2) 6.69e+02 (4)

f20 3.43e+02 (2) 4.42e+02 (3) 3.00e+02 (1) 7.05e+02 (4)

f21 4.71e+02 (2) 4.04e+02 (1) 5.00e+02 (3) 8.89e+02 (4)

f22 7.46e+02 (3) 7.04e+02 (1) 7.29e+02 (2) 8.11e+02 (4)

f23 5.58e+02 (2) 7.91e+02 (3) 5.59e+02 (1) 1.08e+03 (4)

f24 2.00e+02 (1) 8.65e+02 (4) 2.00e+02 (1) 4.19e+02 (3)

f25 4.03e+02 (2) 4.42e+02 (4) 3.74e+02 (1) 4.15e+02 (3)

Rank 1.77 (32/18) 2.72 (49/18) 1.88 (34/18) 3.5 (63/18)

Table 4.7: Mean function error and relative ranks (in brackets) after 105 function evaluations in n = 10
dimensions for PS-CMA-ES with LD sampling, IPOP-CMA-ES, LR-CMA-ES and PSGES.
Multi-funnel landscapes are in bold. The last row shows the average rank over all functions.

In summary, we conclude that PS-CMA-ES with LD sampling is a good choice on arbitrary
landscape topologies for problems of low dimensionality (n ≈ 10). In higher dimensions,
PS-CMA-ES is a good choice for highly multi-modal single-funnel, multi-funnel, and noisy
problems. This is further supported by numerical experiments on Lunacek’s double-funnel
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Func. PS-CMA-ES LR-CMA-ES IPOP-CMA-ES

f8 2.00e+01 (1) 2.00e+01 (1) 2.01e+01 (3)

f9 8.76e-01 (1) 2.91e+02 (3) 9.38e-01 (2)

f10 5.57e-01 (1) 5.63e+02 (3) 1.65e+00 (2)

f11 7.10e+00 (2) 1.52e+01 (3) 5.48e+00 (1)

f12 8.80e+02 (1) 1.32e+04 (2) 4.43e+04 (3)

f13 2.05e+00 (1) 2.32e+00 (2) 2.49e+00 (3)

f14 1.24e+01 (1) 1.40e+01 (3) 1.29e+01 (2)

f15 1.37e+02 (1) 2.16e+02 (3) 2.08e+02 (2)

f16 1.59e+01 (1) 5.84e+01 (3) 3.50e+01 (2)

f17 9.15e+01 (1) 1.07e+03 (3) 2.91e+02 (2)

f18 9.05e+02 (3) 8.90e+02 (1) 9.04e+02 (2)

f19 8.85e+02 (1) 9.03e+02 (2) 9.04e+02 (3)

f20 9.05e+02 (3) 8.89e+02 (1) 9.04e+02 (2)

f21 5.00e+02 (2) 4.85e+02 (1) 5.00e+02 (2)

f22 8.43e+02 (2) 8.71e+02 (3) 8.03e+02 (1)

f23 5.43e+02 (3) 5.35e+02 (2) 5.34e+02 (1)

f24 2.10e+02 (1) 1.41e+03 (3) 9.10e+02 (2)

f25 2.10e+02 (1) 6.91e+02 (3) 2.11e+02 (2)

Rank 1.5 (27/18) 2.33 (42/18) 2.05(37/18)

Table 4.8: Mean function error and relative ranks (in brackets) after 3 · 105 function evaluations in
n = 30 dimensions for PS-CMA-ES with LD sampling, IPOP-CMA-ES, and LR-CMA-ES.
Multi-funnel landscapes are in bold. The last row shows the average rank over all functions.

Func. PS-CMA-ES LR-CMA-ES IPOP-CMA-ES

f8 2.00e+01 (1) 2.00e+01 (1) 2.01e+01 (3)

f9 5.45e+00 (2) 5.67e+02 (3) 1.39e+00 (1)

f10 5.33e+00 (2) 1.48e+03 (3) 1.72e+00 (1)

f11 1.59e+01 (2) 3.41e+01 (3) 1.17e+01 (1)

f12 6.90e+03 (1) 8.93e+04 (2) 2.27e+05 (3)

f13 4.15e+00 (1) 4.70e+00 (3) 4.59e+00 (2)

f14 2.15e+01 (1) 2.39e+01 (3) 2.29e+01 (2)

f15 1.25e+02 (1) 2.50e+02 (3) 2.04e+02 (2)

f16 1.62e+01 (1) 7.09e+01 (3) 3.09e+01 (2)

f17 9.13e+01 (1) 1.05e+03 (3) 2.34e+02 (2)

f18 8.70e+02 (1) 9.06e+02 (2) 9.13e+02 (3)

f19 9.13e+02 (3) 9.11e+02 (1) 9.12e+02 (2)

f20 9.09e+02 (2) 9.01e+02 (1) 9.12e+02 (3)

f21 6.62e+02 (2) 5.00e+02 (1) 1.00e+03 (3)

f22 8.63e+02 (2) 9.10e+02 (3) 8.05e+02 (1)

f23 8.12e+02 (2) 6.37e+02 (1) 1.01e+03 (3)

f24 2.00e+02 (1) 8.43e+02 (2) 9.55e+02 (3)

f25 2.14e+02 (1) 4.77e+02 (3) 2.15e+02 (2)

Rank 1.5 (27/18) 2.23 (41/18) 2.17 (39/18)

Table 4.9: Mean function error and relative ranks (in brackets) after 5 · 105 function evaluations in
n = 50 dimensions for PS-CMA-ES with LD sampling, IPOP-CMA-ES, and LR-CMA-ES.
Multi-funnel landscapes are in bold. The last row shows the average rank over all functions.
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landscapes (see Eqs. (2.11) and 2.12). We refer to the Master Theses (Ofenbeck, 2009; König,
2010) for these results.

4.3.3 Conclusions and future work

We have introduced the concept of parallel CMA-ES as a general extension to CMA-ES. One
instance of such a scheme, the Particle Swarm CMA Evolution Strategy, has been presented
in detail. There, each CMA-ES instance is considered an individual swarm particle. Global
knowledge is included in the CMA-ES sampling distribution using two mechanisms: (1) rota-
tion of the covariance matrix such that the longest eigenvector points in the direction of the
globally best, and (2) biasing the mean of the sampling distribution toward the global best.
We have described a computationally efficient algorithm for uniquely rotating the covariance
matrix in high-dimensional spaces. The presented method adds five strategy parameters: the
swarm size S, the mixing weight cp, the biasing parameters tc and b, and the communication
interval Ic. The biasing rules for the sampling mean provide additional means of accounting for
prior knowledge about the optimization problem at hand. We have determined, in an unbiased
way, standard values for all strategy parameters that provide good average performance on the
wide range of test functions represented in the CEC 2005 benchmark suite, hence rendering
PS-CMA-ES practically parameter free. Using these standard parameters, we have evaluated
the performance of PS-CMA-ES and compared it to LR-CMA-ES, the IPOP-CMA-ES, and
PSGES, another hybrid particle swarm evolution strategy (Hsieh et al., 2007).

Our benchmarks have shown the superior performance of PS-CMA-ES on strongly multi-
modal problems (Rastrigin function, f9/f10), and multi-funnel problems across all tested
dimensions. We believe that PS-CMA-ES benefits from an increased global exploration power
introduced by the swarm communication. Analyzing the search space coverage of the different
algorithms will be a topic of future research.

With standard parameter settings, PS-CMA-ES presented no advantage over the reference
algorithms on unimodal functions and several basic multi-modal functions. This could po-
tentially be improved by tuning the strategy parameters of PS-CMA-ES specifically for these
cases, as indicated by our parameter sweep for n = 10 dimensions. We observed that runs
without global communication and smaller swarm sizes would perform better on these prob-
lems. This was expected since the standard CMA-ES approximates well the fitness landscape
of unimodal functions and communication can only disturb its convergence. For larger swarm
sizes, there is only little time for individual CMA-ES instances to converge within the maxi-
mum allowed FES budget.

While PS-CMA-ES performs well using the standard parameter settings determined in this
work, its performance could be further improved by refined parameter choices. In particular,
it could be advantageous to couple the communication interval and the swarm size to the
problem dimension. Alternative communication topologies are also conceivable. For instance,
ring, toroidal or grid topologies could be considered instead of the all-to-all topology used
here. Preliminary results are already available in (König, 2010).
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PS-CMA-ES comes at an increased computational cost compared to restart CMA-ES strate-
gies. The main computational overhead is caused by the rotation of the covariance matrix. The
presented rotation algorithm requires 2n (n−1)+1 matrix multiplications at each PSO update
and for each swarm member in order to construct Rp and Rb. Hence, the computational cost
increases quadratically with the number of dimensions and linearly with swarm size. This can,
to a certain extent, be relaxed by choosing the smallest possible swarm size and performing
PSO updates less frequently (controlled through the strategy parameter Ic). The overall scal-
ing is dictated by the final matrix multiplication to construct R, which scales at most cubically
with dimension. In addition, alternative biasing schemes that do not require n-dimensional
rotations could be investigated, for instance, by using the direction toward the current global
best solution for a weighted rank-one update of the individual covariance matrices. It is also
noteworthy that the intrinsic parallelism of parallel CMA-ES schemes allows leveraging the
computational performance of multi-core platforms, in particular when the swarm size is cho-
sen as an integer multiple of the number of processing cores. PS-CMA-ES thus provides a
straightforward way to benefit from the anticipated future increase in the number of cores
per chip by using this parallelism to increase the exploration power of the search. This was
also the driving motivation for the development of the parallel software library pCMALib.
In pCMALib, individual CMA-ES instances are distinct processes that run independently on
different cores. Communication is realized using the Message Passing Interface (MPI). The
design and implementation of pCMALib, as well as all available settings for parallel CMA-ES
schemes are summarized in Appendix A2.

4.4 Gaussian Adaptation

Despite its sound theoretical design principles and its overwhelming practical success, CMA-ES
is often confronted with the criticism that its internal update rules are rather complex, and its
parameter settings are derived in an ad hoc fashion (Beyer and Sendhoff, 2008). A number of
recent publications attempt to alleviate these drawbacks. Beyer and Sendhoff introduced the
Covariance Matrix Self Adaptation ES (CMSA-ES) (Beyer and Sendhoff, 2008), comprising
simpler rules for the covariance matrix and step size adaptation, and fewer parameters. In a
series of papers, Natural Evolution Strategies (NES) (Wierstra et al., 2008; Sun et al., 2009;
Glasmachers et al., 2010) have been proposed as a more “principled” approach to black-box
optimization. NES is designed to follow the Natural Gradient of the landscape, a well-known
concept for Machine Learning (Amari, 1998). Akimoto and co-workers recently made the link
between NES and CMA-ES explicit and showed a bi-directional relationship between CMA-ES
and NES (Akimoto et al., 2011). Here, we offer a different view on covariance matrix and step
size adaptation that is rooted in the Maximum Entropy principle: Gaussian Adaptation.

4.4.1 Gaussian Adaptation and the Maximum Entropy Principle

Gaussian Adaptation (GaA) has been developed in the context of electrical network design.
There, the key goal is to find an optimal setting of design parameters x ∈ Rn, e.g., nomi-
nal values of resistances and capacities in an analog network, that fulfill two requirements:
First, the parameter settings satisfy the specifications imposed by the engineer, i.e. some
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(real-valued) objective (or criterion) function f(x) applied to the network output, and sec-
ond, the nominal values should be robust with respect to intrinsic random variations of the
components during operation of the electrical device. In the late 1960’s Gregor Kjellström,
an engineer at Ericsson, realized that with increasing network complexity classical optimiz-
ers such as conjugate gradients perform poorly, especially when analytical gradients are not
readily available or when the objective function is multi-modal. He suggested to search the
space of valid parameter settings with stochastic methods that only rely on evaluations of the
objective function. Starting from an exploration method that can be considered an adaptive
random walk through design space (Kjellström, 1969, 1970), he refined his algorithm to what
he called Gaussian Adaptation (Kjellström and Taxen, 1981).

Before turning to the problem of optimization, Kjellström considered the following simpler
situation: Assume that the engineer of an electrical circuit can vary the set of design param-
eters and can decide whether these settings fulfill a specified criterion or not. How can one
describe the set A ⊂ Rn of acceptable solutions in a general and compact manner? Based on
Shannon’s information theory, Kjellström derived that under the assumption of finite mean
m and covariance C of the samples, a Gaussian distribution may be used to characterize A
(Kjellström and Taxen, 1981). Although not specifically stated in the original publication,
Kjellström applied the maximum entropy principle, developed by Jaynes in 1957 (Jaynes,
1957). There, Jaynes states that the Maximum Entropy principle “is the least biased estimate
possible on the given information; i.e., it is maximally noncommittal with regard to missing
information.” In the case of given mean and covariance information, the Gaussian distribution
maximizes the entropy H, and hence is the preferred choice to describe the region of acceptable
points. The entropy of a multivariate Gaussian distribution is:

H(N ) = log
(√

(2πe)n det(C)
)
, (4.21)

where C is the covariance matrix. In order to get the most informative characterization of the
region A, Kjellström envisioned an iterative sampling strategy with a Gaussian distribution
that satisfies the following criteria: (i) The probability of finding a feasible design parameter
set should be fixed to a predefined value P < 1, and (ii) the spread of the samples quantified by
their entropy should be maximized. As Eq. (4.21) shows, this can be achieved by maximizing
the determinant of the covariance matrix. In the situation where the parameters have to fulfill
a predefined static criterion, the iterative sampler should push the mean of the distribution
toward the center of the feasible design space. Simultaneously, it should adapt the orientation
and scale of the covariance matrix to the shape of A under the constraint of the fixed hitting
probability. The final mean can, e.g., be used as the nominal design parameter set. Figure 4.7
illustrates this process, which is called “design centering” or “design tolerancing” in electrical
engineering (Graeb, 2009). When the criterion function f(x) yields real values, the sampler
can be turned into a minimizer by introducing a fitness acceptance threshold cT. For a given
threshold, GaA attempts to adapt a Gaussian distribution to the largest landscape region
where Gaussian sample points are below the threshold with probability P . In the course of
minimization, cT is monotonically lowered until some convergence criteria are met (Kjellström
and Taxen, 1981). It is noteworthy that the idea of threshold acceptance has later been re-
introduced by Dueck and Scheuer in the Threshold Acceptance (TA) algorithm (Dueck and
Scheuer, 1990), an extension of Simulated Annealing (SA) algorithm (Kirkpatrick et al., 1983).
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A

Figure 4.7: Illustration of Gaussian Adaptation. The light purple, non-convex area defines the accept-
able region A in a 2D design-parameter space x. Both the left (white) and right (gray)
dots and ellipsoids represent the means and covariances of two Gaussian distributions with
the same hitting probability P . GaA moves away from the left corner toward the center
and adapts the distribution to the shape of A.

4.4.2 The Gaussian Adaptation algorithm

In order to realize an iterative procedure that works for both design tolerancing and optimiza-
tion, Kjellström proposed the Gaussian Adaptation algorithm. The process starts by setting
the mean m(0) of a multivariate Gaussian to an initial point x(0) ∈ A. The covariance C(g) is
decomposed as follows:

C(g) =
(
r ·Q(g)

)(
r ·Q(g)

)T
= r2

(
Q(g)

)(
Q(g)

)T
, (4.22)

where r is the scalar step size and Q(g) is the normalized square root of C(g). Like in CMA-ES,
Q(g) is found by eigendecomposition of the covariance matrix C(g). The initial Q(0) is set to
the identity matrix I. In iteration g+ 1 a single point is sampled from a Gaussian distribution
according to:

x(g+1) = m(g) + r(g)Q(g)η(g) , (4.23)

where η(g) ∼ N
(
0, I
)

. The new sample is evaluated by the criterion function f(x(g+1)). Only

if the sample fulfills the specification, i.e. x(g+1) ∈ A in the design-tolerancing scenario or

f(x(g+1)) < c
(g)
T in the optimization scenario, the following adaptation rules are applied: The

step size r is increased according to r(g+1) = fe · r(g), where fe > 1 is called the expansion
factor. The mean is updated via

m(g+1) =

(
1− 1

Nm

)
m(g) +

1

Nm
x(g+1) . (4.24)
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f(x)

x

cT

Figure 4.8: Illustration of lowering the fitness threshold cT in GaA. The dashed lines represent a
certain value of cT. The bars on the x-axis show the corresponding acceptable regions of
the landscape.

Nm is a weighting factor that controls how fast the mean is shifted. The covariance matrix is
updated through:

C(g+1) =

(
1− 1

NC

)
C(g) +

1

NC

(
x(g+1) −m(g)

)(
x(g+1) −m(g)

)T
. (4.25)

NC weights the influence of the accepted sample point on the covariance matrix. Kjellström
introduced an alternative update rule that is mathematically equivalent to Eq. 4.25, but nu-
merically more robust. It acts directly on the square root Q(g) of the covariance matrix:

∆C(g+1) =

(
1− 1

NC

)
I(g) +

1

NC
(η(g))(η(g))T , ∆Q(g+1) = (∆C(g+1))

1
2 . (4.26)

Q(g+1) is then computed as Q(g+1) = Q(g)∆Q(g+1). In order to decouple the volume of
the covariance (controlled by r(g+1)) and its orientation, Q(g+1) is normalized such that
det(Q(g+1)) = 1. As in CMA-ES, the full adaptation of the covariance matrix gives GaA the
appealing property of being invariant to arbitrary rotations of the problem.

In case x(g+1) is not accepted, only the step size is adapted according to r(g+1) = fc · r(g),
where fc < 1 is the contraction factor.

A crucial ingredient for optimization using GaA is the dynamic lowering of the acceptance
threshold cT. A natural choice would be to set-up a certain landscape-independent schedule
that monotonically decreases cT, reminiscent of the various cooling schedules developed for
Simulated Annealing. Kjellström, however, suggested to use the following adaptation rule:

cT
(g+1) =

(
1− 1

NT

)
cT

(g) +
1

NT
f(x(g+1)) , (4.27)
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where NT controls the weighting between the old threshold and the objective value of the
accepted sample. It can readily be seen that this fitness-dependent threshold update leaves
the algorithm invariant to linear transformations of the objective function but not general
monotonic transformations as in CMA-ES.

Step size adaptation in GaA. GaA offers a genuinely different view on step size control
than CMA-ES or ASSRS. In CMA-ES, the step size is adapted by monitoring the correlation
between subsequent steps in the evolution path. In ASSRS (and the (1+1)-ES), the step size
is adapted in order to yield optimal progress on quadratic functions. In GaA, we maximize
the entropy of the search distribution, which suggests increasing the step size as soon as we
have found an acceptable solution and decreasing it otherwise. We first consider the hitting
(acceptance) probability P . Kjellström investigated the information-theoretic optimality of
P for a random walk in a simplex region (Kjellström, 1969) and for Gaussian Adaptation in
general regions (Kjellström and Taxen, 1981). In both cases he concluded that the efficiency
of the process and P are related as E ∝ −P logP , leading to the optimal P = 1

e ≈ 0.3679,
where e is Euler’s number. A proof is provided in (Kjellström, 1991). Maintaining this hitting
probability corresponds to leaving the volume of the distribution, det(C), constant under
stationary conditions. As det(C) = r2n det(QQT ), the expansion and contraction factors
fe and fc increase or decrease the volume by a factor of f2n

e or f2n
c , respectively. After S

successful and F failed samples, a necessary condition for constant volume thus is:

S∏

i=1

(fe)2n
F∏

i=1

(fc)2n = 1 . (4.28)

Using P = S
S+F and introducing a small β > 0, one can verify that fe = 1 + β(1 − P ) and

fc = 1− βP satisfies Eq. (4.28) to first order.

Further parameter settings in GaA. In the original articles, Kjellström does not provide
standard settings for the strategy parameters, β, Nm, NC, and NT. After personal communi-
cation with him and insight from the rank-one update in CMA-ES, we propose to couple the
scalar rate β to the strategy parameters NC and NT, but not to Nm. Since Nm influences the
update of m ∈ Rn, it is reasonable to set Nm ∝ n. We propose Nm = en in the general case. A
similar reasoning is employed for NC and NT. NC influences the update of C ∈ Rn×n, which

contains n2 entries. Hence, NC should be related to n2. We suggest using NC = (n+1)2

log(n+1)

as a standard value, and coupling NT = NC

2 and β = 1
NC

. Note that the parameter ccov in
CMA-ES corresponds to 1/NC in GaA.

Relation between GaA, ES and TA There are several remarkable connections between
GaA and classical ES. The canonical (1+1)-ES is, for example, a limit case of GaA. Setting
Nm = NT = 1 moves GaA’s mean directly to the accepted sample and cT to the fitness of the
accepted sample. For NC →∞, the covariance remains isotropic and GaA becomes equivalent
to the (1+1)-ES with a P th-success rule. Keeping NC finite results in an algorithm that is
almost equivalent to the (1+1)-CMA-ES (Igel et al., 2006). The (1+1)-CMA-ES is a single-
sample variant of CMA-ES, where only a rank-one update of the covariance matrix is applied.
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Four key differences to GaA, however, remain. First, the step size adaptation mechanism
in (1+1)-CMA-ES uses the damped exponential function, allowing faster adaptation than in
GaA (Igel et al., 2006). Second, (1+1)-CMA-ES uses information about the evolution path for
the covariance matrix update, whereas GaA does not. Third, the decision of how to update
the covariance is controlled by a threshold probability pthresh in (1+1)-CMA-ES. Only if the
empirical acceptance probability Pemp is below pthresh, the current sample is used to update
the evolution path. Finally, GaA normalizes the volume of the covariance matrix in order to
decouple it from the step size; (1+1)-CMA-ES does not involve such a normalization.

When NC →∞ and the threshold adaptation in Eq. (4.27) follows:

cT
(g+1) = f(x(g)) + T (g) , (4.29)

where T (g) is some monotonically decreasing sequence with limit 0 we arrive at Dueck’s TA
algorithm with fixed Gaussian proposal.

Constraint handling and initialization Kjellström does not provide any initialization or con-
straint handling techniques. We suggest that, in unconstrained optimization problems, GaA
can be used as is. However, the starting point m(0) and the initial step size r(0) must then be
set by the user in a meaningful manner. In box-constrained optimization problems, bound-
aries are explicitly given by x ∈ [L,U] ⊂ Rn. Several boundary handling techniques can be
employed. One can, e.g., reject points that fall outside the admissible hyper-rectangle, and
resample. As in CMA-ES, this can become inefficient for search near the boundary. Especially
in high dimensions, the probability of hitting the feasible region becomes small. It is also
conceivable to employ boundary handling with quadratic penalty terms (Hansen and Kern,
2004), a method that has been successfully used in CMA-ES. In GaA, however, the boundary
penalty would be problem specific, since GaA’s search performance directly depends on the
objective function values. We therefore suggest projecting the components of out-of-bounds
samples onto the boundary along the coordinate axes, and evaluating the projected samples.

The initial mean m(0) is drawn from a uniform distribution in the box [L,U]. The initial
step size is set to r(0) = 1/e (max U−min L), similar to the global search setting of the initial

σ in IPOP-CMA-ES (Auger and Hansen, 2005b). The initial threshold c
(0)
T is set to f(m(0)).

4.4.3 Numerical examples

To illustrate the behavior of GaA with the developed strategy parameters, constraint handling,
and initialization techniques, we provide numerical results on selected test functions. We show
the convergence of GaA on quadratic functions by considering the sphere function. The covari-
ance matrix adaptation mechanism is then demonstrated on Rosenbrock’s function. Finally,
we sketch the entropic behavior of GaA on the multi-modal function fKjell as introduced by
Kjellström (Kjellström and Taxen, 1992).
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4.4 Gaussian Adaptation

Gaussian Adaptation on the Sphere function

We consider the sphere function (see Eq. (2.8)) as a prototypical quadratic function in order
to study convergence of the GaA algorithm. For practical purposes, search is restricted to
x ∈ [−5, 5]n. In order to study the dimension-dependence of GaA’s convergence properties,
we use the standard strategy parameter values, constraint handling, and initialization. 10
repetitions are conducted for dimensions n = 2, 5, 10, 20, 30, 40, 50. Figure 4.9 summarizes the
results. We observe the expected log-linear convergence of GaA on the sphere function. Nev-
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Figure 4.9: (a) Log-log plot of the current best fitness value f(x
(g)
best) vs. the number of function

evaluations (FES) on the sphere function for n = 2, 5, 10, 20, 30, 40, 50 (from left to right).
The dashed line shows the target fitness (stopping criterion). (b) Average number of FES
needed to reach the target fitness vs. dimensioniality n. The dashed curve is a perfect fit
of the power law FES(n) = 47.11n2.138 + 857.8. The inset shows the mean and standard
deviation of the empirical hitting probability P̂ vs. n. The dashed line represents the
desired optimal P = 1/e.

ertheless, we show the results in a log-log plot in order to better discriminate the trajectories
for different dimensions (Fig. 4.9a). The mean number of function evaluations (FES) needed
to achieve an accuracy of 10−9 grows slightly faster than quadratically with n (Fig. 4.9b). The
measured (empirical) hitting probability P̂emp approaches the optimal P = 1/e with increasing

dimension. A least-squares fit of a power law yields P̂ (n) = −0.2077n−0.1831 + 0.4265 (inset
in Fig. 4.9b).

Gaussian Adaptation on Rosenbrock’s function

We study the behavior of GaA’s covariance matrix adaptation on the multi-modal Rosenbrock’s
valley function (see Eq. (2.9)) . We perform 10 optimization runs with the same protocol for
n = 2, 5, 10, 20, 30, 40. GaA finds the global minimum in all cases. Similar to CMA-ES, GaA’s
search on Rosenbrock can be divided into three phases: (1) log-linear convergence toward
the origin; (2) a plateau region for covariance adjustment along the valley; (3) log-linear
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Figure 4.10: Typical trajectory of GaA on Rosenbrock’s function for n = 20. (a) 2D Contour plot
with the sub-covariances along the first two dimensions (black ellipses) shown every 1000

iterations. (b) Evolution of the components of x
(g)
best vs. the number of FES (= iterations)

for the same run.

convergence near the global minimum. Fig. 4.10 shows a typical trajectory of GaA for n = 20,
projected onto the first two dimensions. The same qualitative behavior is observed also in all
other dimensions. After rapidly approaching the origin, GaA efficiently adapts its covariance
to follow the valley. The objective variables then migrate, in order of increasing dimension,
toward the global minimum. The mean number of function evaluations needed to achieve
an accuracy of 10−9 follows the power law FES(n) = 60.13n2.462 + 2807 with larger offset,
prefactor, and exponent being larger than on the sphere function. P̂ , however, converges
toward the optimal value faster than on the sphere function: P̂ (n) = −0.1405n−0.917 + 0.3582
(see Fig. 4.11b).

Gaussian Adaptation on Kjellström’s function

We consider the highly multi-modal test function fKjell as introduced by Kjellström (Kjell-
ström and Taxen, 1992) (see also Eq. (2.13)). The standard setting for NC (and the coupled
parameters NT and β) frequently results in premature convergence of the search into one of
the 525 ≈ 3 · 1017 local minima (success rate <10%). A simple parameter search on NC shows
that the setting NC = 10n2 yields a better success rate on fKjell, namely 100% for up to
n = 50. Figure 4.12b shows the trace of the mean m(g) for a typical run in n = 25 dimensions
with optimized NC. In the first phase (dotted interval), GaA explores the entire search space
(dotted interval in Fig. 4.12a). In the second phase (solid interval), it adjusts a high-entropy
Gaussian distribution to the center of the broad region that contains low fitness values (solid
interval in Fig. 4.12a). Finally, GaA proceeds to the region that contains the global minimum
with function value fKjell(xmin) ≈ 0.969225 ≈ 0.4570 (dashed interval).

Two conclusions can be drawn from these simulations: First, the function can efficiently be
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Figure 4.11: (a) Log-log plot of the current best fitness value f(x
(g)
best) vs. the number of function

evaluations (FES) on the Rosenbrock function for n = 2, 5, 10, 20, 30, 40, 50 (from left to
right). The dashed line shows the target fitness (stopping criterion). (b) Average number
of FES needed to reach the target fitness vs. dimensioniality n. The dashed curve is a
perfect fit of the power law FES(n) = 60.13n2.462 + 2807. The inset shows the mean
and standard deviation of the empirical hitting probability P̂ vs. n. The dashed line
represents the desired optimal P = 1/e.

solved by GaA despite the exponentially growing number of minima. This is due to the
landscape topology, where the global minimum is located in a region that is amenable to
hierarchical maximum-entropy adaptation. Second, we observe that the standard parameter
settings are sub-optimal for this landscape. The problem of identifying optimal parameter
settings for a given landscape topology can to some extent be alleviated by considering a
restart strategy that iteratively adapts the strategy parameters.

4.4.4 Restart Gaussian Adaptation

Inspired by the success of adaptive restart strategies in CMA-ES, we also extend Gaussian
Adaptation by such a mechanism. The resulting Restart GaA is a quasi parameter-free general-
purpose black-box optimizer. The two ingredients of Restart GaA are the definition of suitable
convergence criteria and the adaptation of internal strategy parameters in case of convergence
to a local minimum.

Convergence criteria. In practical applications, it is unavoidable to define criteria that indi-
cate convergence of GaA to a (local or global) minimum. We propose six convergence criteria:
MaxIter, TolFit, TolFun, TolX, TolR, and TolCon.

1. MaxIter : GaA is stopped when a maximum number of allowed FES is reached. The
default maximum budget is 104 n.

2. TolFit : If knowledge about the function value of the global minimum f(xmin) is available,
the algorithm stops when the current best function value drops below f(xmin) + TolFit.
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Figure 4.12: (a) The multi-modal function fKjell in 1D. The global minimum xmin is contained in a
locally convex region (dashed bar) that belongs to the larger (i.e., maximum entropy)
sub-region of the space (solid gray bar). The global maximum xmax separates this region
from the right part of the space. (b) Typical evolution of GaA’s mean m(g) on fKjell

in n = 25. After a global search phase (dotted bar), GaA first adapts a high-entropy
distribtion to the broad region (solid gray bar) before it converges to the locally convex
global-minimum region (dashed bar).

The default setting is TolFit = 10−9.

3. TolFun: If no knowledge about f(xmin) is available, GaA is considered converged when
‖max f(x(i))−min f(x(i))‖ < TolFun ∀i ∈ [g− h; g]. By default, we set TolFun = 10−9

and the history length h = 100.

4. TolX : GaA is considered converged when ‖x(g−h) − x(g))‖ < TolX. By default, we set
TolX = 10−12 and the history length h = 100.

5. TolR: GaA is stopped when the step size r(g) < TolR. The default setting is TolR = 10−9.

6. TolCon: GaA is stopped when the difference between the current threshold c
(g)
T and the

current best fitness value f(x
(g)
best) has converged, i.e., ‖f(x

(g)
best)− c

(g)
T )‖ < TolCon. The

default setting is TolCon = 10−9.

These stopping criteria are designed to reduce the number of non-improving function evalua-
tions. They can directly be used to develop an effective restart strategy for GaA as outlined
next.

Restart strategy. Depending on the landscape topology of the optimization problem, canon-
ical GaA with standard parameter settings may suffer from premature convergence to a sub-
optimal solution. This can be relaxed by introducing a restart mechanism that modifies the
strategy parameters whenever any of the convergence criteria 3) to 6) above are met. In CMA-
ES, restarts with iteratively increasing population size proved powerful both on synthetic and
real-world problems. Since GaA always samples a single candidate solution per iteration, the
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population size cannot be varied. Instead, we adapt the parameter NT that controls the low-
ering of the fitness threshold cT. The parameters Nm, NC, β, and P are kept constant for all

restarts. The initial value of NT is N
(0)
T = Nm = en. At each restart i we increase N

(i)
T as

N
(i)
T = rTN

(i−1)
T (4.30)

with rT = 2. The new starting point at each restart can either be chosen at random or at the
converged position (as in BLR-CMA-ES). The latter strategy is expected to be beneficial on
funneled landscapes, such as Rastrigin’s or Ackley’s function.

The modification of N
(i)
T has a similar effect on GaA as increasing the population size has on

CMA-ES. Initially, accepted samples are able to pull down the fitness threshold quickly. On

unimodal functions, fast convergence is hence achieved. With increasing N
(i)
T , cT decreases

slower and GaA has more time to explore the space and adapt a maximum-entropy distribution
to the underlying landscape structure.

4.4.5 Numerical results of Restart GaA on the CEC2005 benchmark suite

We evaluate the performance of Restart GaA again on all 25 CEC 2005 test functions in
n = 10, 30, and 50 dimensions. These results can directly be compared with the previous data
for IPOP-CMA-ES (with correct boundary settings) and PS-CMA-ES. Table 4.10 summarizes
the results for Restart GaA on those functions that can be solved within the allowed FES
budget.

In n = 10 dimensions (Table Table 4.10, upper panel), Restart GaA is able to solvef1to f12,
except for the needle-in-a-haystack problem f8. IPOP-CMA-ES is able to solve the identi-
cal set of functions (see Table 4.2). Functions f1 to f7 are solved with ps = 1. The pair
f9/f10 (shifted/rotated Rastrigin) is solved with a lower success probability. Functions f11

(shifted Weierstrass) and f12 (Schwefel’s problem), two multi-funnel functions, are solved with
ps ≥ 0.64.

In n = 30, Restart GaA solves more problems than IPOP-CMA-ES and PS-CMA-ES. It solves
f1 to f7, except f5, with ps ≥ 0.92, as well as f11 with high and f12 with low probability. The
Rastrigin pair f9/f10 can not be solved any more in 30 dimensions. Similar observations are
made for n = 50. There, Restart GaA solves as many problems as IPOP-CMA-ES. Problems
f1 to f4, f7, and f11 can be solved, but neither the Rastrigin pair nor f5/f12 are solved. Closer
inspection of the results for f6 (shifted Rosenbrock) reveals that Restart GaA gets close to
the minimum, but does not reach the specified accuracy in time.

The invariance of GaA to linear transformations of the search space is verified on the triplet
f1–f3, the shifted sphere, Schwefel’s problem, and the high-conditional ellipsoid. In n = 10
and 30, the mean number of function evaluations used is almost identical for f1 and f2. For
f3, GaA needs more samples for properly adapting its covariance matrix. In terms of success
performance, these results are outperformed by IPOP-CMA-ES (Auger and Hansen, 2005b).
The performance of IPOP-CMA-ES also scales better with the dimensionality n, especially
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n=10

Func. min median max mean std ps Succ. Perf.

f1 7.65e+03 8.07e+03 8.33e+03 8.07e+03 1.88e+02 1 8.07e+03

f2 7.80e+03 8.31e+03 8.56e+03 8.25e+03 2.05e+02 1 8.25e+03

f3 1.09e+04 1.18e+04 1.56e+04 1.21e+04 1.17e+03 1 1.21e+04

f4 7.77e+03 8.28e+03 1.89e+04 8.64e+03 2.14e+03 1 8.64e+03

f5 7.28e+03 8.20e+03 - 1.63e+04 1.83e+04 0.96 1.70e+04

f6 1.82e+04 2.04e+04 2.53e+04 2.08e+04 1.86e+03 1 2.08e+04

f7 5.11e+03 5.46e+03 5.90e+03 5.45e+03 1.91e+02 1 5.45e+03

f8 - - - - - - -

f9 3.74e+04 - - 5.72e+04 2.81e+04 0.08 7.15e+05

f10 3.92e+03 - - 4.01e+04 3.70e+04 0.12 3.34e+05

f11 1.37e+04 4.08e+04 - 4.36e+04 2.22e+04 0.80 5.45e+04

f12 5.64e+03 3.10e+04 - 2.61e+04 1.77e+04 0.64 4.08e+04

n=30

Func. min median max mean std ps Succ. Perf.

f1 4.34e+04 4.43e+04 4.51e+04 4.42e+04 4.11e+02 1 4.42e+04

f2 4.56e+04 4.67e+04 4.76e+04 4.67e+04 4.81e+02 1 4.67e+04

f3 7.19e+04 7.93e+04 8.97e+04 7.91e+04 4.44e+03 1 7.91e+04

f4 9.63e+04 1.01e+05 2.00e+05 1.05e+05 1.99e+04 1 1.05e+05

f5 - - - - - - -

f6 1.42e+05 2.51e+05 - 2.47e+05 3.63e+04 0.92 2.68e+05

f7 2.98e+04 3.05e+04 3.17e+04 3.06e+04 4.73e+02 1 3.06e+04

f8 - - - - - - -

f9 - - - - - - -

f10 - - - - - - -

f11 8.42e+04 2.70e+05 - 2.25e+05 6.04e+04 0.80 2.81e+05

f12 1.75e+05 - - 1.75e+05 - 0.04 4.37e+06

n=50

Func. min median max mean std ps Succ. Perf.

f1 9.82e+04 9.95e+04 1.00e+05 9.94e+04 5.53e+02 1 9.94e+04

f2 1.06e+05 1.09e+05 1.11e+05 1.09e+05 1.48e+03 1 1.09e+05

f3 1.94e+05 2.04e+05 2.20e+05 2.06e+05 6.97e+03 1 2.06e+05

f4 2.11e+05 2.18e+05 4.32e+05 2.64e+05 8.79e+04 1 2.64e+05

f5 - - - - - - -

f6 - - - - - - -

f7 6.63e+04 6.77e+04 6.87e+04 6.77e+04 5.52e+02 1 6.77e+04

f8 - - - - - - -

f9 - - - - - - -

f10 - - - - - - -

f11 3.55e+05 - - 4.49e+05 5.87e+04 0.36 1.25e+06

f12 - - - - - - -

Table 4.10: Number of FES (min, median, maximum, mean, and standard deviation) for Restart
GaA to reach the required accuracy for f1-f12 in n = 10, 30, 50 within MAX FES = 104n.
Columns 7 to 8 give the empirical success rate ps and the success performance.
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for the sphere. Unlike IPOP-CMA-ES, Restart GaA can not solve problem f5, where the
global minimum is located at the bounds, for n ≥ 30. This indicates that we have to revisit
the boundary handling mechanism.

The failure of Restart GaA on the Rastrigin pair f9/f10 in n = 30 and 50 indicates that
population-based methods outperform single-sample strategies on landscapes with many local
minima near the global one. Restart GaA, however, shows outstanding robustness against
noise as can be derived from its performance on f4. While IPOP-CMA-ES can solve this
function in n = 30 with ps = 0.28, but fails in n = 50, Restart GaA solves it with ps = 1 in
all tested dimensions. The noise does not hamper the maximum-entropy adaptation in GaA.
It is also noteworthy that the multi-funnel function f11 can be efficiently solved by Restart
GaA in all tested dimensions. IPOP-CMA-ES solves f11 only in n = 10. This indicates that
f11 may have a global landscape structure similar to Kjellström’s function, where hierarchical
maximum-entropy adaptation is beneficial.

In order to test the efficacy of the proposed new restart procedure, we repeat all tests with
rT = 1, i.e., without adapting NT upon restart (data not shown). For f1 to f3, restart was
never needed. In all other cases, doubling NT upon restart leads to superior performance in
all problem instances.

4.4.6 Conclusions and future work

We have revisited and improved the Gaussian Adaptation algorithm, a scheme for design cen-
tering and black-box optimization. Although the basic scheme has already been introduced
in the late 1960’s and further developed in the 1980’s by Kjellström and co-workers, the algo-
rithm has been largely ignored by the optimization community. From a historical perspective,
Gaussian Adaptation was the first iterative scheme with covariance matrix adaptation. To
the best of our knowledge, it was also the first heuristic that uses threshold acceptance for
minimization problems. We contributed several ideas to the basic GaA scheme: First, we
showed that the foundation of the algorithm can be derived from Jaynes’ Maximum Entropy
Principle, hence providing an alternative view on step size adaptation in variable-metric algo-
rithms. Second, we provided suitable standard parameter settings, initialization and boundary
handling schemes, as well as an efficient restart strategy. These enhancement render GaA a
ready-to-use, parameter-free black-box optimizer. Some basic optimization landscapes have
been used to illustrate the search behavior of GaA. Restart GaA has been rigorously tested on
the CEC 2005 benchmark test suite. Its remarkable performance ranks the algorithm among
the top black-box optimizers ever tested on this benchmark. We expect the optimizer to be
especially useful for two kinds of landscapes: those that have a globally unimodal topology
corrupted by noise, and multi-modal landscapes that have a global hierarchical structure
suitable for maximum-entropy adaptation.

The algorithm with all presented extensions has been implemented as a MATLAB toolbox
and is provided to the scientific community as open source package. The technical details can
be found in the Appendix A1.
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We also emphasize that the Gaussian Adaptation sampling scheme can be used for indirect
sampling and high-dimensional volume estimation of convex bodies. While the former appli-
cation is the topic of the next chapter, the latter is a fundamental problem in computational
geometry. Consider a convex body only given via an oracle that can decide for a given sample
whether it is inside the body or not. We argue that estimating the volume of a convex body
given by a membership oracle is closely related to the design-centering problem (see Fig. 4.7 for
illustration). The best currently available convex volume estimators are randomized schemes,
such as the Ball-walk and Hit-and-run samplers. We refer to (Vempala, 2005) for a review on
this topic. Preliminary numerical experiments suggest that GaA can estimate the volumes of
high-dimensional ellipsoidal regions. This is not surprising since knowledge of mean and co-
variance matrix of a multivariate normal distribution, together with an estimate of the overall
hitting probability of the region, suffice to estimate the underlying ellipsoid. For polyhedral
bodies, the ellipsoid estimates from GaA can be used as an approximation. Combining our
current insights with theoretical investigations will be a topic of future research.

4.5 Comparative summary of the benchmark results

We conclude this chapter on black-box optimization by showing the empirical success per-
formance of all tested strategies on the CEC 2005 benchmark test suite in Table 4.11. We
present the results for (i) IPOP-CMA-ES as reported in the original publication (Auger and
Hansen, 2005b), (ii) IPOP-CMA-ES with and without LD sampling, (iii) PS-CMA-ES with
and without LD sampling, and (iv) Restart GaA. Based on the recorded success performances
we conclude that IPOP-CMA-ES with LD sampling is superior to all other strategies for
the unimodal and moderately multi-modal functions f1–f4 and f6–f7 across all dimensions.
For the highly multi-modal functions f9/f10 with globally convex structure IPOP-CMA-ES
with LD sampling is superior in n = 10 dimensions whereas PS-CMA-ES with LD sampling
outperforms all other strategies in n = 30, 50 dimensions. For the multi-modal problems f11

and f12 with weak global structure, Restart GaA shows competitive or superior performance.
Standard IPOP-CMA-ES with pseudo-random sampling is competitive or superior across all
dimensions only on the unimodal function f5 where the optimum is located at the boundary.
Finally, PS-CMA-ES with LD sampling has the best performance on the composite multi-
funnel problem f15 in n = 10.

The presented empirical results demonstrate that the landscape structure has considerable
influence on the performance of the different algorithms. This also implies that, if a practi-
tioner has a priori knowledge about the landscape structure of the problem he wants to solve,
the present results can be used as a guideline for choosing the best suited algorithm. Such
landscape knowledge might be gained by calculating the landscape fingerprints presented in
the previous chapter prior to optimization. Alternatively, it is also conceivable to design a
multi-method algorithm that comprises all presented algorithms and automatically switches
between the methods during an optimization run. Switching can be controlled by recording
the online progress of an individual algorithm, as successfully demonstrated by Vrugt and co-
workers (Vrugt et al., 2009). This paradigm might offer a generic way to combine the strengths
of the presented methods in a single general-purpose, parameter-free black-box algorithm.
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n=10

IPOP(orig.) IPOP IPOP(LD) PS-CMA-ES PS-CMA-ES(LD) Restart GaA

f1 1.61e+03 1.68e+03 1.37e+03 2.33e+04 1.98e+04 8.07e+03

f2 2.38e+03 2.38e+03 1.96e+03 3.56e+04 2.87e+04 8.25e+03

f3 6.50e+03 6.63e+03 5.52e+03 - 3.07e+05 1.21e+04

f4 2.90e+03 2.56e+03 2.08e+03 3.86e+04 3.02e+04 8.64e+03

f5 5.85e+03 5.76e+03 4.79e+03 7.93e+04 6.68e+04 1.70e+04

f6 1.08e+04 1.05e+04 1.00e+04 8.20e+04 7.28e+04 2.08e+04

f7 4.67e+03 4.11e+03 2.94e+03 2.41e+04 1.97e+04 5.45e+03

f8 - - - - - -

f9 7.57e+04 8.87E+04 4.78e+04 7.04e+04 6.30e+04 7.15e+05

f10 6.50e+04 8.52E+04 4.68e+04 7.66e+04 6.75e+04 3.34e+05

f11 2.63e+05 1.83E+05 5.29e+04 2.86e+05 2.57e+05 5.45e+04

f12 3.27e+04 4.48E+04 2.00e+04 7.79e+04 4.81e+04 4.08e+04

f13 - - - - - -

f14 - - - - - -

f15 - - - 2.29e+06 7.79e+05 -

n=30

IPOP(orig.) IPOP IPOP(LD) PS-CMA-ES PS-CMA-ES(LD) Restart GaA

f1 4.50e+03 4.70e+03 3.67e+03 6.65e+04 5.36e+04 4.42e+04

f2 1.30e+04 1.27e+04 1.11e+04 2.55e+05 2.04e+05 4.67e+04

f3 4.27e+04 4.36e+04 3.93e+04 - - 7.91e+04

f4 5.90e+04 2.21e+05 5.30e+04 - - 1.05e+05

f5 6.59e+04 6.57e+04 2.55e+05 7.39e+06 - -

f6 6.00e+04 6.10e+04 5.85e+04 - - 2.68e+05

f7 6.11e+03 6.64e+03 5.56e+03 7.33e+04 5.91e+04 3.06e+04

f8 - - - - - -

f9 7.90e+05 - - 6.56e+06 1.36e+06 -

f10 2.42e+06 - 5.30e+06 6.55e+06 3.36e+05 -

f11 4.98e+06 - - - - 2.81e+05

f12 2.25e+05 - - - 5.70e+06 4.37e+06

n=50

IPOP(orig.) IPOP IPOP(LD) PS-CMA-ES PS-CMA-ES(LD) Restart GaA

f1 6.88e+03 7.50e+03 5.95e+03 1.03e+05 8.49e+04 9.94e+04

f2 3.13e+04 3.09e+04 2.73e+04 - 5.00e+05 1.09e+05

f3 1.17e+05 1.18e+05 1.09e+05 - - 2.06e+05

f4 - - 1.94e+05 - - 2.64e+05

f5 - 2.50e+06 - - - -

f6 1.58e+05 1.49e+05 1.32e+05 - - -

f7 8.03e+03 1.08e+04 6.42e+03 1.15e+05 9.43e+04 6.77e+04

f8 - - - - - -

f9 1.55e+06 - - - 8.35e+06 -

f10 3.76e+06 - - - 4.47e+06 -

f11 - - - - - 1.25e+06

f12 - - - - - -

Table 4.11: Success performance of all tested strategies on the CEC 2005 benchmark test suite. The
second column gives the originally reported performance of IPOP-CMA-ES (Auger and
Hansen, 2005b). Column 3 and 4 give the performance of IPOP-CMA-ES using the
pCMALib implementation with pseudo-random and LD sampling, respectively. Columns 5
and 6 give the success performance of PS-CMA-ES with pseudo-random and LD sampling.
Column 7 gives the success performance of Restart GaA. The best performance achieved
by any of the strategies (except the original IPOP-CMA-ES) is highlighted in bold for
each function and dimension.
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5
Black-box Sampling: from Landscapes to

Probability Distributions

“Aw, people can come up with statistics to prove anything, Kent. 40% of all
people know that.”
Homer Simpson, in: The Simpsons, Homer the Vigilante, Episode no. 92, 1994

5.1 Landscapes and probability distributions

We have so far encountered many variations of the landscape concept from evolutionary bi-
ology, molecular physics, and optimization. An important prerequisite for characterizing and
exploring these landscapes is our ability to draw random samples from certain probability
distributions. The uniform and the Gaussian distribution played a crucial role in our previ-
ous chapters. Distributions are, however, a ubiquitous concept in their own right in almost
all areas of modern science, most prominently in statistics, where observed data D may be
modeled by treating them as samples from a particular distribution πθ. The distribution πθ
is specified up to some parameters θ that are estimated from the empirical data. With the
rise of statistical mechanics at the end of the 19th century, physicists have realized the deep
connection between distributions and energy landscapes. Consider the energy landscape of a
continuous molecular system, such as a protein surrounded by solvent molecules, consisting
of N atoms. The configuration space is X ⊆ R3N. Each state x ∈ X has a potential energy
h(x), and a distance metric d(x,y) defines similarity between any two states x,y. If one is
interested in the system behavior at thermal equilibrium and constant volume and tempera-
ture T , statistical mechanics provides a link between the energy landscape and distribution of
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states through the concept of a canonical distribution. The example molecular system can be
conveniently described by the Boltzmann distribution pT(x):

πθ(x) = pT(x) =
1

Z(T )
exp (−h(x)/(kbT )) . (5.1)

In this context, the normalizing constant Z(T ) =
∫
X exp (−h(x)/(kbT ))dx < ∞ is called

the partition function of the system. The quantity kb is a physical constant, such that the
temperature is the only parameter θ = T of the distribution. The canonical distribution thus
maps the energy landscape into a probability distribution. Vice versa, if we have knowledge
about a certain (not necessarily physical) probability distribution πθ(x), we can transform it
into a generalized energy h(x) through:

h(x) = − log πθ(x)− logZ , (5.2)

where we arbitrarly set kb = T = 1, and Z is any convenient positive constant. Zhou and
Wong’s recent article “Reconstructing the energy landscape of a distribution from Monte
Carlo samples” exploits this relationship and demonstrates the benefits of the landscape per-
spective for statistical inference (Zhou and Wong, 2008). Liu emphasizes that presumably all
probability distributions can be recast into the form: π(x) = 1/Z exp (−h(x)) (Liu, 2002).

The strict monotonicity of the canonical transformation implies that the global topology of the
energy landscape is conserved in the resulting distribution. For instance, a multi-modal energy
landscape induces a multi-modal distribution, and vice versa. All our previous considerations
about landscape topologies and landscape features can, hence, be carried over to the realm of
probability distributions. We will come back to this important point in the next section.

In the previous chapter, we have been largely concerned with identifying regions of low energy
or objective function values in a landscape. In the context of probability distributions the main
objective is different: Given a probability distribution, we want to generate unbiased samples
from this distribution in order to infer knowledge about the underlying system that it describes.
For example, we may want to estimate moments of the distribution such as expectation values
or derived averages. In a physical context, these averages are often termed macro states as
they are related to measurable observables in a real experiment. Direct sampling methods to
generate samples are available for a number of distributions, including the Gaussian and the
uniform distribution. However, for a large class of distributions such schemes do not exist,
and one has to rely on indirect sampling or black-box sampling procedures. Consider again
the above system described by the Boltzmann distribution. In principle, this distribution
is completely specified for all micro states x. A crucial caveat, however, is the normalizing
constant Z(T ). Computating this high-dimensional integral is usually intractable. Hence,
only a function fT(x) ∝ pT(x) can be evaluated for all x ∈ X . This situation is by no
means a singular phenomenon. It also occurs in many Bayesian approaches to statistical
inference. There, the posterior distribution for the model parameters is the focus of interest
which, in most cases, can again only be specified up to a normalizing constant. This situation
leaves us with two important questions for this chapter: (i) How can we generate unbiased
samples from such distributions in a black-box fashion, i.e., only through knowledge about the
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absolute frequencies of sampled configurations, and (ii) how are these approaches related to
the presented Black-box optimization schemes? While the answer to the first question can be
traced back to one of the earliest studies in computational science, the answer to the second
question is a key result of this thesis.

5.2 Black-box sampling using Markov chains

A large class of black-box samplers is based on the generation of so-called Markov chains. We
thus give a short introduction to Markov chains and trace the development of Markov-Chain
Monte Carlo (MCMC) methods. Equipped with these preliminaries we introduce adaptive
MCMC methods that are conceptually very close to GaA. The synthesis of both paradigms
then leads to a novel adaptive MCMC method, the Metropolis GaA algorithm.

5.2.1 Markov-Chain Monte Carlo methods

Consider a sequence of random variables x(0),x(1), . . . ,x(t), . . . ,x(N) defined on a finite state
space X . This sequence is called a Markov chain, named after the Russian mathematician
Andrey Markov, if it satisfies the Markov property :

P (x(t+1) = y |x(t) = x, . . . ,x(0) = z) = P (x(t+1) = y)|x(t) = x) , (5.3)

with x,y, z ∈ X . This means that the probabaility of next state x(t+1) only depends on the
current state x(t). P (·|·) hence denotes the transition probability from a given state to the
next one. If P (·|·) is time-homogeneous, i.e., it does not change with t, it is often expressed
as a transition function A(x,y) that has the simple property

∑

y

A(x,y) = 1 ∀y ∈ X . (5.4)

When the state space X is continuous, the transition probability function is replaced by a
transition density function and summation is replaced by integration.

Recall our objective of drawing unbiased samples from a target distribution π(x) defined on
X . The fundamental idea of MCMC methods is to simulate a Markov chain in X such that
the stationary distribution of this chain is the target distribution π(x). This objective can
be recast into the problem of finding a transition function A(x,y) to which π(x) is invariant.
The mathematical formulation of this statement is:

∫

X
π(x)A(x,y)dx = π(y) . (5.5)

A simpler, yet more restrictive condition than Eq. (5.5) is the so-called detailed balance con-
dition:

π(x)A(x,y) = π(y)A(y,x) . (5.6)

This can be verified by substituting Eq. (5.6) into Eq. (5.5):
∫

X
π(x)A(x,y)dx =

∫

X
π(y)A(y,x)dx = π(y)

∫

X
A(y,x)dx = π(y) , (5.7)
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where the last step follows from Eq. (5.4). Hence, detailed balance is a sufficient, but not
a necessary condition for invariance. Markov chains that satisfy detailed balance are called
reversible.

In their seminal paper “Equation of State Calculation by Fast Computing Machines” (Metropo-
lis et al., 1953) Nicholas Metropolis and co-workers introduced an algorithm, later named the
Metropolis algorithm, that started the entire field of MCMC methods. Being in the comfort-
able position of having access to one of the first computers, the MANIAC system at the Los
Alamos National Laboratory, the authors developed a method for calculating thermodynamic
quantities through simulations of ensembles of interacting molecules. In the original article a
collection of N particles in the unit plane with periodic boundary conditions was considered.
The state space hence was X = [0, 1]2N . Denoting the position of the ith particle by (xi, yi),
each configuration x = [x1, x2, . . . , xN , y1, y2, . . . , yN ] of particles, a potential energy h(x)
could be calculated. The algorithm starts from an initial random particle configuration x(0)

and iteratively updates the configuration. The algorithm terminates after K rounds. In a
round each particle is sequentially selected. The position of particle i is moved according to:

x′i = xi + cη , y′i = yi + cη (5.8)

where c is a scalar constant for the maximum allowed displacement and η ∼ U [−1, 1]. The
energy h(y) of the new configuration y = [x1, x2, . . . , x

′
i, . . . , xN , y1, y2, . . . , y

′
i, . . . , yN ] is cal-

culated, and the following expression is computed:

αM(y,x(t)) = min

(
1,

exp (−h(y)/(kbT ))

exp (−h(x(t))/(kbT ))

)
. (5.9)

The new configuration is x(t+1) = y if h(y) ≤ h(x(t)) or ψ ≤ α(y,x(t)) for ψ ∼ U [0, 1].
Otherwise, x(t+1) = x(t). One round is completed when all N particles have been subject to
an attempted move, hence t = 0, ...,KN . We call this method the Single Component (SC)
Metropolis algorithm because each component (particle) is moved independently. Metropolis
and co-workers showed that this scheme satisfies detailed balance and the generated samples
hence yield unbiased estimates of thermodynamic quantities of the system. The Metropolis
algorithm is neither restricted to single-component nor to uniformly distributed moves. In
fact, the only requirement on the move set or proposal distribution q(·|·) is symmetry, i.e.
q(x|y) = q(y|x). Green and Han (Green and Han, 1992) were among the first to use the
isotropic Gaussian distribution as q(·|·) for continuous target distributions. The Metropolis
algorithm with a Gaussian proposal distribution is often termed the Standard Random Walk
Metropolis sampling algorithm (Liu, 2002) or Normal Symmetric Random Walk Metropolis
(N-SRWM) algorithm (Andrieu and Thoms, 2008). It is straightforward to prove that any
Metropolis algorithm with symmetric proposals satisfies detailed balance. Given the target
distribution in the general form π(x) = 1/Z exp (−h(x)), the transition density function for
the general Metropolis algorithm is:

A(x,y) = q(x|y) min

(
1,
π(y)

π(x)

)
, (5.10)
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where the second term is the general Metropolis acceptance criterion. For this transition rule
the detailed balance condition is satisfied for any symmetric q(·|·):

π(x)A(x,y) = π(x)q(x|y) min

(
1,
π(y)

π(x)

)
= min (π(x)q(x|y), π(y)q(x|y))

= min (π(x)q(y|x), π(y)q(y|x)) = π(y)q(y|x) min

(
π(x)

π(y)
, 1

)
= π(y)A(y,x) ,

(5.11)

which proves the statement. The Metropolis algorithm also gained considerable popularity in
statistics through W. Keith Hasting’s landmark paper “Monte Carlo sampling methods using
Markov chains and their applications” (Hastings, 1970). Hasting generalized the Metropolis al-
gorithm to asymmetric proposal densities q(x|y) 6= q(y|x), leading to the Metropolis-Hastings
acceptance criterion:

αMH(x,y) = min

(
1,
π(y)q(y|x)

π(x)q(x|y)

)
. (5.12)

The proof that this new transition density also satisfies detailed balance is analogous to
Eq. (5.11). Due to this generalization the algorithm is nowadays often called the Metropolis-
Hastings MH algorithm independent of whether a symmetric or asymmetric proposal density
is used.

Over the past 40 years a tremendous number of variations of the MH algorithm has been
developed. The Metropolized Independence sampler is a variation where the proposal does
not depend on the current state of the Markov chain (Hastings, 1970). The ubiquitous Gibbs
sampler (Geman and Geman, 1984), another special version of the MH algorithm, is applicable
when the target distribution is not known explicitly, but only the conditional distribution of
each variable is known. For a superb overview of MH algorithms we refer to the book of Liu
(Liu, 2002). In the following we focus on the popular N-SRWM algorithm where the next
state of the Markov chain, given the current state x(g), is sampled from N

(
x(g), c2nIn

)
. In

is the n-dimensional identity matrix and cn is the scalar, n-dependent standard deviation.
The choice of cn is crucial for the efficiency of the sampling process. Gelman and co-workers
empirically showed that for n-dimensional Gaussian target distributions, the optimal choice
is cn = 2.4/

√
n (Gelman et al., 1996). This corresponds to an optimal overall acceptance

rate of P ∗ ≈ 0.234, i.e., among all proposed states approximately 23% are accepted by the
sampler. Many empirical studies confirmed that this choice is also usable for arbitrary target
distributions.

It is fascinating that this value is very close to Rechenberg’s 1/5-rule for the (1+1)-ES. The
performance of the N-SRWM algorithm can, however, deteriorate when the target distribution
has a highly irregular shape or has a multi-funnel character. Loss of performance often means
that the Markov chain gets stuck in some state x(g) where new proposal states are almost
always rejected. Another frequently encountered behavior is that the Markov chain explores
only a small portion of the total state space (for instance, one out of many funnels), causing
bias in the estimates of macroscopic quantities. In practice, researchers thus often perform
preliminary runs using different shapes and scales of the covariance and assess the acceptance
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rate and the“mixing” of the chain. Production runs are then conducted with the fine-tuned
Gaussian proposal. If prior knowledge about the covariance matrix C or at least a rough
estimate of the target distribution is available, the proposal is often changed to N

(
x(g), c2nC

)
,

which can significantly accelerate the mixing of the chain. Nonetheless, it is conceivable that
the use of a static proposal distribution throughout an entire MCMC run is not always the
best choice. It is a surprising fact that the idea of self-adaptation of the proposal distribution,
a long standing mechanism in Evolution Strategies, has not been recognized in the statistics
community until the late 1990’s. The Adaptive Proposal (AP) algorithm by Haario and co-
workers (Haario et al., 1999) is probably the first algorithm of this new class of Adaptive
Markov-Chain Monte Carlo methods.

5.2.2 Adaptive Markov-Chain Monte Carlo

Adaptive Markov-Chain Monte Carlo methods have been introduced in order to avoid the
difficulties of fine tuning the proposal distributions in MH algorithms. This is conceptually
related to the self-adaptation ideas in ES and GaA. An adaptive MCMC method is allowed
to learn a better proposal based on the information provided by previous sample points. We
first outline the AP algorithm and its generalization, the Adaptive Metropolis (AM) algorithm
(Haario et al., 2001), before presenting the generic framework of adaptive MCMC.

The MH algorithm constructs a chain that fulfills the Markov property given in Eq. (5.3).
States at iteration (g+ 1) are sampled from q(·|x(g)) and the history of accepted points is dis-
carded. The Adaptive Proposal (AP) algorithm (Haario et al., 1999) uses a Gaussian proposal
distribution that depends on H previously accepted points, hence q(·|x(g), . . . ,x(g−H+1)). This
history H is used to continuously adapt the covariance matrix C(g) of the proposal density,
i.e. q(·|x(g), . . . ,x(g−H+1)) ∼ N

(
x(g), c2nC(g)

)
. C(g) is calculated by collecting the H states

x(g), . . . ,x(g−H+1) in the H × n history matrix A, where each row represents one sampled
state. Then

C(g) =
1

H − 1
ÂT Â (5.13)

with the centered history matrix Â = A − E[A]. Samples from N
(
x(g), c2nC(g)

)
are drawn

using:

N
(
x(g), c2nC(g)

)
∼ x(g) +

cn√
H − 1

ÂTN (0, IH) , (5.14)

where IH is theH-dimensional identity matrix. This clever relationship avoids the computation
of the Cholesky decomposition of C(g) at the expense of generation H instead of n standard
Gaussian variates. We come back to this idea in the last part of this chapter. Besides the
scalar parameter H, Haario and co-workers also decided to update the covariance not at
every step g but with a certain update frequency U . That means that only after U steps
the accumulated information about the previously accepted states is utilized for covariance
update. They suggest an approximately linear scaling of H and U with dimension n, for
instance H = U = 200 for n = 2 and H = U = 700 for n = 8 (see Tab. 4 in (Haario
et al., 1999) for details). We present numerical experiments with AP in Section 5.3 showing
improved mixing of the chain and hence superior performance on several target distributions
when compared to MH. The AP algorithm produces a time-inhomogeneous Markov chain,
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5.2 Black-box sampling using Markov chains

thus violating reversibility and the detailed balance condition. A proof of ergodicity is not
available for AP. However, slight modifications of the AP scheme, together with restrictions on
the class of target distributions, enabled theoretical results for the Adaptive Metropolis (AM)
algorithm (Haario et al., 2001). The AM algorithm is equivalent to an AP algorithm with
complete sample history and a regularization term for the covariance matrix. The AM scheme
divides the sampling process into two phases, an initial static sampling and an adaptive phase:

C(g) =

{
C(0), if g ≤ g0

c2ncov
(
x(0), . . . ,x(g−1)

)
+ c2nε In, if g > g0 .

(5.15)

C(0) is a user-defined initial covariance matrix and cov
(
x(0), . . . ,x(g−1)

)
is the empirical co-

variance estimated from the full history of accepted samples:

cov
(
x(0), . . . ,x(g−1)

)
=

1

g − 1

(
g∑

i=0

x(i)x(i)T − (g + 1)x̂(g)x̂(g)T

)
(5.16)

with x̂(g) = 1
g+1

∑g
i=0 x(i). The term c2nε In with ε > 0 can be seen as a Tikhonov regularizer

(as in ridge regression), ensuring regularity of the covariance matrix even in cases where
the empirical covariance cov

(
x(0), . . . ,x(g−1)

)
becomes singular. Haario and co-workers also

present a recursive formula for g > g0 for the covariance update:

C(g+1) =
g − 1

g
C(g)

+
c2n
g

(
g x̂(g−1)x̂(g−1)T − (g + 1)x̂(g)x̂(g)T + x(g)x(g)T + ε In

)
. (5.17)

This recursion constitutes a rank-one update of the proposal covariance matrix with decreasing
weights. For g →∞ adaptation of the covariance vanishes, a property that is essential in the
proof of ergodicity for the AM algorithm. Haario and co-workers could show that, for target
distributions π(x) that are bounded from above and are defined on a bounded support the
samples from the AM algorithm with ε > 0 yield π(x) as the limiting distribution. The proof is
very technical, involving ideas from the theory of mixingales, a specific class of stochastic pro-
cesses (McLeish, 1975). Although the performance of the AM and AP algorithm is comparable
in pratice, the AM algorithm has been immensely valuable as it constitutes the first MCMC
method where ergodicity has been proven, even though the chain is nowhere Markovian in the
sense of Eq. (5.3). Throughout the past 10 years, the AM algorithm triggered a tremendous
amount of both theoretical and practical studies on adaptive MCMC methods (Andrieu and
Moulines, 2006). Andrieu and Robert realized that the AM algorithm is a special instance
of the general class of adaptive or controlled MCMC methods (Andrieu and Robert, 2001).
Stochastic approximation algorithms of the Robbins-Monro type (Robbins and Monro, 1951)
and simulated tempering algorithms (Marinari and Parisi, 1992; Geyer and Thompson, 1995)
also belong to this class. In a recent article Andrieu and Thoms provide a generic framework
for adaptive MCMC methods (Andrieu and Thoms, 2008). They radically reduce adaptive
MCMC methods to their key ingredients. One such ingredient is the concept of “vanishing
adaptation”. They claim that this is fundamental for consistent adaptive MCMC. The AM
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5 Black-box Sampling: from Landscapes to Probability Distributions

algorithm satisfies vanishing adaptation by making the covariance less and less dependent
on the actual samples (see Eq. (5.17)). Furthermore, Andrieu and Thoms remark that the
covariance is not the only quantity that can be subject to control or adaptation. They pro-
vide generic instances of adaptive MCMC algorithms based on the N-SRWM algorithm. The
Gaussian proposal density qθ(·|·) has three adaptable parameters θ = {m, r,C}: the mean of
the proposal, a scale factor, and the covariance. The generalized AM algorithm adapts the
mean and the covariance as shown in Alg. 3

Algorithm 3: General AM algorithm

Input: Initial x(0), m(0), C(0), r
Result: Unbiased sample x(0), . . . ,x(K) from target distribution π(x)
for g = 0, 1, . . . ,K − 1 do

1. Sample x(g+1) ∼ N
(
x(g), r2C(g)

)

2. Apply Metropolis criterion αM(x(g+1),x(g)) = min
(

1, π(x(g+1))
π(x(g))

)

3. Update

m(g+1) = m(g) + γ(g+1)
(
x(g+1) −m(g)

)

C(g+1) = C(g) + γ(g+1)

((
x(g+1) −m(g)

)(
x(g+1) −m(g)

)T
−C(g)

)

end

Andrieu and Thoms provide conditions that need to be fulfilled for the sequence γ(g) to
achieve vanishing adaptation. From these conditions one can see that any sequence of the
form γ(g) = γ0/g

k with k ∈ [(1 + ε)−1, 1], and with γ0, ε > 0 is consistent. In the original AM
algorithm Haario and co-workers simply used γ(g) = 1/g. Andrieu and Thoms also provide
alternative update formulae for the mean and the covariance (see (Andrieu and Thoms, 2008)
for details). Moreover, they suggest an AM variant that also adapts the scale factor r. They
term this generic algorithm the AM algorithm with global adaptive scaling , see Algorithm 4.
Adaptation of the global scale factor r provides a way of controlling the acceptance rate of

the sampler. P ∗ is the user-defined, fixed target acceptance rate of the sampler. Gelman’s
optimal rate of 0.234 for Gaussian targets could be a default choice.

It is amazing that this scheme coincides exactly with the generic framework of GaA and CMA-
ES-like optimization algorithms. Note that in Algorithm 4 the update of the covariance and
the global step size are not decoupled (like in CMA-ES), thus hampering an efficient learning
of the global scale in this context. As a remedy Andrieu and Thoms presented variations of
this scheme, such as component-wise update of the mean, covariance, and scale factors. All of
these have well-known equivalents in the optimization world for many years. We emphasize
that this close relationship between the black-box optimizers and adaptive MCMC methods
has previously not been recognized. We comment on the possible cross-fertilization of both
fields in the last part of this chapter. The next section introduces a GaA variant for black-box
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5.2 Black-box sampling using Markov chains

Algorithm 4: General AM algorithm with global adaptive scaling

Input: Initial x(0), m(0), C(0), r(0) and P ∗

Result: Unbiased sample x(0), . . . ,x(K) from target distribution π(x)
for g = 0, 1, . . . ,K − 1 do

1. Sample x(g+1) ∼ N
(
x(g), r(g) 2C(g)

)

2. Apply Metropolis criterion αM(x(g+1),x(g)) = min
(

1, π(x(g+1))
π(x(g))

)

3. Update

log (r(g+1)) = log (r(g)) + γ(g+1)
(
α̂M(x(g+1),x(g))− P ∗

)

m(g+1) = m(g) + γ(g+1)
(
x(g+1) −m(g)

)

C(g+1) = C(g) + γ(g+1)

((
x(g+1) −m(g)

)(
x(g+1) −m(g)

)T
−C(g)

)

end

sampling, which can be seen as a specific instance of an adaptive MCMC algorithm with global
adaptive scaling.

5.2.3 Metropolis Gaussian Adaptation: an adaptive MCMC method

Gaussian Adaptation provides a unifying framework for black-box optimization and adap-
tive MCMC. We call the adaptive MCMC version of GaA Metropolis Gaussian Adaptation
(M-GaA). When using GaA for optimization, sample points with function values higher than
the threshold cT are strictly rejected and points with lower values accepted. For black-box
sampling this hard threshold is replaced with the Metropolis acceptance-rejection scheme

αM(x(g+1),x(g)) = min
(

1, π(x(g+1))
π(x(g))

)
. In cases where the continuous target probability dis-

tribution π(x) is only known up to a normalization constant, f(x) ∝ π(x) is used in the
acceptance criterion. The recursive rule for the threshold adaptation in Eq. (4.27) is obsolete
in M-GaA. We further set the weight parameter Nm = 1, moving GaA’s mean directly to the
accepted sample x(g+1). For the remaining parameters the standard settings are used. This
yields a sampling algorithm with adaptive Gaussian proposals. Moreover, M-GaA possesses
the convenient feature of setting the acceptance probability P a priori. If not stated otherwise,
the standard settings is P = 0.234. This renders M-GaA an adaptive MCMC sampler with
global adaptive scaling and decoupling of covariance orientation and scale because the updated
covariance is constantly normalized. Like the AP algorithm, M-GaA does not yet embed the
concept of vanishing adaptation, leading to a scheme for which ergodicity can probably not be
proven. In principle, it is straightforward to satisfy vanishing adaptation in M-GaA. However,
at this point we are interested in the practical performance of the standard GaA scheme when
used as a sampler.
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5 Black-box Sampling: from Landscapes to Probability Distributions

5.3 Computational experiments

We consider two different test scenarios for M-GaA: The first one is inspired by the tests used
in Haario’s publication of the AP algorithm (Haario et al., 1999) and in (Andrieu and Thoms,
2008). The second one presents a benchmark from Neal’s article on Slice Sampling (Neal,
2003), showing the limitations of the current M-GaA scheme.

5.3.1 Haario’s distributions

In order to assess the performance of M-GaA as an adaptive sampler, we first follow the
protocol outlined in (Haario et al., 1999). We consider the same three test target distributions:

π1: Uncorrelated Gaussian distribution

π2: Moderately twisted Gaussian distribution

π3: Strongly twisted Gaussian distribution

Distribution π1 is a centered n-dimensional multivariate normal distribution N (0,C1) with
C1 = diag(100, 1, . . . , 1). It thus has the shape of an axis-aligned hyper-ellipsoid with an axes
aspect ratio of 10. The twisted Gaussians are constructed as follows: Let g be the density of
an uncorrelated Gaussian. The density function of a twisted Gaussian with twisting parameter
b > 0 is then given by

gb = g(Φb(x)) , (5.18)

where Φb(x) = (x1, x2+bx2
1−100b, x3, . . . , xn). Φb thus only affects the second coordinate, and

the determinant of its Jacobian is unity (Haario et al., 1999). It is easy to compute probability
regions of gb and to verify that the expectation value of gb is 0 for all b. Haario et al. used
b = 0.03 for π2 and b = 0.1 for π3. Figure 5.1 shows the contour lines of the 68.3% and 99%
probability regions of π1 to π3. Haario et al. also suggested the following quality measures for
sampling algorithms:

1. mean(‖E‖): The mean distance of the expectation values from their true value (0),
averaged over N repetitions

2. std(‖E‖): The standard deviation of the distance of the expectation values from their
true value, averaged over N repetitions

3. err(≤ 68.3%): The mean error (in %) of the percentage of sampled points that hit the
probability region inside the 68.3% contour

4. std(≤ 68.3%): The standard deviation of err(≤ 68.3%)

5. err(> 99%): The mean error (in %) of the percentage of sampled points that hit the
probability region outside the 99% contour.

6. std(> 99%): The standard deviation of err(> 99%)
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Figure 5.1: 68.3% and 99% probability regions of the three test target distributions π1 (red), π2 (blue),
and π3 (green) in 2D. The parameter b controls the isochoric distortion of the Gaussian
density (see main text for details).

We test the M-GaA sampling scheme on the target distributions π1 to π3 in n = 8 dimensions
(Haario et al., 1999). 100 independent runs are performed for each target. The sample size
is limited to 20000 for π1, 40000 for π2, and 80000 for π3. In all test cases, M-GaA’s initial
sample point is drawn uniformly at random within the hypercube [−1, 1]8, and the initial step
size is r(0) = 1. Since the chain in M-GaA rapidly mixes, the burn-in length is set to 1, 000.
In order to be close the empirical acceptance probability of the AP algorithm (0.14 for π2 and
0.09 for π3 (Haario et al., 1999)), the hitting probability P is set to 0.1 in all cases. Figure 5.2
shows 2D projections of some M-GaA samples from each target distribution. We compare the
performance of M-GaA to three other algorithms:

1. Single-component Metropolis algorithm (SC) with univariate Gaussian proposal. This
algorithm explores each coordinate axis separately, one after the other (Metropolis et al.,
1953).

2. Metropolis-Hastings algorithm (MH) with isotropic multivariate Gaussian proposal (i.e.
the N-SRWM scheme). This algorithm explores all directions simultaneously.

3. Adaptive Proposal algorithm. Note that the AM algorithm achieves similar performance
as AP on these test targets (see (Haario et al., 2001) for details).

For both SC and MH, the standard deviation of the Gaussian proposal is fixed to the optimal
value of 2.4/

√
n. For AP we use the parameter values given in (Haario et al., 1999). The

burn-in length is set to 50% of the sample size for all three algorithms (Haario et al., 1999).
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Figure 5.2: Complete set of M-GaA samples from the test target distributions π1 (red), π2 (blue),
and π3 (green) for one run, randomly selected from the 100 runs. A 2D projection of the
8-dimensional data set is shown.

The performance measures for all algorithms are summarized in Table 5.1. All results other
than those for M-GaA are taken from (Haario et al., 1999). For the uncorrelated target π1,
M-GaA and AP both outperform MH in estimating the expectation value. They also show
a lower standard deviation of the estimation. While the samples from M-GaA have a bias of
around 4% in the 68.3% region, they accurately cover the tails beyond the 99% region. For
the twisted Gaussians π2 and π3, M-GaA and AP estimate the expectation more accurately
than SC and MH. This indicates that M-GaA is able to better explore the twisted tails of the
distributions, leading to a smaller error in the expectation estimation. An important feature is
that for all twisted distributions the M-GaA estimates have smaller standard deviations than
those from any of the other algorithms. This is an appealing property in practice.

We study the mixing behavior of the algorithms by computing the component-wise autocorre-
lation ρ of the M-GaA and MH samples (Fig. 5.3). For π1, the sample components x1 (along
the stretched axis) are much less correlated in M-GaA than they are in MH. The same is
true for π2 in both the first and second dimension (stretched and twisted). All other compo-
nents show low correlations in both algorithms, with the MH sample autocorrelation dropping
slightly faster than that of M-GaA (curves in the lower-left corner of the graphs in Fig. 5.3).
We observe the same behavior also for the target π3 (data not shown). Altogether, the strong
reduction in sample autocorrelation indicates fast mixing of the chains produced by M-GaA.
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π1

SC MH AP M-GaA

mean(‖E‖) - 2.96 0.46 0.62

std(‖E‖) - 2.31 0.33 0.44

err(≤ 68.3%) - 0.23 0.02 4.29

std(≤ 68.3%) - 4.40 1.95 2.41

err(> 99%) - 0.01 0.03 0.04

std(> 99%) - 0.61 1.32 0.39

π2

SC MH AP M-GaA

mean(‖E‖) 2.40 2.46 1.31 1.48

std(‖E‖) 4.59 2.81 0.72 0.71

err(≤ 68.3%) 1.30 0.18 0.80 0.29

std(≤ 68.3%) 4.59 6.70 2.92 1.95

err(> 99%) 0.16 0.03 0.01 0.16

std(> 99%) 0.40 0.66 0.62 0.25

π3

SC MH AP M-GaA

mean(‖E‖) 6.53 7.89 4.85 4.96

std(‖E‖) 4.79 7.54 4.20 1.14

err(≤ 68.3%) 2.46 0.35 2.13 1.27

std(≤ 68.3%) 6.48 9.79 5.34 2.56

err(> 99%) 0.27 0.07 0.14 0.26

std(> 99%) 0.34 0.97 0.45 0.28

Table 5.1: Summary statistics of 100 independent test runs of the Single-component Metropolis (SC),
Metropolis-Hastings (MH), Adaptive Proposal (AP) (taken from (Haario et al., 1999)), and
M-GaA samplers. All err and std values are given in %.
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Figure 5.3: Component-wise autocorrelation ρ(k) of the samples (after the burn-in phase) vs. lag k
on π1 and π2 for MH (dashed lines) and M-GaA (solid lines) averaged over 100 runs. The
M-GaA samples in the non-standard-normal coordinates (x1 in π1 and x1, x2 in π2) are less
correlated than the corresponding components in the MH samples. In all standard-normal
components, the sample autocorrelation drops fast for both algorithms (≈ 0 at k = 150).
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5.3.2 Neal’s funnel distribution

In his seminal paper on Slice Sampling (Neal, 2003), Radford Neal introduced a funnel-
shaped test distribution πf(x). It is a ten-dimensional distribution with variables x =
(v, x1, x2, . . . , x9). The marginal distribution of v is N (0, 32). Conditional on a given value
of v, the variables x1 to x9 are independent, with the conditional distribution for each being
Gaussian with N (0, ev). The resulting shape of the distribution resembles a single ten-
dimensional funnel, with increasing values for v from one end to the other. A contour plot
of πf(x) is provided in upper-right part of Fig. 5.4. Neal states that “Such a distribution is
typical of priors for components of Bayesian hierarchical models: x1 to x9 might, for example,
be random effects for nine subjects, with v being the log of the variance of these random
effects. If the data happens to be largely uninformative, the problem of sampling from the
posterior will be similar to that of sampling from the prior, so this test is relevant to actual
Bayesian inference problems.” A direct sampling method is straight forward and consists of

first sampling v(g) from N (0, 32) and then, conditionally sampling all x
(g)
i from N (0, ev

(g)

). A
representative sample of size 2 · 104, along with the corresponding marginal histograms for v
and xi, is depicted in lower and left panels of Fig. 5.4. For standard Metropolis-based schemes,
the difficulty of sampling from πf(x) is the low probability of accepting a proposal state when
the chain is in a region of negative v. Conditional on this value, the variances of xi attain
the tiny value, e.g. 0.018 for v=-4. This leads to highly peaked Gaussians that are difficult
to sample from. An MH algorithm with a standard multivariate Gaussian proposal N (0, I)
would, in the majority of cases, propose samples that are rejected and the chain would get
stuck on the lower end of the funnel. The same also hinders the chain from visiting negative
v values when started from positive values, because these moves are almost always rejected.
Monitoring the v(g) values of the chain reveals, hence, the efficiency of an MCMC method.

We demonstrate the limitations of M-GaA using similar numerical experiments as in Neal’s
article. Following Neal, we run a single long trajectory for each sampler. Both for N-SRWM
version of the MH algorithm and for standard M-GaA we use 2 · 105 iterations. We thin out
the chain and record only every tenth sample point j = 1, . . . , 2 · 104 for analysis. In addition,
we run a single trajectory of Neal’s slice sampler of length 2 · 104 samples (using MATLAB’s
slicesample.m routine with standard settings). M-GaA is run with standard parameters,
except for a more conservative value of NC = 5n3 for the covariance update. The initial state
of all chains is set to x(0) = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1]. We first analyze the trace of variable v
as summarized in Fig. 5.5. The true marginal distribution of v is the Gaussian distribution
N (0, 32). Visual inspection of the histograms (lower row of Fig. 5.5) suggests that M-GaA is
superior to the other two methods. Both MH and Slice sampling get stuck for small values of
v and produce an additional mode in the region of v ≈ −10. The empirical estimates of the
first two moments of the M-GaA samples are mM-GaA = 0.04 and varM-GaA = 3.382, whereas
for MH and the Slice sampler we have mMH = −0.35, varMH = 4.862 and mSlice = −1.10 and
varSlice = 5.952, respectively.

Inspection of the marginals of the xi, however, reveals that the M-GaA trajectory diverges
(in terms of variance) over time while both the MH and Slice Sampler are stable. For il-
lustration, we show the trajectory of x1 in Fig. 5.6. We hypothesize that the maximum
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Figure 5.4: Top-right panel: Contour plot of the density πf(x) as a function of v and an arbitrary xi
in the domain [-5,5]. Direct samples from this distributions for v (red) and an arbitrary
xi (blue) are shown in the lower right and upper left panels, respectively.

entropy adaptation in M-GaA is responsible for this divergence. When M-GaA explores the
target distribution for large values of v, the distribution is almost uniformly flat in the xi
components (due to the exponential variance ev of these variables). M-GaA thus expands the
covariance of the Gaussian proposal along these directions. When the trajectory of M-GaA
returns to negative v, the sampler is blind to the peak in the target distribution at 0 in the xi
dimensions. M-GaA rather explores the uninformative flat regions away from 0 and further
expands the covariance matrix. This leads to the divergence of the chain in the xi components.

The divergence of the variables xi clearly demonstrates the limitations of the current M-GaA
sampler. Due to the hierarchical dependency of the xi variables on v in the funnel distribution,
it is hard to learn an optimal scale and direction of the covariance matrix in all regions of
the domain. Several simple modifications are conceivable for M-GaA. First and foremost,
the principle of vanishing adaptation certainly helps to avoid the divergence of the proposal
distribution. Second, practical bounds can be enforced on the domain of interest and on the
condition number of the covariance matrix. These are, in essence, the same strategies that are
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Figure 5.5: Markov chain samples from πf(x) obtained using M-GaA (left), the MH algorithm (middle)
and the Slice Sampler (right). Both the full trajectories of v (top) and the corresponding
histograms (bottom) are shown.

also used in the AM algorithm.

5.4 A future challenge: A unifying framework for black-box
optimization and sampling

The previous Chapter 4 and this chapter explored adaptive algorithms for black-box optimiza-
tion and sampling. In identifying and analyzing the common design principles and features
of CMA-ES, GaA and adaptive MCMC methods, we have been able to synthesize a novel
adaptive MCMC method, M-GaA, that shows encouraging performance on the presented test
problems. In our view, this is just a first step toward a unifying framework for adaptive
black-box optimization and sampling. Exploring the key ideas from both communities and
adapting them into the respective context is expected to be of mutual advantage. Besides
our own work, also other attempts have been made in this direction. In statistics, Liang and
Wong introduced an Evolutionary Monte Carlo scheme, an MCMC method that uses move
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Figure 5.6: Markov chain samples of x1 from πf(x) obtained using M-GaA (left), the MH algorithm
(middle), and the Slice Sampler (right).The M-GaA trajectory diverges in time. The MH
and the Slice Sampler are stable.

sets from evolutionary algorithms (Liang and Wong, 2001b,a). Several authors have recently
refined such schemes (Braak, 2006; Hu and Tsui, 2008). A combined approach to sampling
and optimization is proposed in (Ren et al., 2008). In the black-box optimization community,
few authors have recognized the possible importance of MCMC methods. An important ex-
ception are the works of Vrugt and co-workers. For instance in (Vrugt and Robinson, 2007),
the AM algorithm is used as part of an ensemble of search/sampling methods to improve
multi-objective optimization.

We expect research into MCMC methods to be promising for the solution of two important
problems in black-box optimization: (i) Efficient high-dimensional versions of CMA schemes
and (ii) convergence proofs of CMA schemes for convex and non-convex landscapes.

The first challenge can be tackled by learning from the AP algorithm’s sampling scheme as
given in Eq. (5.14). The idea of using a H × n data matrix of past accepted samples that is
used as an approximation of the Cholesky matrix may prove valuable also in the optimization
context. For high-dimensional problems (n > 500), methods that adapt a full covariance
matrix are largely prohibitive due to the cubic complexity of the necessary eigendecomposition.
In the AP scheme, this is avoided at the expense of a larger matrix-vector multiplication when
H > n. The cost of such a multiplication is, however, negligible compared to a Cholesky- or
eigendecomposition. To some extent, this idea is reminiscent of the generating set adaptation
scheme (Hansen et al., 1995), a precursor of CMA-ES. We suggest revisiting this approach for
high-dimensional cases although considerable doubts about its usefulness have been expressed
by one of the present co-examiners (Hansen, 2010a). An alternative approach toward high-
dimensional CMA versions is offered by updating structured covariance matrices rather than
the full covariance. While the single-component case has been introduced by Haario and co-
workers for the AM algorithm in (Haario et al., 2005), Ros and Hansen proposed a similar
scheme for CMA-ES in (Ros, Raymond and Hansen, Nikolaus, 2008) by updating a diagonal
covariance matrix. It is conceivable that this idea can also be extended to block-wise updates of
covariance matrices (Andrieu and Thoms, 2008) when certain variables are known or suspected
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to be independent.
The second challenge is theoretically more profound. Since Haario’s proof of the ergodicity
of the AM algorithm, statisticians have worked on simplified proofs or general conditions on
adaptive MCMC methods that imply convergence (Andrieu and Moulines, 2006). We strongly
believe that these results can be exploited in order to find proofs of convergence to the global
minimum for CMA-like schemes on specific model landscapes.
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Atomic Cluster Landscapes for Black-box

Optimization

”Nucular, it’s pronounced ’nucular’...’nucular’”
Homer Simpson, in: The Simpsons, Bart Gets an Elephant, Episode no. 98,
1999

The energy landscape perspective has been key for the understanding of physical properties
of atomic systems. In Chapter 2 we presented several instances where the topology of the
potential energy landscape (PEL) determines both static and dynamic properties of atomic
ensembles. Depending on the physical properties of the nuclei (and electrons), the continuous
landscape arising from their interactions enables rapid formation of regular structures, such
as crystals, or unstructured arrangements usually referred to as glasses (Cox et al., 2006).
Over the past six decades chemists and physicists have accumulated a wealth of knowledge
about a variety of systems. For an exhaustive summary of this field we refer to (Wales,
2005). Several instances have also attracted the attention of mathematicians and computer
scientists in the field of discrete and computational geometry . The problem of finding an
arrangement of particles that minimizes a potential energy is a specific instance of a geometry
optimization or packing problem. These problems generally belong to the class of NP problems.

We here propose the energy minimization of atomic clusters as a promising problem class for
continuous black-box optimization benchmarks. From the large set of available cluster opti-
mization problems, we focus on two specific instances: Cohn-Kumar clusters and Lennard-
Jones clusters. The potential energy of these clusters is governed by distance-dependent pair-
wise interaction potentials. The resulting landscapes exhibit smooth and rugged single-funnel
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topologies as well as stunable double-funnel topologies. We argue that minimizing the energy
landscapes of atomic clusters provides a useful extension to the current CEC and BBOB test
sets for two main reasons: First, these problems comprise the property of isospectral symme-
try , a characteristic that is not covered by the current benchmark sets. Second, atomic cluster
problems can be considered real-world problems since they model physical phenomena and
share a similar problem structure with other important real-world optimization tasks, such as
sensor placement problems (Wu and Verma, 2008). Algorithms that perform well on atomic
cluster problems may therefore also prove successful for these applications. We therefore sug-
gest that the presented problem instances should be included in future black-box benchmark
suites.

6.1 Cluster landscapes

A cluster is a spatial arrangement of particles, typically a few tens to hundreds in number.
In chemistry and physics, the study of clusters of atoms provides a means of understanding
nucleation phenomena. Nucleation describes the transition from a loose collection of atoms to
a bulk material with particle numbers on the order of the Avogadro constant NA = 6.0221023.
Depending on chemical composition and physical conditions, different types of solids, such as
crystals, quasi-crystals, amorphous solids, or glasses emerge. The energy landscape paradigm
has provided a fruitful view of these complex processes. It is now widely acknowledged that the
global topology of a PEL has an important influence on the way atomic clusters and bulk mate-
rials form. When the PEL has a funnel-like shape where local minima are arranged in order of
decreasing energy around the global minimum (or ground state), rapid evolution of the physi-
cal system toward this ground state is likely. Understanding and elucidating energy landscapes
both in computer models and real experiments is thus an important research goal. In theo-
retical and computational approaches, PEL can be discriminated by three fundamental model
assumptions about the underlying physical system: (i) the number of particles in the system;
(ii) the number of different atom types, and (iii) the classical or quantum-mechanical formu-
lation of the energy. We first discuss the implications of these different model assumptions
and state the choices we made in order to derive feasible benchmark problems for black-box
optimization.

Atomic ensembles and landscape domains

The number of atoms in the system is the first important choice. Bulk systems with a huge
number of atoms are approximated by a finite number of N atoms located in a rectangular
prism (or a general parallelepiped) with periodic boundary conditions. In chemistry and
crystallography, this rectangular prism is usually called the unit cell. When different kinds of
atoms are considered, the unit cell should reflect the stoichiometry of the material, that is, the
absolute ratio of the different atom types in the system. The correct size of the unit cell and
the number of atoms it contains are usually not known a priori, thus hampering the setup of
generic problem classes. The landscape domain X of the described systems is determined by
the number of atoms, the spatial extent of the unit cell, and a finite set of indicator variables
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that encode the atom types.

When the number of atoms is limited (usually to a few tens or hundreds), the spatial location of
the atoms is bounded and no periodic boundary conditions are applied. This leads to atomic
cluster or nano cluster systems. Over the past three decades, there has been increasing interest
in such systems because of their wide-ranging chemical applications in catalysis, electronics,
and energy conversion. We refer to (Catlow et al., 2010) for an excellent chemical perspective
on the topic. Many cluster systems have been studied, and the putative ground states (i.e.,
configurations of atoms attaining the global energy minimum) for different energy formulations
are available, for instance in the Cambridge Cluster Database (CCD) (Wales et al., 2009).
Cluster systems comprising mixtures of one, two, or three different atoms types are well
studied, most prominently oxides such as Zinc oxides or Silica. Two different definitions
of the space in which atomic clusters live (i.e., their ambient space) are commonly used:
Either the atoms populate the box-constrained Euclidian space, or they are restricted to the
surface of the unit sphere Sn−1 = {x ∈ Rn : dE(0,x) = 1}. For our benchmark problems,
we consider both spaces. Finding particle distributions on the unit sphere that minimize a
certain energy function is a long-standing problem since Thomson posed the question how
to optimally arrange electric charges on a sphere (Thomson, 1904). Optimal distributions of
particles on the sphere are also known as spherical codes in coding theory. A collection of
putative optimal spherical codes can be found in (Sloane et al., 2000). Optimality is always
defined with respect to a potential energy formulation.

Potential energy formulations and ground states

When a collection of particles interacts on the atomic scale, the potential energy landscape
arises from the forces between all electrons and nuclei of the atoms. In order to arrive at
a tractable model of the PEL, the fundamental assumption in both classical and quantum-
mechanical formulations is the Born-Oppenheimer approximation (Born and Oppenheimer,
1927): Based on the large discrepancy between nuclear and electronic masses, this approx-
imation allows separating the energy into an electronic and a nuclear component. Existing
formulations of potential energy differ in the way they describe these components. Depending
on the specific properties of the atoms in the system, different levels of detail are necessary in
realistic models. Two main models gained popularity in the past decades: quantum mechani-
cal (QM) electronic structure techniques and classical interatomic potentials. Despite today’s
increasing availability of high-performance computing environments, QM-based energy cal-
culations of atomic ensembles are still very costly. Classical interatomic potentials offer a
convenient alternative to calculate the potential energy of many-particle systems in a fast
manner. The principle underlying the design of these potentials is largely empirical. One at-
tempts to reproduce the experimentally observed dynamics and ground states of specific types
of matter through careful parametrization of simple analytical functions. Consider a cluster
of N atoms in 3D space where the position of the ith particle is denoted pi = (xi, yi, zi). Each
configuration x = {p1, . . . , pi, . . . , pN} is restricted to a 3D box, i.e. x ∈ X = [l,u] ⊂ R3N .
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The general form of an interatomic potential energy EIP for many-body systems is:

EIP(x) =
∑

pi

vIP (pi,N (pi)) , (6.1)

where N (pi) represents the neighborhood of pi. An established approach for designing inter-
atomic potentials is to split vIP into two components. One component accounts for many-body
energy contributions through pairwise interactions. The other component models the local
environment of each individual atom. In general, the pairwise interaction term depends on
all particles in the system, whereas the local environment is often defined within a specified
distance range (neighborhood). Important examples of interatomic potentials that include
both terms are the Finnis-Sinclair potential (Finnis and Sinclair, 1984) and its extension, the
Sutton-Chen potential (Sutton and Chen, 1990), as well as tight-binding potentials (Cleri
and Rosato, 1993). The famous Stillinger-Weber potential includes 2- and 3-body interac-
tions (Weber and Stillinger, 1985). The simplest instances of interatomic potentials are those
that only consider pairwise interactions using isotropic pair potentials. The first potential
of this kind dates back to John Lennard-Jones who introduced an empirical potential that
describes the interaction between neutral atoms (Lennard-Jones, 1924). This Lennard-Jones
(LJ) potential will be considered in Section 6.4. Another important instance is the Morse pair
potential (Morse, 1929). Although all presented interaction potentials can be parameterized
for different atom types, and atomic mixtures, we only consider mono-atomic clusters, i.e.,
clusters that only comprise one atom type. The Thomson problem mentioned above can also
be considered a minimization problem over a potential energy of pairwise interactions. There,
the N particles are electrons confined to the sphere that are arranged such as to minimize the
total Coulomb potential.

The quality of potential energy models is usually assessed by their ability to either reproduce
experimentally known ground states for various materials and clusters or to predict novel
geometries as possible ground states that could guide experimentalists in their quest for novel
forms of matter. Ground states define the macroscopic properties of the material. In a series
of articles, Rechtsman, Stillinger, and Torquato (Rechtsman et al., 2005, 2006a,b) introduced
a new perspective on the topic: Instead of attempting to mimic nature as accurately as pos-
sible by tuning potential functions, they considered the inverse problem of how the shape of
an isotropic pair potential has to look like in order to have as a ground state a predefined
structure. In their simulation-guided optimization framework they were able to design inter-
action potentials that result in bulk material with honeycomb (Rechtsman et al., 2005), square
(Rechtsman et al., 2006a), cubic (Rechtsman et al., 2006b), diamond, and wurtzite (Rechts-
man et al., 2007) lattices. All of their designed interaction potentials are based on multi-modal
isotropic pair potentials. Inspired by this “inverse statistical mechanics” approach (Torquato,
2009), Cohn and Kumar derived in their article “Algorithmic design of self-assembling struc-
tures” (Cohn and Kumar, 2009) convex pair potentials with provable ground states for clusters.
We introduce two of these important potentials in Section 6.3 and propose the resulting PEL
as a benchmark problem with a smooth single-funnel topology.
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Standard identification of ground states

Atomic clusters and their ground states constitute an important problem class in chemistry
and physics. From a computational point of view, it is noteworthy that Wille and Vennik
proved “that determining the ground state of a cluster of identical atoms, interacting under
two-body central forces, belongs to the class of NP-hard problems” (Wille and Vennik, 1985).
The proof works by reducing the problem to a special instance of the traveling salesman prob-
lem. Recently, Adib revisited and refined the proof (Adib, 2005). Because of the existence of
analytic gradients in most potential energy formulations, competitive algorithms to identify
the ground states of larger clusters are hybrid stochastic-deterministic first-order methods that
give no guarantees about the quality of the found solutions. Despite the tremendous amount
of different approaches to cluster optimization found in the (mostly chemistry or physics) liter-
ature, the basic ingredients of successful heuristics are few: a reasonably good global move set
and an efficient Quasi-Newton local gradient-based minimizer, mostly of the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) type. We refer to Wales’s book (Wales, 2005) for further details,
and to the excellent review by Hartke for an overview of applications of hybrid evolutionary
algorithms (Hartke, 2004). The memetic CMA-ES algorithm presented in Section 4.2.2 is an
instance of such a heuristic that has been applied to LJ clusters (Ofenbeck, 2009). One of
the most successful hybrid algorithms is the Basin-Hopping (BH) algorithm (Wales and Doye,
1997), which is based on (i) uniformly random variation of atomic positions and (ii) relax-
ation of the perturbed structure to the nearest local minimum using BFGS. In this context,
a “basin” is the collection of configurations that lead to the same local minimum for a given
gradient-based minimization routine. Acceptance of a new structure is based on the Metropolis
criterion, as defined in Eq. (5.9), with respect to the previously accepted configuration. This
is analogous to Simulated Annealing. In BH, however, the temperature parameter remains
constant. Numerical results of BH and related memetic techniques for different cluster systems
are scattered over hundreds of publications. For some systems, detailed knowledge about the
number of minima, first-order saddle points, and global landscape structure is available. The
present investigation is a first attempt to utilize this information for black-box benchmarking.

6.2 Cluster problems for black-box benchmarking

The physical and computational foundations of atomic clusters can be exploited for the devel-
opment of a cluster benchmark library. We adopt several design criteria of the CEC 2005 test
suites. The dimensionality n of a cluster problem instance depends on the number of particles
in the cluster and the space that the individual atoms populate. We consider problems not
exceeding n ≈ 100. Furthermore, we restrict ourselves to clusters of identical atoms with
energy formulations based on scalar, isotropic pair potentials uPP. This leads to an energy
formulation of the kind:

EPP(x) =
1

2

N∑

i=1

N∑

j=1

uPP(rij) , (6.2)

where rij = dE(pi,pj) is the Euclidian distance between particles pi and pj . The sole de-
pendence of the isotropic pair potential on pairwise distances has several consequences: First,
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the resulting energy functions are non-separable because all particles interact with all oth-
ers. Second, they are, in general, continuously differentiable polynomial surfaces that are not
bounded from above because most pair potentials diverge when pi approaches any pj . Third,
the computational cost of energy function evaluation is low, but scales quadratically with the
number of particles (and hence dimensions). Forth, there is no unique set of absolute atomic
positions that minimizes the energy; rather, all configurations that have the same distance
spectrum are energetically equivalent. This property is called isospectral symmetry and will
be discussed in detail in the next subsection. It is the key feature of cluster problems that is
not represented in current standard benchmark suites.

A convenient property of atomic cluster problems is the intuitive illustration of (sub-)optimal
solutions as a list of atomic coordinates that can be visualized in 3D space. In addition, the
physical concept of order parameters enables low-dimensional descriptions of cluster configu-
rations, as will be outlined below. Cluster problems also exhibit a wide variety of landscape
topologies, thus leading to a rich and diverse benchmark set in the spirit of the CEC2005 or
BBOB test suites.

Symmetry as a novel problem characteristic

Two sources of symmetry arise in mono-atomic clusters: Consider the global minimum x∗ for
a given energy function. When x∗ consists of the positions of N identical particles, N ! possible
permutations of atomic positions exist that attain the same ground state. Furthermore, the
energy function does not discriminate between configurations with identical sets of pairwise
distances, that is, an identical distance spectrum. This characteristic, known as isospectral
symmetry , implies that any transformation applied to x∗ that preserves all pairwise distances
between the particles results in another minimum-energy configuration. A unique description
of the cluster ground state is thus a set of N(N − 1)/2 pairwise distances, rather than a set
of coordinates x. Depending on the symmetry group of the minimum-energy configuration,
different types of spectrum-preserving transformations exist. The simplest ones are translation,
rotation, inversion, and reflection. However, it is also known that certain distance spectra
can be generated by geometrically distinct configurations. Note that this type of symmetry
is conceptually different from the symmetries found in standard benchmark functions, such
as Rastrigin’s function, where permutation symmetries often exist for local minima, but no
symmetry exists for the global minimum. In the BBOB and CEC 2005 test suites symmetries
are also partially removed by (non-)linear transformations (Suganthan et al., 2005; Finck et al.,
2009). Isospectral symmetry (and symmetry breaking) is a fundamental concept in physics,
but its impact on black-box optimization has been comparatively weak. We are only aware of
the research of Van Hoyweghen and co-workers who analyzed symmetry “due to the interaction
structure” in the problem. They describe the impact of such symmetry on the performance of
evolutionary algorithms in the context of aggregated combinatorial problems (Van Hoyweghen
and Naudts, 2000; Van Hoyweghen et al., 2002). They “claim that the occurrence of symmetry
in the representation is another problem difficulty characteristic” (Van Hoyweghen et al., 2002),
and they propose different ways of modifying black-box algorithms in order to cope with this
difficulty. For continuous black-box problems such considerations are, to the best of our
knowledge, so far missing.
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Bond-order parameters for cluster characterization

Due to the presence of isospectral symmetry, it can be misleading to describe and compare
cluster configurations in absolute coordinates x. Consider two configurations x and y, where
y is generated by rotation of x about the origin. Calculating dE(x,y) would result in a value
greater than 0, despite the fact that the two configurations are identical in terms of their
pairwise distance spectrum. Measures that are invariant to isospectral symmetries provide a
more robust way of characterizing the system. Designing such invariants for specific systems,
however, is not trivial. Steinhardt and coworkers introduced a set of invariants for atomic
cluster and bulk configurations that are applicable in our case: bond-(orientational) order pa-
rameters (BOP) (Steinhardt et al., 1983). These parameters are indispensable for the analysis
of nucleation phenomena and packing structures in bulk materials and cluster configurations.
In this context, a “bond” does not refer to a covalent chemical bond, but is rather defined as
the vector joining a pair of neighboring atoms. Neighborhood is defined by a distance cutoff.
Bond-order parameters reflect the symmetry of bond orientations, regardless of absolute bond
lengths. This is achieved by combination and normalization of certain spherical harmonics,
resulting in the measures Ql and Ŵl. The second-order invariants Ql are defined as:

Ql =

(
4π

2l + 1

l∑

m=−l
‖Q̄lm‖2

) 1
2

, (6.3)

where

Q̄lm =
1

Nb

∑

rij<r0

Qlm(rij) (6.4)

and Qlm(rij) = Ylm(θij , φij). Nb denotes the number of bonds that are shorter than the cutoff
distance r0. The Ylm(θij , φij) are spherical harmonics with θij being the polar and φij the
azimuthal angle of the inter-atomic vector rij of length rij between atoms pi and pj with

respect to an arbitrary coordinate frame. The parameters Ŵl are defined as:

Ŵl =
Wl(∑

m

‖Qlm‖2
)3/2

. (6.5)

They are normalized versions of the third-order invariants

Wl =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l

m1 m2 m3

)
Q̄lm1

Q̄lm2
Q̄lm3

, (6.6)

where the coefficients (· · · ) are the so-called Wigner 3j symbols (Weisstein, 2010). Steinhardt
and co-workers showed that the parameters Q4, Q6, Ŵ4, and Ŵ6 are sufficient for a detailed
“cluster shape spectroscopy” (Steinhardt et al., 1983) of liquids, crystals, and glasses since
they discriminate between the most important symmetry groups. Specific atomic packings
have unique combinations of values for this set. For instance, the parameter Q4 discriminates
between icosahedral (ico) and face-centered cubic octahedral (fcc) packing systems with values
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Qico
4 = 0 and Qfcc

4 = 0.1909, respectively. In the context of black-box optimization, we suggest
using bond-order parameters as structural fingerprints of putative optimal cluster solutions,
as well as for convenient visualization of optimization trajectories.

Alternative invariants can be constructed directly from the distance spectrum of the con-
figurations. A wealth of such techniques exists in computer graphics and image processing
for symmetry and shape descriptions. One instance is the concept of shape distributions
(Osada et al., 2002), which might be interesting to examine also in the context of black-box
optimization.

6.3 Cohn-Kumar clusters

The first cluster instances we propose are based on pair potentials recently introduced by Cohn
and Kumar (Cohn and Kumar, 2009). Inspired by the inverse statistical mechanics approach,
they designed pair potentials that result in provable ground states for certain cluster instances.
To the best of our knowledge, there is so far no publication that uses these potentials. We
hence introduce the name “Cohn-Kumar (CK) potentials” for the interaction potentials and
“Cohn-Kumar (CK) clusters” for the resulting ground-state clusters. The four pair-potentials
(CK1 – CK4) form the following provable minimum-energy configurations:

1. An 8-particle CK1 cluster forms a 3D cube with six identical square faces.

2. A 20-particle CK2 cluster forms a 3D regular dodecahedron with twelve identical pen-
tagonal faces.

3. A 16-particle CK3 cluster forms a 4D hypercube with eight identical cubic faces.

4. A 600-particle CK4 cluster forms a regular 120-cell in 4D with 120 dodecahedral faces.

We restrict ourselves to the first two potentials with ground-state clusters living in 3D space.
In both cases, the ambient space of the particles is S2, leading to two degrees of freedom per
particle. The CK1 pair potential is defined as:

uCK1(r) =
1

r3
− 1.13

r6
+

0.523

r9
, (6.7)

where r is the Euclidian distance between two particles. The CK2 pair potential is defined as:

uCK2(r) = (1 + t)5 +
(t+ 1)2(t− 1/3)2(t+ 1/3)2(t2 − 5/9)2

6(t− 1)2
(6.8)

with t = 1 − r2/2. Both functions are designed to be monotonically decreasing and convex.
Their graphs are depicted in Fig. 6.1. For a system of N particles with positions pi, the energy
functions are:

ECK1(x) =
1

2

N∑

i=1

N∑

j=1

uCK1(rij) , (6.9)

and

ECK2(x) =
1

2

N∑

i=1

N∑

j=1

uCK2(rij) , (6.10)
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Figure 6.1: The Cohn-Kumar (CK) potentials uCK1(r) and uCK2(r) in log scale versus distance r ∈
[0.01, 2].

with x = {p1, . . . , pi, . . . , pN} and rij = dE(pi,pj). Let us first consider the two instances of
CK1 and CK2 clusters for which the ground states have been proven in (Cohn and Kumar,
2009). The proofs are based on techniques from coding theory and linear programming.
Details are given in (Cohn and Kumar, 2009). The optimal 8-particle CK1 (CK18) cluster
configuration xCK1

min is the 3D cube with identical square faces. This configuration belongs to
the class of Platonic solids and is depicted on the left of Fig. 6.2. Due to the restriction of
particle positions to the unit sphere, the following 3 unique distances occur: the cube edge
length of 2/

√
3, the face diagonal of length

√
8/3, and the cube diagonal length of 2. The

energy minimum is ECK1(xCK1
min ) ≈ 6.34338764. The dual polygon is the octahedron.

The optimal 20-particle CK2 (CK220) cluster configuration xCK2
min is a dodecahedron with 12

identical pentagonal faces. 5 unique distances occur in this Platonic solid: The length le of
the pentagonal edges is related to the radius rSph of the sphere on which the particles are
located via rSph = le/4 (

√
15 +

√
3). This leads to le = 4/(

√
15 +

√
3) ≈ 0.713644. Second,

third, and fourth nearest neighbor distances have values 2/
√

3,
√

8/
√

3, and (
√

15 +
√

3)/3,
respectively. The largest occurring distance is the sphere diameter of 2. The minimum energy
is ECK2(xCK2

min ) ≈ 746 2
3 . The dual polygon is the icosahedron. This dodecahedral configuration

is depicted on the right of Fig. 6.2.

Although these configurations are geometrically simple, it is hard to make them ground states
of any classical pair-potential energy function. Cohn and Kumar state the following (which
is valid for all ground-state configurations listed above): “The problem is that their facets
are too large, which makes them highly unstable. Under ordinary potential functions, such as
inverse power laws, these configurations are never even local minima, let alone global minima.
In the case of the cube, one can typically improve it by rotating two opposite facets so they
are no longer aligned. That lowers the energy, and indeed the global minimum appears to be
the antiprism arrived at via a 45o rotation (and subsequent adjustment of the edge lengths).”
(Cohn and Kumar, 2009). The square antiprism (or anti-cube) is, for instance, the minimum
of the 8-electron Thomson problem, as well as the putative ground state for the 8-particle
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CK2 cluster.
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Figure 6.2: The optimal 8-atom CK1 cluster (left) and 20-atom CK2 cluster (right). The color coding
represents the log of the energy difference to the ground state of the system if N−1 atoms
are fixed and a single one (the blue one on the top right) is moved across the surface
of the sphere (log10 ∆ECKi = log10 (ECKi(x)− ECKi(xmin))), resulting in a multi-funnel
landscape with the largest basin surrounding the vacant position.

Despite the convexity of the CK pair potentials, the resulting energy functions are non-convex,
even for the clusters with proven optimal configurations. Cohn and Kumar do not comment
on the exact number of basins or the basin depths. For the optimal CK1 cluster they empir-
ically found that out of 1000 local optimization runs only 6 did not converge to the global
minimum (Cohn and Kumar, 2009). Our own numerical results indicate that the landscapes
of the 8-atom CK1 cluster and the 20-atom CK2 cluster are smooth and globally convex under
CMA-ES.

These results suggest two ways of using CK clusters as black-box optimization benchmarks:
The first one is solely based on the proven optimal configurations. A benchmark set with
variable dimensionality can be constructed by fixing a number of optimal atomic positions,
leading to well-defined multi-funnel problems. Consider the optimal 8-particle CK1 cluster.
Fixing seven particles to optimal relative positions we arrive at a 2D cluster problem with
four basins of attraction: three that correspond to the square faces of equal size and one large
basin consisting of the remaining three faces with the global minimum at the vacant corner
position. Likewise, one could construct a 2D 10-funnel landscape from the optimal 20-particle
CK2 cluster with 9 sub-optimal basins (the stable pentagons) and a large basin with the global
minimum at the vacant position surrounded by three pentagonal faces. Decreasing the num-
ber of fixed atomic positions results in higher-dimensional problems with varying landscape
structure. For both provably optimal cluster configurations we illustrate the landscapes where
only one atom is free to move in Fig. 6.2 by projecting the energies relative to the ground
state onto the spherical ambient space.
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The second way of constructing a standard benchmark set for black-box optimization based
on CK1 and CK2 clusters consists of varying the number of atoms on the sphere. We prefer
this approach for its simplicity and suggest the following specification: We consider CK1 and
CK2 clusters with up to N = 25 atoms. A system of N atoms confined to the surface of the
unit sphere results in n = 2N degrees of freedom. A natural landscape representation is based
on spherical coordinates. The position pi of atom i is defined by a pair of polar and azimuthal
angles at unit radius, i.e., pi = (θi, ϕi, 1). In order to construct a box-constrained problem
we restrict the angles to the interval [−π, π], leading to x ∈ X = [−π, π]n. In principle, one
could remove 4 degrees of freedom by fixing the position of a single atom on the sphere and
fixing one polar and one azimuthal angle of one pair of atoms, thus removing certain symmetry
properties of the problem. We do, however, not follow this approach here since we want to
construct a benchmark with full isospectral symmetry. As in the CEC 2005 and BBOB test
suites, we suggest to use a budget of MAX FES= 104 n for a single optimization run, and 25
independent runs per problem. We first focus on the 8-atom CK1 cluster and the 20-atom CK2
cluster, for which the optimal configurations and the corresponding energy values are known
exactly. We then use numerical optimization runs to derive putative global optima for all other
instances in Section 6.3. These putative optima are used to specify a termination criterion for
the level of solution accuracy εsol. We also provide BOP values in order to characterize the
symmetry of the optimal configurations.

Reference black-box experiments on the CK18 and CK220 cluster problems

In order to assess the performance of black-box optimizers on the 8-atom CK1 and the 20-atom
CK2 cluster problems, we run two sets of numerical optimization experiments, one based on
standard IPOP-CMA-ES (with incPop = 1.25) (Auger and Hansen, 2005b) and the other
based on MATLAB’s fminsearch.m, a standard tool for black-box search using the Nelder-
Mead (NM) simplex method. We follow the above problem specification with εsol = 10−6 for
both problems. Standard parameters for NM and CMA-ES are used, except for the smaller
population increase factor for IPOP-CMA-ES. If NM converges before reaching the global
minimum, independent restarts are done until the FES budget is exhausted.

The 8-atom CK1 cluster problem poses little challenge to either of the algorithms. Both
methods almost always converge to the global minimum within the specified accuracy (CMA-
ES with 100% and NM with 96% success rate). The statistics about the minimum energies
reached by NM and CMA-ES are summarized in the left part of Table 6.1. The statistics
about the number of FES that NM and CMA-ES needed to solve CK18 are summarized in
Table 6.2. From Table 6.2 we see that CMA-ES is more efficient in finding the ground state.
While the minimum number of FES is comparable (5317 vs. 5879), the average number of
FES (6320.20 vs. 10791.00) is considerably lower for CMA-ES.

The 20-atom CK2 cluster problem reveals a different picture: While CMA-ES always con-
verges to the global minimum within the specified accuracy, Nelder-Mead fails in all 25 runs.
The minimum energies reached by NM range from 746.730 to 746.910 (right part of Table 6.1).
CMA-ES always reaches the perfect dodecahedral configuration with energy 746.666 without
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Energy CK18 CK220

NM CMA-ES NM CMA-ES

min 6.343388 6.343388 746.730558 746.666667

7th 6.343388 6.343388 746.775331 746.666667

median 6.343388 6.343388 746.825053 746.666667

19th 6.343388 6.343388 746.872171 746.666667

max 6.343692 6.343388 746.910767 746.666667

mean 6.343400 6.343388 746.823867 746.666667

std 0.000061 0.000000 0.052601 0.000000

Table 6.1: Statistics of the minimum energies reached by NM and CMA-ES for the CK18 and CK220

cluster problems.

Prob. min 7th median 19th max mean std ps

CK18
CMA-ES 5317 5845 6085 6745 7933 6320.20 715.43 1

NM 5879 7296 10791 12976 - 10298.96 2969.71 0.96

CK220
CMA-ES 36631 44086 55756 66331 111736 59333.20 19133.11 1

NM - - - - - - - -

Table 6.2: Statistics of the number of FES used by NM and CMA-ES to reach the optimal configura-
tions for the CK18 and CK220 cluster problems.

restarts.

Comprehensive structural information about the cluster configurations is provided by Stein-
hardt’s bond-order parameters. In order to compute them, each cluster is augmented by a
dummy atom placed at the origin. We suggest using a cutoff distance of r0 = 1.01 for the
calculation of BOP values in CK clusters. In Fig. 6.3 we summarize the BOP values for the
sub-optimal CK220 configurations found by NM and the optimal ones reached by CMA-ES.
We also depict the best configurations found by NM and CMA-ES.

The BOP values for the sub-optimal NM configurations indicate great structural diversity.
Although the individual energy values are comparable, the BOP values vary considerably,
especially for Q6 and Ŵ6. Among all BOP traces, the values of the best NM structure (high-
lighted in red in Fig. 6.3) are the closest ones to the BOP values of a perfect dodecahedron.
This is confirmed by visual inspection of this structure, revealing a dodecahedron with dis-
torted pentagonal faces (see right panel of Fig. 6.3), as opposed to most other sub-optimal
structures that do not show any clear packing.

The BOP values can also be used to conveniently visualize the optimization path. In Fig. 6.4
we show the trajectories of a typical CMA-ES run on the CK18 and CK220 cluster problems.
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Figure 6.3: The left panel shows BOP values Q4, Q6, and Ŵ6 for all minimum configurations found by
NM (black lines) and CMA-ES (dots). The values for the best NM structure is highlighted
in red. The right panel shows this best CK220 configuration of NM and the optimal config-
uration found by CMA-ES. The NM structure is dodecahedral with distorted pentagonal
faces. One face is highlighted in either configuration.
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Figure 6.4: Trajectories of typical CMA-ES runs. BOP values of CMA-ES’ mean m(g) are plotted
versus generation number (g). The left panel shows a CMA-ES trajectory from the CK18

cluster problem, the right panel one from the CK220 cluster problem. The dots represent
the BOP values of the optimal solutions.

the optimal values after about 200 generations. For the CK220 clusters, stable optimal BOP
values for Q4, Q6, and Ŵ6 are reached after about 2600 generations. The Ŵ4 values (data not
shown) do not converge to the optimum for the CK220 cluster. Such variation has also been
observed for other instances. We therefore suggest to use the triplet Q4, Q6, and Ŵ6 as a
structural fingerprint for general CK clusters. For efficient restart strategies, it is conceivable
to define (local) convergence of an algorithm in structure space in terms of these bond-order
parameters rather than in terms of the original variables (i.e., the spherical coordinates).

129



6 Atomic Cluster Landscapes for Black-box Optimization

The failure of the Nelder-Mead algorithm on the CK220 cluster problem suggests that CK
clusters are a non-trivial test case for black-box optimizers. For now, we can only speculate
about the poor performance of NM on this problem since NM and CMA-ES have the same
invariance properties. Hansen tested a restart NM algorithm on the BBOB 2009 test suite
and concluded that NM with restarts “allows searching unstructured multi-modal landscapes
comparatively effective, while a global topography within a multi-modal or rugged landscape
is not well exploited” (Hansen, 2009a). The robust performance of CMA-ES suggests a global
single-funnel topology of CK220 with local minima on a smaller scale.

Putative ground states of CK1 and CK2 clusters for N = 2, . . . , 25

So far we have analyzed two CK cluster instances with proven ground states. These instances
have dimensionality n = 16 and n = 40, respectively. In order to construct a benchmark
that spans a wider range of dimensions we now consider all CK1 and CK2 clusters for even
n = 4, . . . , 50, i.e., clusters containing up to N = 25 atoms. Given the promising performance
of CMA-ES on the previous instances, we use it as a tool for identifying putative ground
states and low-energy local minima. We define the following computational experiments: For
each instance, we run 25 standard CMA-ES runs without restarts until any of the standard
convergence criteria are met. The initial step size is σinit = 0.4π. The FES budget is restricted
to MAX FES = 104n. We store all putative global and local optima, energy values, and the
number of FES CMA-ES needed to converge. We also calculate the values of the BOPs Q4,
Q6, and Ŵ6 for all observed structures.

We first report the results for CK1 clusters. The energies ECK1 of the putative ground
states scale exponentially with cluster size. A least-squares fit results in ECK1(xmin) ≈
0.9205 · exp (0.2328N) (see Fig. 6.5). The number of FES CMA-ES needed until conver-
gence increases with N . The average number of FES scales linearly with cluster size. For
N = 2 . . . 12, 17, 20, 21, 24, the variance is very low. For the other instances, however, some
CMA-ES runs need considerably more FES to converge than others. This indicates that some
problem instances exhibit considerably more complex landscapes than others, and that this
phenomenon is not completely determined by the problem dimension. Nevertheless, all runs
converge far before exhausting the FES budget. We summarize the information about puta-
tive CK1 ground states and low-energy minima as identified by CMA-ES in Table 6.3. We
report the energies along with the BOP values for all minima. For N = 10, 14, 16, 22, 23, 25,
multiple low-energy minima were identified. From the wealth of generated data we discuss
three instances in more detail.

The first instance is the CK112 cluster. Its putative ground state is a Mackay icosahedron
with 20 triangular faces (see Fig. 6.12) and the well-known BOP pattern Q4 = 0, Q6 = 0.0415,
and Ŵ6 = −0.1698. The 13-atom Lennard-Jones cluster that is discussed in the next section
exhibits the same symmetry with a central atom at the origin. From the CMA-ES runtimes
we see that CK112 can be found rapidly (in less than 2.5 · 104 FES on average) and robustly
(all runs converge to the putative ground state).
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N Energy Q4 Q6 Ŵ6

2 0.1084 1 1 -0.0931

3 0.4630 0.3750 0.7408 -0.0463

4 1.0583 0.5092 0.6285 0.0132

4 1.1029 0.5619 0.4369 0.0076

5 1.9838 0.6250 0.4556 0.0466

6 3.1501 0.7638 0.3536 0.0132

7 4.6241 0.5118 0.2861 0.0598

8 6.3434 0.5092 0.6285 0.0132

9 8.3580 0.1387 0.3561 -0.0342

10A 10.6645 0.2574 0.3289 0.0407

10B 10.6646 0.2740 0.3651 0.0254

11 13.3828 0.0198 0.1129 0.1293

12 16.1847 0 0.0415 -0.1698

13 20.5410 0.0736 0.2470 -0.0032

14A 25.1733 0.0771 0.2328 0.0131

14B 25.1880 0.0729 0.2212 0.0111

14C 25.2088 0.0278 0.0285 -0.0931

15 30.9350 0.0332 0.1080 0.1196

16A 38.4985 0.0464 0.0090 0.0931

16B 38.5386 0.0615 0.2061 -0.0631

17 47.3064 0.1044 0.0509 0.0931

18 59.9795 0.0052 0.1623 -0.0931

19 78.2895 0.0487 0.1009 0.1476

20 94.1138 0.0630 0.1052 -0.0407

21 122.3120 0.0173 0.1709 -0.0274

22A 151.7772 0.0294 0.0043 0.0132

22B 153.1696 0.0307 0.0481 0.0026

23A 202.9820 0.0139 0.1418 -0.0329

23B 203.0328 0.0145 0.1410 -0.0277

24 236.1115 0.0164 0.0363 0.0132

25A 314.0809 0.0047 0.1300 -0.0158

25B 314.0909 0.0048 0.1299 -0.0176

25C 321.7856 0.0235 0.1466 -0.0316

Table 6.3: Summary statistics of the putative CK1 ground states and low-energy minima as identified
by CMA-ES. The number of particles, energy, and the BOP values Q4, Q6, and Ŵ6 are
reported for all instances. For N = 10, 14, 16, 22, 23, 25, multiple minima were identified.
The putative ground states are labeled “A”, other minima “B” or “C”.
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Figure 6.5: The left panel shows ECK1 of the putative ground states versus the number of atoms in
the cluster N . The dots represent the results from the CMA-ES runs, the dashed curve is
the best exponential least-squares fit. The right panel shows box plots of the numbers of
FES needed until CMA-ES converges for the different N .

For CK114 clusters, CMA-ES converges to three different minima. In 21 out of the 25 runs
CMA-ES identifies the putative ground state (labeled 14A) with energy 25.1733. Two runs
converge to a low-energy local minimum (labeled 14B) with energy 25.1880 and two runs to
a local minimum (labeled 14C) with energy 25.2088. The corresponding configurations are
shown in Fig. 6.6. We highlight this cluster instance because the putative ground state might

CK114A CK114B CK114C

Figure 6.6: Putative ground state configuration (CK114A) and two low-energy stable configurations
(CK114B and CK114C) of the CK114 cluster.

seem counterintuitive at first. A human observer would possibly favor structures 14B and
14C over 14A due to their apparent symmetry. They are, however, higher in energy than the
putative ground state 14A. Moreover, structure 14A attains a value of Ŵ6 = 0.0131, indicative
of maximum cubic symmetry (Steinhardt et al., 1983).
The energy landscape of CK116 clusters exhibits two competing low-energy structures as
depicted in Fig. 6.7. 18 out of the 25 CMA-ES runs converge to structure 16A, the remain-
ing 7 runs find structure 16B. CK116A consists of two opposite, rotated square faces (like
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CK116A CK116B

Figure 6.7: Putative ground state configuration (CK116A) and a competing sub-optimal configuration
(CK116B) of the CK116 cluster.

in the anti-cube), and triangular faces otherwise. CK116B has three square faces grouped
around a central triangle, and otherwise triangular ones, leading to a different set of BOP
values (see Table 6.3). In order to check whether the energy landscape explored by CMA-
ES exhibits a single-funnel topology with two low-energy minima at the bottom, or rather
a double-funnel landscape, we conduct the following experiment: We start CMA-ES runs
from the sub-optimal low-energy structure as initial configuration with increasing initial
σ values. These experiments reveal how much the initial configuration needs to be per-
turbed until CMA-ES is able to detect the putative globally optimal solution. We choose
σinit ∈ {0.001π, 0.01π, 0.025π, 0.05π, 0.075π, 0.1π, 0.125π, 0.175π, 0.2π} and repeat the exper-
iment 50 times per σinit. We monitor whether CMA-ES returns to the sub-optimal solution
or enters the putative ground state. The frequency of transition serves as an estimator for
the transition probability P(CK116B → CK116A) under CMA-ES exploration, and hence for
the relative basin size of the sub-optimal structure. The σ-dependent transition probability
and a typical trajectory of CMA-ES in Q6 − Ŵ6 space leading from the sub-optimal basin
to the putative optimal basin are shown in Fig. 6.8. The experiment suggests that below
σinit = 0.01π, CMA-ES does not leave the basin of the sub-optimal solution. For larger σinit

the probability increases until it reaches a similar level as with global CMA-ES settings. Using
σinit = 0.07π, the probability is about 1/2 to fall into either minimum. The example CMA-ES
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Figure 6.8: The left panel shows the σ-dependent transition probability P(16B → 16A) for CMA-
ES. The right panel depicts a typical trajectory of CMA-ES’ mean in the Q6 − Ŵ6

plane for σinit = 0.1π. Each configuration is color-coded by the log10 ∆ECK1 =
log10 (ECK1(x)− ECK1(xmin)).

trajectory shown in the right panel of Fig. 6.8 for σinit = 0.1π reveals an interesting pattern
in Q6 − Ŵ6 space. Starting from the 16B structure, CMA-ES first performs a random walk
until it clusters around configurations with BOP values Q6 ≈ 0.12, Ŵ6 ≈ −0.05, which most
probably include the transition state between the two minima. The trajectory then smoothly
converges to the final BOP values of the 16A structure. Trajectories that return to the
sub-optimal structure 16B behave similarly, with a cluster at Q6 ≈ 0.15, Ŵ6 ≈ −0.05 before
smoothly converging back to the BOP values of the 16B configuration (data not shown). In
summary, our experiments suggest that the CK116 cluster landscape under CMA-ES exhibits
a single-funnel topology with two competing minima at the bottom of the funnel. The putative
optimal configuration is located in a considerably larger basin, hence representing a moder-
ately difficult problem for CMA-ES. Nevertheless, it shall be interesting to test other search
heuristics on this problem, especially with respect to their susceptibility to the competing
sub-optimal solution.

We now present some results for CK2 clusters. The scaling of the minimum energy with cluster
size is shown in Fig. 6.9. For the cluster sizes considered, the energies ECK2 of the putative
ground states scale quadratically with cluster size. The best least squares fit is achieved by
ECK2(xmin) ≈ 2.764N2 − 19.58N + 31.23. This surprising result can be explained by the
moderate increase of the pair potential in the range of the observed distances for these cluster
sizes (see Fig. 6.1). Addition of a single particle hence only results in a quadratic increase of
the energy. The average number of FES required by CMA-ES to converge to the putative min-
imum scales linearly with cluster size up to N = 12. For N = 2, . . . , 10, 12, 14, 17, the variance
is very low. Compared to CK1 clusters, the number of FES needed to converge is considerably
higher for larger CK2 clusters (well above 5 · 104 FES on average), but is still an order of
magnitude below the allowed FES budget. We summarize the information about putative
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Figure 6.9: The left panel shows ECK2 of the putative ground states versus the number of atoms in
the cluster N . The dots represent the results from the CMA-ES runs, the dashed curve
is the best quadratic least squares fit. The right panel shows box plots of the number of
FES needed until CMA-ES converges for the different N .

ground states and local minima of CK2 clusters as identified by CMA-ES in Table 6.4. The
energies and BOP values of all detected minima are reported. For N = 4, 13, 16, 19, 21, . . . , 25,
multiple minima were found. While these could be discussed analogously to our findings for
CK1 clusters, we restrict ourselves to the interesting case of 4-atom CK2 clusters. In 24 out
of the 25 runs CMA-ES finds the putative optimal ground state 4A, which is a regular tetra-
hedron with all pairwise distances equal to

√
8/3. In one run, CMA-ES finds a high-energy

local minimum, where the atoms form a pyramid with a larger triangular base face and three
smaller triangular side faces (4B). The atoms form three distances of length

√
3 and three

distances of length
√

2. Both structures are depicted in Fig. 6.10. It is surprising that the

CK24A CK24B

Figure 6.10: Putative tetrahedral ground state configuration (CK14A) and a competing sub-optimal
pyramidal configuration (CK24B) of the CK24 cluster.

strictly convex CK2 pair potential produces a non-convex energy landscape even in the 4-atom
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N Energy Q4 Q6 Ŵ6

2 0 1 1 -0.0931

3 0.0939 0.3750 0.7408 -0.0463

4A 0.7901 0.5092 0.6285 0.0132

4B 3.0958 0.5312 0.5040 0.0048

5 6.0977 0.6250 0.4556 0.0466

6 12.0076 0.7638 0.3536 0.0132

7 29.2253 0.5536 0.0625 -0.0931

8 49.3528 0.3736 0.2502 -0.0931

9 75.8984 0.1502 0.3391 -0.0436

10 108.7305 0.1702 0.1579 -0.0931

11 149.0286 0.1043 0.3329 -0.0515

12 192.0350 0 0.0415 -0.1698

13A 243.5499 0.0780 0.2679 0.0066

13B 243.5531 0.1199 0.2714 0.0115

14 298.9590 0.2813 0.5036 0.0132

15 360.5035 0.0875 0.2977 0.0076

16A 426.8723 0.0225 0.2791 -0.0219

16B 426.8726 0.0352 0.2890 -0.0258

17 499.0473 0.1055 0.1994 0.0019

18 576.1469 0.1608 0.3495 0.0566

19A 658.8684 0.1027 0.2900 0.1166

19B 658.8689 0.0929 0.2822 0.1205

20 746.6667 0 0.2718 0.1698

21A 840.1743 0.0389 0.1921 0.1141

21B 840.1976 0.0372 0.1824 0.0835

21C 840.2036 0.0364 0.1575 0.0922

22A 938.8178 0.0353 0.1494 0.1517

22B 938.8197 0.0326 0.1782 0.1098

23A 1042.8819 0.0335 0.0571 -0.0206

23B 1042.8846 0.0193 0.0592 -0.0507

23C 1042.8900 0.0185 0.1077 -0.0846

23D 1042.9105 0.0181 0.1098 0.0301

24A 1152.1594 0.0058 0.0153 0.0132

24B 1152.1789 0.0037 0.0050 -0.0931

25A 1266.8947 0.0130 0.0852 0.0706

25B 1266.9774 0.0186 0.0201 0.0931

Table 6.4: Summary statistics of the putative CK2 ground states and local minima as identified by
CMA-ES. The number of particles, energy, and the BOP values Q4, Q6, and Ŵ6 are
reported for all instances. For N = 4, 13, 16, 19, 21, . . . , 25, multiple minima are identified.
The putative ground states are labeled “A”.
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case. Although the 4B structure is much higher in energy (3.0958) than the 4A tetrahedron
(0.7901), its basin is relatively stable. Similar transition path experiments as were done for
the CK116 cluster reveal that when starting CMA-ES from the pyramidal structure, there is a
high probability to converge back to the sub-optimal structure even for σinit as high as 0.4π.
Nevertheless, given the empirical hitting probability of 1/25, the overall basin size is negligible
for CMA-ES.

In summary, we presented a detailed analysis of Cohn-Kumar clusters arising from two different
strictly convex pair potentials. We analyzed the configurations where proven global minima
exist and extended to other instances for up to N = 25 atoms. In order to show the richness
of the energy landscapes we analyzed several instances in further detail using CMA-ES as a
search heuristic and Steinhardt’s bond-order parameters as measures to characterize the found
energy minima. Table 6.5 summarizes our suggested CK cluster test suite settings.

Problems CK1, CK2

Runs per problem 25

n 4, 6, 8, . . . , 50

MAX FES 10000 · n
Termination If FES = MAX FES or

ECKi(x) ≤ ECKi(xmin) + 10−6

Initialization and bounds Uniformly random in [−π, π]n

Table 6.5: Suggested benchmark settings for the CK1/CK2 cluster test suite.

6.4 Lennard-Jones clusters

Energy landscapes of collections of atoms that interact according to the Lennard-Jones (LJ)
pair potential are among the best studied models in theoretical cluster chemistry and bio-
physics. In cluster chemistry, the LJ potential is widely used to model the behavior of noble
gases such as Argon. Biophysicists use the LJ potential to model the hydrophobic forces in
biopolymers such as proteins and alkanes. The problem of finding minimum-energy configura-
tions of LJ clusters has fascinated researchers for over three decades and is regularly used as a
standard test case for first-order search heuristics. In LJ clusters, each pair of atoms interacts
through the following pair potential:

uLJ(rij) = 4ε

((
σLJ

rij

)12

−
(
σLJ

rij

)6)
, (6.11)

where rij = dE(pi,pj) and pi = (xi, yi, zi) the 3D position of atom i. The parameter ε is the

potential well depth (in units of energy) and 2
1
6σLJ is the equilibrium inter-atom distance (in

units of length) at zero temperature. Figure 6.11 depicts the unimodal shape of the LJ pair
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Figure 6.11: The Lennard-Jones pair potential uLJ(r) versus distance r. The minimum is at r =
21/6σLJ with energy −ε. For r →∞, the potential asymptotically approaches 0.

potential and the role of the parameters. The potential energy ELJ of a cluster of N LJ atoms
is given by:

ELJ(x) = 4ε

N−1∑

i=1

N∑

j=i+1

((
σLJ

rij

)12

−
(
σLJ

rij

)6)
. (6.12)

Again, x = {p1, . . . , pi, . . . , pN} and rij = dE(pi,pj). The ambient space of the atoms is the
3D Euclidian space. Knowledge about minimum-energy (or ground-state) configurations of
LJ clusters allows predicting properties of crystallization or solid–liquid transitions of noble
atomic mixtures at low temperatures. The presence of a well in the LJ pair potential implies
that a collection of atoms faces the problem of frustration. Although all atoms “like” to have
their neighbors at equilibrium distance, there is no geometric configuration that could achieve
this for N > 4. This introduces multi-modality in the landscape with competing low-energy
configurations.

For a long time it was believed that ground states of LJ clusters could be efficiently constructed
by aufbau algorithms (Hoare, 1979). Starting from a “seed” structure with specific symmetry
and N − 1 atoms, these algorithms construct a putative ground state of N atoms by plac-
ing an additional atom at the energetically most favorable location and relaxing the resulting
structure by energy-gradient descent. In the past 25 years, however, it has been shown that
such algorithms are not able to identify many of today’s known putative ground states. Wille
identified the putative ground state of the LJ24 cluster using Simulated Annealing with a spe-
cialized problem-specific move set (Wille, 1987). This is the only ground state so far that has
first been found by a method that does not use of gradient information. Northby identified
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putative ground states for 13 ≤ N ≤ 147 by searching lattices with icosahedral symmetry
(Northby, 1987) and gradient minimization. However, not all LJ instances follow an icosahe-
dral symmetry, a fact that has been discovered only in the mid-1990’s. The ground states of
LJ clusters with N = 38, 75− 77, 98, 101− 103 atoms follow different packing schemes. They
have mostly been identified by extensive application of “unbiased” gradient-based optimizers
such as the hybrid genetic algorithm by Deaven and co-workers (Deaven et al., 1996) or Basin-
Hopping (Li and Scheraga, 1987; Wales and Doye, 1997). The late discovery of these ground
states is explained by the deceiving landscape topology with the global minimum located in
a narrow funnel. In Section 6.4.1 we consider the “archetypal” (Wales and Scheraga, 1999)
double-funnel energy landscape of the LJ38 cluster and present a tuning technique that is able
to smoothly deform the topology to a single-funnel problem.

While large LJ clusters are prohibitive for black-box optimization benchmarking due to
their staggering number of local minima, we nonetheless propose small instances with up to
N ≤ 19 atoms as meaningful benchmark problems. Minimizing the potential energy of a
cluster of N atoms in 3D space defines a continuous optimization problem in n = 3N − 6
dimensions, since 3 translational and 3 rotational degrees of freedom can be removed from the
system. This is achieved by placing the first atom at the origin of the Cartesian coordinate
system, the second along the x-axis, and the third in the xy-plane. Hence, N = 19 defines
a problem in n = 51 dimensions. We characterize the putative ground states of LJ clusters
with N ≤ 19 in the following subsection and present numerical optimization runs for selected
instances. We emphasize that LJ clusters have, despite their widespread use in chemistry and
physics, not been subject to rigorous studies using black-box heuristics. We are only aware of
two publications where certain small cluster instances have been optimized using evolutionary
algorithms: Müller and co-workers presented some initial results for CMA-ES on LJ clusters
with N = 8, 27 (Müller et al., 2003), and Call and co-workers optimized LJ26 with a specialized
PSO (Call et al., 2007).

Lennard-Jones clusters for N ≤ 19

All known putative ground states of LJ clusters for the standard parametrization ε = σLJ = 1
are available from the Cambridge Cluster Database (Wales et al., 2009). We characterize the
structures using the BOP parameters Q4, Q6, and Ŵ6 with the suggested r0 = 1.391 for LJ
clusters (Doye et al., 1999b). The data are summarized in Table 6.6. Most of the structures
have a low Q4 value, indicating icosahedral symmetry (Steinhardt et al., 1983). As previously
mentioned, the LJ13 ground state is identical (with identical BOP values) to the putative
CK112 ground state, but with an additional central atom at the origin (see also Fig. 6.12). This
instance is also the first of the so-called “magic number” structures. Magic number LJ clusters
are based on complete multilayer Mackay icosahedra with N = (2i + 1)(5/3 i(i + 1) + 1), i =
1, 2, 3, . . . atoms. They are so stable that they are regularly found in NMR experiments, for
instance of Xeon clusters (Hasse, 1991). We provide here numerical experiments on three
select instances: LJ7, LJ13, and LJ19. The putative ground state structures of these clusters
are depicted in Fig. 6.12. We focus on these three instances since they have been extensively
analyzed in (Wales, 2005). LJ13 and LJ19 are also considered in (Doye et al., 1999a). Detailed
information is available about the number of unique local minima, first- and higher-order saddle
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N Energy Q4 Q6 Ŵ6

3 -3 0.3750 0.7408 -0.0463

4 -6 0.1909 0.5745 -0.0132

5 -9.1039 0.0013 0.4297 0.0314

6 -12.7121 0.1909 0.5745 -0.0132

7 -16.5054 0.0148 0.1604 -0.0931

8 -19.8215 0.0644 0.1467 0.0015

9 -24.1134 0.0156 0.1226 -0.0391

10 -28.4225 0.0382 0.1359 -0.0349

11 -32.7660 0.0298 0.1384 0.0485

12 -37.9676 0.0178 0.1186 0.1209

13 -44.3268 0 0.0415 -0.1698

14 -47.8452 0.0283 0.0437 0.0128

15 -52.3226 0.0069 0.0437 -0.0790

16 -56.8157 0.0208 0.0653 -0.0888

17 -61.3180 0.0216 0.0849 -0.0778

18 -66.5309 0.0148 0.0676 0.1613

19 -72.6598 0.0043 0.0056 0.0931

Table 6.6: Summary statistics of the putative LJ ground states from the Cambridge Cluster Database
(Wales et al., 2009). The number of particles, energy, and the BOPs Q4, Q6, and Ŵ6 are
given for each instance.
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6.4 Lennard-Jones clusters

Figure 6.12: Putative ground states for LJ clusters with 7 atoms (top left), 13 atoms (top right), and
19 atoms (bottom). The packing of LJ13 is a Mackay icosahedron. The putative optimal
CK112 cluster, overlaid in blue, shares the same structure.
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6 Atomic Cluster Landscapes for Black-box Optimization

points, as well as disconnectivity graphs of low-energy minima. Prior analysis also showed that
the energy landscapes of these clusters exhibit single-funnel topologies, which should render
them feasible for many black-box optimizers, despite the huge number of local minima. We
imagine these instances as cluster analogs of Rastrigin-like test functions. For the numerical
experiments we suggest the benchmark settings summarized in Table 6.8. We run IPOP-
CMA-ES with standard settings, yet with a smaller increase factor for the population size
(incPop = 1.25). The statistics about the number of FES and the success rate ps for CMA-ES
runs on LJ7, LJ13, and LJ19 are summarized in Table 6.7. CMA-ES always finds the optimal

min 7th median 19th max mean std ps

LJ7 3805 5509 15108 23980 89819 18220.36 18218.27 1

LJ13 13007 51827 101726 178359 - 109377.12 80713.15 0.96

LJ19 31726 - - - - 270870.50 338201.40 0.08

Table 6.7: Statistics of the number of FES for CMA-ES runs that reach the globally optimal con-
figurations for the LJ7, LJ13, and LJ19 cluster problems, along with their success rates
ps.

structure of LJ7. In 24 out of the 25 runs, it also solves the LJ13 cluster problem. Inspection
of Doye’s and Wales’s disconnectivity graphs (see Fig. 6.13 left panel) for LJ13 reveals that
CMA-ES converges to the second-best optimum in the one case where it does not find the
global optimum. The LJ19 problem is more challenging. Only in 2 out of the 25 runs CMA-ES
is able to identify the putative ground state. In the other runs, CMA-ES detects twice the
second-best minimum and in the remaining cases a diverse set of local low-energy minima (see
Fig. 6.13 right panel). These results confirm that LJ clusters with moderate numbers of atoms
are amenable to black-box optimization, but are considerably more difficult for CMA-ES than
CK1/CK2 clusters with the same number of degrees of freedom. In benchmark scenarios with
a limited function evaluation budget, LJ clusters with larger numbers of atoms are likely to
be hard for black-box search.

Problems LJ

Runs per problem 25

n 3, 6, 9, . . . , 51

MAX FES 10000 · n
Termination If FES = MAX FES or

ELJ(x) ≤ ELJ(xmin) + 10−6

Initialization and bounds Uniformly random in [−2, 2]n

Table 6.8: Suggested benchmark settings for the LJ cluster test suite.
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6.4 Lennard-Jones clusters

FIG. 3. Disconnectivity graphs for !a" LJ13 , !b" LJ19 , !c" LJ31 , !d" LJ38 , !e" LJ55 , and !f" LJ75 . In !a" all the minima are represented. In the rest only the
branches leading to the !b" 250, !c" 200, !d" 150, !e" 900, and !f" 250 lowest-energy minima are shown. The numbers adjacent to the nodes indicate the number
of minima the nodes represent. The branches associated with the minima depicted in Fig. 1 are labeled by their energetic rank. In !e" an enlarged view of the
branch marked i is shown in the inset. The energy scale is in units of # .
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Figure 6.13: Disconnectivity graph of all minima of LJ13 and of the 250 lowest-lying minima of LJ19

found by the BH algorithm (adapted from (Doye et al., 1999a)). The red dots indicate the
ground states, the blue dots the second-best minima. These ground states and minima
were also found by CMA-ES.

6.4.1 The LJ38 cluster as a high-dimensional benchmark with tunable
landscape topology

All cluster instances introduced so far have a static landscape topology that is solely deter-
mined by the underlying pair potential and the number of atoms. We complement the set
of cluster benchmarks with a problem instance that (i) is high-dimensional, but solvable in
reasonable time, and (ii) exhibits a tunable landscape topology. The benchmark is based on
the LJ38 cluster problem, which has also been the inspiration for Lunacek’s double-funnel test
case (Whitley, 2010). We provide a complete description of the proposed benchmark. An
initial description with extensive numerical optimization runs using IPOP-CMA-ES has been
reported in (Müller and Sbalzarini, 2009). The topology of the standard LJ38 energy land-
scape has been widely studied in the literature (Barron et al., 1996; Doye et al., 1999b; Wales,
2004). It exhibits a double-funnel structure where the global minimum-energy configuration
with face-centered cubic octahedral (fcc) symmetry lies in the narrow funnel. The majority
of local minima, most of them with icosahedral (ico) symmetry, populate the wider funnel.
Figure 6.14a shows a sketch of this landscape. Leary (Leary, 2000) estimated the size of the
optimal funnel from Monotonic Sequence BH runs to be around 12.4% of the entire configura-
tion space. For 1000 randomly generated configurations, he applied the BH move set and only
accepted improving configurations. In 124 out of the 1000 runs BH reached the fcc structure.
For standard BH, however, the probability is much lower since most runs converge to structures
within the larger, sub-optimal funnel. In fact, the optimal fcc structure has originally not been
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Figure 6.14: Sketch of the µc-dependent evolution of the LJ38 energy landscape. The x-axis represents
a suitable order parameter that can discriminate between different cluster topologies, the
y-axis represents the potential energy ELJ,µc . The global topology of the landscape is a
double funnel with a sub-optimal ico structure at the bottom of the wider funnel. The
narrow funnel contains the global minimum with fcc symmetry. Increasing µc gradually
changes the landscape topology from a double-funnel to a single-funnel.

found by unbiased optimization methods, but by a combination of “geometric intuition” and
local minimization (Barron et al., 1996). Barron and co-workers first constructed initial LJ38

configurations on fcc lattices and then applied gradient-based minimization in order to relax
these structures under the LJ pair potential (Barron et al., 1996). Doye and co-workers (Doye
et al., 1999b) eventually revealed the “paradigmatic” double-funnel nature of the landscape.
They characterized it in terms of the number and location of minima, structural diversity of
the minima, and the energy barrier between the two funnels. Based on this information, Doye
realized that the problem of finding the global minimum of LJ38 can be simplified by intro-
ducing a penalty term that simulates “compression” in the original energy function (Doye,
2000). Compression can be seen as a transformation of the PEL that favors more compact
structures. This leaves the funnel that contains the more compact fcc structures unchanged
and lifts the energies of ico structures until the corresponding funnel vanishes. Doye proposed
the following penalized energy function:

ELJ,µc(x) = ELJ(x) + µcQc(x) , (6.13)

where Qc(x) =
∑N
i=1

dE(pi,pcm)2

σ2
LJ

with pcm the center of mass of the cluster. The compression

term has the form of an atomic positional variance. For the best icosahedral structure it is
Qc(xico) = 96.1624 and for the best fcc structure Qc(xfcc) = 91.6369, hence distorting the
energy difference between the two competing structures in favor of the octahedron. The scalar
parameter µc controls the magnitude of compression. The effect of the µc-dependent com-
pression on the topology of the PEL is visualized with disconnectivity graphs in (Doye, 2000)
and (Wales, 2004), pp. 338–339. When µc = 0ε, we recover the original LJ38 cluster problem.
For µc ≥ 5ε, the PEL exhibits a clear single-funnel topology. We sketch this phenomenon
in Fig. 6.14. Although the compression term also lowers the average barrier between local
minima (Doye, 2000), the system still contains a staggering number of local minima for all µc

values considered.
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6.4 Lennard-Jones clusters

We propose the 38-atom LJ cluster with the energy function defined in Eq. (6.13) as a high-
dimensional tunable test case to study the performance of black-box optimization methods as
a function of landscape topology. In particular, we suggest the following benchmark scenario:
First, the budget of allowed FES should be considerably increased. Second, an algorithm
should be tested with µc ∈ {0ε, 0.5ε, . . . , 5ε}. The lower the µc for which the algorithm can
still find the putative ground state, the less sensitive it is to the landscape topology. We obtain
the putative ground states for the different µc using reference CMA-ES runs. Therefore, we
start CMA-ES from the known optimal xfcc structure of the original problem with a small
σinit = 0.001. From there, it quickly converges to slightly different fcc structures for varying
µc. The energies and BOP values of the putative ground states are summarized in Table 6.9.
For µc = 1ε, 5ε the resulting energies match the ones reported in (Doye, 2000), providing
further confidence that the ground states found here are correct. Visual inspection and the

µc Energy Q4 Q6 Ŵ6

0 -173.92843 0.19090 0.57446 -0.01316

0.5 -128.42914 0.19090 0.57445 -0.01316

1 -83.50595 0.19090 0.57444 -0.01316

1.5 -39.08437 0.19091 0.57443 -0.01316

2 4.89246 0.19091 0.57442 -0.01316

2.5 48.46946 0.19091 0.57441 -0.01316

3 91.68310 0.19092 0.57440 -0.01316

3.5 134.56362 0.19092 0.57439 -0.01316

4 177.13651 0.19092 0.57438 -0.01316

4.5 219.42358 0.19092 0.57437 -0.01316

5 261.44371 0.19092 0.57436 -0.01316

Table 6.9: Characteristics of the putative ground states of compressed LJ38 clusters for different values
of µc. We report the final energy and the BOPs Q4, Q6, and Ŵ6 of each structure.

computed BOP values indicate that the structures minimizing the modified energy function in
Eq. (6.13) are almost identical to the optimal fcc configuration of the original, uncompressed
problem. Doye and co-workers (Doye et al., 1999b) show that, among the different BOPs,
Q4 is best suited for discriminating between fcc and ico structures, with Q4(xico) = 0 and
Q4(xfcc) = 0.1909.

Table 6.10 summarizes our proposed specification for the tunable LJ38 cluster benchmark.
The bounds are far from being tight with respect to the optimal structure. Both xico and
xfcc would fit into the [−2, 2]n box. We propose the larger bounds for two reasons: First, we
want to minimize effects from boundary handling techniques. Second, we want to test the
capability of the optimization algorithm to cope with “uninformative” regions of parameter
space. Enlarging the box adds plateau-like regions to the energy landscape because a particle
that is far away from the cluster experiences only a small force that draws it toward the cluster.
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Problem LJ38 with compression

Runs per problem 25

n 108

µc 0ε, 1ε, . . . , 5ε

MAX FES ∼ 106n

Termination If FES = MAX FES or

ELJ,µc(x) ≤ ELJ,µc(xmin) + 10−6

Initialization and bounds Uniformly random in [−4, 4]n

Table 6.10: Suggested benchmark settings for the tunable LJ38 cluster test case.

We present numerical experiments with IPOP-CMA-ES using the specifications as outlined in
Table 6.10. The LJ parameters σLJ and ε are set to 1. We use standard IPOP-CMA-ES with
incPop = 1.25. We test different initialization schemes that are inspired by Leary’s big bang
algorithm (Leary, 1997). Leary showed that a successful strategy for optimizing LJ clusters
with N < 55 is to start from a dense initial random packing followed by a limited phase of
steepest descent steps with fixed step size (“big bang” like). The resulting configurations are
re-optimized by a first-order optimization method. We examine whether the initialization
procedure of particle positions has an effect on the quality of the solutions found by IPOP-
CMA-ES. We place the initial population mean uniformly at random in boxes of increasing
size: [−0.5, 0.5]3, [−1.5, 1.5]3, and [−3, 3]3 respectively. The initial step size σinit is set to 20%
of the respective box length. We repeat the experiment 25 times for each box size and stop
the optimization run whenever the population size exceeds the initial λ by a factor of 100, i.e.,
after 21 restarts. This corresponds to MAX FES ≈ 106n. We consider both the minimum
and maximum compression factor µc = 0ε and µc = 5ε.

Figure 6.15 summarizes the results. The experiments reveal that on the LJ38 problem without
compression none of the IPOP-CMA-ES runs reach the minimum energy configuration xfcc,
nor the low-energy configuration xico (blue � in Figure 6.15). With compression, however,
all IPOP-CMA-ES runs find the globally optimal fcc configuration, independent of initial-
ization. All local minima found on the problem without compression have icosahedral-like
configurations with Q4 values between 0.01 and 0.09. Runs that started in the largest box
(blue •’s in Fig. 6.15) converged to minima that have the largest structural diversity of the
(Q4 = 0.01 . . . 0.045), including the lowest found local minimum found at ELJ ≈ −172.98ε.
According to the LJ38 disconnectivity graph constructed by Doye and Wales (Doye et al.,
1999b) this minimum is the fourth lowest of all ico configurations and the fifth lowest among
all configurations.

These results confirm the observations of Lunacek and co-workers (Lunacek et al., 2008). The
failure of CMA-ES on the standard LJ38 problem can be explained by the irresolvable trade-off
for the optimal population size of CMA-ES on multi-funnel functions (Lunacek et al., 2008).
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Figure 6.15: Bond-order parameter Q4 vs. potential energy (in units of ε) for all minima found by
IPOP-CMA-ES. The blue data points show the 3 · 25 local minima found on the LJ38

problem without compression with the initial [−0.5, 0.5]3 box (×), the [−1.5, 1.5]3 box
(◦), and the [−3, 3]3 box (•). The single blue � in the bottom-left corner marks the
lowest-energy icosahedral configuration. The shaded gray area is the structural transition
region from ico to fcc symmetry (Doye et al., 1999b). The red data point in the upper-
left corner corresponds to the global minimum (ELJ = −173.9284ε), which was found by
IPOP-CMA-ES in all 3 · 25 runs µc = 5ε.

The larger the population size, the more likely it is that CMA-ES converges to the broadest,
sub-optimal funnel. IPOP-CMA-ES robustly solves the problem when the PEL of LJ38 is
compressed to a single-funnel structure. Furthermore, we conclude that IPOP-CMA-ES is
insensitive to the initialization procedure. A big bang-like initialization does not lead to an
improved algorithmic performance.

To date, no gradient-free black-box optimization algorithm has been reported to solve the
LJ38 test case without compression. Since many real-world applications involve multi-funnel
landscapes, we believe that the tunable LJ38 problem with varying degree of compression
presents a challenging test case for the black-box optimization community that might prove
instrumental in the design and analysis of new search heuristics.
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6 Atomic Cluster Landscapes for Black-box Optimization

6.5 Alternative cluster benchmark problems

In the previous sections we have reviewed the physical and computational foundations of
atomic cluster problems. We have presented two specific instances in detail: Cohn-Kumar
clusters and Lennard-Jones clusters. It is clear that, depending on the pair potential and the
space in which the atoms live, a large set of alternative benchmark problem sets could also
be designed. We believe that Morse clusters and minimum second-moment sphere packings
are of particular interest. In Morse clusters, the atoms interact via the Morse pair potential
uMorse (Morse, 1929):

uMorse(rij) = ε eρ(1−rij/re)
(
eρ(1−rij/re) − 2

)
, (6.14)

where rij = dE(pi,pj). The parameter ε defines the well depth, re is the pair equilibrium sep-
aration, and ρ controls the “width” of the potential well. The smaller the value of ρ, the larger
the potential well. Physically meaningful values are ρ ∈ [3, 14] (Wales, 2005). It is well known
that Morse cluster landscapes become increasingly rugged for larger ρ. For the 13-atom Morse
cluster, a thorough characterization of the dependence of the landscape topography on ρ can
be found in (Cox et al., 2006). It is shown that the single-funnel character of the landscape is
conserved across several ρ values, but that the number of minima increases dramatically. It is,
therefore, straightforward to use the Morse potential to construct black-box optimization test
cases with a tunable degree of ruggedness, yet similar global topology. Putative ground states
of Morse clusters for N ≤ 80 and different ρ values are reported in the Cambridge Cluster
Database.

The minimum second-moment sphere packing problem exhibits further characteristics that are
not covered by the present benchmarks. This problem considers the arrangement of finitely
many non-overlapping, identical hard spheres that fill the 3D space. Johannes Kepler con-
jectured in 1611 that the optimal arrangement of infinitely many hard spheres (in fact, the
original problem was stated with canon balls) is achieved by an fcc packing. A proof for this
conjecture was presented in 1998 by Thomas Hales. His proof by exhaustion is considered
almost certainly correct (see (Hales, 2005) for the final publication). When the number N
of spheres is, however, finite, there is no unique statement of the problem. Sloane and co-
workers were the first to investigate the nowadays most common formulation (Sloane et al.,
1995): finding the configuration of non-overlapping spheres that has the smallest second mo-
ment of the positions about the center of mass. This defines a non-convex objective function
with quadratic constraints. This objective function is, in fact, identical to the compression
penalty Qc in the LJ38 test case. The hard-sphere constraints, however, turn the minimum
second-moment sphere packing problem into a discontinuous problem where derivatives do not
exist. Sloane and co-workers applied a variety of methods to this problem, ranging from direct
search heuristics (Simulated Annealing) to complete enumeration. In the original article, they
presented putative optimal configurations up to N = 32. Putative optimal configurations up
to N = 99 are listed in (Sloane et al., 1997). Recently, Arkus and co-workers provided a
geometric enumeration approach that confirms the optimality of finite sphere packings up to
N = 10 (Arkus et al., 2009). These optimal structures and their expected formation proba-
bilities were also confirmed in recent experiments using polystyrene particles immersed in a
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mixture of water and micro-gel particles (Meng et al., 2010). Both the theoretical and experi-
mental studies suggest that the energy landscapes of sphere packing problems are not strongly
funneled, but contain distinct local minima that are separated by large barriers. We expect
that confirming or improving the currently known putative optimal finite sphere packings is a
formidable challenge for black-box optimization methods.

6.6 Conclusions

Finding the optimal spatial arrangement of atoms that minimizes the potential energy of a
cluster system constitutes a promising problem class for continuous black-box optimization
benchmarking. We presented several atomic cluster problems and analyzed their energy land-
scapes and putative optima. We focused on Cohn-Kumar clusters and Lennard-Jones clusters,
whose energies are given by sums over distance-dependent pair-wise potentials.

We have shown that Cohn-Kumar clusters have smooth, globally convex landscapes with a
single or few minima. On CK cluster instances for which proven ground states are known, we
compared the performance of a restart Nelder-Mead simplex algorithm with that of IPOP-
CMA-ES. IPOP-CMA-ES outperformed Nelder-Mead in terms of robustness, speed, and
solution quality. For all other CK clusters up to N = 25 we found putative global minima
and several low-energy local optima from extensive numerical simulations. This provides the
necessary information for a benchmark suite in up to n = 50 dimensions.

The presented Lennard-Jones cluster instances are known to exhibit rugged single-funnel
topologies as well as tunable double-funnel topologies. IPOP-CMA-ES was able to identify
putative ground states for LJ clusters up to N = 19. We further proposed the 38-atom LJ
cluster with compression as a benchmark to assess the sensitivity of search algorithms with
respect to landscape topology.

All cluster problems possess isospectral symmetry as a novel characteristic that is not covered
by the test functions in the current black-box benchmark suites. Cluster problems hence
provide a means of determining whether and how well black-box algorithms can cope with this
problem feature. We suggest using bond-order parameters as symmetry-invariant measures
to characterize and compare structures. Search trajectories of black-box optimizers can also
be conveniently represented using these parameters. We believe that atomic cluster problems
should be included in future black-box benchmark studies in order to better assess the efficacy,
efficiency, and generality of search heuristics.
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7
Analysis of Linear Chain Landscapes

”Uh, oh, Spaghetti-O’s!”
Homer Simpson, in: The Simpsons, Homer to the Max, Episode no. 216, 1999

Another important class of molecular systems that can be analyzed from an energy landscape
perspective are chain molecules. In chain molecules, a collection of atoms is connected by
molecular bonds to a three-dimensional, unbranched linear chain. Such molecules are ubiqui-
tous in nature. Important instances of biological chain molecules (or bio-polymers) are DNA,
RNA, and proteins. Since the pioneering works of Flory (Flory, 1953, 1969), simplified model
chains, such as the freely jointed or ideal Random Walk chain or the self-avoiding random
walk, have been fundamental for statistical considerations of polymers. They provide the
theoretical basis for more complex (bio-)polymer models and proteins (Cantor and Schim-
mel, 1980). For the last three decades, such complex chain molecules can also be studied
by computational techniques. Nowadays the energy landscape of small globular proteins
can be regularly explored on a standard computer. Processes like protein folding, where a
“spaghetto-like” unfolded chain turns into a unique, regularly structured folded shape, can
be simulated up to the millisecond time scale. The potential energy of a chain is modeled
analogously to the atomic systems considered in the previous chapter. Carefully parametrized
atomic pairwise potentials are used in order to reproduce measured thermodynamic properties
of the molecules. The resulting force fields enable the use of the Molecular Dynamics (MD)
simulation method to explore the energy landscape. There, the molecular system is evolved
over time following Newton’s equation of motion. An alternative way to sample the energy
landscape is provided by MCMC with specific molecular move sets. The typical data pro-
duced by these simulations are large lists of molecular conformations that either constitute a
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trajectory over the landscape or a representative sample from the whole landscape domain.

A fundamental prerequisite for studying and interpreting such conformational data sets is
the use of a proper distance measure. The advent of efficient algorithms for determining the
minimal atom-positional Root Mean Square Distance (or Deviation) (RMSD) (McLachlan,
1972, 1979; Kabsch, 1976, 1978) between two chain molecules turned RMSD into the prevalent
distance measure in the molecular sciences. Countless scientific publications use this measure
for structure comparison. Despite its universal applicability, mathematical results on the prop-
erties of RMSD in the context of chain molecules are sparse. The statistical distributions of
RMSD values have been probed for ideal Random Walk ensembles by McLachlan (McLachlan,
1984) and for more complex polymer models and proteins by Reva and co-workers (Reva et al.,
1998) and by Sullivan and Kuntz (Sullivan and Kuntz, 2001; Sullivan et al., 2003; Sullivan
and Kuntz, 2004). Maiorov and Crippen elucidated that for globular proteins the statistical
significance of RMSD values depends on the length of the chain (Maiorov and Crippen, 1994,
1995), i.e., absolute RMSD values have to be interpreted relative to the length of the molecule.

From a landscape perspective it is also important to understand what neighborhood structure
the RMSD metric induces. In the standard neighborhood definition a structure is a neighbor of
some other structure if their pairwise RMSD is smaller than a given cutoff value Rc. Imagine
now a large random ensemble of linear chains that has been created in the absence of any
potential energy terms, i.e., in a flat energy landscape. When probing such a data set with
RMSD, we might expect that all chains have approximately the same number of neighbors.
However, we will show that this expectation is false for the simplest class of linear chains, the
Random Walk model even in the limit case. We quantify the amount of inhomogeneity in the
neighborhood density of short Random Walks and identify two limiting configurations: (i) the
densest (or most probable) structures and (ii) the barycentric structure (Section 7.2). In this
chapter, we use the terms shape probability (density) and neighborhood density interchange-
ably.

Furthermore, we conjecture an upper bound for the RMSD between linear chains. This bound
also defines the diameter of the conformational landscape spanned by a pair of extremal
structures (Section 7.3). The results presented in Section 7.2 have been obtained in close
collaboration with Dr. Philippe Hünenberger and Dr. Bojan Žagrović. The interested reader
is referred to the corresponding article (Müller et al., 2009) for a more detailed presentation.

7.1 Linear chains: Conformation space and distance definition

We first introduce the Random Walk (RW) and Self-avoiding random walk (SAW) linear chain
models that define the conformational landscape domain X . We then present the RMSD metric
that serves as the distance measure d between linear chains. We analyze the configuration space
in the absence of any force or energy, thus f ≡ 0.
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7.1 Linear chains: Conformation space and distance definition

7.1.1 Random Walks and Self-avoiding Walks

The simplest linear chain model is the Random Walk model. A walk of length N ≥ 3 and step
size b corresponds to the path obtained (in three-dimensional Cartesian space) by starting at
some origin and taking N−1 successive straight steps of equal length b in arbitrary directions,
as illustrated in Fig. 7.1. The N points along such a path are referred to as beads and the
corresponding steps as bonds or links. Walks defined in this way are: (i) unbranched (linear
topology); (ii) non-self-avoiding (beads may be positioned arbitrarily close to each other,
except for consecutive ones) ; (iii) oriented (a walk is distinct from its reverse walk, as defined
by taking the beads in reverse order).
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Figure 7.1: a. Definition of the angles θn and dihedral angles ωn characterizing an anchored walk of
length N . cr is the radius of a sphere that defines the excluded volume for a self-avoiding
walk. b. Illustration of the conversion q → r(q) from an internal coordinate vector q to
the corresponding Cartesian coordinate vector r via trigonometry.

A walk can be entirely specified by the 3N -dimensional vector r
.
= {pi, i = 1, . . . , N} =

{rα|α =, . . . , 3N}, where pi is the Cartesian coordinate vector of bead i and rα a single
Cartesian coordinate within r. To avoid the redundancy of walks that can be superimposed
by trivial rigid-body translation and rotation, it is convenient to define anchored walks as
the walks satisfying the six additional constraints rα = 0 for α = 1, 2, 3, 5, 6, 9, along with
r4 = b and (r7 − b)2 + r2

8 = b2. In other words, for an anchored walk, the p1 bead is placed
at the origin, the p1 − p2 bond aligned along the x-axis, and the p2 − p3 bond contained in
the xy-plane, which uniquely defines the overall (rigid-body) position and orientation of the
walk. Due to the N − 1 bond plus six rigid-body constraints, the space CN spanned by the
Cartesian coordinate vectors r associated with all anchored walks of length N represents an n-
dimensional hypersurface within R3N , where n = 2N −5. Alternatively, an anchored walk can
also be entirely specified by an n-dimensional internal coordinate vector q

.
= {q1 = 1, . . . , n},

where qi (i = 1, . . . , N −2) is the cosine of the angle θi formed by pi−pi+1−pi+2 and qi+N−2

(i = 1, . . . , N − 3) is the dihedral angle ωi formed by pi − pi+1 − pi+2 − pi+3 (oriented and
measured in radians), see Fig. 7.1. This can be written as:

q
.
= {{cos(θi)|i = 1, . . . , N − 2}, {ωi = 1, . . . , N − 3}} . (7.1)

The N − 2 angle-cosine coordinates are non-periodic and bounded to the range [−1; 1]. The
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7 Analysis of Linear Chain Landscapes

N − 3 dihedral-angle coordinates are periodic and chosen here (by convention) within the
range ] − π;π]. The n-dimensional space QN spanned by the internal coordinate vectors q
corresponding to all anchored walks of length N is thus compact (no “holes”) and bounded,
with a finite volume VQN

given by

VQN

.
=

∫

QN

dnq = 2N−2(2π)N−3 = 2nπ(n−1)/2 . (7.2)

Note that if any bond angle θn of the walk is equal to 0 or π, the preceding and succeeding
dihedral angles (ωi−1 and ωi) are undefined and need to be replaced by a single dihedral angle
pi−1 − pi − pi+2 − pi+3 (assuming that θi−1 and θi+1 themselves differ from 0 and π). This
special handling turns out to be necessary in Section 7.3.

The mapping q → r(q) of an anchored walk from QN to CN , as well as the reverse mapping
r→ q(r) from CN to QN , are defined and unique (except for walks involving one or more bond
angles equal to 0 or π), as well as continuous. Both transformations can be performed using
straightforward trigonometry, as illustrated in Fig. 7.1. Because QN is compact and bounded
(with a finite volume VQN

), the uniqueness and continuity of the transformation implies that
the hypersurface CN (within R3N ) is also compact and bounded, with a finite area ACN . The
relationship between the two spaces is illustrated schematically in Fig. 7.2.

The random walk ensemble WN is defined as an infinite ensemble of anchored walks of length
N with a homogeneous (normalized) probability distribution pN over QN :

pN (q) = V −1
QN

so that

∫

QN

dnq pN (q) = 1 . (7.3)

It is easily seen that WN can be generated by taking (an infinite number of) walks in CN
for which each successive step of length b is taken in a random (i.e. isotropically distributed)
direction, keeping in mind the six constraints imposed to the Cartesian coordinate components
of the first three beads.

Self-avoidance in RW’s is modeled by considering a sphere of radius cr centered at each bead
position that defines an excluded volume. This volume cannot be penetrated by any other
excluded-volume sphere (see Fig. 7.1). Such a self-avoidance constraint cannot be defined
in internal coordinates because of its non-locality. Hence the generation of an ensemble of
SAW’s is more involved. The simplest approach is to generate a RW ensemble and remove all
structures that do not satisfy the self-avoidance constraint.

7.1.2 RMSD as distance metric for linear chains

We consider the root-mean-square atomic positional deviation (RMSD) D after least-squares
roto-translational fitting as pairwise metric for neighborhood definition. For a given reference
structure r and a given compared structure r′ , D is the metric representing the scalar distance
between two associated 3N-dimensional vectors s(r) and s′(r, r′) defined by s(r) = N−1/2r and

s′i(r, r
′)
.
= N−1/2 (Rp′i + t) , i = 1, . . . , N , (7.4)
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7.1 Linear chains: Conformation space and distance definition

namely

D(r, r′)
.
= |s′(r, r′)− s(r)| =

{
N−1

N∑

i=1

[Rp′i + t− ri]
2

}1/2

. (7.5)

Here, R and t denote the three-dimensional rotation matrix (three degrees of freedom) and
translation vector (three degrees of freedom) leading to the minimum value of D for the
given pair of structures. It can be shown that D satisfies all properties of a metric in the
mathematical sense (Kaindl and Steipe, 1997; Steipe, 2002a,b) (positivity: D(r, r) = 0 and
D(r, r′) > 0 ∀ r′ 6= r; symmetry: D(r, r′) = D(r′, r) ∀ r, r′; triangle inequality: D(r, r′′) ≤
D(r, r′) + D(r′, r′′) ∀ r, r′, r′′). A number of alternative exact procedures for determining R
and t from r and r′ have been proposed in the literature. Kabsch’s algorithm uses Singular
Value Decomposition (SVD) (Kabsch, 1976, 1978) while Horn proposes quaternions (Horn,
1987; Horn et al., 1988). For a given reference structure r, the n-dimensional hypersurface
(within R3N ) containing the vectors s′(r, r′) associated with all anchored walks r′ of length
N will be noted RN (r). This hypersurface contains the 3N -dimensional Cartesian coordinate
vectors (amplified by N−1/2) of all anchored walks after least-squares roto-translational fitting
onto r. Because QN is compact and bounded (with a finite volume VQN

), for any r, the
hypersurface RN (r) (within R3N ) is also compact and bounded, with a finite area ARN (r).
The hypersurface RN (r) associated with the D metric depends on the choice of the reference
structure r. However, if only distances between very close structures are of interest, it is
possible to piece the RN (r) hypersurfaces together from single hypersurfaces R̃N with metrics
D̃ that are locally equivalent to D, i.e., satisfying

lim
D(r,r′)→0

[D(r, r′)− D̃(r, r′)] = 0 . (7.6)

This can be done by introducing a regular paving of QN using G grid cells centered at grid
points {qk|k = 1, . . . , G}. The hypersurface R̃N is then defined as

R̃N .
= lim
G→∞

∪Gk=1RN,k , (7.7)

where RN,k denotes the portion of RN (r(qk)) corresponding to all structures contained within

the grid cell k. The metric D̃ in R̃N is the scalar distance

D̃(r, r′)
.
= lim
G→∞

|s̃′G(r′)− s̃G(r)| , (7.8)

where s̃G(r) and s̃′G(r′) represent the 3N -dimensional Cartesian coordinate vectors (amplified
by N−1/2) of the two anchored walks after least-squares roto-translational fitting onto the
structures associated with the two respective closest grid points (for a given G). Note that
unlike s′, s̃′G only depends on r′ (not on r).

When comparing structures at a finite distance D, R̃N is essentially equivalent to CN ampli-
fied by N−1/2, and D̃ represents the RMSD-like distance between two anchored walks without
any roto-translational fitting. Howewer, at the local level, R̃N is not equivalent to CN scaled
by N−1/2. For any finite G, the patched hypersurface (union of the RN,k) is discontinuous

at the grid-cell boundaries, and this discontinuity survives in R̃N at the infinitesimal (local)
level when taking the limit G → ∞. It is easily seen that Eq. (7.6) holds, provided the limit
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Figure 7.2: Schematic representation of the coordinate transformation from QN (n-dimensional internal co-
ordinate space, with M = 2N − 5) to CN (n-dimensional hypersurface within the entire Cartesian
coordinate space R3N ) for anchored walks of length N . QN is bounded and of finite volume VQN

(Eq. (7.2)). CN is also bounded and of finite area ACN . Note that the N − 3 dihedral-angle
coordinates within q are actually periodic (i.e., bounded only by the definition of a reference in-
terval). For simplicity, this periodicity (i.e., the “folding” of a part of the boundary of QN or CN
on itself) is not represented in the figure. The same drawing could also illustrate the coordinate
transformation from QN to R̃N (n dimensions within R3N ), the hypersurface associated with
the local RMSD metric R̃ of Eq. (7.8). In this case, the fact that two infinitesimal volumes of
QN transform to patches of different areas of R̃N indicates that the corresponding shapes have
different local probabilities PN (q, 0); (Eq. (7.13) and Eq. (7.14)). In the present case, the patch
on the right is representative of a (locally) more probable shape compared to the one on the left.

D(r, r′) → 0 in this equation is taken before the limit G → ∞ in Eq. (7.8), provided that
the distance between the two compared structures remains infinitesimal compared to the grid
spacing, even when taking the latter toward zero.

Because QN is compact and bounded (with a finite volume VQN
), the hypersurface R̃N

(within R3N ) is also compact and bounded, with a finite area AR̃N
. For the above-mentioned

reasons, however, AR̃N
is not equal to N−1/2ACN . The drawing in Fig. 7.1 could thus also

apply to the relationship between QN and R̃N , keeping in mind the peculiar local properties
of the latter hypersurface.

The RMSD metric as a measure of structural dissimilarity has the convenient properties
that it is: (i) independent of the (rigid-body) relative positioning and orientation of the two
compared structures, and (ii) unaffected by performing a mirror symmetry, a central inversion
or an atom renumbering on the two compared structures. Note, however, that since the present
walks are oriented, the distance between a walk and its reverse walk is in general not zero.
Although the RMSD metric is probably the most appropriate one to match our visual intuition
concerning structural difference, it is not the only possible choice. For example, a distance-
matrix root-mean-square difference (Zagrovic et al., 2002; de Araujo et al., 2008) could be
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7.2 The neighborhood density of Random Walk chains

more appropriate to match our expectations concerning structure-related energy differences
for systems where the dominant interactions correlate with pairwise interatomic distances. In
contrast, an RMSD without roto-translational fitting would represent a poor measure, in the
intuitive sense, of the structural dissimilarity between two walks, because the anchoring of
the walks in the CN space (performed here on the first three beads) is arbitrary. This would
mean in particular that: (i) differences in the first angles and dihedral angles along the walk
will have more influence on the metric compared to corresponding differences at the end of
the walk; (ii) the distance between two walks would not be equal to the distance between the
two corresponding reverse walks. A root-mean-square difference in internal coordinates would
also represent a poor metric for structure comparison, in particular because: (i) differences
in the angles and dihedral angles would be equally weighted along the chain, although the
central ones are intuitively expected to have more impact on the overall shape compared to
the terminal ones; (ii) dihedral angles are periodic variables, so that the resulting measure
would depend on the arbitrary choice of a reference interval for the dihedral angles.

7.2 The neighborhood density of Random Walk chains

The neighborhood of any linear chain is defined here as the collection of all structures for
which the RMSD to a reference (or central) linear chain is below a given cutoff value Rc. We
call this collection of structures also a “shape” or “state”. This definition implies in particular
that: (i) every structure can be used to define a shape; (ii) different shapes may be overlapping
in terms of the structures they encompass, i.e., individual structures are not necessarily only
associated to a single shape. For simplicity, the central structure of a shape will be noted
q, i.e., as an internal coordinate vector of QN (with the corresponding Cartesian coordinate
vector in CN noted r

.
= r(q)), and the shape of which q is the central structure will be loosely

referred to as the shape q.
The problem considered here is to determine how the homogeneous internal-coordinate prob-

ability distribution pN (q), defined in Eq. (7.3) and associated with individual structures in the
random walk ensemble WN , induces a corresponding neighborhood or shape probability dis-
tribution PN (q, Rc) in structure space. This shape probability distribution will be normalized
to VQN

(Eq. (7.2)) rather than to unity:

∫

QN

dnqPN (q, Rc) = VQN
(7.9)

This permits an immediate interpretation of PN (q, Rc) as the probability that an arbitrary
random walk fromWN belongs to the specific shape q, relative to the average of this probability
over all possible shapes. For example, a value of 1.1 for PN (q, Rc) indicates that, for the given
cutoff Rc, shape q is 10% more likely to encompass an arbitrary random walk, compared to
any shape of QN taken at random. The probability PN (q, Rc) can also be interpreted as the
sub-volume of QN spanned by the specific shape q, relative to the average of this sub-volume
over all possible shapes. For example, a value of 1.1 for PN (q, Rc) also indicates that, for
the given cutoff Rc, the neighborhood of structure q spans a 10% larger sub-volume of QN
compared to the neighborhood of any shape of QN taken at random. PN is thus a measure of
the average density of random walks in the neighborhood of structure q (i.e., within the shape
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7 Analysis of Linear Chain Landscapes

q). When comparing two shapes, the ratio of the corresponding PN values indicates how much
more likely one of them is compared to the other. Finally, the chosen normalization implies
that if all shapes were equiprobable, PN would be uniformly one over QN . In the following
discussion, the cases of a finite versus an infinitesimal cutoff Rc are discussed consecutively.

The finite cutoff case. Consider first the case of a finite cutoff. For the RMSD metric, a
given shape q with r

.
= r(q) can be assigned a weight ΩN (q, Rc) defined by the sub-volume

of QN mapping to the region of the hypersurface RN (r) enclosed within a 3N -dimensional
hypersphere of radius Rc centered at s(r):

ΩN (q, Rc)
.
=

∫

QN

dMq′ Θ(Rc − |s(r(q), r′(q′))− s(r(q))|) , (7.10)

where Θ is the Heaviside function. The corresponding shape probability density, normalized
as defined in Eq. (7.9) may then be written as:

PN (q, Rc)
.
=

VQN
ΩN (q, Rc)∫

QN
dnq ΩN (q, Rc)

. (7.11)

Another quantity of interest is the fractional coverage function fN (q, Rc), defined as the
fraction of QN covered by ΩN (q, Rc):

fN (q, Rc)
.
= V −1

QN
ΩN (q, Rc) . (7.12)

For a given value of N , the function fN (q, Rc) is expected to present three regimes depending
on the choice of Rc: (i) For Rc below some threshold R∗N , all shapes will only encompass a
part of QN , i.e., fN < 1 for all q; (ii) For Rc above some threshold value R∗∗N > R∗N , all shapes
will encompass the entire extent of QN , i.e., fN = 1 (and, consequently, PN = 1) for all q .
This threshold is the diameter of the conformational space, which will be further discussed in
Section 7.3; (iii) For intermediate values R∗N ≤ Rc ≤ R∗∗N , a single shape (Rc = R∗N ), and then
an increasingly large set of shapes (Rc > R∗N ), will extend over the entire QN ( i.e. fN = 1),
the other shapes still being characterized by fN < 1. The single shape q∗N (it can also be a few
symmetry-related shapes) for which fN (q∗N , R

∗
N ) = 1 has a special meaning. It is the shape

that can encompass the entire extent of its RN (r) hypersurface for the smallest possible value
of the cutoff distance. For this reason, q∗N will be referred to as the barycentric shape of QN .

The infinitesimal cutoff case. Consider next the case of an infinitesimal cutoff, where
Rc → 0 (which will loosely be written as Rc = 0). In this case, PN (q, 0) probes the local
density of random walks within a shape of infinitesimal size centered at q. Because distances
within an infinitesimal shape are infinitesimal, and due to Eq. (7.6), it is possible to work here
in the patched hypersurface R̃N (Eq. (7.7)) rather than in the individual hypersurfaces RN (r).

For the RMSD metric, if an infinitesimal volume element dnq around q in QN maps to a
corresponding infinitesimal hypersurface element dnΣ̃N of R̃N around s(r), the shape can be
given a weight ΓN (q) defined by

ΓN (q)
.
=

dnq

dnΣ̃N
. (7.13)
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Intuitively, for a given dnq around a central structure q, a large ΓN (small dnΣ̃N ) indicates that
the random walks within dnq are more densely packed in R̃N around the central structure,
i.e., the corresponding shape is more “likely”. A small ΓN indicates that these walks are
more widely spread and hence this shape is less likely. This correspondence is illustrated
schematically in Fig. 7.2. The ratio ΓN represents the inverse of (the absolute value of)
a Jacobian determinant of a special kind, which associates infinitesimal variations in an n-
dimensional space (QN ) to corresponding variations in a 3N -dimensional space (R3N ) that
are constrained to a n-dimensional hypersurface (R̃N ). This Jacobian determinant is that of
a 3N -dimensional matrix containing in its first n lines the variations dsα/dqi with i = 1, . . . , n
and α = 1, . . . , 3N , and in its 3N − n = N + 5 last lines, the coefficients of a set of 3N -
dimensional unit vectors that are orthogonal to those in the first n lines as well as to each
other. The corresponding local shape probability density, normalized as defined by Eq. (7.9),
may then be written:

PN (q, 0)
.
= I−1

N V −1
QN

ΓN (q) (7.14)

where IN is the average of ΓN over all shapes of QN divided by the volume VQN
:

IN
.
= V −2

QN

∫

QN

dnq ΓN (q) . (7.15)

The single shape q#
N (or a few symmetry-related shapes) that maximizes PN (q, 0) over QN

has a special meaning. It corresponds to the structure that has the highest density of random
walks in its infinitesimal neighborhood. For this reason, q#

N will be referred to as the “densest”

shape of WN . Finally, based on Eq. (7.13), the area AR̃N
of R̃N can be evaluated as:

AR̃N
=

∫

QN

dnq Γ−1
N (q) . (7.16)

Note that the above approach is not applicable to walks containing one or more bond angles
equal to 0 or π, since these cannot be unambiguously represented in QN . However, because
they possess fewer than n degrees of freedom, it is easily seen that they are characterized by
a vanishing local shape probability density PN (q, 0) = 0.

It is important to realize that the weight ΓN (Rc → 0; Eq. (7.13)) differs from the weight
ΩN (Rc 6= 0; Eq. (7.10)) in that the former one is a local surface density on R̃N (infinitesimal
volume of QN divided by the associated infinitesimal area of R̃N ) while the latter one is a
volume in QN (finite sub-volume of QN associated with a finite area of RN (r)), i.e. ΓN is not
the limit of ΩN when Rc → 0. An approximate relationship between the two quantities for
small Rc values can be obtained by assuming that: (i) the surface density of random walks
is approximately constant over RN (r(q)) in the neighborhood of q; (ii) this surface density
is approximately equal to Γ(q); (iii) the effect of the curvature of RN (r(q)) in R3N can be
neglected. In this case, ΩN (q, Rc) should be approximately equal (for a given q) to ΓN (q)
multiplied by the area of ann-dimensional hyperdisc of radius Rc:

ΩN (q, Rc) ≈ πn/2Rnc γ−1(n/2 + 1) ΓN (q) for small Rc , (7.17)

where γ is the Euler gamma function, with γ(n/2 + 1) = 2−(n+1)/2π1/2n!! for n odd (always
the case here). Using Eq. (7.2) for odd n this can be rewritten in terms of the fractional
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coverage function fN (Eq. (7.12)) as:

fN (q, Rc) ≈
[
2(n−1)/2n!!

]−1

ΓN (q)Rnc for small Rc . (7.18)

Note that due to curvature effects one should not expect this equation to be exactly satisfied,
even in the limit Rc → 0 (i.e. in the sense of evaluating limRc→0R

−M
c fN (q, Rc)).

7.2.1 Setup of the numerical experiments

A systematic (grid-based) approach is used to sample the random walk ensemble WN , for
chain lengths ranging from N = 3 to 6 beads. This approach involves the regular paving of
QN using G = gn grid cells of volume G−1VQN

centered at grid points {qk|k = 1, . . . , G},
g being the number of cell subdivisions along one dimension (for simplicity, this number is
chosen identical for all angle-cosine as well as dihedral angle variables). Grid-based sampling
is in principle the most appropriate method when sufficiently large g values are computa-
tionally affordable, because it is deterministically reproducible and guarantees a rigorously
homogeneous sampling throughout QN . Note, however, that when used in combination with
too small g values, it may introduce a systematic bias in the sampling (in which case a random
sampling approach might be more adequate).

Apart from the number of beads N , the bond length b is the only free parameter in the
considered random walk ensembles. Because b has the dimension of a length, all monitored
properties scale in a predictable manner with b. This parameter is thus set to unity in all
calculations without affecting the generality of the results.

In order to evaluate the finite-cutoff shape probability density PN (q, Rc) at a given grid point
qk, the volume ΩN (qk, Rc) of Eq. (7.10) is estimated by the number of structures qk′ on the
grid satisfying the involved cutoff condition relative to qk, amplified by G−1VQN

. These esti-
mates are then used to calculate the corresponding finite-cutoff probability density PN (qk, Rc)
via Eq. (7.11), where the integral in the denominator is replaced by a discrete sum over all
grid points. The (gridded) fractional coverage function fN (qk, Rc) was evaluated similarly via
Eq. (7.12). These two functions are computed for a discrete set of cutoff values Rc usually
corresponding to Rc/R

∗∗
N = 0.1, 0.2, 0.4, and 0.6 (for N = 5, the last two values are replaced

by 0.25 and 0.45; for N = 6 the first value is replaced with 0.15 and the last value omitted).
The computational cost of the above calculation (one RMSD calculation for each unique pair
of distinct structures) is O(G(G − 1)/2) ∼ O(g2n), which is only tractable for reasonable
values of g along with a rather small number of beads (e.g., N ≤ 6 → g2n ≤ g14). For this
reason, the analysis using finite cutoff distances is not extended beyond 6 beads here.

In order to evaluate the local shape probability density PN (q, 0) at a given grid point qk, the
surface density ΓN (qk) of Eq. (7.13) was estimated using a finite-difference approach. More
precisely, for a grid point qk (reference structure), the q vector is increased or decreased by
half the grid spacing along each of the n dimensions, resulting in 2n slightly altered structures
(shifted structures). The reference and shifted structures are transformed to CN and the latter
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ones roto-translationally fitted onto the former one. The corresponding n× 3N Cartesian dis-
placements, divided by the grid spacing and scaled by N1/2, provide finite-difference estimates
for the elements of the first n rows of the Jacobian matrix . The Jacobian is then completed
by the N + 5 orthogonal unit vectors. This construction requires N + 5 matrix inversions.
Finally, the (absolute value of the) inverse of this Jacobian determinant provided the required
value for ΓN (qk). These estimates are then used to calculate the corresponding (gridded)
local probability density PN (qk, 0) via Eq. (7.14), where the integral involved in IN (qk) is
replaced by a discrete sum over all grid points. The value of g employed for these calculations
is chosen to be even, so that the reference walk (a grid-cell center) can never contain angles
equal to 0 or π. Whenever this situation occurs for a shifted walk, the corresponding angle
cosine was simply set to ±0.9999 instead of ±1. This avoids the need for a special handling
of this situation (the resulting error being essentially negligible). The computational cost of
the above calculation (one ΓN calculation for each structure) is O(G) = O(gn), which repre-
sents a more favorable scaling compared to the corresponding calculation at finite cutoff (see
above), i.e. it remains tractable for reasonable values of g up to a larger number of beads (e.g.,
N ≤ 9→ gM ≤ g13). For this reason, the analysis using infinitesimal cutoffs was extended up

to 9 beads. In order to obtain more precise coordinates for the densest shape q#
N (the shapes

maximizing PN (q, 0)), a grid-focusing approach was used, whereby the grid cell containing the
best structure at a relatively low G value is iteratively rediscretized by a full grid of G points.
This can be done reliably up to 6 beads only.

7.2.2 Numerical results

We present both infinitesimal and finite-cutoff results for N = 3, . . . , 6. We first consider the
different local shape probabilities. Then we report the derived densest and barycentric shapes.

Random Walks for N = 3. The results for N = 3 beads are shown in Fig. 7.3. The internal
coordinate vector q consists of the cosine of the single angle θ1 defined by the three beads. The
local shape probability density P3(q, 0) is displayed in Fig. 7.3a as a function of θ1 for three
different grid spacings g (10, 100, and 1000). The results for the three g values are consistent,
the curves corresponding to g = 100 and 1000 being nearly indistinguishable (indicating a
sufficient accuracy of the finite-difference approximation to the Jacobian). As expected, the
shapes centered at θ1 = 0, π are characterized by a vanishing probability. The distribution
shows a single maximum and is slightly biased toward open angles (> 90◦). The maximum

(densest shape q#
3 ) is located at θ#

1 = 105.5◦ and associated with a local shape probability

density P3(q#
3 , 0) = 1.28. This indicates that the local neighborhood of this central structure

is 28% more populated (in terms of random walk density) than the corresponding average over
all possible shapes or, equivalently, that the corresponding shape is 28% more likely than any
shape taken at random. This difference may seem modest because it expresses a bias relative
to the average over all shapes, including the most likely ones. However, pairwise comparisons
can show more dramatic effects. For example, the densest shape is about 15 times more likely
compared to the one centered at θ1 = 5◦.

The finite-cutoff shape probability density P3(q, Rc) is displayed in Fig. 7.3b as a function
of θ1 for four different cutoff values Rc. As expected, the curve corresponding to the lowest
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7 Analysis of Linear Chain Landscapes

Rc is the closest to the limiting case Rc → 0 (Fig. 7.3a). With increasing Rc, the bias in the
distribution and the location of the maximum progressively shift in the direction of closed
angles (< 90◦). For the largest Rc value considered here (Rc = 0.57b > R∗3; see below), the
maximum no longer corresponds to a single θ1 value, but to a range thereof. This arises
because for such a large cutoff several shapes are able to encompass the entire RW ensemble.

The dependence of P3(q, Rc) on the cutoff value is characterized in more detail in Fig. 7.3. The
left panel illustrates the maximum fmax3 (Rc), mean fmean3 (Rc), and minimum fmin3 (Rc) values
(over shapes centered at all points of Q3) of the fractional coverage function f3(q, Rc) as a
function of Rc. The central panel shows the associated maximum Pmax3 (Rc), mean Pmean3 (Rc),
and minimum Pmin3 (Rc) values of the finite-cutoff shape probability density P3(q, Rc). The
right panel displays the range of θ1 values associated with the central structures of the most
likely shapes, i.e. those corresponding to fmax3 and Pmax3 ) as well as the average value of θ1

over this set. The function fmax3 , i.e. the fraction of the RW ensemble encompassed by the
most likely shape for a given Rc, increases from zero at Rc = 0 (infinitesimal shape) to 1 (the
most probable shapes encompass the entire ensemble). This function reaches 1 at a cutoff
value R∗3 = 0.486b for a specific shape (barycentric shape q∗3) characterized by θ∗1 = 74.2◦

and P3(q∗3, R
∗
3) = 1.13. This shape is the one that encompasses the entire ensemble for the

smallest possible value of Rc. As could be anticipated from Fig. 7.3b, the θ1 angle associated
with the most likely shape decreases upon increasing Rc from 0 to R∗3. Over a sizable range
of Rc values (0 ≤ Rc ≤ 0.4b), this most likely shape is consistently more probable than any
shape taken at random. The function fmin3 , i.e. the fraction of the RW ensemble encompassed
by the least probable shape for a given Rc, also increases from zero at Rc = 0 to 1. This
function reaches 1 at a cutoff value R∗∗3 = 0.943b. Above this Rc value, all shapes encompass
the entire ensemble. As expected, the range of θ1 values satisfying f3(q, Rc) = 1 widens upon
increasing Rc from R∗3 to R∗∗3 , while the average θ1 value over this set slightly increases over
this interval.

As a final note concerning the above results for N = 3, it is important to stress that although
three beads are always contained in a plane, the present results pertain to random walks
in three dimensions. In this sense, the probability distribution p3(q) in the RW ensemble
(Eq. (7.3)) is homogeneous in cos θ1 (with θ1 in the range [0;π]), so that the corresponding
average cos θ1 value is 0. This is in qualitative agreement with the observation that the most
likely shapes have θ1 angles close to 90◦. In two dimensions, however, the corresponding
probability distribution would be homogeneous in θ1 so that the corresponding average θ1

value would be 0◦ (if θ1 is chosen in the range ] − π;π]). The results in terms of shape
probability distributions would then look quite different.

Random Walks for N = 4. The results for N = 4 beads are shown in Fig. 7.4. The internal
coordinate vector q consists of the cosines of the two angles θ1 and θ2 along with the single
dihedral angle ω1 defined by the four beads.

The local shape probability density P4(q, 0) is displayed in Fig. 7.4a as a function of cos θ1,
cos θ2, and ω1. As expected, the shapes centered at θ1 = 0, π or θ2 = 0, π are characterized by
a vanishing probability. In addition, due to the symmetry properties of the RMSD metric , the
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Figure 7.3: (a) Normalized local shape probability distribution P3(q, 0) (Eq. (7.14)), where q = {cos θ1},
displayed as a function of the single angle θ1 of the walk. (b) Corresponding normalized finite-
cutoff shape probability distribution P3(q, Rc) (Eq. (7.11)), displayed as a function of the single
angle θ1 of the walk; left to right: Rc = 0.09b, 0.19b, 0.38b, and 0.57b, b being the bond length. (c)
Left: maximum (fmax3 ), mean (fmean3 ), and minimum (fmin3 ) values of the fractional coverage
function f3(q, Rc) (Eq. (7.12)) overQ3, displayed as a function of the cutoff Rc. Middle: maximum
(Pmax3 ), mean (Pmean3 ) and minimum (Pmin3 ) values of P3(q, Rc) over Q3, displayed as a function
of the cutoff Rc. Right: maximum, mean and minimum values of the angle θ1 over the set of
structure maximizing P3(q, Rc), displayed as a function of the cutoff Rc; Dots indicated at Rc = 0
in the middle and right panels correspond to the expected values based on the local probability
analysis. Note that P3 in (a) and (b) is normalized in terms of cos θ1 (not θ1) so that its average
over the graph differs from one. The data in (a) was evaluated using three different numbers of
grid points g = 10, 100 or 1000. The data in (b) and (c) were evaluated using g = 105 grid points.
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7 Analysis of Linear Chain Landscapes

distribution is invariant with respect to the changes ω1 ↔ −ω1 and θ1 ↔ θ2. This distribution
displays a single maximum and is significantly biased toward open θ1 and θ2 angles. The
maximum (densest shape q#

4 ) is located at θ#
1 = θ#

2 = 137.7◦ and ω#
1 = 0.0◦ and associated

with a local shape probability density P4(q#
4 , 0) = 1.79. Note that the presence of a single

maximum is not a consequence of the above-mentioned symmetry properties (these merely

imply that if the maximum is unique, it must satisfy θ#
1 = θ#

2 and ω#
1 = 0◦). This specific

shape is about three times more likely (in a local sense) than any shape taken at random. Here
too, the bias may be much more dramatic when performing pairwise comparisons between
shapes. For example, the densest shape is about 35 times more likely than the one centered
at θ1 = θ2 = 5◦ and ω1 = 0◦.

The finite-cutoff shape probability density P4(q, Rc) is displayed in Fig. 7.4 as a function of
cos θ1, cos θ2, and ω1 for four different cutoff values Rc. All graphs preserve the symmetry
features described above for P4(q, 0). The plot corresponding to the lowest Rc value is again
the closest to the limiting case Rc → 0 (Fig. 7.4a). With increasing Rc, the bias in the
distribution and the location of the maximum progressively shift in the direction of closed
angles. For Rc > 0.4b, the single maximum splits into two symmetry related (enantiomeric)
maxima with opposite ω1 6= 0 values. For the largest Rc value considered (Rc = 0.74b > R∗4;
see below), these two maxima no longer correspond to single points, but to two regions of the
space.

The dependence of P4(q, Rc) on the cutoff value is characterized in more details in Fig. 7.4c,
analogously to Fig. 7.3c for N = 3 (see explanations above). These curves display the same
qualitative features as for N = 3, although the numerical precision is considerably lower
(especially for low Rc values) due to the more limited grid resolution. The fractional coverage
function fmax4 reaches 1 at a cutoff value R∗4 = 0.712b for a specific (symmetry duplicated,
i.e. two enantiomers) shape (barycentric shape q∗4) characterized by θ∗1 = θ∗2 = 36.0◦ and
ω∗1 = ±162.4◦, and P4(q∗4, R

∗
4) = 1.11. As could be anticipated from Fig. 7.4b, the θ1 and θ2

values associated with the most likely shape (which remain identical to each other) decrease
upon increasing Rc from 0 to R∗4, while the corresponding single ω1 value of 0◦ splits into
two opposite (and increasingly larger) values for Rc > 0.4b. Over a sizable range of Rc values
(0 ≤ Rc ≤ 0.4b), this most likely shape is consistently more probable than any shape taken
at random. The function fmin4 reaches 1 at a cutoff value R∗∗4 = 1.236. Above this Rc value,
all shapes encompass the entire ensemble. As expected, the ranges of θ1, θ2, and ω1 values
satisfying f4(q, Rc) = 1 widen upon increasing Rc from R∗4 to R∗∗4 .

Random Walks for N = 5. The results for N = 5 beads are displayed in Fig. 7.5. The
internal coordinate vector q consists of the cosines of the three angles θ1, θ2, and θ3 along
with the two dihedral angles ω1 and ω2 defined by the five beads.

The local shape probability density P5(q, 0) is shown in Fig. 7.5a in the form of a maximum
value (over all possible θ1, θ2 and θ3 combinations) as a function of the ω1 and ω2 dihedral
angles. It is verified that the full (five-dimensional) distribution (not shown) satisfies the
expected symmetry properties. These translate at the level of the two-dimensional maximum-
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Figure 7.4: (a) Normalized local shape probability distribution P4(q, 0) (Eq. (7.14)), where q =
{cos θ1, cos θ2, ω1}, displayed as a function of the angle cosines cos θ1 and cos θ2 and the sin-
gle dihedral angle ω1 of the walk. (b) Corresponding normalized finite-cutoff shape probability
distribution P4(q, Rc) (Eq. (7.11)), displayed as a function of the angle cosines cos θ1 and cos θ2
and the single dihedral angle ω1 of the walk; left to right: Rc = 0.12b, 0.25b, 0.50b, and 0.74b, b
being the bond length. (c) Left: maximum (fmax4 ), mean (fmean4 ) and minimum (fmin4 ) values
of the fractional coverage function f4(q, Rc) (Eq. (7.12)) over Q4, displayed as a function of the
cutoff Rc. Middle: maximum (Pmax4 ), mean (Pmean4 ), and minimum (Pmin4 ) values of P4(q, Rc)
over Q4, displayed as a function of the cutoff Rc. Right: maximum, mean, and minimum values
of the angles θ1 and θ2 as well as of the dihedral angle ω1 (absolute value) over the set of structure
maximizing P4(q, Rc), displayed as a function of the cutoff Rc. Dots indicated at Rc = 0 in the
middle and right panels correspond to expected values based on the local probability analysis.
The data in (a) were evaluated using g = 200 grid points per dimension, and the data in (b) and
(c) using g = 51 grid points per dimension.
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7 Analysis of Linear Chain Landscapes

value projection to invariances with respect to the changes ω1 ↔ ω2 and ω1, ω2 ↔ −ω1,−ω2.
The distribution displays a single maximum and is significantly biased toward flat cis-cis
structures. The maximum (densest shape q#

5 ) is located at θ#
1 = θ#

3 = 154.5◦, θ#
2 = 143.7◦,

and ω#
1 = ω#

2 = 0.0◦ and associated with a local shape probability density P5(q#
5 , 0) = 2.94.

Here too, the presence of a single maximum is not a consequence of the above-mentioned
symmetry properties (these merely imply that if the maximum is unique, it must satisfy

θ#
1 = θ#

3 and ω#
1 = ω#

2 = 0◦). This specific shape is about three times more likely (in a local
sense) than any shape taken at random.

The finite-cutoff shape probability density P5(q, Rc) is shown in Fig. 7.5b, also in the form of
a maximal-value projection, for four different cutoff values. All graphs preserve the symmetry
features described above for P5(q, 0). The curve corresponding to the lowest Rc value is again
the closest to the limiting case Rc → 0 (Fig. 7.5a). With increasing Rc, the bias in the dis-
tribution progressively shifts from flat cis-cis structures in the direction of gauche±-gauche∓

structures, while the single maximum splits into four symmetry-related (enantiomeric forms
and reverse bead order) maxima with ω1, ω2 6= 0 values.

The dependence of P5(q, Rc) on the cutoff value is characterized in more details in Fig. 7.5c,
analogously to Fig. 7.3c and Fig. 7.4c for N = 3, 4 (see explanations above). These curves
display the same qualitative features as for N = 3 and 4, although the numerical precision is
again considerably lower (especially for low Rc values). The fractional coverage function fmax5

reaches 1 at a cutoff value R∗5 = 0.873b for a specific shape (barycentric shape q∗5) that is four-
fold replicated by symmetry and associated with P5(q∗5, R

∗
5) = 1.07. One of these structures

corresponds to θ∗1 = θ∗3 = 81◦, θ∗2 = 67◦, ω∗1 = 166◦, and ω∗2 = −83◦. The other three are
obtained by the changes θ∗1 , ω

∗
1 ↔ θ∗3 , ω

∗
2 and/or ω∗1 , ω

∗
2 ↔ −ω∗1 ,−ω∗2 . As could be anticipated

from Fig. 7.5b, the dihedral angles associated with the most likely shape tend to shift away
from flat cis-cis upon increasing Rc from 0 to R∗5. Simultaneously, the angles tend to shift
toward lower values. The function fmin5 reaches 1 at a cutoff value R∗∗5 = 1.600. Above this
Rc value all shapes encompass the entire ensemble.

Random Walks for N = 6. The results for N = 6 beads are displayed in Fig. 7.6. The
internal coordinate vector q consists of the cosines of the four angles θ1, θ2, θ3 and θ4 along
with the three dihedral angles ω1, ω2 and ω3 defined by the six beads.

The local shape probability density P6(q, 0) is displayed in Fig. 7.6a in the form of the
maximal value (over all possible θ1, θ2, θ3, and θ4 combinations) as a function of the ω1,
ω2, and ω3 dihedral angles. It is verified that the full (seven-dimensional) distribution (not
shown) satisfies the expected symmetry properties. These translate at the level of the three-
dimensional maximum-value projection to invariances with respect to the changes ω1 ↔ ω3

and ω1, ω2, ω3 ↔ −ω1,−ω2,−ω3. The distribution shows a single maximum and is signifi-
cantly biased toward flat cis-cis-cis structures. The maximum (densest shape q#

6 ) is located

at θ#
1 = θ#

4 = 163.5◦, θ#
2 = θ#

3 = 151.8◦, and ω#
1 = ω#

2 = ω#
3 = 0.0◦ and associated with a

local shape probability density P6(q#
6 , 0) = 10.05. Here too, the presence of a single maximum

is not a consequence of the above-mentioned symmetry properties (these merely imply that if

166



7.2 The neighborhood density of Random Walk chains

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

60

120

180

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

60

120

180

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

60

120

180

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

 

 

ω
1
[d

eg
]

ω
1
[d

eg
]

ω
1
[d

eg
]

ω
1
[d

eg
]

ω2[deg] ω2[deg] ω2[deg] ω2[deg]

Rc[b] Rc[b] Rc[b]

b

c

a

ω
1
[d

eg
]

ω2[deg]

θm
a
x

2
[d

eg
]

θm
a
x

1
,3

[d
eg

]
Pmin

5

Pmean
5

Pmax
5fmax

5

fmean
5

fmin
5

P5f5

‖ω
m

a
x

1
,2

‖[
d
eg

]

P5P5P5P5

P5

Figure 7.5: (a) Normalized local shape probability distribution P5(q, 0) (Eq. (7.14)), where q =
{cos θ1, cos θ2, cos θ3, ω1, ω2}, displayed as a maximum projection onto the two dihedral angles
ω1 and ω2 of the walk. (b) Corresponding normalized finite-cutoff shape probability distribution
P5(q, Rc) (Eq. (7.11)), displayed as a maximum projection onto the two dihedral angles ω1 and
ω2 of the walk; left to right: Rc = 0.16b, 0.32b, 0.40b and 0.72b, b being the bond length. (c)
Left: maximum (fmax5 ), mean (fmean5 ), and minimum (fmin5 ) values of the fractional coverage
function f5(q, Rc) (Eq. (7.12)) over Q5, displayed as a function of the cutoff Rc. Middle: maxi-
mum (Pmin5 ), mean (Pmean5 ), and minimum (Pmax5 ) values of P5(q, Rc) over Q5, displayed as a
function of the cutoff Rc. Right: maximum, mean and minimum values of the outer angles θ1 and
θ3, of the central angle θ2, and of the two dihedral angles ω1 and ω2 (absolute values) over the
set of structure maximizing P5(q, Rc), displayed as a function of the cutoff Rc. Dots indicated at
Rc = 0 in the middle and right panels correspond to expected values based on the local probability
analysis. The data in (a) was evaluated using g = 24 grid points per dimension, and the data in
(b) and (c) using g = 13 grid points per dimension.
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the maximum is unique, it must satisfy θ#
1 = θ#

4 , θ#
2 = θ#

3 and ω#
1 = ω#

2 = ω#
3 = 0◦). This

specific shape is about ten times more likely (in a local sense) than any shape taken at random.

The finite-cutoff shape probability density P6(q, Rc) is displayed in Fig. 7.6b, also in the form
of a maximum-value projection, for three different cutoff values Rc. All graphs preserve the
symmetry features described above for P6(q, 0). The curve corresponding to the lowest Rc

value is again the closest to the limiting case Rc → 0 (Fig. 7.6). With increasing Rc, the
bias in the distribution progressively shifts from flat cis-cis-cis structures in the direction of
gauche±-gauche+-gauche∓ or gauche±-gauche−-gauche∓ structures, while the single maximum
splits into a pair (two alternative ω2 values) of two symmetry-related (enantiomeric) maxima
with ω1, ω2, ω3 6= 0 values.

The dependence of P6(q, Rc) on the cutoff value is characterized in more details in Fig. 7.6c,
analogously way to Fig. 7.3c, Fig. 7.4c and Fig. 7.5c for N = 3, 4, 5 (see explanations above).
These curves display the same qualitative features as for N = 3, 4, and 5, although the
numerical precision is again considerably lower (especially for low Rc values). The function
fmax6 reaches 1 at a cutoff value R∗6 = 0.998b for a specific pair of shapes (barycentric shapes
q∗6) that are four-fold replicated by symmetry and associated with P6(q∗6, R

∗
6) = 1.06. One

pair of these structures corresponds to θ∗1 = θ∗4 = 66◦, θ∗2 = θ∗3 = 78◦, ω∗1 = 144◦, ω∗2 = ±72◦,
and ω∗3 = −144◦. The other pairs are obtained by the changes ω∗1 ↔ ω∗3 or/and ω∗1 , ω

∗
2 , ω

∗
3 ↔

−ω∗1 ,−ω∗2 ,−ω∗3 . The evolution of the angles and dihedral angles associated with the most
likely shapes upon increasing Rc from 0 to R∗6 is difficult to assess in detail (numerical noise
for small Rc), but agrees with the trends observed in Fig. 7.6b. The function fmin6 reaches 1
at a cutoff value R∗∗6 = 1.899. Above this Rc value all shapes encompass the entire ensemble.
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Figure 7.6: (a) Normalized local shape probability distribution P6(q, 0) (Eq. (7.14)), where q =
{cos θ1, cos θ2, cos θ3, cos θ4, ω1, ω2, ω3}, displayed as a maximum projection onto the three dihe-
dral angles ω1, ω2 and ω3 of the walk. (b) Corresponding normalized finite-cutoff shape probability
distribution P6(q, Rc) (Eq. (7.11)), displayed as a maximum projection onto the three dihedral
angles ω1, ω2 and ω3 of the walk; left to right: Rc = 0.29b, 0.38b and 0.76b, b being the bond
length. (c) Left: maximum (fmax6 ), mean (fmean6 ), and minimum (fmin6 ) values of the fractional
coverage function f6(q, Rc) (Eq. (7.12)) over Q6, displayed as a function of the cutoff Rc. Middle:
maximum (Pmax6 ), mean (Pmean6 ), and minimum (Pmin6 ) values of P6(q, Rc) over Q6, displayed
as a function of the cutoff Rc. Right: maximum, mean, and minimum values of the outer angles
θ1 and θ4, of the central angles θ2 and θ3, of the two outer dihedral angles ω1 and ω3 (absolute
value) and of the central dihedral angle ω2 (absolute value) over the set of structure maximizing
P6(q, Rc), displayed as a function of the cutoff Rc. Dots indicated at Rc = 0 in the middle and
right panels correspond to expected values based on the local probability analysis. The data in
(a) were evaluated using g = 12 grid points per dimension, and the data in (b) and (c) using g = 5
grid points per dimension.
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7 Analysis of Linear Chain Landscapes

The densest and the barycentric shapes. The identified densest and the barycentric shapes
are shown in Fig. 7.7. The corresponding structural parameters are given in Table 7.1.

N = 3

N = 4

N = 5

N = 6

ba

Figure 7.7: (a) Central structures associated with the densest shapes. (b) Central structures associated with
the barycentric shape. The different structures come from to the RW ensembles WN for different
numbers of beads N = 3, . . . , 6. All structures are drawn according to the internal coordinates
q# and q∗ reported in Table 7.1. For N = 4, . . . , 6, only one of the 2 or 4 alternative barycentric
shapes is represented (N = 4: ω1 = 162.4◦; N = 5: ω1 = 166◦, ω2 = −83◦; N = 6: ω1 = 144◦,
ω2 = 72◦, ω1 = −144◦). The parameters of q# for N = 3, . . . , 6 are refined to a precision of at
least 1◦. The precisions of the parameters of q∗ is limited by the number of grid points g used
(see caption of Table 7.1 for details).

The central structures associated with the densest shapes are all planar up to N = 6, with
bond angles progressively opening with increasing N (Fig. 7.7 a). In contrast, the central
structures associated with the barycentric shapes are not planar (except for N = 3), and do
not present obvious systematic trends upon increasing N (Fig. 7.7). This may be due to the
low precision in the determination of these structures for N = 5 and 6 (g = 13 and g = 5,
respectively). Based on the present results, it is not possible to determine whether the above
properties of the densest and barycentric structures also hold for larger N values.

The threshold cutoff-radii R∗N and R∗∗N systematically increase with increasing N . This is ex-
pected since the size of the accessible conformational space also increases. R∗N values can be op-
timally fitted (forN = 3, . . . , 6) by the logarithmic expressionR∗N ≈ (0.7393 log(N)− 0.3207) b.
The study of R∗∗N , the diameter of the conformation space, is the topic of Section 7.3.
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7.3 The landscape diameter of linear chains

infinitesimal cutoff

N {θ#} [deg] {ω#} [deg] PN (q#
N , 0)

3 105.5 - 1.28 (1.15)

4 137.7/137.7 0.0 1.79 (1.50)

5 154.5/143.7/154.5 0.0/0.0 2.94 (2.34)

6 163.5/151.8/151.8/163.5 0.0/0.0/0.0 10.05 (7.60)

finite cutoff

N {θ∗} [deg] {ω∗} [deg] PN (q∗N , R
∗
N ) R∗N [b] R∗∗N [b]

3 74.2 - 1.13 0.486 0.943

4a 36.0/36.0 ± 162.4 1.11 0.712 1.236

5b 81/67/81 ± 166/∓ 83, ∓ 83/± 166 1.07 0.873 1.600

6c 66/78/78/66 ± 144/(+72,-72)/∓ 144 1.06 0.998 1.899

Table 7.1: Parameters characterizing the local shape probability density PN (q, 0) (top) and the finite-cutoff
shape probability density PN (q, Rc) (bottom) for the densest and barycentric shapes of the RW
ensembles WN with different numbers of beads N = 3, . . . , 6. The parameters are: the central

structure q#
N of the densest shape (internal coordinates {θ#} and {ω#}), the local probability den-

sity PN (q#
N , 0) associated with this shape (Eq. (7.14)), the central structure q∗N of the barycentric

shape (internal coordinates {θ∗} and {ω∗}), the smallest cutoff radius R∗N for which this shape
encompasses the entire ensemble, the finite-cutoff probability density PN (q∗N , R

∗
N ) associated with

these shape and cutoff (Eq. (7.11)), and the cutoff radius R∗∗N above which all shapes encompass
the entire ensemble (landscape diameter). The data were evaluated using grid-based sampling in
the internal-coordinate space. The number of grid points per dimension was set to g = 104, 200,
24, and 12 (local density) or g = 105, 51, 13, and 5 (finite-cutoff density) for N = 3, . . . , 6. The

parameters of q#
N for N = 3, . . . , 6 were further refined to a precision of at least 1◦ using grid

focusing. Table footnotes: (a) two symmetry-related barycentric shapes (enantiomers ω∗1 ↔ −ω∗1);
(b) precisions of reported θ∗ and ω∗ parameters are only about 20 and 30◦, respectively; four
symmetry-related barycentric shapes (enantiomers ω∗1 , ω

∗
2 ↔ −ω∗1 ,−ω∗2 and bead-order inversion

ω∗1 ↔ ω∗2); (c) precisions of reported θ∗ and ω∗ parameters are only about 30 and 70◦, respec-
tively; two alternative ω∗2 values, each with four symmetry-related barycentric shapes (enantiomers
ω∗1 , ω

∗
2 , ω
∗
3 ↔ −ω∗1 ,−ω∗2 ,−ω∗3 , and bead-order inversion ω∗1 ↔ ω∗3).

7.3 The landscape diameter of linear chains

So far we have analyzed the implications of the RMSD metric on the neighborhood relation
between linear chains. Both densest and barycentric structures in the RW ensemble have been
reported. We have also observed that, after a certain RMSD cutoff value R∗∗N , all structures
were neighboring all other structures. In this section, we use a combination of black-box
optimization and analytical geometry to derive an N -dependent upper bound for this cutoff
value: the conformational landscape diameter.

7.3.1 Preliminaries

Compared to the previous section we use slightly adapted notations and definitions that are
outlined below.

Representations, RMSD, and related quantities: We represent two arbitrary configurations
of N points (or beads) by the matrices X, Y ∈ R3×N . Each column in X, Y is denoted by
x(i),y(i) and represents the three-dimensional Cartesian coordinates of the ith bead in the
chain. Consecutive beads of mass m are connected by links of length b. The minimum RMSD
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7 Analysis of Linear Chain Landscapes

between X and Y is denoted by D(X,Y ) and comprises two steps: (i) Translation of the centers
of mass xcm and ycm of both configurations to the origin, leading to repositioned structures

X0 and Y0 with columns x
(i)
0 ,y

(i)
0 . (ii) Determination of the optimal rotation matrix R ∈ R3×3

such that:

D2(X,Y )
.
= min

R

1

N
‖RX0 − Y0‖2 = min

R

1

N

N∑

i=1

‖Rx
(i)
0 − y

(i)
0 ‖2 . (7.19)

The optimal rotation matrix R is determined using quaternions (Kneller, 1991). D2(X,Y )
can also be expressed in terms of the radii of gyration of X and Y , RG(X) and RG(Y ), as
(McLachlan, 1972, 1984):

D2(X,Y ) = R2
G(X) +R2

G(Y )− 2
1

N

N∑

i=1

x′0
(i) · y(i)

0 (7.20)

with x′0
(i)

= Rx
(i)
0 . The term 1

N

∑N
i=1 x

′(i)
0 · y(i)

0 describes the structural correlation between
X and Y after optimal superposition. It can be re-written as (Betancourt and Skolnick, 2001):

1

N

N∑

i=1

x′0
(i) · y(i)

0 =

∑N
i=1 x′0

(i) · y(i)
0√∑N

i=1 x
(i)2
0

∑N
i=1 y

(i)2
0

RG(X)RG(Y ) . (7.21)

Betancourt and Skolnick (Betancourt and Skolnick, 2001) refer to the fraction in Eq. (7.21)
as the aligned correlation coefficient ACC(X,Y ). The radius of gyration RG of a chain X is
roto-translation invariant and defined as:

R2
G(X)

.
=

1

N

N∑

i=1

‖x(i) − xcm‖2 = −xcm · xcm +
1

N

N∑

i=1

‖x(i)‖2 . (7.22)

From Eq. (7.20), McLachlan derives for two given structures X and Y a relative lower and an
upper bound for D2(X,Y ) (McLachlan, 1979, 1984):

0 ≤ D2(X,Y ) ≤ R2
G(X) +R2

G(Y ) . (7.23)

Notation for Random Walks. We consider again “anchored” Random Walks. A specific RW
chain X is generated based on internal coordinates. We again denote by θi the angle between
three consecutive beads x(i), x(i+1), x(i+2). The dihedral angle between the two consecutive
planes spanned by x(i), x(i+1), x(i+2) and x(i+1), x(i+2), x(i+3) is denoted by ωi. The internal
coordinate vector associated with X then is qX

.
= {θi|i = 1 . . . N − 2, ωi|i = 1 . . . N − 3}.

The direction of each link is chosen uniformly random on a sphere by drawing the cos(θi)
uniformly from [0, 1] and the ωi uniformly from [0, π] (Cantor and Schimmel, 1980). The link
length between consecutive beads is set to b = 1 if not stated otherwise, the mass of each
bead is m = 1

N . Rigid-body translation and rotation are again removed by placing x(1) at the

origin, x(2) along the x-axis at (b, 0, 0)T , and embedding the link between x(2) and x(3) in the
xy-plane.
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7.3 The landscape diameter of linear chains

7.3.2 The maximum RMSD problem for Random Walks

The Random Walk maximum RMSD problem (RW-MAX-RMSD) can be stated as a continu-
ous max-min optimization problem. We want to determine the specific pair of RW configura-
tions (XN

max, Y Nmax) with N beads that maximizes the minimal squared RMSD D2(X,Y ) over
all possible pairs of X and Y :

(XN
max, Y

N
max) = arg max

X,Y
D2(X,Y ) = arg max

X,Y
min
R

1

N
‖RX0 − Y0‖2 . (7.24)

We refer to the pair (XN
max, Y

N
max) as the most dissimilar or extremal shapes in a RW ensemble

in the RMSD sense. The goal is to find a closed-form expression for an upper bound on
D2(X,Y ). Although there might exist analytical tools and techniques to prove such an upper
bound, we address the problem using black-box optimization techniques. While this approach
cannot provide a proof of the upper bound, it can give a very educated guess about the
possible extremal shapes. These configurations then serve as a starting point for a rigorous
mathematical analysis. The minimal RMSD between this pair is denoted Dmax(N) and given
by:

Dmax(N) =
√
D2(XN

max, Y
N
max) . (7.25)

In Section 7.3.1 we showed that the internal minimization problem can be solved analytically
by constructing the optimal rotation matrix R from SVD (Kabsch, 1976, 1978) or by using
quaternions (Kneller, 1991, 2005). The distances constraints on the positions of consecutive
beads dE(pi,pi+1) = b, i = 1, . . . , N − 1, in the RW chain can be fulfilled by representing
the RW’s in internal coordinates q. A pair of anchored Random Walk chains (X,Y ) of N
beads each is represented by qS = (qX, qY). The transformation from internal coordinates to
the three-dimensional pair of Cartesian configurations is denoted by J(qS) = (X,Y ).

The outer maximization problem can be formulated as a constrained black-box optimization
problem in n = 2 · (2N − 5) = 4N − 10 dimensions. For convenience, we consider the unit
hypercube as landscape domain, i.e., candidate solution vectors q̂S are sampled in [0, 1]n. The
function T : q̂S ∈ [0, 1]n → qS ∈ ([0, 1]2(N−2), [0, π]2(N−3)) transforms any unit vector into
true angle cosines and dihedrals of the internal RW representation. The black-box objective
function f to be maximized for RW-MAX-RMSD then reads:

f(q̂S) ≡ D2 (J(T (q̂S))) = D2(X,Y ) = min
R

1

N
‖RX0 − Y0‖2 . (7.26)

Note that this problem formulation is known a priori to become twofold degenerate if two
consecutive links in a trial configuration become co-linear. First, the corresponding dihedral
angles are then undefined, i.e., the configuration remains the same regardless of their values.
Second, the optimal rotation matrix has only rank 1, permitting infinitely many rotations
that minimize D2(X,Y ) (McLachlan, 1979; Kneller, 1991). This degeneracy leads to plateau
regions in the landscape.

7.3.3 Numerical solutions of RW-MAX-RMSD

We numerically explore the RW-MAX-RMSD constrained black-box landscape for pairs of
shapes with N = 3, . . . , 15 beads and link length b = 1. The dimensionality of the problem is
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7 Analysis of Linear Chain Landscapes

thus ranging from n = 2(2N − 5) = 2, . . . , 50. The following search algorithms are considered:
(i) Pure Random Search (PRS), (ii) Sequential Quadratic Programming (SQP), and (iii) BLR-
CMA-ES. PRS, that is uniform random sampling, is used to check how complex the problem
is and as a reference for more advanced search heuristics. For SQP, MATLAB’s built-in
standard optimizer fmincon is used. In the box-constrained black-box optimization setting,
fmincon uses an active-set sequential quadratic programming scheme with approximate BFGS
and line search. BLR-CMA-ES has been described in Section 4.2.2. For all methods, standard
parameter settings and MAX FES = 105n are used. PRS and BLR-CMA-ES use pseudo-
random sampling. Each experiment is repeated 25 times. Figure 7.8 summarizes the best found
solutions for all methods. We denote the identified maxima by DPRS

max , DSQP
max , and DCMA

max . The
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Figure 7.8: Numerical solutions of RW-MAX-RMSD found by PRS (◦), SQP (�), and BLR-CMA-ES
(•). The triangles (4) show the conjectured analytical results Dmax(N) for odd N (see
Section 7.3.4). The solid line shows the best-fit power law to the PRS results, the dotted
line shows the best linear fit of the CMA-ES results.

solutions of PRS suggest a power-law relationship between N and DPRS
max (Fig. 7.8; the best fit

is given by DPRS
max = 0.7613N0.6074−0.5775). Visual inspection of the extremal shapes does not

reveal any obvious geometrical pattern. A general observation, however, is that all maximizing
pairs consist of one collapsed and one extended structure. SQP finds better solutions than
PRS that do not show a regular scaling. For N = 3, 5, 7, 11, the found DSQP

max values agree with
the solutions found by BLR-CMA-ES. BLR-CMA-ES robustly finds putative maxima for all
N . In all instances, it always converges to the same solutions (up to a numerical accuracy of
5 digits). Such robust performance is not observed when using IPOP-CMA-ES or LR-CMA-
ES. In fact, these two restart strategies fail to find the putative optima for N > 11. This
observation suggests that the landscape has a multi-funnel topology where the putative global
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7.3 The landscape diameter of linear chains

maximum is located in a small funnel. The optima found by BLR-CMA-ES suggest a linear
relationship between N and Dmax(N) with a best linear fit of DCMA

max = 0.3251N − 0.04013
(dotted line in Fig. 7.8).

Extremal shapes. The corresponding extremal shapes are depicted in Fig. 7.9. For odd N ,

N = 3 N = 4 N = 5 N = 6

N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 N = 13 N = 14 N = 15 N = 16

1 3

2

51

3

1 1 1 1 1

4

5

6

7

8

7 9 11 13 15

1 N

XN
max

Y N
max

Figure 7.9: The extremal pairs (XN
max, Y

N
max) for N = 3, . . . , 16 found by the BLR-CMA-ES. The upper

box shows the extended shapes XN
max. They assume a linear rod of length (N − 1)b. The

lower box depicts the correspondng shapes Y Nmax. For odd N , Y Nmax assumes a linear rod
shape of half the length of the extended one, where beads N+3

2
to N are consecutively

folded back onto beads N−1
2

to 1. For even N , Y Nmax is a planar hairpin where the links
from beads N+2

2
to N cross the links from beads N

2
to 1.

the extremal conformations follow a specific geometric pattern: one structure always is the
fully extended linear rod. The other structure is a linear rod with half the length of the
extended one, where beads N+3

2 to N are folded back onto beads N−1
2 to 1. For even N , one

extremal structure is again the fully extended linear rod. The other extremal structure is a
planar hairpin with crossed endings. We summarize further numerical data in Table 7.2. For
odd N , the ACC of the extremal shapes is virtually 0, for even N it is < 10−3.

Landscape visualization. For N = 3 we visualize the full and for N = 4 the partial RW-
MAX-RMSD landscapes in Fig. 7.10. The 3-bead case is a 2D problem that exhibits a smooth
double-funnel landscape with two identical maxima (Fig. 7.10a): either X is the linear rod
and Y the folded hairpin, or vice versa. Both BLR-CMA-ES and SQP can solve this problem.
The 4-bead case is a 6D problem that cannot be fully visualized. Therefore, we fix one of
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N D(N)PRS
max D(N)CMA

max D(N)max D̂(N)max ACC(XN
max, Y

N
max)

3 0.9254 0.9428 0.9428 0.9682 < 10−15

4 1.1843 1.2360 - 1.2909 1.15 · 10−13

5 1.4335 1.6 1.6 1.6137 < 10−15

6 1.6440 1.8488 - 1.9364 8.92 · 10−11

7 1.9022 2.2497 2.2497 2.2592 < 10−15

8 2.1024 2.4978 - 2.5819 4.43 · 10−6

9 2.4251 2.8974 2.8974 2.9047 < 10−15

10 2.4609 3.0602 - 3.227 5.68 · 10−8

11 2.6817 3.5443 3.5443 3.5502 < 10−15

12 2.8877 3.8540 - 3.8729 1.18 · 10−7

13 2.9992 4.1907 4.1907 4.1957 < 10−15

14 3.2330 4.4151 - 4.5184 1.36 · 10−3

15 3.3521 4.8369 4.8369 4.8412 < 10−15

Table 7.2: The maxima Dmax(N) found by PRS and BLR-CMA-ES are summarized in the first two
columns. The values of the conjectured analytical Dmax(N) for odd N is given in the third
column, followed by its asymptotic upper bound (Eq. (7.38)). In the last column we report
the ACC values of the extremal shapes.

the extremal shapes to the linear rod X4
max and compute RMSD’s with respect to this shape.

We plot the 3 internal angles of Y and color-code the resulting D(X4
max, Y ). This landscape

also appears smooth with a single global maximum at cos (θY1 ) = cos (θY2 ) = 2/3, ωY
1 = 0.

All BLR-CMA-ES runs converge to this putative global maximum, while SQP fails in all
cases. We conduct additional SQP experiments on the presented simplified landscape with
fixed X4

max. We start 1000 SQP runs at random starting positions with the following fmincon
options: options = optimset(’MaxIter’,1000,’RelLineSrchBnd’,0.01,’TolCon’,1e-12). The best
solutions found during this search are indicated in Fig. 7.10b by circles (◦). In more than 90%
of the cases, SQP converges to the local maximum at cos (θY1 ) = cos (θY2 ) = 1 and arbitrary
ωY

1 . This represents a shape, where all links are completely folded back onto themselves, i.e.,
the most compact shape. The RMSD between this shape and the linear rod is 1, which is
smaller than the putative optimal D(N)max = 1.2360.

7.3.4 The RW-MAX-RMSD conjecture

Our numerical data suggest that the extremal shapes for odd N follow a simple geometric
pattern: One structure is the fully extended linear rod, the other one a linear fold-back of
half length. We thus conjecture that these shapes are extremal for all odd N. Under this
assumption we propose and derive a general formula for Dmax(N) for odd N . Combining
Eqs. (7.20) and 7.21), we find:

D2
max(N) = D2(XN

max, Y
N
max)

= R2
G(XN

max) +R2
G(Y Nmax)− 2ACC(XN

max, Y
N
max)RG(XN

max)RG(Y Nmax)

= R2
G(XN

max) +R2
G(Y Nmax) . (7.27)

The above statement for D2
max(N) is true if we can prove that ACC(XN

max, Y
N
max) = 0 for all

odd N . Together with analytic formulae for the radii of gyration of XN
max and Y Nmax we then

arrive at a closed-form solution for D2
max(N).
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Figure 7.10: a. RW-MAX-RMSD landscape for N = 3 with internal angles vs. D(X,Y ). The struc-
tures above the landscape are the two pairs of extremal shapes. The blue dashed line
shows an example evolution path of BLR-CMA-ES. The central ridge with D(X,Y ) = 0
corresponds to all possible identical structures. b. RW-MAX-RMSD landscape for N = 4
with internal representation of Y vs. D(X4

max, Y ), i.e., the first extremal shape is fixed
to the linear rod and all RMSD’s are calculated with respect to this shape. The hairpin
structure corresponds to cos (θY1 ) = cos (θY2 ) = 2/3 and ωY

1 = 0 (black solid lines). The
blue dashed trajectory is a BLR-CMA-ES evolution path on the full problem. The white
circles are solutions found by SQP on the reduced problem (see main text for details).

The ACC(XN
max,Y

N
max) for odd N is 0. Without loss of generality (w.l.o.g.), we assume that

XN
max is the fully extended shape and Y Nmax the folded one, and that their centers of mass are

at (0, 0, 0). For odd N , the problem of optimal superposition then reduces to a rotation in
the xy-plane. We define the x-axis to be aligned with XN

max after optimal superposition. Y Nmax

forms a certain rotation angle α with XN
max as shown in Fig. 7.11. In order to see that for the

specific pair of configurations (XN
max, Y

N
max) the ACC(XN

max, Y
N
max) is 0 for any rotation angle α

and any odd N , we recall the definition of the aligned correlation coefficient for two optimally
aligned structures X, Y :

ACC(X,Y ) =

∑N
i=1 x(i) · y(i)

√∑N
i=1 x(i)2

∑N
i=1 y(i)2

. (7.28)

The denominator of this expression must always be positive because the two factors in the
square root are the sum of the squared atomic coordinates of the two extremal shapes.

From Fig. 7.11 we see that the coordinate vectors x
(i)
max only have non-zero entries in x direction.

Furthermore, the x coordinate of the ith bead in XN
max is the negative of the x coordinate of

the (N − i+ 1)th bead. The central bead (i.e. the N+1
2

th
bead) in XN

max is at (0, 0, 0), so the
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Figure 7.11: General setup for the calculation of the RMSD between XN
max and Y Nmax for odd N after

optimal superposition. XN
max is the extended structure and Y Nmax is the folded structure.

Open circles (◦) represent positions that are occupied by single beads, filled circles (•)
indicate positions occupied by two beads. The two structures enclose a planar angle α.

scalar product with its corresponding bead in Y Nmax will be 0. The positions of the ith and the
(N − i + 1)th bead in Y Nmax are identical (filled circles in Fig. 7.11), independent of the angle
α. The numerator in ACC(XN

max, Y
N
max) thus becomes:

N∑

i=1

xN,(i)max · yN,(i)max =

N+1
2 −1∑

i=1

xN,(i)max · yN,(i)max + 0 +
N∑

i= N+1
2 −1

xN,(i)max · yN,(i)max (7.29)

= −
N∑

i= N+1
2 −1

xN,(i)max · yN,(i)max +
N∑

i= N+1
2 −1

xN,(i)max · yN,(i)max

= 0

and, therefore, ACC(XN
max, Y

N
max) = 0 for all odd N and any rotation angle α.

The radii of gyration of XN
max and YN

max for odd N. We assume w.l.o.g. that XN
max is

aligned along the x-axis and Y Nmax along the y-axis. Computing D2
max(N) then reduces to the

calculation of two one-dimensional, N -dependent radii of gyration (Eq. (7.27)). For Xmax we
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find:

R2
G(XN

max) =
1

N

N∑

i=1

‖xN,(i)max − xNcm,max‖2 =
1

N

N∑

i=1

‖xN,(i)max ‖2 (7.30)

=
1

N

N−1∑

i=0

(
−N − 1

2
b+ ib

)2

=
2

N
b2

N−1
2∑

i=1

(i)2 .

Defining M− = N−1
2 yields the result:

R2
G(XN

max) =
2

N
b2
M−∑

i=1

(i)2 . (7.31)

For Ymax we assume w.l.o.g. that the first bead is located at the origin (translation invariance
of RG). We then find:

R2
G(Y Nmax) =

1

N

N∑

i=1

‖yN,(i)max − yNcm,max‖2 (7.32)

= −yNcm,max · yNcm,max +
1

N

N∑

i=1

‖yN,(i)max ‖2 .

The center of mass of Y Nmax is at yNcm,max = N−1
N

N−1
4 b (McLachlan, 1984), thus:

R2
G(Y Nmax) = −

(
(N − 1)(N − 1)

4N
b

)2

+
1

N

N∑

i=1

‖yN,(i)max ‖2 (7.33)

= −
(

(N − 1)(N − 1)

4N
b

)2

+
1

N



(
N − 1

2
b

)2

+ 2

N−3
2∑

i=0

(ib)2


 .

Defining M̂− = N−3
2 , we find the result:

R2
G(Y Nmax) = −b2

(
M−M−

N

)2

+
1

N
b2


(M−)2 + 2
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 . (7.34)

Analytical form of D2
max(N). Combining Eqs. (7.31) and 7.34 we arrive at the final formula:

D2
max(N) =

2

N
b2
M−∑

i=1

(i)2 − b2
(
M−M−

N

)2

+
1

N
b2


(M−)2 + 2

M̂−∑

i=1

(i)2


 . (7.35)

The values of D2
max(N) for N = 3, . . . , 15 are tabulated in Table 7.2. Note that the complicated

form of R2
G(Y Nmax) comes from the fact that the mass distribution in Y Nmax is slightly asymmetric
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(the position of the center bead at the turn is occupied only once) and hence the center of

gravity is not located in the middle between the first and the N+1
2

th
bead. This asymmetry,

however, decreases with increasing N , and Dmax(N) is asymptotically bounded by a simpler
expression.

Asymptotic bound of Dmax(N) for odd N. In order to study the asymptotic behavior of
Dmax(N) for large odd N , we define the ratio

Cmax(N)2 =
D2

max(N)

N2
=
R2
G(XN

max)

N2
+
R2
G(Y Nmax)

N2
. (7.36)

Using Eq. (7.31), we find for the first summand:

R2
G(XN

max)

N2
=

2

N3
b2
M−∑

i=1

(i)2 =
2

N3
b2
(
M−

6
(2M− + 1)(M− + 1)

)

=
2

N3
b2
(
N − 3

12

(
2

(
N − 3

2

)
+ 1

)((
N − 3

2

)
+ 1

))

=
2

N3
b2
(
N3

24
+O

(
N2
))

=
1

12
b2 +O

(
1

N

)
b2 ,

and using Eq. (7.34) for the second summand:
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Cmax(N)2 thus has the asymptotic limit:

lim
N→∞

Cmax(N)2 =
1

12
b2 +

1

48
b2 =

5

48
b2 . (7.37)

We can thus derive an asymptotic upper bound D̂max(N) for large N :

Dmax(N) . D̂max(N) =

√
1

12
+

1

48
bN =

√
5

48
bN =

1

4

√
5

3
bN . (7.38)
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7.3 The landscape diameter of linear chains

This result relates to the moment of inertia Icm(X) of a linear rod X of length L and mass m
around its center of mass:

Icm(X) =
1

12
mL2 . (7.39)

Using m = 1 for both XN
max and Y Nmax, a length of (N−1)b for XN

max, and a length of 1
2 (N−1)b

for Y Nmax confirms the result in Eq. (7.37) asymptotically for large N :

Icm(XN
max) =

1

12
((N − 1)b)

2 ≈ 1

12
N2b2 , (7.40)

Icm(Y Nmax) =
1

12

(
1

2
(N − 1)b

)2

≈ 1

48
N2b2 . (7.41)

The values D̂max(N) are also tabulated in Table 7.2. As the relative error η = |Dmax(N)−D̂max(N)|
|Dmax(N)|

already drops below 1% for N ≥ 5, D̂max is a good estimate of the upper bound for odd N .
Furthermore, we conjecture that D̂max is also an asymptotic upper bound for even N . The
reasoning is twofold: (i) visual inspection of the extremal shapes for even N suggests that
for large N the folded structure will assume an “odd-like” conformation where all except the
central links are co-linear. (ii) already for even N ≥ 10 the relative error between D̂max and
DCMA

max drops below 1% (Fig. 7.8, dotted line).

7.3.5 The maximum RMSD problem for self-avoiding Random Walks

Our previous investigations conjecture an upper bound for the RMSD-based landscape di-
ameter of linear chains with fixed link length b and without any restrictions on the degrees
of freedom. It is, however, clear that the hairpin-like extremal shape can never be attained
by any real chain molecule since N − 1 beads overlap. We therefore study the effect of self-
avoidance on the extremal shapes, where beads are not allowed to occupy the same position in
space. The resulting Self-avoiding Walk Maximum RMSD problem (SAW-MAX-RMSD) can
be stated analogous to RW-MAX-RMSD, but with additional quadratic constraints on the
allowed distances between any two beads. We denote again the extremal shapes by (XN

max,
Y Nmax) with N beads that maximize the minimal squared RMSD D2(X,Y ) over all possible
pairs of X and Y :

(XN
max, Y

N
max) = arg max

X,Y
D2(X,Y ) = arg max

X,Y
min
R

1

N
‖RX0 − Y0‖2 . (7.42)

X,Y represent now SAW’s. The degree of self-avoidance is controlled by the parameter cr
that represents the radius of a sphere around each bead that cannot be penetrated by any the
sphere of any other bead (see Fig. 7.1 for a sketch). As in the finite sphere packing problem,
these constraints render the landscape discontinuous. In order to arrive at a feasible black-
box optimization formulation we augment the objective function f(q̂S) in Eq. (7.26) with an
energy EmodLJ(X,Y ) that penalizes overlapping configuration in a soft manner. EmodLJ(X,Y )
is defined as

EmodLJ(X,Y ) =
∑

X,Y

N−1∑

i=1

N∑

j=i+1

umodLJ(rij) , (7.43)
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where rij is the distance between the ith and jth bead. The modified LJ pair potential is

umodLJ(rij) =

{
ε+ uLJ(rij) if rij < 2cr

0 else
(7.44)

with ε = 1 and σLJ = 2−1/6. This implies that the penalizing energy term only vanishes if all
constraints are satisfied. The resulting black-box objective function fSAW to be maximized for
SAW-MAX-RMSD then reads:

fSAW(q̂S) = f(q̂S)− EmodLJ(J(T (q̂S)) . (7.45)

Because the described penalty approach uses a soft potential, it cannot guarantee that the
resulting extremal shapes exactly satisfy all self-avoidance constraints. This has to be ensured
a posteriori by inspecting the geometries of the putative extremal shapes.

7.3.6 Numerical solutions of SAW-MAX-RMSD

Due to its robust performance on RW-MAX-RMSD we also apply BLR-CMA-ES to this prob-
lem. The identical simulation protocol is used as for RW-MAX-RMSD. We consider 5 different
SAW’s: cr = 0b, 0.025b, 0.125b, 0.375b, 0.495b. The zero value is included in order to validate
the penalty approach; it should yield identical results to RW-MAX-RMSD. The highest value
is chosen such that beads connected by a link of length b do not repel each other. We present
the identified putative upper bounds Dmax(N) and the ratios Cmax(N) = Dmax(N)/N in
Fig. 7.12. BLR-CMA-ES always converges to solutions that agree to within an objective value
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Figure 7.12: a. Solutions of SAW-MAX-RMSD identified by BLR-CMA-ES for cr = 0b (blue •), 0.025b
(red ∗), 0.125b (black �), 0.375b (green �) and 0.495b (pink ◦). b. Ratio Cmax(N) =
Dmax(N)/N for better visual discrimination. The horizontal dashed line is the asymptotic
limit D̂max(N)/N =

√
5/48.

of 10−3 for any cr and N . For all reported putative optimal solutions the corresponding ex-
tremal structures satisfy all self-avoidance constraints. This suggest that our penalty function
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7.3 The landscape diameter of linear chains

EmodLJ(X,Y ) works effectively. The results for cr = 0b are identical to those from the origi-
nal RW-MAX-RMSD problem. All results are consistent in the sense that increasing cr for a
given N lowers the putative upper bound. The effect of self-avoidance is especially apparent
in the cases with N < 10. With increasing N , the solutions of SAW-MAX-RMSD rapidly
approach the conjectured RMSD landscape diameter of RW’s. This is also reflected in the
asymptotic behavior of the ratio Cmax(N) (Fig. 7.12b). The difference in the upper bounds
is contributed solely by the hairpin-like extremal configuration, as the linear rod naturally
satisfies self-avoidance for all cr. Visual inspection of the hairpins provides a coherent picture
of how increasing self-avoidance changes the geometry of the hairpin. An example is shown in
Fig. 7.13 for N = 12. While the effect of self-avoidance has little influence on the turn of the

Figure 7.13: Effect of self-avoidance on the extremal hairpin structure for N = 12. The crossing at
the lower end opens up and forms a dual helix (Banavar et al., 2009). The color-code is
identical to that of Fig. 7.12 and indicates the cr values used.

hairpin, the crossing of the lower ends changes to a winding of the first and last four beads.
Banavar and co-workers called a hairpin with complete winding a dual helix (Banavar et al.,
2009).

7.3.7 A comparison of extremal shapes and protein structural motifs

All globular proteins are composed of a number of structural motifs, i.e., small regular geo-
metric patterns whose unique combination gives rise to the structural diversity of the protein
space. The most common motifs (or secondary structures) are the α-helix, the 310-helix, the
poly-proline type II (ppII) helix, and the parallel (para) and anti-parallel (anti) β-strand.
Their shapes, along with the Cα-pseudo-angle description, are depicted in Fig. 7.14. The
simplest super-secondary structure motif is the hairpin. It consists of two helices or strands
linked by a turn. We note that the identified extremal shapes resemble some of these natu-
rally occurring geometries. In order to quantify these observation we conduct the following
experiment. We first identify the extremal shapes for protein-like SAW’s. The difference to
the previous extremal shapes is a further restriction of the θi-angles. Oldfield and Hubbard
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α-helix 310-helix para-β anti-β

θi = 90.6◦

ωi = 52.3◦
θi = 83.6◦

ωi = 84.4◦
θi = 122.7◦

ωi = 108.1◦
θi = 119.0◦

ωi = 179.1◦
θi = 132.2◦

ωi = 179.9◦

ppII-helix

Figure 7.14: Cα backbones of the five most common structural motifs along with their pseudo-angle
description.

analyzed the protein space in terms of Cα geometry and presented bounds for the θ angles
from a large set of protein crystal structures (Oldfield and Hubbard, 1994). They concluded
that in real proteins θi ∈ [85, 145]. Together with the self-avoidance parameter cr = 0.445
we derived the extremal shapes (XN

max, Y
N
max) under these constraints using our optimization

protocol. The link length is set to b = 3.8 and interpreted in units of Ångström. This is the
average distance between Cα atoms in proteins.

The resulting extremal shapes are similar to the previously described SAW’s. The linear rod,
however, is changed to a zig-zag structure with θi = 145o. We focus here on the case N = 12.
We generate an ensemble of 3000 protein-like 12-bead SAW’s as a base sample of the confor-
mational space. We include the structural motifs and the extremal shapes. As an example
of a hairpin motif of length 12 we consider a Tryptophan zipper (trypzip) ensemble (PDB
code: 1LE1) (Cochran et al., 2001), which comprises 20 β-hairpin structures. We calculated
all-against-all RMSD’s for this ensemble and store the data in a distance matrix. A conve-
nient way to visualize this conformational ensemble is offered by low-dimensional embedding
techniques. We use MATLAB’s Multi-Dimensional-Scaling (MDS) function (mdscale.m) with
standard setting. MDS attempts to find an arrangement of points in a lower-dimensional
space such that all calculated pairwise distances are (approximately) conserved. We present
a 2D MDS embedding of the ensemble in Fig. 7.15. We note that the 2D projection of the
conformational landscape is more extended in one coordinate than in the other. The scalar
xMDS

1 coordinate is spanned by our upper bound (<
√

5/48 · 3.8 · 12 Å= 14.7Å). In xMDS
2 ,

maximum distances are around 7 Å. The overall shape of the ensemble is pear-like with more
structures neighboring the extended extremal shape. We observe that (i) the β strands are
extremely similar to the extended extremal shape (RMSD < 1Å) and (ii) for all structures in
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Figure 7.15: 2D MDS embedding of a protein-like SAW ensemble (see main text for details). β strands
are close to the extended extremal shape X12

max (RMSD < 1 Å). The 1LE1 hairpin en-
semble is neighboring the hairpin-like extremal shape (RMSD ≈ 2 Å). The dotted line
sketches the overall shape of the point cloud.

the ensemble the trypzip ensemble is closest to the hairpin-like extremal shape with RMSD
≈ 2Å. These results support the hypothesis that real protein structural motifs span a large
portion of the entire conformation space when the RMSD metric is used as distance measure.

7.4 Conclusions

The local shape probability distribution within the RW ensemble (i.e., the local density of
structures in the immediate neighborhood of a given central structure, relative to its average
over all possible central structures) is by no means homogeneous across all possible shapes.
Even in the absence of interatomic interactions (beyond the mere connectivity constraint),
some shapes are intrinsically more probable, while others (e.g., those defined by a central
structure with one or more bond angles equal to 0 or π) have a vanishing probability. Over
the limited range of sizes (N = 3, . . . , 6) that could be probed in the present study, the bias
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in favor of the most probable (densest) shape increases in the sequence 1.28, 1.79, 2.94, and
10.05, as measured by the probability of this shape relative to the corresponding average
over all possible shapes. In other words, given a random structure with N = 6 beads and
prompted to make a guess for a shape to which this structure belongs, one would have about a
tenfold higher chance of success by proposing the densest shape than by proposing any shape
at random. Over the range N = 3, . . . , 6, the central structures associated with the densest
shape were all found to be planar, with bond angles progressively opening with increasing N
(Fig. 7.7). Based on the present results, it is, however, not possible to determine whether
these features also hold for larger N .

The finite-cutoff shape probability distribution (i.e., the integrated density of structures within
a specified cutoff distance from a given central structure, relative to its average over all possi-
ble central structures) as well as the fractional coverage function (i.e., the integrated density
of structures within a specified finite cutoff distance from a given central structure, relative
to its value at infinite cutoff) evidence similar qualitative features for all values ofN considered.

Three regimes are observed upon increasing the cutoff Rc : (i) for Rc below a threshold
value R∗N , all shapes only encompass part of the ensemble; (ii) for Rc above a threshold
value R∗∗N > R∗N , all shapes encompass the entire ensemble; (iii) for intermediate values
R∗N ≤ Rc ≤ R∗∗N , a single shape (Rc = R∗N ; barycentric shape), and then an increasingly
larger set of shapes (Rc > R∗N ), encompasses the entire ensemble.

Over the range N = 3, . . . , 6, the central structures associated with the barycentric shapes
are not planar (except for N = 3) and do not appear to present obvious systematic trends
(Fig. 7.7). This may, however, also be due to the relatively low precision in the determination
of these structures for N = 5 and 6.

The observed threshold R∗∗N has led us to investigate the N -dependent landscape diameter
of linear chains under RMSD. We have combined numerical optimization experiments and
analytical geometry in a first attempt to derive a tight RMSD upper bound. The regular
geometric pattern of the extremal shapes for odd N up to 15 inspired a conjecture about
an analytic formula for the upper bound of the RMSD of RW’s. An conjectured asymptotic
formula for large N also holds for SAW’s.

The numerically obtained pairs of extremal conformations for RW’s and SAW’s reveal that
one extremal structure is a linear rod and the other one is hairpin-like. When adopting angle
restrictions from real protein structures, the extremal shapes show a remarkable similarity
to naturally occurring structural motifs, such as β-strands and β-hairpins. This suggests
that proteins span a large portion of the possible conformation space when RMSD is used to
measure distances.
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8
Conclusion & Future Work

“Kids, you tried your best and you failed miserably. The lesson is: Never try.”
Homer Simpson, in: The Simpsons, Burn’s Heir, Episode no. 99, 1994

This thesis was dedicated to the characterization, optimization, and sampling of black-box
landscapes. We then applied these tools to the geometric configurations of atomic clusters and
linear chain molecules in different contexts. In this chapter, we summarize the key conclusions
that can be drawn from the presented studies and outline a number of possible future research
opportunities.

Landscapes. We started this thesis by revisiting the landscape concept in physics, chemistry,
biology, and optimization. To the best of our knowledge, there has been no previous attempt
to review this paradigm across all these disciplines. The landscape paradigm has been vital
for the analysis of black-box systems presented in this thesis. We conclude that popularizing
the available knowledge across disciplines might foster interdisciplinary collaborations between
theoretical physicists, theoretical biologists, and computer scientists.

Characterization. We have introduced a set of statistical measures that allow characterizing
continuous black-box landscapes with respect to: global landscape topology, variable impor-
tance and separability, and landscape ruggedness. Fitness-distance correlations and dispersion
differences have been used to study the global landscape topology. Variable importance and
separability have been probed with a modified Morris method and two derived, dimension-
and scale-independent scalar quantities: the normalized total importance variation tµ and the
normalized total interaction variation tσ. The measure of ruggedness is based on the random
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walk autocorrelation of objective function values and the derived correlation length.

All landscape descriptors have been tested on the CEC benchmark test suite with standard
FES budget. We found that fitness-distance correlation and dispersion differences can dis-
criminate between functions with single-funnel topology and highly unstructured problems.
However, high-conditioned ellipsoidal functions, although convex and unimodal, cannot be
distinguished from multi-funnel problems by any of the measures. This observation is in
stark contrast to Lunacek and Whitley’s claim that function dispersion would be a good mea-
sure for detecting uni-modality (Lunacek and Whitley, 2006). The observed problems with
high-conditioned (globally) ellipsoidal landscapes may be alleviated by considering alternative
distance metrics. Replacing the Euclidian distance by a suitable Mahalanobis distance that
captures the underlying ellipsoid might increase the discriminative power of fitness-distance
correlation and dispersion. The required positive definite matrix for the Mahalanobis distance
might be inferred from the covariances learned by CMA-ES and Gaussian Adaptation.
The Morris method and its derived quantities can identify separable functions across all tested
dimensions, but also produce false-positive results, for instance on the multi-modal problem
f14. The estimated landscape correlation length from the random walk autocorrelation was
found to discriminate between smooth quadratic functions and most multi-modal or noisy
functions. Several highly multi-modal landscapes, however, also exhibit a large correlation
length thus limiting the discriminative power of this measure as well.

From the observed limitations we conclude that the present study can only be considered a
first step toward more principled statistical landscape characterization. We envision an unsu-
pervised statistical learning framework in which a classification of black-box landscapes can
be inferred from a given list of samples and associated landscape descriptors. We believe that
the statistical fingerprints introduced here provide informative features to this end. Equipped
with such statistical “problem classes”, the ultimate goal would be to relate these classes to a
prediction of success performance of state-of-the-art search heuristics.

Our current research efforts also include the application of these landscape descriptors to real-
world black-box problems, such as parameter estimation landscapes from systems biology.
The possibility of re-using samples from black-box optimization runs for landscape analysis
has been and still is a topic of our research (Müller et al., 2007).

Optimization. In this thesis we have solely considered variable-metric approaches to black-
box optimization in form of the CMA-ES and Gaussian Adaptation. Our study of standard
CMA-ES suggest that (i) the initial CEC 2005 benchmark results of IPOP-CMA-ES were
partly incorrect due to wrong boundary settings. From the reduced performance of CMA-
ES when using correct boundary settings, we conclude that the current boundary handling
technique (Hansen et al., 2009) could be improved. (ii) LD sampling is beneficial for the
performance of CMA-ES in all tested benchmarks, and (iii) BLR-CMA-ES as an alternative
restart strategy is useful for solving problems of the RW-MAX-RMSD type.

In order to improve the performance of CMA-ES on multi-funnel landscapes we introduced
the concept of parallel CMA-ES schemes. One such instance developed in this thesis, the
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collaborative Particle Swarm CMA-ES, exhibits the best performance among all CMA-ES
variants on the CEC 2005 benchmarks in n = 10. For all strongly multi-modal and multi-
funnel problems, PS-CMA-ES ranks on average better than the standard restart strategies of
CMA-ES across all tested dimensions. Parallel CMA-ES schemes thus supplement sequential
CMA-ES in the absence of a globally unimodal structure. The simplest combination of both
schemes is a restart strategy where, instead of increasing the population size, the number
of parallel CMA-ES instances is increased. Such a scheme would combine the strength of
single CMA-ES on smooth unimodal landscapes with the robustness of parallel CMA-ES on
multi-funnel problems.

Gaussian Adaptation, a largely ignored optimization and design-centering method developed
in the late 1960’s has been revisited and enhanced. Gaussian Adaptation offers an alterna-
tive view on step size adaptation: the maximum entropy principle. For gradually decreasing
objective function thresholds, a multivariate normal distribution is adapted for maximum
entropy. We introduced Restart Gaussian Adaptation, which shows excellent performance
on the CEC 2005 benchmark, comparable to IPOP-CMA-ES. Restart GaA is less favorable
than IPOP-CMA-ES on strongly multi-modal functions with globally convex structure, but
outperforms all tested methods on noisy unimodal functions. Future work will explore the
possibility of including parallelism into the Gaussian Adaptation framework.

From the encouraging performance results on the CEC 2005 benchmark, we conclude that
Gaussian Adaptation, CMA-ES (with LD sampling), and PS-CMA-ES are applicable to a
wide range of landscape types. Future research will include the application of these methods to
real-world problems, such as parameter estimation in systems biology and geometric problems
in biophysics and architecture.

Sampling. Gaussian Adaptation has also served as a conceptual link to black-box sampling.
In fact, by changing the acceptance criterion from a hard threshold to a Metropolis criterion,
we derived a novel adaptive Markov-Chain Monte Carlo sampler. This Metropolis Gaussian
Adaptation algorithm performs comparably well to the seminal AP algorithm on selected tar-
get distributions. We also demonstrated the current limitations of M-GaA on Neal’s funnel
distribution. Future work will consider the vanishing adaptation concept in order to prove
ergodicity of Metropolis Gaussian Adaptation. We will also explore the possibility of (convex)
volume estimation using Gaussian Adaptation (see Appendix Section A1.3 for an example).
Furthermore, we wish for a closer collaboration between the computational statistics and the
black-box optimization communities. Too many ideas have been re-invented in both commu-
nities.

Atomic Clusters. We proposed the identification of minimum-energy configurations of atomic
clusters under different pair potentials as novel benchmarks for black-box optimization. Clus-
ter problems introduce isospectral symmetry as a novel problem characteristic. We intro-
duced Cohn-Kumar clusters, which have provable ground states for certain instance sizes. We
showed that these landscapes are much smoother than Lennard-Jones clusters with compara-
bly many degrees of freedom. We also presented a high-dimensional benchmark, the 38-atom
Lennard-Jones cluster, with a tunable landscape topology. We conclude that our set of cluster
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benchmarks represents a rich test bed that should be included in future black-box benchmark
scenarios. This might be achieved by embedding the presented cluster problem instances into
the BBOB framework.

Linear chains. We analyzed the random walk linear chain model of polymers pertaining to
the most important distance measure in structural biology: the Root Mean Square Deviation
(RMSD) after least-squares roto-translational fitting. We investigated the resulting confor-
mational landscape in the absence of energetic terms. Two properties of this landscape have
been of specific interest: (i) the inhomogeneity of the local neighborhood density induced by
the RMSD and (ii) the identification of pairs of structures that have maximum RMSD and
thus represent the extremal boundaries of the landscape.

We quantified the inhomogeneity of the local (infinitesimal) neighborhood density (or local
shape probability distribution) within ensembles of random walks consisting of up to N = 6
beads. We could show that some shapes are intrinsically more probable, while others have a
vanishing probability. The bias in favor of the most probable (densest) shape increases in the
sequence 1.28, 1.79, 2.94 and 10.05, as measured by the probability of this shape relative to
the corresponding average over all possible shapes. These densest shapes were all found to be
planar, with bond angles progressively opening with increasing N .

The finite-cutoff shape probability distribution evidence similar qualitative features for all
value N considered. Three regimes could be observed with increasing cutoff Rc. Below a
threshold R∗N , the shape probabilities are highly inhomogeneous. For Rc = R∗N , single (or
a few symmetry-related) barycentric shapes could be identified that encompass the entire
random walk ensemble. These shapes are not planar and do not show a clear geometric
pattern. Above the threshold R∗∗N , all shapes encompass the entire random walk ensemble.
We argue that the derived shape probabilities constitute useful prior information that should
be included in Bayesian approaches toward structure identification.

The structures associated with the threshold R∗∗N have been further investigated for walks with
N = 3, . . . , 15 beads using a combination of BLR-CMA-ES optimization runs and analytic
geometry. The putative pairs of extremal conformations reveal that one extremal structure
always is a linear rod and the other one is hairpin-like. This regular geometric pattern allowed
a conjecture about an analytic formula for the upper bound of the RMSD of random walks.
The conjectured asymptotic formula for larger N also holds for self-avoiding walks. Future
research will explore possibilities how to prove this conjecture.

When adopting angle restrictions from real protein structures, the extremal shapes show a
remarkable similarity with naturally occurring structural motifs, such as the β-strands and
β-hairpins. This suggests that real proteins span a large portion of the possible conformation
space when RMSD is used to measure distances. Future research will be concerned with relat-
ing the derived extremal structures with known folding times of naturally occurring protein
motifs, for instance, by analyzing their internal contact order.
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Appendix

A1 GaALib: A MATLAB toolbox for Gaussian Adaptation

The Gaussian Adaptation Library (GaALib) is a set a MATLAB toolbox. We briefly outline
the contents of the different functions and scripts.

A1.1 Algorithm

The core of the library is the MATLAB routine gaussAdapt.m. The header of the function is
listed below.

f unc t i on [ xmin , fmin , counteval , out ] = gaussAdapt ( f i t f u n , xs tar t , i nopt s )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Implementation o f the Gaussian Adaptation a lgor i thm f o r des ign c e n t e r i n g
% Black−box opt imiza t i on and adapt ive MCMC sampling
%
% Input :
% f i t f u n : Name o f the f i t n e s s / t a r g e t func t i on as s t r i n g or func t i on handle
% x s t a r t : i n i t i a l candidate s o l u t i o n / sample
% inopt s : opt ion s t r u c t u r e that determines i n t e r n a l s t r a t e g y parameters
% ( see code f o r d e t a i l s )
%
% Output :
% xmin : minimum candidate s o l u t i o n found by GaA (when us ing GaA as opt imize r )
% fmin : f i t n e s s va lue o f the xmin (when us ing GaA as opt imize r )
% counteva l : Number o f func t i on e v a l u a t i o n s
% out : Output s t r u c t u r e s t o r i n g a l l r e l e v a n t in fo rmat ion ( see code f o r
% d e t a i l s )
%
%
% Chr i s t i an L . Muel ler
% MOSAIC group , ETH Zurich , Swi tzer land
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% dimension o f the problem
N = length ( x s t a r t ) ;

% Options d e f a u l t s : Stopping c r i t e r i a % ( value o f stop f l a g )
de fopt s . StopFi tnes s = −I n f ; % stop i f f ( xmin ) < s t o p f i t n e s s , minimization ’ ;
de f opt s . MaxIter = 1e4 ∗(N) ; % maximal number func t i on eva luat i ons ’ ;
de f opt s . TolX = 1e−12; % r e s t a r t i f h i s t o r y o f xva l s sma l l e r TolX ’ ;
de f opt s . TolFun = 1e−9; % r e s t a r t i f h i s t o r y o f funva l s sma l l e r TolFun ’ ;
de f opt s . TolR = 1e−9; % r e s t a r t i f s t ep s i z e sma l l e r TolR ’ ;
de f opt s . TolCon = 1e−9; % r e s t a r t i f th r e sho ld and f i t n e s s converge ’ ;
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de fopt s . BoundActive = 0 ; % Flag f o r e x i s t e n c e o f bounds
de fopt s . BoundPenalty = 0 ; % Flag f o r use o f pena l ty term out s id e bounds ;
de f opt s . LBounds = −I n f ; % lower bounds , s c a l a r or Nx1−vector ’ ;
de f opt s . UBounds = I n f ; % upper bounds , s c a l a r or Nx1−vector ’ ;
de f opt s . bRestart = 1 ; % Flag f o r r e s t a r t a c t i v a t i o n ;
de f opt s . ThreshRank = 0 ; % Flag f o r th r e sho ld based on ranks ( Experimental )
de f opt s . PopMode = 0 ; % Flag f o r populat ion mode (ToDo ) ;
de f opt s . Display = ’ o f f ’ ; % Display 2D landscape whi l e running ’ ;
de f opt s . P l o t t i ng = ’ on ’ ; % Plot p rog r e s s whi l e running ’ ;
de f opt s . VerboseModulo = 1e3 ; % >=0, command l i n e messages a f t e r every i−th i t e r a t i o n ’ ;
de f opt s . SavingModulo = 1e2 ; % >=0, sav ing a f t e r every i−th i t e r a t i o n ’ ;
de f opt s . bSaving = ’ on ’ ; % [ on | o f f ] save data to f i l e ’ ;
d e f opt s . bSaveCov = 0 ; % save covar iance matr ices ’ ( ’ 1 ’ r e s u l t s in huge f i l e s ) ;
de f opt s . funArgs = [ ] ; % g ive a d d i t i o n a l t a r g e t func t i on arguments

%(s ca l a r , v e c t o r s or matrix ) i f nece s sa ry

% Defau l t opt ions f o r a l go r i thmi c parameters
de f opt s . valP = 1/exp ( 1 ) ; % 0 . 3 7 . . . H i t t ing p r o b a b i l i t y
de fopt s . r = 1 ; % Step s i z e o f the i n i t i a l covar iance
de fopt s .MaxR = I n f ; % maximal a l lowed step s i z e
de fopt s . MaxCond = 1e6∗N; % maximal a l lowed cond i t i on
de fopt s . N mu = exp (1)∗N; % Mean adaptat ion weight
de fopt s . N C = (N+1)ˆ2/ log (N+1); % Matrix adaptat ion weight
de fopt s . N T = exp (1)∗N; % Constra int adaptat ion weight
de fopt s . inc T = 2 ; % Factor f o r N T i n c r e a s e at r e s t a r t ( opt imiza t i on )
de fopt s . beta = 1/ de fopt s . N C ; % Step s i z e i n c r e a s e / dec r ea s e f a c t o r
de fopt s . s s = 1 + de fopt s . beta∗(1− de fopt s . valP ) ; % Expansion upon s u c c e s s
de f opt s . s f = 1 − de fopt s . beta ∗( de fopt s . valP ) ; % Contract ion otherw i se

% Option f o r opt imiza t i on / des ign−c e n t e r i n g /MCMC sampling mode
% mode = 0 des ign c e n t e r i n g
% mode = 1 opt imiza t i on
% mode = 2 MCMC sampling

de fopt s . mode = 1 ;

% Option f o r i n i t i a l th r e sho ld
% In the des ign c e n t e r i n g mode c T i s constant . Values sma l l e r than t h i s va lue are
% cons ide r ed as f e a s i b l e po in t s
% In the opt imiza t i on mode t h i s va lue i s adapted
% In the MCMC mode t h i s th r e sho ld i s neg l e c t ed
de fopt s . c T = I n f ;

The design of gaussAdapt.m has been inspired by Hansen’s CMA-ES implementation. A
similar naming scheme and functionality has been adopted. The function gaussAdapt.m also
contains several child functions (from line 874 onward). Most of them are test functions for
optimization, design centering, and sampling. The above listing is almost self-explanatory.
All possible GaA settings can be conveniently stored in an options structure and provided to
GaA as an argument. The default options have been derived from the present investigations.

A1.2 Test scripts and support files

All files in the toolbox starting with “testGaA*” contain scripts that show how to initialize
and call GaA in the various scenarios.
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Design centering (inopts.mode = 0):

• testGaAConRegion.m: Shows how GaA approximates the feasible region of a linearly
constrained 2D region

• testGaAConElli.m: Shows how GaA approximates the feasible region of an nD ellipsoidal
region. It also contains details about how to compute the approximate volume of the
region.

Optimization (inopts.mode = 1):

• testGaASphere.m: Testing GaA on the Sphere function

• testGaARosen.m: Testing GaA on the Rosenbrock function

• testGaAMullerBrown.m: Testing GaA on the Müller-Brown 2D landscape

• testGaADfunnel.m: Testing GaA on the Lunacek’s double funnel function

• testGaAKjellstrom2.m: Testing GaA on the Kjellström’s function

• testGaARast.m: Testing GaA on the Rastrigin’s function

• testGaANoisyS.m: Testing GaA on the noisy sphere function (additive noise)

• testGaACEC2005.m: If the CEC 2005 benchmark suite is available, this script can be
used to run GaA on it

MCMC sampling (inopts.mode = 2):

• testGaASampler.m: Shows how to sample from several target distributions (Liang’s and
Haario’s test cases)

• testGaANeal.m: Shows how to sample from Neal’s funnel distribution (a case where
M-GaA should fail!)

Support files:

• sphereVol.m: Computes the volume of an nD sphere (used for volume computation)

• error ellipse.m: Plots 2D/3D Gaussian distributions (used for displaying the search tra-
jectory)

• LiangExMat.mat: Data file for one of the target test distributions
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A1.3 GaA in action

We present a design centering and an optimization task.

testGaAConRegion: We present an example run of the testGaAConRegion.m script, sum-
marized in Fig. 1. The task is design centering. The red region is the feasible region A. GaA
adapts a maximum-entropy 2D normal distribution to the region. An average of the final
covariance matrices can be used to estimate the volume V ol(A) = 39.2857. For the presented
run, GaA estimated a value of 37.4281. The design center is estimated to be at the coordinates
(4,4.5).

Figure 1: Results of an testGaAConRegion.m run.The upper-left MATLAB figure monitors the pro-
cess of internal variables and the position of the GaA’s mean. The upper-right MATLAB
figure plots the sequence of covariance matrices of GaA. The lower centered plot depicts the
collected feasible samples along with the optimal ellipsoid approximation.
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testGaAMullerBrown: We present an example run of the testGaAMullerBrown.m script,
summarized in Fig. 2. The task is optimization of the Müller-Brown surface (Müller and
Brown, 1979), a classical 2D double-funnel landscape. In the presented run, GaA performs 3
restarts until the global minimum is found. In the first 3 runs, the competing local minimum
is found. The left figure monitors the progress of the best samples found (upper left), the
evolution of best fitness and the threshold cT(g) (lower left), the step size r(g) in the upper
right, and the evolution of the condition of the covariance and the length of the eigenvectors
(lower right).

Figure 2: Final result of a testGaAMullerBrown.m run. The left MATLAB figure monitors the
progress of internal variables and the position of the GaA’s mean. The right upper MATLAB
figure shows the sequence of covariance matrices of GaA on the Müller-Brown landscape.
Four restarts are conducted until the minimum in the top left part of the function is found.
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A2 pCMALib: a parallel MPI-based Fortran 90 library for
CMA-ES

A2.1 Introduction

We present parts of the manual of pCMALib, a parallel Fortran 90 library for the Evolution
Strategy with Covariance Matrix Adaptation (CMA-ES). pCMALib is intended as a tool for
generic black-box optimization tasks in science and engineering. A schematic overview of
pCMALib is given in Fig. 3. The manual is structured as follows: For the impatient user

pCMALib - A parallel FORTRAN90 library for CMA-ES GECCO 2009, Montreal, Session PES-II, 11.07.2009

SlideSlide  1313

III. Software design and Library features

How to use pCMALib

pCMALibpCMALib

Settings

Objective functions

Output

Figure 3: Schematic overview of pCMALib. pCMALib is controlled by a text file that specifies the
settings of the algorithmic parameters etc. Within pCMALib, a set of objective functions
is available, such as e.g. the CEC 2005 benchmarks test suite and a generic MATLAB test
function. pCMALib can run in a single/multi-core or distributed processor environment.
Results are stored in either text or MATLAB binary output files.

we first provide a Quick Start section. Section A2.3 summarizes the general library features
and the structure of library. The Getting Started Section A2.4 contains a detailed description
of the system requirements, the specification of the make.inc/makefile, and the input/output
files. We then provide examples of how to test the installation and how to add new objective
functions to the library. This Appendix is concluded with a list of known issues with the
current version and an outlook on planned developments in pCMALib. We also provide
further literature and licensing information.
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A2.2 Quick start

pCMALib is a parallel Fortran 90 library that implements the Evolution Strategy with Co-
variance Matrix Adaptation (CMA-ES).

The software can be retrieved via our svn repository upon request. If you wish to get started
by just typing a few lines and running an example, we provide a quick start section here. You
can compile pCMALib without MATLAB and MPI (only LAPACK is required).

1. (unzip pCMALib.zip)

2. (cd pCMALib/)

3. edit make.inc to adapt to the specifications to your environment, leaving MPI and MAT-
LAB variables on their default values

4. make new (compiles pCMALib)

5. cd bin/

6. ./libcma ../example inputs/rastrigin ipop.txt (run a example)

7. cd rast ipop

8. ls (check the output data)

If MPI is available you can try the following parallel test case

1. (unzip pCMALib.zip)

2. (cd pCMALib/)

3. edit make.inc to adapt to the specifications to your environment; adapt MPI related
flags to your system and set HAS MPI = 1

4. make clean

5. make new (compiles pCMALib)

6. cd bin/

7. mpirun -np 4 ./libcma ../example inputs/water pscma.txt (minimize a water cluster)

8. cd water pscma

9. ls (check the output data, should contain files for each process)
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To test the MATLAB interface try the following:

1. (unzip pCMALib.zip)

2. (cd pCMALib/)

3. edit make.inc to adapt the specifications to your environment; adapt MAT related flags
to your system and set HAS MAT = 1; MPI flags should be empty and HAS MPI = 0

4. make clean

5. make new (compiles pCMALib)

6. cd bin/

7. ./libcma ../example inputs/matlab test.txt (minimize a water cluster)

8. cd mat test

9. ls (check the output data, should contain a .mat file)
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A2.3 pCMALib: Features and structure

pCMALib is a parallel Fortran 90 library that implements the Evolution Strategy with Co-
variance Matrix Adaptation (CMA-ES). We first summarize the key features of pCMALib and
then give an introduction to the code design and the library structure.

A2.3.1 General features

pCMALib includes the following features:

• Optimizing objective functions with standard CMA-ES and IPOP-CMA-ES

• Running embarrassingly parallel CMA-ES instances and PS-CMA-ES in a distributed
memory environment with MPI

• Efficient Linear Algebra calculations using LAPACK/BLAS

• Sampling with pseudo-random numbers or low discrepancy sequences

• Coupling CMA-ES with Quasi-Newton (BFGS) methods

• Easy control of a large set of strategy parameters via a single input file

• Interfacing with MATLAB, both for objective function calls and writing binary output
files

• Benchmarking on the IEEE CEC 2005 (in Fortran 90) and BBOB (in C) test suites

• Potential energy calculation for Lennard-Jones and TIPnP water clusters (taken from
GMIN (Wales et al., 2009))

• Easily extendable to user-provided objective functions

A2.3.2 Code design and library structure

The core of pCMALib is written in standard Fortran 90. A fundamental goal in the code
design is to keep the code structured, easy-to-read, and documented. The algorithmic flow of
pCMALib follows Niko Hansen’s MATLAB CMA-ES implementation (v. 2.54 from 2006) 1.
The user is able to control all relevant algorithmic parameters via an input text file. Output
can be generated in text format or MATLAB binary format. All linear algebra calculations
such as matrix multiplications, are done with LAPACK/BLAS routines. pCMALib is able to
run several CMA-ES runs in parallel using MPI. There, each CMA-ES instance is a unique MPI
process that are mapped onto the available cores. pCMALib includes third-party software, e.g.,
for generation of quasi-/pseudorandom numbers and for gradient descent. Figure 4 summarizes
the library structure. A JAVA-like API will be available soon. We shortly describe the content
of all directories and their purpose.

1available at http://www.lri.fr/˜ hansen/cmaesintro.html

A-9



Appendix

pCMALib Second-party f90/f77 
and C source code

Main f90 source code

make*.inc (user-specific include file for makefile) 
makefile (general makefile on command line)

Libpcma.sln (Visual studio makefile)
Libpcma.vfproj (Visual studio project file)

BBOB
C version of BBOB challenge program, Beta version 0.9

  --- http://coco.gforge.inria.fr/doku.php?id=bbob-2009 ---

C code

bfgs
pCMALib f90 wrapper module
Nocedal’s L-BFGS (from GMIN)
---http://www-wales.ch.cam.ac.uk/GMIN/---

f77/f90 code

librng
random_generator.f  (Chandler/Northrop prng)
Halton/Faure/Niederreiter/Sobol qrng
(Burckart/R-project source files)

f77/f90 code

example_inputs

rastrigin.txt
water_pscma.txt ...

libcma
f90 code

cma.f90 (contains the main program)
cmaes_*.f90 (core algorithm)
tool_*.f90 (help routines)

matlab mpi (contains related f90 files)

libtestfcns
f90 code

CEC2005.f90
double_funnel.90
random_landscape.f90
additional stand-alone test and makefile

energy_landscapes
f77/f90 code

TIPnP

LJ (from GMIN + LJ with compression)

(from GMIN + pCMALib f90 wrapper module)

Figure 4: pCMALib library structure

A2.3.3 General compilation and control files

In the top folder, pCMALib comprises the key compilation files. The files make*.inc allow
the user to specify all compilation related settings, e.g., the name of the executable, logicals
for the use of MATLAB and MPI and their respective location in the system, etc. The
make*.inc is used by the makefile via an include statement. This file serves as input to the
make command (see A2.4.6 for details). For Windows Visual Studio users we also included
Libpcma.sln, a Visual studio makefile, and a Visual Studio project file Libpcma.vfproj.
The directory example inputs contains several text files that serve as example input to
pCMALib’s executable (see A2.4.7 for details).

A2.3.4 libcma

The directory libcma contains the core f90 source code of pCMALib. Module files that
contain key variables and data types needed throughout the source code are named * mod.f90.
cmaes *.f90 source files contain the core CMA-ES algorithm while tool *.f90 files comprise
necessary help and support code. The folder matlab contains .f90 files that need Fortran
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90 libraries provided by MATLAB. The folder mpi contains source code that handles all
MPI-related operations. The main program is included in cma.f90.

A2.3.5 libtestfcns

The directory libtestfcns provides several benchmark functions that can be used to test the
efficiency of different CMA-ES variants. The CEC2005.f90 provides a stand-alone Fortran 90
implementation of the IEEE CEC 2005 benchmark test suite (also with make and test files)
(Suganthan et al., 2005; Müller et al., 2009b). The double funnel.f90 is Lunacek’s double
funnel test problem (Lunacek et al., 2008). If the user intends to implement further test
functions, they should be included in this folder.

A2.3.6 librng

This directory contains third-party software that is used for random number generation. For
pseudo-random numbers we use the Chandler/Northrop f77 implementation of the Marsaglia-
Zaman-type subtract-with-borrow generator (rand generator.f ). For low-discrepancy se-
quences we included several implementations for Halton, Faure, Niederreiter and Sobol se-
quences (see files for references). All implementations are open source.

A2.3.7 BBOB

This directory includes the C version of BBOB challenge program, Beta version 0.9, available
from http://coco.gforge.inria.fr/doku.php?id=bbob-2009. BBOB is the GECCO 2009
benchmark test suite and also provides an excellent test bed for algorithm development and
comparison.

A2.3.8 bfgs

This directory contains Nocedal’s ACM TOMS implementation of the Limited Memory BFGS
(L-BFGS) algorithm in the version that is included in GMIN (see http://www-wales.ch.

cam.ac.uk/GMIN/ for details). It is wrapped by a pCMALib module.

A2.3.9 energy landscapes

The folder energy landscapes currently contains potential energy functions for Lennard-
Jones clusters and TIPnP water clusters. With slight modification these files are equivalent to
the ones included in GMIN (see http://www-wales.ch.cam.ac.uk/GMIN/ for details). Users
that want to implement and test different cluster energies should include their source files
here.
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A2.4 Getting started

A2.4.1 System requirements

We summarize the necessary and optional system requirements for pCMALib here.

A2.4.2 Platform

The current implementation of pCMALib has been successfully tested on desktop computers
running Windows XP SP2, Windows Vista, Windows 7, Mac OS X 10.4.x, Ubuntu Linux
8.10, and OpenSolaris 2008.11. Calculations on clusters have been successfully conducted on
Gentoo Linux 2.6.25 and Redhat Linux CentOS 5.4. Both 32 bit and 64 bit architectures have
been tested. However, different combinations of Fortran compilers and MPI distributions have
been used on the various machines and platform-independence cannot be guaranteed.

A2.4.3 Compiler

The recommended compiler for pCMALib is the Intel Fortran compiler, version 9.1or higher.
Successful compilation with PGI Fortran and gfortran is not guaranteed at the current stage.
Before compilation a number of preprocessing statements have to be resolved. We recommend
to use the C preprocessor cpp. When using the BBOB test suite, a C compiler is also needed.
We tested both the GNU C compiler gcc and Intel’s icc.

A2.4.4 LAPACK/BLAS

Using pCMALib requires a working LAPACK/BLAS installation. We tested both the LA-
PACK available from http://www.netlib.org/lapack/ and the one included in the Intel
MKL (Math Kernel Library). Benchmark runs revealed that, on Intel processsors, MKL’s
LAPACK is considerably faster (Müller and Sbalzarini, 2009) and should be used.

A2.4.5 MPI

Running pCMALib in parallel setting requires the installation of an MPI library. We tested
and recommend both the OpenMPI (1.2.6, 1.2.8, 1.3,1.4, and 1.5) and the Intel MPI library.
Again, running pCMALib with Intel MPI jointly with Intel MKl on Intel cores gives superior
performance (Müller et al., 2009a).

A2.4.6 Compiling pCMALib

Before compilation, some system-specific configurations have to be set. This is done by adapt-
ing the variables in one of the provided make*.inc files.

Listing A.1: Snippet of the make.inc file

###########################################################
# PCMALIB make inc lude f i l e
# December 2009
#
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# Georg Ofenbeck ,
# MOSAIC Group , ETH Zurich , Swi t ze r l and
###########################################################

# Name of the program
LIB CMA := libpcma . a

######### SHELL OPTIONS ################

SHELL := / bin /sh

######## OUTPUT Folder ################
# w i l l c r ea t e d i r e c t o r i e s BUILDDIR/bin , BUILDDIR/ o b j e c t s and BUILDDIR/ inc lude here
BUILDDIR:= .
. . .

We have a specific make brutus.inc for the ETH Zurich cluster Brutus and a user-specific
make.inc. There, the user can specify all relevant variables, e.g., the name of the executable
by LIB CMA := libpcma.a, the directory where to build the object and binary files, the For-
tran 90 compiler, the locations of the LAPACK/MPI/MATLAB installations, etc.

Listing A.2: Beginning of the makefile

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# pCMALib : a p a r a l l e l f o r t ran 90 l i b r a r y f o r the e vo l u t i on s t r a t e g y with
# covar iance matrix adapta t ion
# Chr i s t ian L. Mueller , Benedikt Baumgartner , Georg Ofenbeck
# MOSAIC group , ETH Zurich , Swi t ze r land
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n c l ude make . inc

# Defau l t va lue f o r the dependency pre−processor
# = same as code−genera t ing pre−processor
DEPCPP ?= $ (CPP)
$ (CPP) = cpp
. . .

The makefile first resolves all source dependencies and preprocessor statements. Then, the
resulting sources are compiled. The makefile contains four targets:

Listing A.3: makefile targets

.DEFAULT: ;
# Defau l t t a r g e t i s e ve ry th ing
a l l : $ (TARGET)

. . .

# at the i n s t a l l par t we copy the input f i l e s and the programm i t s e l f to
i n s t a l l :

$ ( s h e l l mkdir $ (INSTALL DIR ) )
$ ( s h e l l mv $ (TARGET) $ (INSTALL DIR ) )
$ ( s h e l l cp −r $ (CEC2005 DIR)/ supportData $ (INSTALL DIR ) )
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# Get r i d o f the . d ’ s too . Notice t h i s may produce weird behav ior during
# the next invocat ion , s ince the make f i l e i t s e l f needs the . d ’ s .
c l ean :

rm −f $ (OBJECTS)
rm −f $ (MODULES)
rm −f $ (TARGET)
rm −f $ (DEPENDENCIES)

# Make new
new : c l ean a l l i n s t a l l

Execute make new in the main folder. The makefile should generate a objects and a bin folder.
In the bin folder you will find the executable with the specified name, e.g., libpcma.a. De-
pending on your specification this file can be run on single or multiple cores using (o)mpirun.
The program is controlled by a single text file as outlined in the next section.
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A2.4.7 Controlling pCMALib: the program input file

pCMALib’s program is controlled by a input file that specifies all algorithmic settings. The ex-
ample inputs folder contains several examples. We show here the example used in the Quick
start section where IPOP-CMA-ES is run on the shifted 10D Rastrigin function (Function f9
from the CEC 2005 benchmark test suite (Suganthan et al., 2005)).

Listing A.4: Example input file

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# pCMALib : a p a r a l l e l f o r t ran 90 l i b r a r y f o r the e vo l u t i on s t r a t e g y with
# covar iance matrix adapta t ion
# Chr i s t ian L. Mueller , Benedikt Baumgartner , Georg Ofenbeck
# MOSAIC group , ETH Zurich , Swi t ze r land
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# output data i s saved in to t h i s f o l d e r ( r e l a t i v e to workdir )
OUTPUT FOLDER = r a s t i p o p
# which func t i on o f the CEC2005 or BBOB benchmark s u i t e to use
BENCHFCTNR = 9
# Dimension o f the problem
DIMENSIONS = 10
# Upper bounds on a l l dimensions
ALLDIM UBOUNDS = 5
# Lower bounds on a l l dimensions
ALLDIM LBOUNDS = −5
#the g l o b a l optimum
GLOBAL MIN = −330
# use the CEC2005 benchmark s u i t e as t a r g e t func t i on
USE CEC = true
# usage o f Quasi Random Sampling
QR SAMPLING = true
# t h i s only works with Sobol R implementation ! (0) no scrambl ing
# (1) owen type scrambling , (2) faure−t e zuka type scrambling ,
# (3)owen , faure−t e zuka type scrambl ing
QR SCRAMBLING = 0
# (0)Moros Inverse , (1) Peter J . Acklam . s Inver ter , (2) Inve r t e r from R
QR INVERTER = 1
# (0) Sobol , (1) Sobol R implementation , (2) Halton , (3) Halton R
# implementation , (4) Faure ( buggy ! ) , (5) N i ede r r e i t e r
QR SAMPLER = 1
# Succe s s f u l run i f g l oba l min −f ( x ) < accuracy
ACCURACY = 1 .E−8
# i f mul t i r e s t a r t CMA (IPOP) shou ld be used
RESTART CMA = true
# (0) r e s t a r t randomly wi th in bounds , (1) r e s t a r t from poin t o f
# convergence , (2) r e s t a r t from same s t a r t p o i n t a l l the time
RESTART TYPE = 1
# fac t o r by which the popu la t ion s i z e i s increased every r e s t a r t
INCPOPSIZE = 1.3
#the f o l d e r where to f i nd the supportData f o l d e r
CECFOLDERS = . /

It is important that the input parameters are spelled correctly. Wrongly spelled input param-
eter names are ignored.
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As in the MATLAB version of CMA-ES, there are many options that can be set. The following
tables summarize all available options. In the code, most of the default settings are defined in
libcma/cmaes opts mod.f90.
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Name Default Value Explanation

Stop Criteria

STOPFITNESS -Inf Stop if f(x) < StopFitness

STOPMAXFUNEVALS Inf Maximal number of FES

STOPMAXITER
1e3 (n+5)2√

PopSize
Maximal number of iterations

STOPTOLX 1e-11max(σinitial) Stop if x-change < StopTolX

STOPTOLUPX 1e3max(σinitial) Stop if x-change > StopTolUpX

STOPTOLFUN 1e-12 Stop if fun-change < StopTolFun

STOPTOLHISTFUN 1e-13 Stop if back fun-change < StopTolFun

STOPTIME true usage of a stop time

STOPTIMEHH 0 stop after given hours

STOPTIMEMM 0 stop after given minutes

STOPTIMESS 0 stop after given seconds

STOPONWARNINGS true stop if any of the warnings occur

CMA-ES Strat. Params.

ABS SIGMA 0 size of the inital σ as absolut value

REL SIGMA 0.2 size of the inital σ relative to the size
of the box constraints - only used if
ABS SIGMA is not set

POPSIZE 4 + b3 ln (n)c Population size λ

PARENTNUMBER bλ
2
c Parent number µ

RECOMBINATIONWEIGHTS 3 Super–linear (3), linear (2) or equal (1)

PS-CMA-ES Strat. Params.

PSCMA false Switch PS-CMA-ES on or off

PSOWEIGHT 0.7 weights between PSO-based and local
covariance matrix (equivalent to cp in
eq. (4.16))

PSOFREQ 200 Interval length Ic between PSO up-
dates (see Section 4.3.1)

Sampling Options

QR SAMPLING true usage of Quasi Random sampling

QR SAMPLER 1 (0)Sobol, (1)the Sobol R implementa-
tion

(2)Halton

(3)Halton R implementation

(4)Faure (buggy!)

(5)Niederreiter

QR SCRAMBLING 0 this only works with Sobol R imple-
mentation!

(0)no scrambling

(1)owen type scrambling

(2)faure-tezuka type scrambling

(3)owen,faure-tezuka type scrambling

QR INVERTER 1 (0)Moros Inverse

(1)Peter J. Acklam’s Inverter

(2)Inverter from the R Implementation

Table 1: Available pCMALib options (1)
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Restart Settings

RESTART CMA false Flag if restart CMA (IPOP) should be
used

RESTART TYPE 0 (0) restart randomly within bounds

(1) restart from point of convergence

(2) restart from same startpoint all the
time

RESTARTS 0 limit on how many restarts are allowed,
0 = unlimited

INCPOPSIZE 1.25 factor by which the population size is
increased every restart

MAXINCFAC 100 the maximum fold increase of the pop-
ulation compared to the initial popu-
lation size

Benchmark Opts.

BENCHMARK false Switch benchmark on or off, this causes
pCMALib to record and keep track of
several variables that are required in
the CEC 2005 benchmark protocols

RECORD ACCURACY 0.0 record when the CMA-ES reaches this
level of accuracy

RECORD BESTHIST false record a history of the fitness over time

RECORD MODULO 100 MAX FES/RECORD MODULO
gives the number of records

Others

DIMENSIONS Dimension n of the problem

GLOBAL MIN 0.0 Global minimum (if available)

ACCURACY 0.0 Successful run if |GLOBAL MIN− f(x)| ≤
accuracy

EVALINITIALX true Evaluate initial solution

WARNONEQUALFUNCTIONVALUES true Report warning if all function values in
a generation are identical

FLGGENDATA true Flag if complete output data should be
generated (can result in huge files!)

INTGENDATA 1 Integer interval to log output data

FLGOUTTXT true if compiled
without matlab,
otherwise false

saves the results of the pCMAlib run
into textfiles

FLGGENTRACE false saves only trace of best solutions and
their fitness values into textfiles

FUNCNAME ’ ’ Name of the function that will be re-
ported in output

VERBOSEMODULO 100 Messaging after every i-th iteration in
the console

OUTPUT FOLDER ’out’ output data is saved into this folder
(relative to workdir)

SILENTMPI true flag if only process with rank 0 should
report output in the console

USE SEED false if a seed for the RNG should be used

SEED FOLDER ’false’ folder containing the seed file ’seed.txt’

Table 2: Available pCMALib options (2)
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Boundary setting

ALLDIM LBOUNDS -Inf Lower bounds on all dimensions

ALLDIM UBOUNDS Inf Upper bounds on all dimensions

USE INIT BOUNDS false if special bounds should be used for ini-
talization of population

INIT UBOUNDS Inf Upper bounds for initialization

INIT LBOUNDS -Inf Lower bounds for initialization

Objective functions

USE LJ COMP false use the Lennard Jones potential with
compression as target function

USE DF false use the DoubleFunnel benchmark as
target function

USE MATFUNC false use the template for a Matlab target
as function

USE RANDOM LANDSCAPE false use the random landscape test as tar-
get function

USE CEC false use the CEC2005 benchmark suite as
target function

USE BBOB false use the BBOB benchmark suite as tar-
get function

USE LJ false use the Lennard Jones potential as tar-
get function

USE TIP false use the TIP4P water potential as tar-
get function

Table 3: Available pCMALib options (3)A2.4.8 Output files

There are several modes of output generation in pCMALib, which are controlled by the four
input parameters FLGGENDATA, INTGENDATA, FLGOUTTXT, and FLGGENTRACE.
The files are generated in the folder specified by the input parameter OUTPUT FOLDER.

If FLGGENDATA is true, pCMALib will write out every INTGENDATA generation almost
all CMA-ES data, such as the populations, the covariance matrices, the Cholesky matrices,
the evolution path, etc. Depending on the dimensionality, the run length, and the write
out interval length, this may result in HUGE text files. When doing production runs with
pCMALib, the user is advised to use the settings with caution. If MATLAB is available, in
addition to the text file, a binary MATLAB file cmaesData.mat is generated that includes the
summary data given below, but NOT the traces along the optimization run.

If FLGGENDATA is false, the user has the possibility to just write the summary data (see
below) in text files by setting FLGOUTTXT true. MATLAB is not required for this.

The list of summary output files is provided in Table 5. If MATLAB is available, these data
are stored in a structured binary MATLAB .mat file. It follows the standard output from the
Hansen’s CMA-ES MATLAB version, plus some pCMALib-specific output. Finally, if the user
is only interested in the trace of current best candidate solutions and its corresponding fitness
values, these can be generated by setting the FLGGENTRACE true. Then, the text files
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Add. objective function
settings

WRITE PDB false if a pdb file representing the current
best solution is written in intervals ac-
cording to the VerboseModulo setting

LJ COMP 1 compression parameter µcomp for the
Lennard Jones potential with compres-
sion

DF S 0 setting for parameter ’s’ for the Double
Funnel benchmark

DF RAST true if rastrigin function should be applied
to the Double Funnel benchmark

CECFOLDERS ” where to find the supportData folder
for the CEC2005 benchmark suite rel-
ative to the working directory

BENCHFCTNR 1 which function of the CEC2005 or
BBOB benchmark suite to use

BFGS Settings

BFGS USE false if BFGS should be used to assist CMA.
This is still in development!

BFGS FACTR not used at the moment

BFGS PGTOL not used at the moment

BFGS GRAD STEPSIZE step size used for the gradient approx-
imation

BFGS POSITION 2 1 = replace X values by local minimum
X

2 = replace F values with F values at
local minimum

BFGS CENTRAL DIFFERENCE false if central difference should be used,
otherwise backward difference is uti-
lized

BFGS DGUESS the guess for the inital step size for the
line search

BFGS STPMAX upper bounds for the step in the line
search

BFGS STPMIN specify lower for the step in the line
search

BFGS GTOL controls the accuracy of the line search
routine MCSRCH

Table 4: Available pCMALib options (4)
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out bestever f.txt the best fitness value found during the optimization

out bestever x.txt the best input vector x found during the optimization

out bestever evals.txt the evaluation where the best fitness value has been found

out countEvalNaN.txt the number of invalid samples drawn during the optimization run

out countEval.txt the number of samples drawn during the optimization

out countIter.txt the number of CMA Iteration done during the optimization

out countOutOfBounds.txt the number of samples that fell outside of the Bounds given to CMA

out funcName.txt the name of the function like given in the input file.

If a benchmark is utilized, it returns the name of the function evaluated

out insigma.txt the initial sigma CMA starts with in absolute numbers

out lambda.txt the initial lambda CMA starts with

out mueff.txt effective population weight

out mu.txt number of selected individuals per generation

out N.txt dimension of the problem

out settings.txt summary of all used settings

out stopflag.txt info about applied stopping criteria

out weights.txt the weights used for the ranking

out xstart.txt the initial x mean of CMA-ES - not used at the moment

seed.txt the initial random number seed - for reproducing identical runs

Table 5: Summary output files from pCMALib

besteverF.txt and besteverX.txt contain these values at every INTGENDATA generation.

If pCMALib is run in MPI mode, the output files are generated separately by each process.
The resulting file names are the same as in the single-process case, but with the extension
RANK, i.e., the cmaesData.mat for the process with rank 0 is called cmaesData 0.mat.

For the specific case where LJ or TIPnP water clusters are optimized, the user has the possi-
bility to write out PDB files with the LJ or water atom coordinates. For this purpose, the flag
WRITE PDB should be set true. The write frequency is controlled by the input parameter
VERBOSEMODULO.

A2.5 Test example

A2.5.1 IPOP-CMA-ES

• Unzip / checkout

• Change all parameters in the make.inc file. MPI and MATLAB Include/Library paths
are not required for this example. Make sure that HAS MPI, HAS MAT, and BBOB
are all set to 0.

• in the main folder, execute make new

• cd to the newly created bin folder
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• execute ./libpcma.a ../example inputs/rastrigin ipop.txt

• you should get output on the console similar to the one listed below

Listing A.5: Console output generated by pCMAlib for the Rastrigin IPOP example

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Warnings :
n= 10 : ( 5 , 10 )−CMA−ES on function S h i f t e d R a s t r i g i n s Function

I t e r a t , #Feva ls : Function Value
1 , 12 : −134.484715127431

100 , 1002 : −319.957567812663
200 , 2002 : −320.050414465281
262 , 2622 : −320.050414466886
262 , 2622 : −320.050414466886

−−−−−−− Restart # 1 Reason : warnequa l funva l s
n= 10 : ( 6 , 13 )−CMA−ES on function S h i f t e d R a s t r i g i n s Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n i t i a l sigma 2.00000000000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I t e r a t , #Feva ls : Function Value
300 , 3116 : −260.736124312701
400 , 4416 : −326.020162842026
473 , 5365 : −326.020163771627
473 , 5365 : −326.020163771627

−−−−−−− Restart # 2 Reason : warnequa l funva l s

.

.

.

−−−−−−− Restart # 2 Reason : warnequa l funva l s

n= 10 : ( 45 , 91 )−CMA−ES on function S h i f t e d R a s t r i g i n s Function
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n i t i a l sigma 2.00000000000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

I t e r a t , #Feva ls : Function Value
7000 , 524992 : −281.725617082436
7071 , 531453 : −329.999999995965

GLOBAL Bestever . f : −329.999999995965
GLOBAL Bestever . x :

1 .900E+00
−1.564E+00
−9.788E−01
−2.254E+00

2 .499E+00
−3.285E+00

9 .759E−01
−3.666E+00

9 .850E−02
−3.246E+00

Stop f l ag : f i t n e s s
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• ls rast test should yield a list of files generated by the optimization run as shown in the
previous section.

A2.5.2 PS-CMA-ES

• Unzip / checkout

• Change parameters in the make.inc file. MPI paths are required for this example. Make
sure that HAS MAT and BBOB are set to 0, while HAS MPI is set to 1

• in the main folder execute make new

• cd to the newly created bin folder

• execute mpirun -n 4 ./libcma ../example inputs/water pscma.txt. This com-
mand structure might vary depending on your installed MPI implementation.

• you should get output on the console similar to the one listed below

Listing A.6: Console output generated by pCMAlib for the parallel Rastrigin IPOP example

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Warnings :
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Started MPI−CMA
To guarantee a decent conso l e output only Process 0 i s shown

Al l output data i s saved to
f o l d e r water pscma

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PSO c o n f i g u r a t i o n :
Weight : 0.800000000000000
Frequency : 1000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n i t i a l sigma 2.40000000000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
n= 48 : ( 7 , 15 )−CMA−ES on function

I t e r a t , #Feva ls : Function Value
1 , 17 : −24.7688838771480

100 , 1502 : −91.9960387430328
200 , 3002 : −141.671714969162
300 , 4502 : −149.296251112378
400 , 6002 : −194.206246961448
500 , 7502 : −203.078431185465
600 , 9002 : −207.834413560923
700 , 10502 : −208.866055139447
800 , 12002 : −209.640611386233
900 , 13502 : −210.402527129655

1000 , 15002 : −211.520111342927
1100 , 16502 : −212.422564260838
1200 , 18002 : −212.949637423201
1300 , 19502 : −213.668174681497
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1400 , 21002 : −226.061157943448
1500 , 22502 : −237.363561233379
1600 , 24002 : −239.168766472368

.

.

.
GLOBAL Bestever . f : −243.051022815494

GLOBAL Bestever . x :
1 .423E+00

1 .402E+00
−2.535E+00
−2.564E−01
−6.437E−01
−3.328E+00
−8.623E−01
−9.006E−01

. . .
−1.536E+00
−9.409E−01
−2.305E−01
−3.482E+00
−6.000E+00

9 .542E−01
4 .354E+00
1 .263E+00
−2.616E+00
−1.269E+00
−1.310E+00

Stop f l ag : t o l f u n

• ls water pscma should yield a list of files generated by the optimization run, as described
in the previous section, but this time one file for each process should exist of the form
FILENAME {Rank.txt}

A2.6 Adding new objective functions

Adding user-defined objective functions is rather simple. In the user folder there is a template
that you can adapt for your needs. If the name of the template function is changed, you also
have to rename EXTERNAL user function in cmaes.f90 and its call further down in the main
as well. Further test functions can also be found in either testfcns or energy landscapes
folders. They also have to be declared as EXTERNAL user function in cmaes.f90 in order to
work properly.

Listing A.7: Snippet of the main.f90

!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Routine : u s e r f unc t i on
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!
! Purpose :
!
! Remark : at the moment pcmalib w i l l on ly c a l l s i n g l e va lue s
! at once meaning i t w i l l send ’ vars ’ o f s i z e m x 1 and
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! expec t a vec to r o f s i z e n=1 back . This might change
! in the f u tu r e and t h e r e f o r e i t i s recommended
! to wr i t e the func t i on in a way tha t i t can handle
! mu l t i p l e input v e c t o r s in form
! o f a matrix and return a vec tor o f r e s u l t s
!
! Input :
! m ( I ) m Dimension o f the matrix (Rows)
! = Dimension o f Vectors
! n ( I ) n Dimension o f the matrix (Columns)
! = # of Vectors to process
! Input ( op t i ona l ) : lbounds / ubounds − m dimensional array
! with boundaries g iven to CMA−ES
!
!
! Input /Output : vars (R) the matrix with the input va lue s o f s i z e m∗n
!
! Output : res (R) the vec to r with the r e s u l t s o f s i z e n
!
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SUBROUTINE u s e r f u n c t i o n ( res , vars ,m, n , lbounds , ubounds )
USE cmaes param mod
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
! Parameters
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
REAL(MK) ,DIMENSION(n ) ,INTENT(out ) : : r e s
REAL(MK) ,DIMENSION(m, n ) ,INTENT( in ) : : vars
INTEGER,INTENT( in ) : : m
INTEGER,INTENT( in ) : : n
REAL(MK) ,DIMENSION(m) ,OPTIONAL : : lbounds
REAL(MK) ,DIMENSION(m) ,OPTIONAL : : ubounds

! your code here ! ! ! ! !
WRITE(∗ ,∗ ) ’ no code provided in the u s e r f u n c t i o n yet ’
STOP

END SUBROUTINE u s e r f u n c t i o n

As can be seen from the current template for objective functions it is not possible to explicitly
provide additional parameters to the objective functions. If the user function needs additional
parameters, they have to be provided via global/MODULE variables. An example of how
do that can be found in the double funnel test function case. This objective function has a
parameter s that tunes the size and depth ratio of two funnels. It is provided through the
input parameter DF S in the input file.
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A2.7 Known issues

• Scrambling caused trouble returning 0 values for all samples on the ETH cluster after
some million iterations. This could not be reproduced on a desktop machine.

• IPOP (restart) settings can cause trouble when not limited by the MAXINCFAC control
parameter. This is due to the exponential increase in population size and hence the linked
exponential increase in memory requirements.

• The matlab engine is not the most reliable – it happened sometimes that the program
just freezes during the writing of the .mat file.

• Very long path names (>200 characters) are cut off and might cause problems.

• If FLGGENDATA is set to true and INTGENDATA small, the output files can become
very big due to the fact that they are written as text files.

• After make.inc has been altered, manual cleaning of the previous make run may be
required (by manually deleting the objects folder).

A2.8 MPI structure in PS-CMA-ES

A2.8.1 MPI protocol for PS-CMA-ES

The parallel CMA-ES code is implemented using on MPI. Multiple CMA-ES instances need
to communicate in order to integrate parallel information. Each CMA-ES instance is a com-
putational process with separate address space. These processes are assigned to to multiple
processors (for example different PCs in a Local Area Network (LAN)). If such hardware is
not available, MPI allows to execute parallel code on single processors.

A2.8.2 GLOBAL BEST-Communication

In MPI, each process is assigned a unique number: the process rank. Multiple processes can
be distinguished by their rank. InPS-CMA-ES, each CMA-ES instance has to inform the other
swarm members about its current best candidate solution. Fig. 5 illustrates our procedure.
A 2-dimensional array, called F BEST, is introduced. It stores the current best fitness value,
as well as the process rank (illustrated by light red ellipses in Fig. 5). The MPI collective
communication routine MPI ALLREDUCE is used to find the global best function value
within all F BEST arrays. Since the array also contains the process rank, the corresponding
CMA-ES instance is known. In a second step (Fig. 5), this process broadcasts the position of
its current optimal solution to the other swarm members.
In order to reduce communication overhead, the broadcast is only performed, if the current
optimum has changed.
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APPENDIX

A MPI structure in PS-CMA-ES

A.1 MPI protocol for PS-CMA-ES

The parallel CMA-ES code is developed based on MPI. Multiple CMA-ES instances need to communicate
in order to integrate parallel inofrmation. MPI is designed to tackle such tasks on an implementational
level. Each CMA-ES instance represents a computational process with separate address spaces. Via
MPI, these processes can be distributed to multiple processors (for example to different PCs in a Local
Area Network (LAN)). If such a topology is not available, MPI allows to execute parallel code on single
processors.
Unfortunately, the developed algorithm is computationally demanding. Especially when multiple CMA-
ES units have to share hardware facilities, computation speed decreases. Therefore, an elaborate com-
munication strategy is essential to reduce complexity.

A.2 GLOBAL BEST-Communication

In MPI, each process is assigned a unique number: the process rank. Multiple processes can be dis-
tinguished by their rank. In section 3 it has been outlined, that each CMA-ES instance has to inform
the other swarm members on its current best candidate solution. Figure 6 illustrates our procedure. A
2-dimensional array, called F BEST, is introduced. It holds the current best fitness value, as well as the
process rank (illustrated by light red ellipses in Figure 6(a)). The MPI collective communication routine
MPI ALLREDUCE is able to find the global best function value within all F BEST arrays. Since the
array also contains the process rank, the corresponding CMA-ES instance is known. In a second step
(Figure 6(b)), this process broadcasts the position of its current optimal solution to the other swarm
members.
To reduce communication expenses, the broadcast is only performed, when the current optimum has
changed.

CMA-ES 1

Rank: 0
fbest: 100.369
p0,best

CMA-ES 2

Rank: 1
fbest: 78.173
p1,best

CMA-ES 3

Rank: 2
fbest: 102.705
p2,best

MPI ALLREDUCE

Global Best

Rank: 1
fbest: 78.173

(a) MPI Allreduce

CMA-ES 1 CMA-ES 3

CMA-ES 2

Rank: 1
fbest: 78.173
p1,best = pg

pg pg

(b) MPI Broadcast

Figure 6: MPI Communication of the Global Best Position pg

A.3 Excluding processes from communication

If a CMA-ES instance has converged and stopped its search, it needs to be excluded from communication.
There are two possible scenarios, how a safe program termination can be ensured, and a communication
deadlock can be avoided. One is, that the process waits until all other running processes have reached the
same state, such that all processes can be finalized synchronously. Such an approach heavily influences
performance, because resources keep on being allocated, until the last process has converged.
Therefore, another, more dynamic approach is favoured: whenever a process stops, communication is
adapted, such that this specific process is excluded. To describe our method, definitions of MPI groups
and communicators have to be given [17]:

24

fbest : fbest : fbest :
Rank: 0 Rank: 1 Rank: 2

100.369 78.173 102.705

Figure 5: MPI communication of the global best position pg.

A2.8.3 Excluding processes from communication

If a CMA-ES instance has converged and stopped its search, it needs to be excluded from
communication. There are two possible scenarios, how a safe program termination can be
ensured, and communication deadlocks can be avoided: One is that the process waits until all
other running processes have reached the same state, such that all processes can be finalized
synchronously. Such an approach, however, seems inefficient since resources are kept allocated
until the last process has converged.
Therefore, we favor a more dynamic approach: Whenever a process stops, communication is
adapted, such that this specific process is excluded. To describe our method, definitions of
MPI groups and communicators have to be given:

Definition A.1. A group is an ordered set of processes. Each process in a group is associated
with a unique integer rank. Rank values start at zero and go to N-1, where N is the number
of processes in the group. A group can be associated with a communicator object.

Definition A.2. A communicator encompasses a group of processes that may communicate
with each other. All MPI messages must specify a communicator. The communicator that
comprises all tasks is MPI COMM WORLD.

Using these MPI objects, we adjust the communication as follows: At the end of each CMA-
ES generation we check whether one or more processes have met a stopping criterion and are
about to terminate. If this is the case, the following rules are applied:

1. Ranks of terminating processes are collected.

2. MPI COMM GROUP() and MPI GROUP EXCL() are used to build a new communi-
cation group that excludes the terminating ranks.

3. A new rank for each process is assigned in the group (MPI GROUP RANK()).

4. A group communicator using MPI COMM CREATE() is created.
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5. Calculations are continued using the newly created communicator. All processes that
are not in the scope of the communicator are terminated.

MPI COMM WORLD

0 1 2 3

4 5 6 7

Group 1

1 2 4

5 7

New Communicator

0 1 2

3 4

Continue

Group 2

0 6 3

Terminate

Figure 6: Dynamically excluding converged processes from communication

Figure 6 exemplifies this MPI group and communicator management. At the very top of the
figure, all processes are within the same communicator environment (MPI COMM WORLD).
Colored in light red are processes that will stop. Following the chart, two groups are formed.
One group contains running processes (Group 1), the other contains stopping processes (Group
2)1. Based on Group 1, a new communicator is created. Note, that the processes are assigned
a new rank starting again from 0.

A2.9 Benchmarks

We benchmark the computational performance and parallel efficiency of pCMALib on multi-
core and distributed-memory computers.

A2.10 Multi-core shared memory

We first test the on-chip performance of the library on an Apple MacPRO with 2 dual-core
3 GHz Intel Xeon processors, a 4 MB L2-cache per processor, and 8 × 1 GB of RAM. The

1Group 2 is not a valid communication group. Instead, it contains processes with rank value
MPI UNDEFINED
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library was compiled with the Intel Fortran compiler version 9.1 and optimization level O3,
and linked against OpenMPI version 1.2.6.

We follow the CEC 2005 test suite protocol to assess the computational efficiency of our
implementation. Three time measures are defined in the protocol: T0 is the CPU time for
1 000 000 standard mathematical operations, T1 is the time needed to evaluate function f3

– a shifted, rotated, highly conditioned elliptic function – 200 000 times in dimensions n =
10, 30, 50, and T̂2 is the mean time over five executions of the complete algorithm with 200 000
evaluations of function f3 each. The computational cost of the algorithm is quantified by the
ratio (T̂2 − T1)/T0.

We benchmark our implementations of the standard CMA-ES (on a single core), the parallel
CMA-ES, and the parallel PS-CMA-ES. The standard CMA-ES is run with the standard
strategy parameter settings (Hansen, 2008) on a single core. The parallel CMA-ES benchmark
uses 4 independent CMA-ES instances on the available 4 cores of the computer, without any
communication between the instances. PS-CMA-ES is run with a swarm size of S = 4 on
the 4 cores of the computer and the communication interval is set to the standard value of
Ic = 200 (Müller et al., 2009b). The system configuration and CPU time measurements are
summarized in Table 6, following the CEC 2005 test suite requirements (Suganthan et al.,
2005). For n = 10 and 30 we observe that the T̂2 of the three methods are comparable. For
n = 50, the computational cost of PS-CMA-ES dominates due to the complexity of the n-
dimensional matrix rotations. For comparison, we cite measurements of T̂2 for LR-CMA-ES

System Mac OS X 10.4.11

CPU 2× Dual-Core Intel Xeon 3.00GHz

RAM 1GB

Language Fortran 90

CMA-ES T0 T1 T̂2 (T̂2− T1)/T0

n = 10

9.53e-2

3.02e-1 2.71e+0 2.53e+1

n = 30 2.26e+0 1.13e+1 9.49e+1

n = 50 6.49e+0 3.04e+1 2.51e+2

Parallel CMA-ES

n = 10 3.02e-1 3.96e+0 3.84e+1

n = 30 2.26e+0 1.39e+1 1.22e+2

n = 50 6.49e+0 3.53e+1 3.02e+2

PS-CMA-ES

n = 10 3.02e-1 3.87e+0 3.75e+1

n = 30 2.26e+0 1.55e+1 1.39e+2

n = 50 6.49e+0 5.04e+1 4.61e+2

Table 6: System configuration and measured CPU times in seconds for standard CMA-ES, parallel
CMA-ES, and parallel PS-CMA-ES.

and IPOP-CMA-ES determined by Auger and Hansen (Auger and Hansen, 2005b,a) using
MATLAB 7.0.1 on Red Hat Linux 2.4 running on a 3 GHz Intel Pentium 4 processor with
1 GB RAM. For n = 10, 30, 50, LR-CMA-ES took T̂2 = 51s, 45s, 68s, and IPOP-CMA-ES T̂2

= 17s, 24s, 56s, respectively.
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A2.10.1 Distributed memory

We assess the parallel efficiency of our implementations of CMA-ES and PS-CMA-ES on a
distributed-memory computer cluster on the constrained random fitness landscape Frand(x) =
Y , where x is defined in the bounded subset [−100, 100]n ∈ Rn. For any x, Y is drawn
from the uniform distribution U(−100, 100). Each algorithm evaluates the fitness function
500 000 times (corresponding to drawing 500 000 uniformly distributed random numbers) on
Nproc = 1, . . . , 64 processor cores. The number of CMA-ES instances – or the swarm size in
PS-CMA-ES – is always chosen equal to Nproc in order to avoid cache and memory congestion
effects. Distributing a problem of fixed size onto an increasing number of processors measures
the strong scaling of the algorithms, where the workload per processor decreases and the
communication overhead increases. The random landscape Frand ensures several properties
that are indispensable for an unbiased assessment of the parallel scaling. First, the compu-
tational cost of evaluating the objective function is independent of the search dimension and
the specific optimization path. Second, the random landscape guarantees that all CMA-ES
instances experience the same search space. We perform three benchmarks with varying val-
ues of the strategy parameter Ic in order to disentangle the influence of the covariance matrix
eigendecomposition and the MPI communication in PS-CMA-ES. The first setup considers the
standard parallel CMA-ES without swarm communication, i.e., Ic = ∞. The second bench-
mark evaluates the performance of the standard PS-CMA-ES with Ic = 200. Since Ic is in
units of generations, and increasing S (Nproc) also increases the number of function evalua-
tions per generation, the number of MPI communications performed in total during the fixed
500 000 function evaluations decreases. Therefore, the third setup considers PS-CMA-ES with
a constant number of MPI communication steps, independent of the swarm size S. This is
achieved by setting Ic = 200/S. All three benchmarks are conducted in n = 10, 30, 50, 100
dimensions.

The Fortran library is compiled with the Intel Fortran compiler version 10.1 and optimization
level O3, and linked against OpenMPI version 1.2.8. The tests are performed on a Gentoo
2.6.25 Linux cluster consisting of 12 compute nodes. Each node contains 2 Intel Xeon 2.8 GHz
quad-core processors (8 cores per node) with 2 GB of RAM per core. The nodes are connected
by a dedicated Gigabit Ethernet network, entirely reserved for MPI communication (there
is a second, identical network for system communication). TORQUE and Maui are used as
resource manager and queuing system, respectively. In order to assess the influence of intra-
vs. inter-node MPI communication, the scheduler is instructed to assign 8 MPI processes per
node. Each benchmark is repeated r = 1, . . . , R times. For each repetition r, we measure
the elapsed wall-clock time ti,r on each processor core i = 1, . . . , Nproc. The overall run time
t(Nproc) of the algorithm on Nproc processors is given by the maximum time over all processes,
averaged over the R independent runs:

t(Nproc) = meanr max
i=1,...,Nproc

ti,r . (1)

From this, the parallel speedup s and efficiency e are defined as:

s(Nproc) =
t(1)

t(Nproc)
, e(Nproc) =

s(Nproc)

Nproc
. (2)
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The measured maximum wall-clock times for all 3 benchmarks are reported in Fig. 7, the
speedups in Fig. 8, and the parallel efficiencies in Fig. 9.

In n = 10 dimensions, there are no noticeable differences between the three different test
setups. Up to Nproc = 8, i.e. on a single node, the wall-clock time decreases from 2.5s
to below 0.5s. The speedup increases up to 6 and the efficiency decreases to 0.6–0.7. This
should be compared to 37s for 50 000 function evaluations on Nproc = 4 using the MATLAB
implementation (Hansen, 2008). The Fortran library thus is about 460 times faster than the
MATLAB implementation. When using two nodes (16 processes), the wall-clock time increases
again, and speedup and efficiency drop considerably. This is expected as the network latency
becomes the limiting factor for such a small test problem. The situation changes in higher
dimensions. For n = 30, the wall-clock time of parallel CMA-ES decreases from 12s on
a single core to below 1s on 64 cores. The two PS-CMA-ES tests need around 17s on a
single core due to the additional construction of the rotation matrix. The PS-CMA-ES with
constant number of MPI communications shows a similar scaling as the parallel CMA-ES,
with an offset of about 4–5 seconds, corresponding to the constant communication overhead.
The PS-CMA-ES with decreasing number of communications approaches the behavior of the
standard parallel CMA-ES since, with increasing Nproc, the MPI communication overhead
and the 30-dimensional rotations become negligible compared to the computational cost of
CMA-ES. This is also reflected in the parallel speedup and efficiency. The standard PS-
CMA-ES with Ic = 200 achieves the best efficiency (due to a higher computational cost on a
single core), closely followed by the parallel CMA-ES. The existing MATLAB implementation
needed 75s for 50 000 function evaluations on Nproc = 4, thus about 200 times longer. The
same qualitative behavior is observed in n = 50 (figures not shown), but, due to the higher
computational cost, the parallel efficiency increases further. The computational costs for the
basic CMA-ES operations and the matrix rotations now dominate, and the communication
overhead becomes less apparent. On a single core, parallel CMA-ES needs 40s and the two PS-
CMA-ES variants around 68s. While the wall-clock time of the standard PS-CMA-ES rapidly
approaches the one of CMA-ES for increasing Nproc, the PS-CMA-ES with a constant number
of MPI communications shows an offset of around 25s due to the communication overhead and
the 50-dimensional matrix rotation. The speedups of the parallel CMA-ES and the standard
PS-CMA-ES for Nproc = 64 are 40 and 50, respectively, corresponding to parallel efficiencies of
0.55 and 0.5. For comparison, the MATLAB implementation required 187s for 50 000 function
evaluations and hence was about 150 times slower than the Fortran library. For n = 100, the
parallel scaling further improves. The efficiency for standard CMA-ES is 0.87 on 64 cores,
while standard PS-CMA-ES achieves a super-linear efficiency of 1.07 (due to the decreasing
number of MPI communications).
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Figure 7: Overall run time t(Nproc) in seconds for the parallel CMA-ES (•) and PS-CMA-ES with
constant (◦) and decreasing (×) number of MPI communications on the random landscape
test problem in n = 10, 30, 100 dimensions. The number of processor cores Nproc is varied
from 1 to 64. Each point is averaged from R = 5 runs. The standard deviations are close
to zero (data not shown).
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Figure 8: Parallel speedup s of the parallel CMA-ES (•), and PS-CMA-ES with constant (◦) and
decreasing (×) number of MPI communications on the random landscape test problem in
n = 10, 30, 100 dimensions. The number of processor cores Nproc is varied from 1 to 64.
Each point is averaged from R = 5 runs. The standard deviations are close to zero (data
not shown).
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Figure 9: Parallel efficency e of the parallel CMA-ES (•), and PS-CMA-ES with constant (◦) and
decreasing (×) number of MPI communications on the random landscape test problem in
n = 10, 30, 100 dimensions. The number of processor cores Nproc is varied from 1 to 64.
Each point is averaged from R = 5 runs. The standard deviations are close to zero (data
not shown).
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C. L. Müller. Die Erde dreht sich zu laut – Gedichte von der schwedischen
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ETH Zürich, Switzerland, and Swiss Institute of Bioinformatics

Advisor: Prof. Dr. Ivo F. Sbalzarini

Academic title: Dr. sc.

2005 – 2006 Studies at University of Tübingen, Tübingen, Germany
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Major: Bioinformatics

Degree: Pre-diploma Bioinf.

1989 – 1998 High school at Franz-Ludwug Gymnasium, Bamberg, Germany

Degree: Abitur (German high school diploma)

1986 – 1989 Primary school in Schesslitz, Germany

E-1



International experience

July 2007 – Oct 2007 Visiting scientist at Mediterranean Institute for Life Science

Split, Croatia

Sept 2003 – Dez 2003 Maitre d’Hotel (Hovmästare), Södermanland Nerike Nation
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2010 Best Paper Award, EvoNum, 2010

2009 ACM Travel Grant, GECCO, 2009

1999 – 2005 Stipend according to the

Bayerischen Begabtenförderungsgesetz für besonders Begabte

(Bavarian study assistance for gifted pupils)

1998 Top of the class of 1998 at the Franz-Ludwig Gymnasium

Languages

German Native

Swedish Fluent

English Fluent

Latin Basic

E-2


