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Abstract. In real-world applications, engineers are often faced with the task of
finding nominal design parameters that guarantee proper operation of a system
under uncertainty. The problem of design centering considers finding a parameter
set that has maximum distance from the borders of the feasible region in parameter
space. We present the application of the stochastic process of Gaussian Adaptation
to robust design centering and highlight some of its properties. We argue that
Gaussian Adaptation provides information about both the most robust nominal
parameter set and the volume of the feasible region of parameter space, a measure
of problem robustness.
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1 INTRODUCTION

Design centering addresses the problem of finding “good” nominal operation
points for systems in constrained, uncertain environments1. Given the (potentially
high-dimensional) real-valued parameter space Rn the goal is to find a vector of de-
sign parameters x ∈ R

n that fulfills two requirements: First, the parameters satisfy
the specifications imposed by the engineer, i.e., some objective (or criterion) function
f(x) = f(y(x)) applied to the system output y(x). Second, the parameter values
should be maximally robust with respect to intrinsic uncertainties during operation.
Ideally, one would also like to have information about the expected robustness of
the resulting system, i.e., the volume of the “feasible region” A ⊂ R

n of parameter
vectors that fulfill the design criteria.

Here, we review the stochastic process of Gaussian Adaptation (GaA) and present
its application to design centering under uncertainty. We show that GaA is a promis-
ing candidate for robust design centering and present some preliminary work as well
as a software implementation. GaA has originally been developed in the context
of electrical network design. There, the key goal is to find nominal values of, e.g.,
resistances and capacities in an analog network that render the circuit’s response
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robust with respect to intrinsic random variations of the components and environ-
mental changes during operation of the electrical device. In the late 1960’s Gregor
Kjellström, at the time an engineer at the Ericsson Telephone Company, realized
that with increasing network complexity classical optimizers such as conjugate gra-
dients perform poorly, especially when analytical gradients are not readily available
or when the objective function is multimodal. He suggested to search the space of
valid parameter settings with stochastic methods that only rely on evaluations of
the objective function. Starting from an exploration method that can be considered
an adaptive random walk through design space2, he refined his algorithm to what
he called Gaussian Adaptation3. In the following decades, the algorithm has been
largely ignored by the optimization and systems design communities.

We have recently revisited and reintroduced GaA in the context of black-box op-
timization and sampling4,5. We contributed several ideas to the basic GaA scheme.
First, we showed that the foundation of the algorithm can be derived from Jaynes’
Maximum Entropy principle4,6. Second, we provided suitable standard parameter
settings, initialization and boundary handling schemes, as well as an effective restart
strategy4. These enhancements render GaA a ready-to-use, parameter-free black-
box algorithm. Restart GaA has been tested on the IEEE CEC 2005 benchmark test
suite. Its performance ranks GaA among the top black-box optimizers ever tested on
this benchmark. Third, we have constructed an adaptive-proposal MCMC sampler
based on GaA, called Metropolis-GaA5. Together with the extensions presented
here, this renders GaA a unifying framework for design centering, black-box opti-
mization, and adaptive MCMC sampling. A MATLAB toolbox implementing GaA
for all of these three applications is available from the web page of the authors.

2 DESIGN CENTERING WITH GAUSSIAN ADAPTATION

We present the application of GaA to design-centering problems under uncer-
tainty. Assume that the engineer of an electrical circuit can vary the values of
design parameters and can decide whether each parameter set fulfills a specified
criterion, or not. How can one describe the set A ⊂ R

n of acceptable parameter
vectors in a general and compact manner? Based on Shannon’s information theory,
Kjellström derived that under the assumption of finite mean m ∈ R

n and covariance
C ∈ R

n×n of the samples, a Gaussian distribution may be used to characterize A
optimally3. In doing so, although not explicitly stated in the original publication,
Kjellström applied the Maximum Entropy principle developed by Jaynes in 19576.
There, Jaynes states that the maximum-entropy solution “is the least biased es-
timate possible on the given information; i.e., it is maximally noncommittal with
regard to missing information.”6 In the case of given mean and covariance informa-
tion, the Gaussian distribution maximizes the entropy H, and hence is the preferred
choice to describe the region of acceptable points. The entropy of a multivariate
Gaussian distribution is

H(N ) = ln
(√

(2πe)n det(C)
)
, (1)

where C is the covariance matrix and e is Euler’s number. In order to obtain the
most informative characterization of the region A, Kjellström envisioned an iterative
sampling strategy with a Gaussian distribution that satisfies the following criteria:
(i) The probability of finding a feasible design parameter vector should be fixed to a
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predefined hitting probability P < 1, and (ii) the spread of the samples as quantified
by their entropy should be maximized. As Eq. 1 shows, this can be achieved by
maximizing the determinant of the covariance matrix under the constraint of the
fixed hitting probability.

A

Figure 1: Illustration of Gaussian Adaptation. The light-blue, non-convex area depicts the feasible
region A in a 2D design-parameter space. Both the left (white) and right (gray) dots and ellipsoids
represent the means and covariances of two Gaussian distributions with the same hitting probabil-
ity. Starting from the white distribution, GaA converges to the gray one by moving away from the
left corner toward the center of A, adapting the distribution to the shape of A and circumventing
holes in the feasible region.

Algorithm 1: GaA for design centering

Input: m(0), C(0), r(0), K, and cT
Result: m(K), C(K), r(K), and Pemp

s = 0
for g = 1, 2, . . . , K do

1. Sample x(g) ∼ N (
m(g−1), r(g−1) 2C(g−1)

)
2. Evaluate f(x(g)).
3. if f(x(g)) < cT then

s = s+ 1
r(g) = fer

(g−1)

m(g) = (1− 1
Nm

)m(g−1) + 1
Nm

Δx(g)

C(g) = (1− 1
NC

)C(g−1) + ( 1
NC

)Δx(g)Δx(g)T

with Δx(g) = x(g) −m(g−1).
Normalize C(g) such that det (C(g)) = 1.

else
r(g) = fcr

(g−1)

Pemp = s/K

If the system (or the parameters) has to fulfill a predefined, static design criterion,
the iterative sampler should push the mean of the distribution toward the center
of the feasible design space A. Simultaneously, it should adapt the orientation and
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scale of the covariance matrix to the shape of A under the constraint of the fixed
hitting probability. The final mean can then be used as the nominal design param-
eter vector, providing maximal robustness against uncertainties in the parameters
and in the specified constraints. Figure 1 illustrates this process. Mathematically,
the key ingredients for achieving such an adaptation are rank-one updates of the
covariance matrix based on sampled feasible directions, as well as proper expansion
and contraction of the covariance upon sample acceptance and rejection, respec-
tively. The expansion and contraction factors fe > 1 and fc < 1 are determined
by the desired hitting probability and are used to impose the hitting probability as
previously described5. The overall procedure of GaA for design centering is given in
Algorithm 1. The algorithm takes as input the initial mean m(0), covariance matrix
C(0), and step size r(0), as well as an acceptance threshold cT (see below) and the
total number of iterations K to be performed. It returns the adapted mean m(K),
covariance matrix C(K), step size r(K), and the actually achieved empirical hitting
probability Pemp. For additional algorithmic details we refer to the respective publi-
cations3,4. A discussion of the parameters of the algorithm and their recommended
standard settings is also available in the literature5.

If the objective function f(x) yields real values, the feasible region A can be
defined as the set of all points in parameter space where the objective-function value
is below a certain threshold cT, hence A = {x : f(x) < cT}. Repeating the design
centering process for decreasing acceptance thresholds cT then provides a sequence
of robust solutions for increasingly stringent design criteria, as illustrated in Fig. 2.
For a given threshold cT, GaA iteratively adapts a Gaussian distribution to the
largest region of parameter space where the objective-function values of Gaussian
sample points are expected to be below the threshold cT with probability P . This
statistical definition of the feasible region A allows that both the objective function
and the feasible region may be non-convex, although no performance guarantees can
be given then.

f(x)

x

cT

Figure 2: Illustration of lowering the objective-function value threshold cT in GaA. The dashed
lines represent decreasing values of the acceptance threshold cT. The bars along the x-axis show
in the same color the corresponding feasible region of parameter space.

3 FEASIBLE-VOLUME ESTIMATION AS A MEASURE OF ROBUST-
NESS

GaA heuristically finds the maximum-volume covariance matrix that fits the fea-
sible region A with a predefined hitting probability P . This can not only provide
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the most robust parameter vector as the mean of the adapted distribution, but also
a measure for the overall robustness as quantified by the final covariance matrix. In
order to estimate a uniform ellipsoidal volume of the feasible region of parameter
space, we first compute the eigen-decomposition of Σ = r(K)r(K)C(K), resulting in
Σ = BTΛB, where B is the orthonormal matrix of the n eigenvectors and Λ the
diagonal matrix of the eigenvalues λ1, . . . , λi, . . . , λn. Next, we rescale each λi by
the factor cn = invχ2

n(Pemp), i.e., the n-dimensional inverse χ2-distribution with

parameter Pemp. An approximate ellipsoidal volume estimate vol(Ên) can then be
computed as:

vol(Ên) =
n∏

i=1

(√
λicn

)
vol(Sn) , (2)

where vol(Sn) = π
n
2 /Γ(n

2
+1) is the volume of the n-dimensional unit hyper-sphere.

The rescaling converts the probabilistic multivariate Gaussian description into an el-
lipsoidal description with uniform density. If the region A is convex, it is thus likely
that GaA can provide good volume estimates even in high dimensions. The approx-
imate hyper-ellipsoid can be interpreted as a statistical analog of the maximum-
volume inscribed ellipsoid in a convex set. These ellipsoids are known to have good
approximation properties for polyhedral bodies (see Ref.7, p. 414, for further infor-
mation).

In addition, GaA might be a viable method for approximately solving the problem
of inner-ellipsoidal approximation of the convex hull of a finite set, a problem that
is known to be NP-hard8. This problem classically occurs whenever a body (here
the feasible region of parameter space) is given by an oracle that can decide for
a given sample whether it is inside the body or not (here the objective function
with threshold cT). We have investigated this topic only recently, but we expect
that estimating the volume of a convex body given by a membership oracle or a
finite set of feasible sample points is closely related to robust design centering. The
best currently known convex-volume algorithms are without exception randomized
schemes, such as the Ball-walk and Hit-and-run samplers9.

As a proof of concept we present here a numerical benchmark for the quality of ap-
proximation of the volumes of anisotropic, axis-aligned, shifted ellipsoids using GaA.
We consider ellipsoids En = {x : (x− c)TAn(x− c) < 1} with An = diag(1, . . . , n)
an n-dimensional diagonal matrix and the ellipsoid centers at c = [0.5, . . . , 0.5]T.
The exact volumes of the ellipsoids are:

vol(En) = det(A−1/2
n )vol(Sn) . (3)

We numerically estimate vol(En) for n = 2, 5, 10, 15, 20 using GaA with Nm = 10n,
NC = 10n2, and P = 1/e. The derivation of the corresponding factors fc and fe is
as previously described5. Each element of m(0) is chosen uniformly at random in
[0.45, 0.55]. The initial covariance is the identity.

GaA generates K = 1000n2 samples in each of 10 independent design-centering
runs per tested value of n. In order to estimate the volumes of the above ellipsoids,
we use the objective function f(x) = (x−c)TAn(x−c) and cT = 1. The results are
summarized in Fig. 3. Figure 3a shows the true vol(En) (blue dots) and the GaA
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Figure 3: a: True ellipsoid volumes (blue dots) and approximate GaA volume estimates (red
circles) from 10 independent runs per tested parameter-space dimensionality n. b: Box plot of the
relative error ε of the volume estimation for increasing problem dimensionality.

approximations vol(Ên) from each of the 10 runs (red circles) per dimensionality n.
Figure 3b shows a box plot of the relative error

ε =
|vol(En)− vol(Ên)|

vol(En) · 100 . (4)

As expected, the approximation accuracy decreases with increasing parameter-space
dimensionality n. Nevertheless, GaA is able to estimate all volumes within ε ≈ 20%
and with very small absolute errors (see Fig. 3). All computational results were
generated with a publicly available MATLAB toolbox that we developed (see Fig. 4
for a screenshot).

Figure 4: Screenshot of a GaA design-centering run using the present MATLAB toolbox. The
upper-left panel monitors the progress of internal variables and the position of GaA’s mean. The
upper-right panel shows the sequence of covariance matrices used by GaA to iteratively approx-
imate the feasible region (shown in red). The lower centered plot shows the collected feasible
samples and the final ellipsoid approximation (in red).
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4 CONCLUSIONS

We have detailed the use of Gaussian Adaptation (GaA) for sampling-based de-
sign centering under uncertain parameters and uncertain constraints. GaA itera-
tively learns a maximum-entropy approximation of the feasible region of a design-
parameter space by a multivariate Gaussian. The mean of the final Gaussian has
maximum distance from any border of the feasible region, hence providing a robust
nominal set of design parameters. In addition, GaA can be used to estimate the
volume of the feasible region below a given objective-function value threshold as
approximated by the volume of the hyper-ellipsoid corresponding to the covariance
matrix of the maximum-entropy Gaussian.

We have implemented GaA as a MATLAB toolbox that is freely available from the
web site of the authors. The toolbox provides functions for robust design centering,
black-box optimization, and adaptive-proposal MCMC sampling using GaA (see
Fig. 4 for a screenshot). It also includes several test scripts that illustrate how GaA’s
strategy and control parameters can be set in the different scenarios. A performance-
optimized Fortran90 version of the algorithm with a comfortable MATLAB mex
interface will be released in the coming months.
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