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Abstract

We propose to combine state-of-art continuous black-box optimization heuristics that use the multi-
variate normal distribution as search operator with an efficient Gibbs sampler for the truncated normal
distribution when the search domain is subject to linear inequality constraints. This synthesis provides
a generic way for constrained continuous black-box optimization because the optimizer is guaranteed
to only operate on the feasible domain. No problem- or domain-specific constraint-handling techniques
have thus to be developed for the given optimization task. The proposed sampler works for normal
distributions with arbitrary mean and covariance structure for any number of linear constraints that
form a non-empty domain. Using the Gibbs sampling methodology, the computational complexity
of generating constrained samples is poly(n). As a proof of concept we couple the sampler with two
state-of-the-art search heuristics: (i) the Evolution Strategy with Covariance Matrix Adaptation and
(ii) Gaussian Adaptation. We present numerical examples that show the efficacy and efficiency of
our approach on selected test problems from the field of evolutionary computation and mathematical
programming.

Introduction

Many of today’s state-of-the-art continuous black-box optimization heuristics use the multivariate nor-
mal distribution as a means to iteratively generate new candidate solutions in the search space. Promi-
nent examples are Evolution Strategies (ES) [1], Evolution Strategies with Covariance Matrix Adaptation
(CMA-ES) [2], several Estimation of Distribution (EDA) algorithms [3], Gaussian Adaptation (GaA) [4, 5],
and the Cross-Entropy method in continuous domains [6]. These methods are usually designed to solve
black-box minimization problems over the unconstrained search space R

n:

min
x∈Rn

f(x) . (1)

In general, only zeroth-order information can be extracted from the black-box objective function f(x).
Gradient or higher-order information about f(x) are not available or do not exist. Moreover, no proper-
ties about the function f(x) such as convexity or linearity are assumed. Optimization problems of this
kind frequently arise in engineering applications where f(x) is, e.g., the output of some complex computer
simulation or a real-world experiment, and x = [x1, . . . , xn]

T ∈ R
n are design variables or parameters. The

aforementioned black-box optimization heuristics explore the parameter space by sampling new candidate
solutions from a multivariate normal distribution N (m,C) at each iteration (or generation). The infor-
mation about sample positions and corresponding objective function values is then used by the respective
algorithm to adapt mean m ∈ R

n and covariance matrix C ∈ R
n×n of the distribution. This process is

repeated until some user-defined convergence criteria are met.

In many practical situations, however, more refined knowledge about the search domain is available a priori.
Variables may be restricted to the non-negative orthant x ≥ 0, to an n-dimensional box x ∈ [l,u] ⊂ R

n



(with n-dimensional vectors l,u ∈ R
n specifying the lower and upper bounds in each dimension), or to the

n-dimensional unit simplex
∑n

i=1
xi ≤ 1. Feasible regions Ω of this kind can be expressed in terms of a set

of m linear inequalities of the form Ω = {x ∈ R
n : Ax ≤ b}, where A ∈ R

m×n and b ∈ R
m. The canonical

form of a black-box optimization problem subject to linear inequality constraints thus reads:

min
x∈Rn

f(x) (2)

s.t. Ax ≤ b .

Due to the fact that the multivariate normal distribution is defined over R
n, the natural question arises

how optimization heuristics that use this distribution for search should handle samples that lie outside
the feasible region. In the Evolutionary Computation community, a variety of heuristic methods have
been developed in the past decades for general constraint-handling (where the constraints may even be
non-linear or not explicitly given). We refer to [7] for a general review and to [8] for a recent review
related to ES. The arguably most common approaches are projection methods, penalty function methods,
and rejection sampling. In the projection method, infeasible solutions are projected back onto the feasible
domain. In the penalty function method, a term is added to the objective function that is proportional to
the “degree of infeasibility" of the solution and vanishes if all constraints are satisfied. Both approaches
are unsatisfactory because it is often not easy to either find an effective projection operator or to properly
balance the influence of the penalty function on the objective function. In rejection sampling, infeasible
solutions are discarded by the optimizer and resampled until only feasible solutions are present. While
this approach is the only true problem-independent constraint-handling technique, it is, unfortunately, in
many cases highly impractical. This stems from the fact that the acceptance ratio can become arbitrarily
small during the optimization process, eventually leading to a complete halt of the search.
In this contribution we follow a different line of thought. Rather than sampling from an unconstrained
normal distribution and repairing or resampling infeasible solutions, we present a Gibbs sampler for the
truncated normal distributions NΩ(m,C) that is guaranteed to produce only samples within the feasible
domain in polynomial run time.

A Gibbs sampler for truncated normal distributions in linearly constrained domains

Gibbs sampling, originally introduced in a seminal paper by Geman and Geman [9], is a Markov Chain
Monte Carlo technique that allows to efficiently sample from an n-dimensional joint distribution p(x)
when knowledge about its conditional distributions is available. For instance, when the one-dimensional
conditionals p(xj |x−j), j = 1, . . . , n with x−j = [x1, . . . , xj−1, xj+1, . . . , xn]

T are explicitly given and easy
to sample from, the Gibbs sampler generates an n-dimensional sample from the joint distribution by
constructing a Markov chain that sequentially sweeps over all dimensions from some feasible starting
point. The jth dimension is sampled using p(xj |x−j) conditional on the current location of the chain. The
computational advantage of the Gibbs sampler is the unconditional acceptance of the new sample location
thus rendering the run time linear in n for any single sample. A set of k samples generated in this way
is provably an identically independently distributed (i.i.d) but correlated sample from the distribution. In
order to reduce the correlation of the chain, additional “thinning" of the chain is usually applied, i.e., only
every tth n-dimensional sample of the chain is added to the final sample set. We can construct such a
Gibbs sampler for the following truncated multivariate normal distribution

p(x) ∝ NΩ(m,C) =

{

N (m,C) if Ax ≤ b

0 otherwise,
(3)

because the corresponding one-dimensional conditional distributions are truncated one-dimensional nor-
mals for which efficient sampling schemes exist. For the exact formulae of the conditional means and
variances we refer to [10]. Geweke [11] was among the first to present a Gibbs sampler for a special case
of Eq. (3) where A is allowed to contain at most n linearly independent constraints, i.e., (rotated) box



constraints. Rodriguez-Yam et al. [13] developed an elegant generalization for arbitrary convex polyhedra
in the context of Bayesian statistics. Let x ∼ NΩ(m,C) be an n-dimensional multivariate normal vector.
We first decompose C = σ2Σ with σ a scalar. Let T ∈ R

n×n be a matrix of full rank such that TΣTT = I

where I denotes the n-dimensional identity matrix. T can be found by Cholesky or eigenvalue decom-
position of Σ because the rescaled covariance matrix Σ is positive definite. Let z = Tx and c = Tm.
Sampling z from a truncated normal distribution thus reads:

p(z) ∝ NS(c, σ
2I) =

{

N (c, σ2I) if Dz ≤ b

0 otherwise,
(4)

where D = AT−1 and S = {z ∈ R
n : Dz ≤ b} and the original x can be recovered by x = T−1z.

This reformulation drastically simplifies the sampling distribution but not the constraints. Let z =
[z1, . . . , zj, . . . , zn]

T and z−j = [z1, . . . , zj−1, zj+1, . . . , zn]
T . A Gibbs sampler for the multivariate distri-

bution in Eq. (4) thus generates in each sweep components zj of z according to

p(zj |z−j) = NSj
(cj, σ

2) , (5)

where Sj = {zj ∈ R, z ∈ R
n : Dz ≤ b}. Let D = [d1, . . . ,dj, . . . , ,dn] with dj ∈ R

m and D−j the matrix
D without the jth column dj . Sj can then be computed from the set of at most m linear inequalities
Sj = {zj ∈ R : djzj ≤ b −D−jz−j} the solution of which forms a one-dimensional convex set, i.e. either
an (left/right) open interval or a closed interval. Note that the current position of the chain only ap-
pears in the sequential calculation of the intervals but not in the sample generation. Rodriguez-Yam and
co-workers showed that the Markov chains produced by this Gibbs sampler exhibit excellent mixing be-
havior. Sequential samples are virtually uncorrelated compared to the ones produced by Geweke’s sampler
[13]. Moreover, our own numerical experiments revealed that, for high-conditioned covariance matrices C,
Geweke’s sampler is in fact numerically unstable because the conditional one-dimensional variances cannot
be calculated any more. We implemented the described Gibbs sampler both in MATLAB and Fortran
90 using BLAS/LAPACK for all relevant linear algebra calculations as well as a MATLAB-mex interface
for the Fortran 90 code. The software as well as run time benchmark results will soon be made publicly
available at http://www.mosaic.ethz.ch/.

Numerical examples for constrained black-box optimization

We now present two novel combinations of a search heuristic and Gibbs sampling and sketch their perfor-
mance on two different test problems. To date, the only available study that proposes a related approach
is the PolyEDA [12], a specific EDA algorithm that uses Geweke’s sampler and is thus limited to problems
with (rotated) box constraints. We first combine our sampler with Hansen’s CMA-ES (version 2.55 of
the MATLAB implementation), an ES variant that showed remarkable performance over a wide range
of synthetic and real-world in the past years. We replace its standard constraint-handling and sampling
mechanism with the Gibbs sampler and test the performance of this novel constrained CMA-ES algorithm
on the tangent problem:

min
x∈Rn

fTR(x) =
∑n

i=1
x2
i (6)

s.t. −
∑n

i=1
xi + n ≤ 0 .

This problem served as a key test problem in Kramer’s recent review on constraint-handling in ES [8].
The optimal solution is x∗ = [1, . . . , 1]T with objective function value fTR(x

∗) = n. Kramer considers the
two-dimensional problem throughout his review and compares the performance of various ES as well as
CMA-ES with several heuristic constraint-handling techniques. Unfortunately, initial starting points x0 or
the initial step size σ0 for CMA-ES are not specified for these experiments. We chose x0 = [10, 10]T and
σ0 = 1 and conducted 25 experiments. Constrained CMA-ES has been stopped when the optimum was



found within ǫ < 1e−16. Minimum, median, and maximum number of function evaluations are 764, 992,
and 1346. For comparison, the best combination of CMA-ES and a sophisticated meta-model strategy for
the constraints needs on average 3,432 function evaluations and 5,326 constraint evaluations [8].
In our second algorithm we embed the Gibbs sampler into the recently revisited GaA method [4, 5], a
black-box optimizer that is rooted in Jaynes’ Maximum Entropy principle. We consider the problem of
solving linear programs over Klee-Minty cubes. This problem is a classic in mathematical programming
because Dantzig’s standard simplex method has proven exponential run time on this instance. We chose
Kitahara and Mizuno’s parameterization of the Klee-Minty cube [14]. The problem reads:

max
x∈Rn

fKM(x) =
∑n

i=1
xi (7)

s.t. x1 ≤ 1

2
∑k−1

i=1
xi + xk ≤ 2k − 1, k = 2, . . . , n

x ≥ 0

The optimal solution is located at x∗ = [0, 0, . . . , 1]T with fKM(x∗) = 2n − 1. The described Klee-Minty
polyhedron has an interesting shape because the axis length along the ith dimension grows exponentially
with i, thus leading to an increasingly anisotropic search space in higher dimensions. For n ≤ 16, we
empirically observe that constrained GaA with Gibbs sampling achieves polynomial convergence (in terms
of function evaluations) for any fixed ǫ when started from the origin with an initial step size on the order of
2n. A complete analysis of this test case will be provided in a future extended version of this contribution.
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