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A conjecture about an upper bound of the RMSD between linear chains
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Abstract

We combine stochastic global optimization and an-
alytical geometry in order to conjecture an upper
bound for the Root Mean Square Deviation (RMSD)
between linear chains of N beads with link length b af-
ter optimal roto-translational fitting. We report pairs
of putative extremal configurations and an analytical
expression for the RMSD between them, asymptoti-

cally approaching 1
4

√
5
3bN for large N .

1 Introduction

Since the pioneering works of Flory [3] chain models
have been instrumental for theoretical studies of poly-
mers. The simplest models are linear chains such as
the freely jointed (or ideal) Random Walk (RW) or the
Self-Avoiding Walk (SAW). These models provide the
theoretical basis for more complex (bio-)polymer and
protein models [2]. A linear chain is a configuration
of ordered points (beads, atoms) in three-dimensional
space, where the Euclidean distance between consec-
utive beads is constrained to an arbitrary but fixed
constant b, the bond or link length.

The advent of efficient algorithms for determining
the minimum Root Mean Square Deviation (RMSD)
[10, 7] between two linear chains has triggered re-
search in characterizing the configuration space of
chain ensembles using RMSD as the standard distance
metric in the field. Starting from ideal RW ensembles
[11] the analysis has been extended to more complex
polymer and protein models [14].

While the minimum RMSD between two configura-
tions reaches a trivial lower bound of 0 for identical
chains, a tight upper bound – or the two configura-
tions of linear chains that are most dissimilar from
each other – is still unknown.

We address this problem using a combination of
global optimization and analytical geometry. We
numerically determine the maximum RMSD of RW
chains for several N and deduce from these results a
general formula for odd N . We conjecture that the
asymptotic limit of this formula is valid for all N and
that it is an upper bound for the maximum RMSD
between general linear chains.
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2 Definitions and Methods

2.1 The minimum RMSD

We represent two configurations of N beads each by
the matrices X, Y ∈ R3×N . Each column in X, Y is
denoted x(i),y(i) and contains the three-dimensional
Cartesian coordinates of the ith bead of the config-
uration. In a linear chain model, consecutive beads
are connected by links of fixed length b. Calculating
the minimum RMSD D(X,Y ) between X and Y com-
prises two steps: (i) translating the centers of mass
xcm and ycm of both configurations to the origin, lead-
ing to repositioned chains X0 and Y0 with columns

x
(i)
0 ,y

(i)
0 ; (ii) determining the optimal rotation ma-

trix R ∈ R3×3, such that:

D2(X,Y )
.
= min

R

1

N
‖RX0 − Y0‖22 . (1)

The optimal rotation matrix R can be determined
using Singular Value Decomposition (SVD) [6, 7] or
quaternions [8]. It is a special case of the orthogonal
Procrustes problem ([4], pp. 601) where RTR = I3
(the 3× 3 identity matrix) and detR = 1.
D2(X,Y ) can be expressed in terms of the radii of

gyration of X and Y , RG(X) and RG(Y ), as [10, 11]:

D2(X,Y ) = R2
G(X)+R2

G(Y )−2
1

N

N∑
i=1

x̃
(i)
0 ·y

(i)
0 (2)

with x̃
(i)
0 = Rx

(i)
0 and R2

G(X) = tr(XTX). The term
1
N

∑N
i=1 x̃

(i)
0 · y

(i)
0 describes the structural correlation

between X and Y after optimal superposition and can
be re-written as [1]:

1

N

N∑
i=1

x̃
(i)
0 · y

(i)
0 =

N∑
i=1

x̃
(i)
0 · y

(i)
0√

N∑
i=1

x
(i)2
0

N∑
i=1

y
(i)2
0

RG(X)RG(Y ) .

(3)
Betancourt and Skolnick [1] refer to the fraction
in Eq. (3) as the aligned correlation coefficient
ACC(X,Y ). The radius of gyration RG of a chain
X is roto-translation invariant and can be written as:

R2
G(X) =

1

N

N∑
i=1

‖x(i) − xcm‖22 (4)

= −xcm · xcm +
1

N

N∑
i=1

‖x(i)‖2 .
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From Eq. (2), McLachlan derived relative lower and
upper bounds for D2(X,Y ) of two given chains X and
Y [11]:

0 ≤ D2(X,Y ) ≤ R2
G(X) +R2

G(Y ) . (5)

2.2 The linear chain RW model

A linear chain X is represented in internal coordi-
nates. We denote by θi the angle between three con-
secutive beads x(i), x(i+1), x(i+2). The dihedral be-
tween the two consecutive planes spanned by (x(i),
x(i+1), x(i+2)) and (x(i+1), x(i+2), x(i+3)) is ωi (see
Fig. 1a). A chain of N beads with fixed bond length
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Figure 1: a. Definition of the angles θi and dihedrals
ωi characterizing an anchored walk of length N . b.
Illustration of the trigonometric map qX → X from
internal coordinates qX to Cartesian coordinates X.

b has N − 2 angles and N − 3 dihedrals, result-
ing in M = 2N − 5 degrees of freedom. It is de-
scribed by the internal coordinate vector qX

.
= {θi|i =

1 . . . N−2, ωi|i = 1 . . . N−3}. For an ideal RW chain,
the direction of each link is chosen uniformly random
on the unit sphere by sampling the cos(θi) uniformly
from [0, 1] and the ωi uniformly from [0, π] [2]. The
link length between consecutive beads is fixed to b,
the mass of each bead is m = 1

N .

In order to avoid redundant chains that can be su-
perimposed by rigid-body translation and rotation,
we use “anchored” walks where x(1) is placed at the
origin, x(2) along the x-axis at (b, 0, 0)T, and the link
between x(2) and x(3) is contained in the xy-plane.
This uniquely defines the overall position and orien-
tation of the walk [13].

A pair of anchored RW chains (X,Y ) of N beads
each is represented by qS = (qX ,qY ). The transfor-
mation from internal coordinates to three-dimensional
Cartesian coordinates is denoted by J(qS) = (X,Y )
(see Fig. 1b).

2.3 The maximum RMSD problem

The maximum RMSD problem (MAX-RMSD) is
stated as a continuous, non-convex max–min op-
timization problem. We seek the specific pair of
chains (XN

max, Y N
max) of N beads each that maximizes

D2(X,Y ) over all possible X and Y , hence:

(XN
max, Y

N
max) = arg max

X,Y
D2(X,Y ) (6)

= arg max
X,Y

min
R

1

N
‖RX0 − Y0‖22 .

We refer to the pair (XN
max, Y

N
max) as the extremal

configurations of the chain ensemble in the RMSD
sense. If both X and Y are anchored linear RW
chains, we call the problem RW-MAX-RMSD. Its
Dmax(N) =

√
D2(XN

max, Y
N
max) is an upper bound for

the maximum RMSD of all linear chain ensembles.
The inner minimization problem can be solved ana-

lytically by constructing the optimal rotation matrix
R from SVD [6, 7, 4] or using quaternions [8, 9]. The
distance constraints on the positions of consecutive
beads ‖xi − xi+1‖2 = b, i = 1, . . . , N − 1, are satis-
fied by using internal coordinates q.

The outer maximization problem can be formulated
as a constrained, non-convex black-box optimization
problem in n = 2(2N − 5) = 4N − 10 dimensions.
For convenience we consider the unit hypercube as
feasible domain, i.e., candidate solution vectors q̂S

are in [0, 1]n. The unique map T : q̂S ∈ [0, 1]n →
qS ∈ ([0, 1]2(N−2), [0, π]2(N−3)) transforms any candi-
date solution vector to internal coordinates of a chain.
The black-box objective function f to be maximized
then reads:

f(q̂S) ≡ D2 (J(T (q̂S))) = D2(X,Y ) (7)

= min
R

1

N
‖RX0 − Y0‖2 .

Note that this formulation is known a priori to be-
come two-fold degenerate if two consecutive links in
a trial configuration are co-linear. First, the corre-
sponding dihedral angles are then undefined, i.e., the
configuration remains the same regardless of their val-
ues. Second, the optimal rotation matrix has only
rank 1, permitting infinitely many rotations that min-
imize D2(X,Y ) [8].

3 Numerical optimization results

We numerically solve the RW-MAX-RMSD prob-
lem for pairs of configurations with N = 3, . . . , 16
beads. The dimensionality of the problem is thus
ranging from n = 2, . . . , 50. We use two optimiza-
tion algorithms: (i) Sequential Quadratic Program-
ming (SQP) and (ii) Best Local Restart Covariance
Matrix Adaptation Evolution Strategy (BLR-CMA-
ES). For SQP, the MATLAB implementation fmin-
con is used. For box-constrained black-box optimiza-
tion problems, this implementation uses an active-
set SQP algorithm with approximate BFGS and line
search. BLR-CMA-ES is a local restart variant of
the variable-metric optimizer CMA-ES [5]. Details of
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BLR-CMA-ES and the set-up of the numerical exper-
iments have been described elsewhere [12].

The putative optimal solutions (XN
max, Y

N
max) found

by SQP and BLR-CMA-ES agree for N = 3, 5, 7, 11.
For all other instances, BLR-CMA-ES consistently
outperforms SQP, finding configurations with larger
minimum RMSD than those found by SQP. These
extremal configuration are shown in Fig. 2. For odd

N = 3 N = 4 N = 5 N = 6

N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 N = 13 N = 14 N = 15 N = 16
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Figure 2: Extremal configurations (XN
max, Y

N
max) of

linear RW chains with N = 3, . . . , 16 found by BLR-
CMA-ES. The upper box shows the extended configu-
rations XN

max. The lower box shows the corresponding
configurations Y N

max. For odd N , Y N
max is a linear rod

of half the length with beads N+3
2 to N folded back

onto beads N−1
2 to 1. For even N , Y N

max is a planar

hairpin where the links from beads N+2
2 to N cross

the links from beads N
2 to 1.

N , they follow a regular geometric pattern: one con-
figuration always is the fully extended linear rod, the
other is a linear rod of half the length with beads
N+3
2 to N folded back onto beads N−1

2 to 1. For
even N , the first extremal configuration is again the
fully extended linear rod, whereas the other is a
planar hairpin with crossed ends. For odd N , the
ACC of the extremal configurations is virtually 0
(< 10−15), for even N it is < 10−3. These optima
found by BLR-CMA-ES suggest a near-linear depen-
dence of Dmax(N) on N with a best linear fit of
Dmax(N) ≈ 0.3251bN − 0.04013.

4 The MAX-RMSD conjecture

The above results suggest that the extremal configu-
rations for odd N follow a simple geometric pattern:
one configuration is the fully extended linear rod, the
other one a linear fold-back of half the length.

Conjecture 1 The fully extended linear rod and its
linear fold-back configuration are the optimal solution
of the RW-MAX-RMSD problem for all odd N.

Under this assumption we derive a general formula
for Dmax(N) for odd N . Combining Eqs. (2) and (3)
we find:

D2
max(N) = D2(XN

max, Y
N
max) = R2

G(XN
max) + R2

G(Y N
max)

− 2ACC(XN
max, Y

N
max)RG(XN

max)RG(Y N
max)

= R2
G(XN

max) + R2
G(Y N

max) , (8)

provided that ACC(XN
max, Y

N
max) = 0 for all odd N .

Lemma 1 The ACC(XN
max, Y

N
max) for odd N is 0.

Proof. Without loss of generality we assume that
XN

max is the fully extended rod and Y N
max the back-

folded one, and that their centers of mass are at
(0, 0, 0). For odd N , the problem of optimal super-
position then reduces to a rotation in the xy-plane.
We define the x-axis to be aligned with XN

max after
optimal superposition. Y N

max forms a certain rotation
angle α with XN

max as shown in Fig. 3. We show that

α
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Figure 3: Calculation of the RMSD between XN
max

and Y N
max for odd N after optimal superposition.

XN
max is the extended configuration and Y N

max the
folded one. Open circles (◦) represent positions that
are occupied by single beads, filled circles (•) indicate
positions occupied by two beads. The two configura-
tions enclose a planar angle α.

for the specific pair of configurations (XN
max, Y

N
max) the

ACC(XN
max, Y

N
max) is 0 for any rotation angle α and

any odd N by recalling the definition of ACC for two
optimally aligned chains X, Y :

ACC(X,Y ) =

∑N
i=1 x

(i) · y(i)√∑N
i=1 x

(i)2
∑N

i=1 y
(i)2

. (9)

The denominator of this expression is always positive
since the two factors under the square root are sums
over squared bead coordinates.
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From Fig. 3 we see that the coordinate vectors x
(i)
max

only have non-zero entries in x-direction. Further-
more, the x coordinate of the ith bead in XN

max is the
negative of the x coordinate of the (N − i+1)th bead.

The central bead (i.e., the
(
N+1
2

)th
bead) in XN

max is
at (0, 0, 0), so the scalar product with its correspond-
ing bead in Y N

max is 0. The positions of the ith and
(N − i+ 1)th beads in Y N

max are identical (filled circles
in Fig. 3) for all α. The numerator in Eq. (9) hence
becomes:

N∑
i=1

xN,(i)
max · yN,(i)

max =

N+1
2

−1∑
i=1

xN,(i)
max · yN,(i)

max + 0

+

N∑
i=N+1

2
−1

xN,(i)
max · yN,(i)

max = −
N∑

i=N+1
2

−1

xN,(i)
max · yN,(i)

max +

N∑
i=N+1

2
−1

xN,(i)
max · yN,(i)

max = 0 (10)

and, therefore, ACC(XN
max, Y

N
max) = 0 for all odd N

and all rotation angles α. �

Observation 1 The radii of gyration of XN
max and

Y N
max for odd N are

R2
G(XN

max) =
2

N
b2

M−∑
i=1

(i)2 (11)

R2
G(Y N

max) = −b2
(
M−M−

N

)2

+
1

N
b2

(M−)2 + 2

M̂−∑
i=1

(i)2


(12)

with M− = N−1
2 and M̂− = N−3

2 .

A derivation of these expressions can be found in
Ref. [12]. Combining Eqs. (8), (11), and (12) yields
an analytic formula for Dmax(N) for odd N , asymp-
totically approaching [12]:

D̂max(N) = lim
N→∞

Dmax(N) =
1

4

√
5

3
bN . (13)

We conjecture that this asymptotic limit is valid also
for even N and, since the maximum RMSD of RW
chains is always larger than that of any other chain
ensemble, formulate:

Conjecture 2 D̂max(N) is an asymptotic upper
bound on the RMSD between any two linear chains.

5 Conclusion

We combined stochastic global optimization and ana-
lytic geometry in order to conjecture an upper bound
for the RMSD between linear chains of N beads with
link length b after optimal roto-translational fitting.
We reported pairs of putative extremal configurations
of RW chains and an analytical expression for the

maximum RMSD between these extremal configura-
tions for odd N . This expression asymptotically ap-

proaches 1
4

√
5
3bN for large N , which is the conjec-

tured upper bound for any two linear chains for all
N . Future research will try proving this conjecture.
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