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A conjecture about an upper bound of the RMSD between linear chains
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Abstract

We combine stochastic global optimization and an-
alytical geometry in order to conjecture an upper
bound for the Root Mean Square Deviation (RMSD)
between linear chains of N beads with link length b af-
ter optimal roto-translational fitting. We report pairs
of putative extremal configurations and an analytical
expression for the RMSD between them, asymptoti-

cally approaching i\/ng for large N.

1 Introduction

Since the pioneering works of Flory [3] chain models
have been instrumental for theoretical studies of poly-
mers. The simplest models are linear chains such as
the freely jointed (or ideal) Random Walk (RW) or the
Self-Avoiding Walk (SAW). These models provide the
theoretical basis for more complex (bio-)polymer and
protein models [2]. A linear chain is a configuration
of ordered points (beads, atoms) in three-dimensional
space, where the Euclidean distance between consec-
utive beads is constrained to an arbitrary but fixed
constant b, the bond or link length.

The advent of efficient algorithms for determining
the minimum Root Mean Square Deviation (RMSD)
[10, 7] between two linear chains has triggered re-
search in characterizing the configuration space of
chain ensembles using RMSD as the standard distance
metric in the field. Starting from ideal RW ensembles
[11] the analysis has been extended to more complex
polymer and protein models [14].

While the minimum RMSD between two configura-
tions reaches a trivial lower bound of 0 for identical
chains, a tight upper bound — or the two configura-
tions of linear chains that are most dissimilar from
each other — is still unknown.

We address this problem using a combination of
global optimization and analytical geometry. We
numerically determine the maximum RMSD of RW
chains for several N and deduce from these results a
general formula for odd N. We conjecture that the
asymptotic limit of this formula is valid for all N and
that it is an upper bound for the maximum RMSD
between general linear chains.
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2 Definitions and Methods

2.1 The minimum RMSD

We represent two configurations of N beads each by
the matrices X, Y € R3*¥ . Each column in X, Y is
denoted x(,y(® and contains the three-dimensional
Cartesian coordinates of the i*" bead of the config-
uration. In a linear chain model, consecutive beads
are connected by links of fixed length b. Calculating
the minimum RMSD D(X,Y’) between X and Y com-
prises two steps: (7) translating the centers of mass
Xem and yem of both configurations to the origin, lead-
mg to repositioned chains Xy and Yy with columns
Xo ,yg), (it) determining the optimal rotation ma-
trix R € R3*3, such that:
DY(X,Y) = min - [RXo - ¥ol3. (1)
The optimal rotation matrix R can be determined
using Singular Value Decomposition (SVD) [6, 7] or
quaternions [8]. It is a special case of the orthogonal
Procrustes problem ([4], pp. 601) where RTR = I3
(the 3 x 3 identity matrix) and det R = 1.
D?(X,Y) can be expressed in terms of the radii of
gyration of X and Y, Rg(X) and Rg(Y), as [10, 11]:
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with ig) Rx!" and RZ(X) = tr(XTX). The term
~ ZZ 1 i((f 0) describes the structural correlation
between X and Y after optimal superposition and can
be re-written as [1]:
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Betancourt and Skolnick [1] refer to the fraction
in Eq. (3) as the aligned correlation coefficient
ACC(X,Y). The radius of gyration Rg of a chain
X is roto-translation invariant and can be written as:
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From Eq. (2), McLachlan derived relative lower and
upper bounds for D?(X,Y") of two given chains X and
Y [11):

0 < D*(X,Y) < RE(X) + RE(Y). (5)

2.2 The linear chain RW model

A linear chain X is represented in internal coordi-
nates. We denote by 6; the angle between three con-
secutive beads x(, x(+1)  x(+2) " The dihedral be-
tween the two consecutive planes spanned by (x(®),
x| x(42)) and (x0+HD) ) x(042) ) x(043)) is w; (see
Fig. 1a). A chain of N beads with fixed bond length

2 N-1
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Figure 1: a. Definition of the angles 6; and dihedrals
w; characterizing an anchored walk of length N. b.
Mlustration of the trigonometric map qx — X from
internal coordinates qx to Cartesian coordinates X.

b has N — 2 angles and N — 3 dihedrals, result-
ing in M = 2N — 5 degrees of freedom. It is de-
scribed by the internal coordinate vector qx = {6;|i =
1...N—-2,w;i=1...N—3}. For an ideal RW chain,
the direction of each link is chosen uniformly random
on the unit sphere by sampling the cos(¢;) uniformly
from [0,1] and the w; uniformly from [0, 7] [2]. The
link length between consecutive beads is fixed to b,
1

the mass of each bead is m = ~-

In order to avoid redundant chains that can be su-
perimposed by rigid-body translation and rotation,
we use “anchored” walks where x(*) is placed at the
origin, x(®) along the z-axis at (b,0,0)", and the link
between x(?) and x(® is contained in the zy-plane.
This uniquely defines the overall position and orien-
tation of the walk [13].

A pair of anchored RW chains (X,Y) of N beads
each is represented by qs = (qx,qy). The transfor-
mation from internal coordinates to three-dimensional
Cartesian coordinates is denoted by J(qs) = (X,Y)
(see Fig. 1b).

2.3 The maximum RMSD problem

The mazimum RMSD problem (MAX-RMSD) is
stated as a continuous, non-convex max—min op-
timization problem. We seek the specific pair of
chains (X, Y, ) of N beads each that maximizes

max? max

D?*(X,Y) over all possible X and Y, hence:

(Xiax Yinax) = arg max D*(X,Y) (6)

1
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We refer to the pair (XN, VN ) as the extremal
configurations of the chain ensemble in the RMSD
sense. If both X and Y are anchored linear RW
chains, we call the problem RW-MAX-RMSD. Its
Dpax(N) = VD?(XN, .. YNV ) is an upper bound for
the maximum RMSD of all linear chain ensembles.

The inner minimization problem can be solved ana-
lytically by constructing the optimal rotation matrix
R from SVD [6, 7, 4] or using quaternions [8, 9]. The
distance constraints on the positions of consecutive
beads ||x; — X;11]l2 =b, i=1,...,N — 1, are satis-
fied by using internal coordinates q.

The outer maximization problem can be formulated
as a constrained, non-convex black-box optimization
problem in n = 2(2N — 5) = 4N — 10 dimensions.
For convenience we consider the unit hypercube as
feasible domain, i.e., candidate solution vectors Qg
are in [0,1]™. The unique map T : qs € [0,1]" —
qs € ([0,1]2V=2) [0, 7]>(N=3)) transforms any candi-
date solution vector to internal coordinates of a chain.
The black-box objective function f to be maximized
then reads:

flas) = D* (J(T(4s))) = D*(X.Y)  (7)
= mPiLn%HRXO - Yo|I?.

Note that this formulation is known a priori to be-
come two-fold degenerate if two consecutive links in
a trial configuration are co-linear. First, the corre-
sponding dihedral angles are then undefined, i.e., the
configuration remains the same regardless of their val-
ues. Second, the optimal rotation matrix has only
rank 1, permitting infinitely many rotations that min-
imize D?(X,Y) [8].

3 Numerical optimization results

We numerically solve the RW-MAX-RMSD prob-
lem for pairs of configurations with N = 3,...,16
beads. The dimensionality of the problem is thus
ranging from n = 2,...,50. We use two optimiza-
tion algorithms: (i) Sequential Quadratic Program-
ming (SQP) and (ii) Best Local Restart Covariance
Matrix Adaptation Evolution Strategy (BLR-CMA-
ES). For SQP, the MATLAB implementation fmin-
con is used. For box-constrained black-box optimiza-
tion problems, this implementation uses an active-
set SQP algorithm with approximate BFGS and line
search. BLR-CMA-ES is a local restart variant of
the variable-metric optimizer CMA-ES [5]. Details of
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BLR-CMA-ES and the set-up of the numerical exper-
iments have been described elsewhere [12].

The putative optimal solutions (X, Y.V ) found
by SQP and BLR-CMA-ES agree for N = 3,5,7,11.
For all other instances, BLR-CMA-ES consistently
outperforms SQP, finding configurations with larger
minimum RMSD than those found by SQP. These

extremal configuration are shown in Fig. 2. For odd
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linear RW chains with V = 3,...,16 found by BLR-
CMA-ES. The upper box shows the extended configu-
rations X2, . The lower box shows the corresponding
configurations Y,V . For odd N, YNV is a linear rod
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of half the length with beads % to N folded back

N=Ll to 1. For even N, YN is a planar

N+2
2

Figure 2: Extremal configurations (X2

onto beads
hairpin where the links from beads to N cross

the links from beads % to 1.

N, they follow a regular geometric pattern: one con-
figuration always is the fully extended linear rod, the
other is a linear rod of half the length with beads
% to N folded back onto beads % to 1. For
even N, the first extremal configuration is again the
fully extended linear rod, whereas the other is a
planar hairpin with crossed ends. For odd N, the
ACC of the extremal configurations is virtually 0
(< 10719), for even N it is < 1073. These optima
found by BLR-CMA-ES suggest a near-linear depen-
dence of Dpax(N) on N with a best linear fit of
Dinax(N) = 0.3251bN — 0.04013.

4 The MAX-RMSD conjecture

The above results suggest that the extremal configu-
rations for odd N follow a simple geometric pattern:
one configuration is the fully extended linear rod, the
other one a linear fold-back of half the length.

Conjecture 1 The fully extended linear rod and its
linear fold-back configuration are the optimal solution
of the RW-MAX-RMSD problem for all odd N.

Under this assumption we derive a general formula
for Dpax(N) for odd N. Combining Egs. (2) and (3)
we find:

Diux(N) = D*(Xiaxs Yimax) = R&(Xivax) + RE(Yinax)
- QACC(XIII\]]aX7 Yrr]Xix)RG(Xﬁax)RG(YrrIXix)
= R&(Xiax) + R&(Yii) (8)

provided that ACC(X[Y,.,Y.N ) =0 for all odd N.

max? max

Lemma 1 The ACC(XN YN ) for odd N is 0.

max’ max.

Proof. Without loss of generality we assume that
XN is the fully extended rod and Y% _ the back-

max max
folded one, and that their centers of mass are at
(0,0,0). For odd N, the problem of optimal super-
position then reduces to a rotation in the xy-plane.
We define the z-axis to be aligned with X2, after
optimal superposition. Y.V, forms a certain rotation

max
angle a with X as shown in Fig. 3. We show that
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Figure 3: Calculation of the RMSD between X[,
and YN for odd N after optimal superposition.
XN is the extended configuration and Y[  the
folded one. Open circles (o) represent positions that
are occupied by single beads, filled circles (o) indicate
positions occupied by two beads. The two configura-

tions enclose a planar angle a.

for the specific pair of configurations (X[, , Y2 ) the

ACC(XY ., YN ) is 0 for any rotation angle o and

any odd N by recalling the definition of ACC for two
optimally aligned chains X, Y:

Zfi\il x( . y(@
\/Ziil x(2 Zfil y®?

The denominator of this expression is always positive
since the two factors under the square root are sums
over squared bead coordinates.

ACC(X,Y) = (9)
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From Fig. 3 we see that the coordinate vectors ngl)ax
only have non-zero entries in z-direction. Further-
more, the  coordinate of the i*" bead in X, is the

negatlve of the = coordinate of the (N —i4 1)d§ bead.
The central bead (i.e., the (%) bead) in XX,

max

t (0,0, 0), so the scalar product with its correspond—
ing bead in Y, _is 0. The positions of the i** and
(N —i+1)* beads in Y, are identical (filled circles
in Fig. 3) for all o. The numerator in Eq. (9) hence
becomes:

N+1
zxw = X 0 0 1o

N N
T D D D
=Nty =Nty
2 2
N
> xmad Yma =0 (10)
i=NAl g
2

and, therefore, ACC(XY, YN ) =0 for all odd N

max’ max

and all rotation angles a. O
Observatlon 1 The radii of gyration of XY, and
N for odd N are
2 M™—
2 (N \_ 432 2

RE(Xax) = 370 ;(z) (11)

2 N\ 2M_M_212 —\2 M_-2

Re(v) = -0 (M) gt (o) +23°0)
(12)

and M~ = N=3

. — _ N-1
with M =5 2

A derivation of these expressions can be found in
Ref. [12]. Combining Egs. (8), (11), and (12) yields
an analytic formula for Dy,.,(N) for odd N, asymp-
totically approaching [12]:

~ . 1 /5
Dinas(N) = Jim_ Dy (N) = 4\/;bN. (13)
We conjecture that this asymptotic limit is valid also
for even N and, since the maximum RMSD of RW
chains is always larger than that of any other chain
ensemble, formulate:

Conjecture 2 ﬁmax(N) is an asymptotic upper
bound on the RMSD between any two linear chains.

5 Conclusion

We combined stochastic global optimization and ana-
lytic geometry in order to conjecture an upper bound
for the RMSD between linear chains of N beads with
link length b after optimal roto-translational fitting.
We reported pairs of putative extremal configurations
of RW chains and an analytical expression for the

maximum RMSD between these extremal configura-

tions for odd N. This expression asymptotically ap-
proaches %\/%bN for large NN, which is the conjec-

tured upper bound for any two linear chains for all
N. Future research will try proving this conjecture.
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