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Abstract
We present the energy minimization of atomic clusters as a promising problem class
for continuous black box optimization benchmarks. Finding the arrangement of atoms
that minimizes a given potential energy is a specific instance of the more general class
of geometry optimization or packing problems, which are generally NP-complete. Atomic
clusters are a well-studied subject in physics and chemistry. From the large set of avail-
able cluster optimization problems, we propose two specific instances: Cohn-Kumar
clusters and Lennard-Jones clusters. The potential energies of these clusters are gov-
erned by distance-dependent pairwise interaction potentials. The resulting collection
of landscapes is composed of smooth and rugged single-funnel topologies, as well as
tunable double-funnel topologies. In addition, all problems possess a feature that is
not covered by the synthetic functions in current black box optimization test suites:
isospectral symmetry. This property implies that any atomic arrangement is uniquely
defined by the pairwise distance spectrum, rather than the absolute atomic positions.
We hence suggest that the presented problem instances should be included in black
box optimization benchmark suites.

Keywords
Black box optimization benchmark, energy landscape, atomic cluster, ground state,
CMA-ES.

1 Introduction

For many years it has been a common shortcoming in the black box optimization com-
munity that the publication of novel search heuristics has often not been accompanied
by rigorous benchmarks on balanced sets of test problems. The IEEE CEC competitions
on real-valued black box optimization, as well as the GECCO workshops on black box
optimization benchmarking (BBOB), constitute a welcome and much-needed effort that
puts experimental research in search heuristics on more solid ground. Naturally, these
test suites are composed of artificially designed test functions with certain mathematical
properties such as (non-)separability, noise, scalability, multimodality or, in the case of
quadratic forms, different condition numbers. Careful design of test functions allows
the drawing of conclusions about certain invariance properties of the tested search al-
gorithms. We argue that minimizing energy landscapes of atomic clusters provides a
useful extension to the current CEC or BBOB test sets for two main reasons: First, these
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problems have the property of isospectral symmetry, a characteristic that is not covered
by the current benchmark sets and that potentially affects different search heuristics
in different ways. Second, atomic cluster problems can be considered real-world prob-
lems, since they model physical phenomena and share a similar problem structure with
other important real-world optimization tasks such as, for example, sensor placement
problems (Wu and Verma, 2008).

The key objective of the present article is to introduce black box optimization
benchmark problems from energy minimization of atomic cluster configurations. The
selection of problem instances is guided by two principles: First, the test suite should
have benchmark problems of varying degrees of difficulty. Similar to synthetic bench-
mark suites that are composed of problems with unimodal or (highly) multimodal
topology, we present benchmarks that can be seen as cluster analogs of these estab-
lished functions. Second, all problem instances should be easy to implement, scalable
to higher dimensions, and quick to evaluate on standard computers, thus allowing ex-
tensive benchmark runs with reasonable computational cost. To this end, we also make
the MATLAB/Octave implementations of the present benchmarks publicly available
on the authors’ website.

This article does not attempt any performance comparison between different opti-
mization strategies. The included optimization runs solely serve as illustrations of how
to use the benchmarks, and they shall provide a first reference for future comparisons of
algorithms. We do, however, include a general introduction to atomic clusters and the
associated minimization problems for computer scientists. Although most information
can be found in standard physical chemistry textbooks, we feel that the provided infor-
mation and references serve as a valuable entry point for researchers in evolutionary
computation.

This article is structured as follows: In Section 2 we summarize the physical and
computational aspects of atomic clusters. We also review standard gradient-based op-
timization approaches from chemistry for cluster problems. In Section 3 we outline
general properties of the considered cluster instances and present a useful order pa-
rameter for cluster characterization. Section 4 introduces a novel cluster minimization
problem based on Cohn-Kumar potentials and presents detailed information about its
landscape features. Section 5 considers specific instances of Lennard-Jones clusters that
are amenable to black box optimization. We conclude by summarizing the key results
and providing ideas for further promising cluster instances.

2 Physical and Computational Aspects of Atomic Clusters

A cluster is a spatial arrangement of particles, typically a few tens to hundreds in
number. In chemistry and physics, the study of clusters of atoms provides a means
to understand nucleation phenomena. Nucleation describes the transition from a loose
collection of atoms to the formation of bulk materials with particle numbers on the order
of the Avogadro constant NA = 6.022 × 1023. Depending on chemical composition and
physical conditions, different types of solids, such as crystals, quasi-crystals, amorphous
solids, or glasses, emerge. The concept of energy landscapes has provided a fruitful view
of these complex processes. This description considers the potential energy surface
(PES) arising from the interacting atoms as a high-dimensional landscape with valleys,
ridges, saddle points, and peaks (Stillinger and Weber, 1984; Wales and Scheraga, 1999).
This concept is almost identical to Sewall Wright’s fitness landscape metaphor (Wright,
1932), which has had tremendous impact in evolutionary biology and computation.
It is now widely acknowledged that the global topology of a PES has an important
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influence on the way that atomic clusters and bulk material form. When the PES has
a funnel-like shape where local minima are arranged in order of decreasing energy
around the global minimum (or ground state), rapid evolution of the physical system
toward this ground state is likely. Multi-funnel landscapes are composed of two or
more such arrangements of local minima that are separated by large energy barriers.
When a system is in one of the funnels, it is thus hard for it to escape and explore states
in other funnels. Such landscapes are typical for glassy systems. Understanding and
elucidating energy landscapes both in computer models and real experiments is thus
an important research goal. In theoretical and computational approaches, PES can be
discriminated by three fundamental model assumptions about the underlying physical
system: (i) The number of particles in the system; (ii) the number of different atom
types, and (iii) the classical or quantum-mechanical formulation of the energy. We first
discuss the implications of these different model assumptions and state the choices we
made in order to derive tractable benchmark problems for black box optimization.

2.1 Atomic Ensembles and Landscape Domains

The number of atoms in the system is the first important choice. Bulk systems with
a huge number of atoms are approximated by a finite number of N atoms located in
a rectangular prism (or a general parallelepiped) with periodic boundary conditions.
In chemistry and crystallography, this rectangular prism is usually called the unit
cell. When different kinds of atoms are considered, the unit cell should reflect the
stoichiometry of the material, that is, the absolute ratio of the different atom types in
the system. The correct size of the unit cell and the number of atoms it contains are
usually not known a priori, thus hampering the setup of generic problem classes. The
landscape domain X of the described systems is determined by the number of atoms,
the spatial extent of the unit cell, and a finite set of indicator variables that encode the
atom types.

When the number of atoms is limited (usually to a few tens or hundreds), the
spatial location of the atoms is bounded and no periodic boundary conditions are
applied. This leads to atomic cluster or nano cluster systems. Over the past three
decades, there has been increasing interest in such systems because of their wide-
ranging chemical applications in catalysis, electronics, and energy conversion. We refer
to Catlow et al. (2010) for an excellent chemical perspective on the topic. Many cluster
systems have been studied, and the putative ground states (i.e., configurations of atoms
attaining the global energy minimum) for different energy formulations are available,
for instance in the Cambridge Cluster Database (CCD; Wales et al., 2009). Monatomic,
binary, and ternary cluster systems are well studied, most prominently oxides such as
zinc oxides or silica. Two different definitions of the space in which atomic clusters live
are commonly used: Either the atoms populate the box-constrained Euclidean space, or
they are restricted to the surface of the unit sphere Sn-1 = {x ∈ Rn : dE(0, x) = 1} where
dE(., .) denotes the Euclidean distance. For our benchmark problems, we consider both
spaces. Finding particle distributions on the unit sphere that minimize a certain energy
function is a long-standing problem since Thomson posed the question of how to
optimally arrange electric charges on a sphere (Thomson, 1904). Optimal distributions
of particles on the sphere are also known as spherical codes in coding theory. A collection
of putative optimal spherical codes can be found in Sloane et al. (2000). Optimality is
always defined with respect to a potential energy formulation.
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2.2 Potential Energy Formulations and Ground States

When a collection of particles interacts on the atomic scale, the potential energy land-
scape arises from the forces between all electrons and nuclei of the atoms. In order to
arrive at a tractable model of the PES, the fundamental assumption in both classical
and quantum mechanical (QM) formulations is the Born-Oppenheimer approxima-
tion (Born and Oppenheimer, 1927): Based on the large discrepancy between nucleus
and electron masses, this approximation allows for a separation of the energy into an
electronic and a nuclear component. Existing formulations of potential energy differ
in the way they describe these components. Depending on the specific properties of
the atoms in the system, different levels of detail are necessary in realistic models.
Two main models gained popularity in the past decades: QM electronic structure tech-
niques and classical interatomic potentials. Despite today’s increasing availability of
high-performance computing environments, QM-based energy calculations of atomic
ensembles are still very costly. Classical interatomic potentials offer a convenient alter-
native to calculate the potential energy of many-particle systems in a rapid manner. The
principle underlying the design of these potentials is largely empirical. One attempts
to reproduce the experimentally observed dynamics and ground states of specific types
of matter through careful parameterization of simple analytical functions. Consider a
cluster of N atoms in 3D space where the position of the ith particle is denoted by
pi = (xi, yi, zi). Each configuration x = {p1, . . . , pi , . . . , pN } is restricted to a 3D box,
that is, x ∈ X = [l, u] ⊂ R3N . The general form of an interatomic potential energy EIP
for many-body systems is:

EIP(x) =
∑

pi

vIP (pi ,N (pi)) , (1)

where N (pi) represents the neighborhood of pi . An established approach for the design
of interatomic potentials is to split vIP into two components. One component accounts
for many-body energy contributions through pairwise interactions. The other compo-
nent models the local environment of each individual atom. In general, the pairwise
interaction term depends on all particles in the system; whereas the local environment
is often defined within a specified distance range (neighborhood). Important examples
of interatomic potentials that include both terms are the Finnis-Sinclair potential (Finnis
and Sinclair, 1984) and its extension, the Sutton-Chen potential (Sutton and Chen, 1990),
as well as tight-binding potentials (Cleri and Rosato, 1993). The famous Stillinger-Weber
potential includes two-body and three-body interactions (Weber and Stillinger, 1985).
The simplest instances of interatomic potentials are those that only consider pairwise
interactions using isotropic pair potentials. The first potential of this kind dates back
to John Lennard-Jones who introduced an empirical potential that describes the inter-
action between neutral atoms (Lennard-Jones, 1924). This Lennard-Jones (LJ) potential
will be considered in Section 5. Another important instance is the Morse pair potential
(Morse, 1929). Although all presented interaction potentials can be parameterized for
different atom types, as well as atomic mixtures, we only consider monatomic clusters.
The Thomson problem mentioned above can also be considered a minimization prob-
lem over a potential energy of pairwise interactions. There, the N particles are electrons
confined to the sphere that are arranged so as to minimize the total Coulomb potential.

The quality of potential energy models is usually assessed by their ability to either
reproduce experimentally known ground states for various materials and clusters or to
predict novel geometries as possible ground states that could guide experimentalists in
their quest for novel forms of matter. Ground states define the macroscopic properties of
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the material. In a series of articles, Rechtsman, Stillinger, and Torquato (Rechtsman et al.,
2005, 2006a, 2006b) introduced a new perspective on the topic: Instead of attempting to
mimic nature as accurately as possible by tuning potential functions, they considered
the inverse problem of how the shape of an isotropic pair potential must look in order to
have as a ground state a predefined structure. In their simulation-guided optimization
framework, they were able to design interaction potentials that result in bulk mate-
rial with honeycomb (Rechtsman et al., 2005), square (Rechtsman et al., 2006a), cubic
(Rechtsman et al., 2006b), diamond, and wurtzite (Rechtsman et al., 2007) lattices. All of
their designed interaction potentials are based on multimodal isotropic pair potentials.
This inverse statistical mechanics approach (Torquato, 2009) inspired Cohn and Kumar
in their article, “Algorithmic design of self-assembling structures” (Cohn and Kumar,
2009) to derive convex pair potentials with provable ground states for clusters. We in-
troduce two of these fundamental potentials in Section 4 and propose the resulting PES
as a benchmark problem with a smooth single-funnel topology.

2.3 Standard Identification of Ground States

Atomic clusters and their ground states constitute an important problem class in chem-
istry and physics. From a computational complexity point of view, it is noteworthy that
Wille and Vennik proved “that determining the ground state of a cluster of identical
atoms, interacting under two-body central forces, belongs to the class of NP-hard prob-
lems” (Wille and Vennik, 1985, p. 419) using a proof by restriction. They showed that
the cluster minimization problem includes the well-known traveling salesman problem
as a special case. Adip (2005) revisited and refined the proof. Because of the existence
of analytic gradients in most potential energy formulations, competitive algorithms to
identify the ground states of larger clusters are hybrid stochastic-deterministic first-
order methods that give no guarantees about the quality of the found solutions. Despite
the tremendous number of different approaches to cluster optimization found in the
(mostly chemistry or physics) literature, the basic ingredients of successful heuristics are
few: a reasonably good global move set and an efficient quasi-Newton local gradient-
based minimizer, mostly of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) type. We
refer to Wales’s book (Wales, 2005) for further details, and to the excellent review by
Hartke (2004) for an overview of applications of hybrid evolutionary algorithms. One
of the most successful algorithms is the basin-hopping (BH) algorithm (Wales and
Doye, 1997), which is based on (1) uniformly random variation of atomic positions, and
(2) relaxation of the perturbed structure to the nearest local minimum using a gradient-
based optimizer (either a conjugate gradient method, Wales and Doye, 1997, or BFGS,
Wales, 2005). In this context, a basin is the collection of configurations that lead to the
same local minimum for a given gradient-based minimization routine. Acceptance of
a new structure is based on the Boltzmann criterion with respect to the previously
accepted configuration. This is analogous to simulated annealing. In BH, however, the
temperature parameter remains constant. Numerical results of BH and related memetic
techniques for different cluster systems are scattered over hundreds of publications.
For some systems, detailed knowledge about the number of minima, first-order saddle
points, and global landscape structure is available. The present work is a first attempt
to utilize this information for black box benchmarking.

3 Cluster Problems for Black Box Benchmarking

The physical and computational foundations of atomic clusters can be exploited for the
development of a cluster benchmark library. We adopt several design criteria of the
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established CEC 2005 (Suganthan et al., 2005) and BBOB test suites (Finck et al., 2009).
The dimensionality n of a cluster problem instance depends on the number of particles
in the cluster and the space that the individual atoms populate. We consider problems
not exceeding n ≈ 100. Furthermore, we restrict ourselves to clusters of identical atoms
with energy formulations based on scalar isotropic pair potentials uPP. This leads to an
energy formulation of the kind:

EPP(x) = 1
2

N∑
i=1

N∑
j=1

uPP(rij ) , (2)

where rij = dE(pi , pj ) is the Euclidean distance between particles pi and pj . The sole de-
pendence of the isotropic pair potential on pairwise distances has several consequences.
First, the resulting energy functions are nonseparable because all particles interact with
all others. Second, they are, in general, continuously differentiable polynomial surfaces
that are not bounded from above because most pair potentials diverge when pi ap-
proaches any pj . Third, the computational cost of energy function evaluation is low,
but scales quadratically with the number of particles (and hence dimensions). Fourth,
there is no unique set of absolute atomic positions that minimizes the energy; rather,
all configurations that have a certain distance spectrum are energetically equivalent.
This property is called isospectral symmetry and will be discussed in detail in Section
3.1. It is the key feature of cluster problems that is not represented in current standard
benchmark suites.

A convenient property of atomic cluster problems is the intuitive illustration of
(sub-)optimal solutions as a list of atomic coordinates that can be visualized in 3D
space. In addition, the physical concept of order parameters enables low-dimensional
descriptions of cluster configurations, as will be outlined in Section 3.2. Cluster problems
also exhibit a wide variety of landscape topologies, thus leading to a rich and diverse
benchmark set in the spirit of the CEC 2005 or BBOB test suites. Moreover, atomic
cluster problems can be considered as real-world problems as they model physical
systems. Other real-world problems, such as the sensor placement problem (Wu and
Verma, 2008), share a similar problem structure. Algorithms that perform well on atomic
cluster problems may therefore also prove successful for these applications.

3.1 Symmetry as a Novel Problem Characteristic

Two sources of symmetry arise in monatomic clusters: Consider the global minimum
x∗ for a given energy function. When x∗ consists of the positions of N identical par-
ticles, N ! possible permutations of atomic positions exist that attain the same ground
state. Furthermore, the energy function does not discriminate between configurations
that have identical sets of pairwise distances, that is, an identical distance spectrum.
This characteristic, known as isospectral symmetry, implies that any transformation ap-
plied to x∗ that preserves all pairwise distances between the particles results in another
minimum-energy configuration. A unique description of the cluster ground state is
thus a set of N (N − 1)/2 pairwise distances, rather than a set of coordinates x. Depend-
ing on the symmetry group of the minimum-energy configuration, different types of
spectrum-preserving transformations exist. The simplest ones are translation, rotation,
inversion, and reflection. However, it is also known that certain distance spectra can
be generated by geometrically distinct configurations. Note that this type of symmetry
is conceptually different from the symmetries found in standard benchmark functions,
such as Rastrigin’s function, where permutation symmetries often exist for local min-
ima, but no symmetry exists for the global minimum. In the BBOB and CEC 2005 test
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suites, symmetries are also partially removed by (non-)linear transformations (Sugan-
than et al., 2005; Finck et al., 2009). Isospectral symmetry (and symmetry breaking) is
a fundamental concept in physics, but its impact on black box optimization has been
comparatively weak. We are only aware of the research of Van Hoyweghen and cowork-
ers who analyzed symmetry “due to the interaction structure” (Van Hoyweghen and
Naudts, 2000, p. 1073) in the problem. They describe the impact of such symmetry on
the performance of evolutionary algorithms in the context of aggregated combinato-
rial problems (Van Hoyweghen and Naudts, 2000; Van Hoyweghen et al., 2002). They
“claim that the occurrence of symmetry in the representation is another problem diffi-
culty characteristic” (Van Hoyweghen et al., 2002, p. 317), and they propose different
ways of modifying black box algorithms in order to cope with this difficulty. For con-
tinuous black box problems, such considerations are, to the best of our knowledge, so
far missing. We hence propose the present benchmarks since it is conceivable that the
performance of certain optimization algorithms (such as real-coded genetic algorithms)
is more strongly impeded by isospectral symmetry than that of others (e.g., evolution
strategies).

3.2 Bond Order Parameters for Cluster Characterization

Due to the presence of isospectral symmetry, it can be misleading to describe and
compare cluster configurations in absolute coordinates x. Consider two configurations
x and y, where y is generated by the rotation of x about the origin. Calculating dE(x, y)
would result in a value greater than 0, despite the fact that the two configurations
are identical in terms of their pairwise distance spectrum. Measures that are invariant
to isospectral symmetries provide a more robust way of characterizing the system.
Designing such invariants for specific systems, however, is not trivial. Steinhardt and
coworkers introduced a set of invariants for atomic cluster and bulk configurations that
are applicable in our case: bond (orientational) order parameters (BOP; Steinhardt et al.,
1983). These parameters are indispensable for the analysis of nucleation phenomena
and packing structure in bulk materials and cluster configurations. In this context, a
bond does not refer to a covalent chemical bond, but is rather defined as the vector
joining a pair of neighboring atoms. Neighborhood is defined by a distance cutoff.
Bond-order parameters reflect the symmetry of bond orientations, regardless of absolute
bond lengths. This is achieved by combination and normalization of certain spherical
harmonics, resulting in the measures Ql and Ŵl . The second-order invariants Ql are
defined as:

Ql =
(

4π

2l + 1

l∑
m=−l

‖Q̄lm‖2

) 1
2

, (3)

where

Q̄lm = 1
Nb

∑
rij <r0

Qlm(rij ) (4)

and Qlm(rij ) = Ylm(θij , φij ). Nb denotes the number of bonds that are shorter than the
cutoff distance r0. The Ylm(θij , φij ) are spherical harmonics with θij being the polar and
φij the azimuthal angle of the interatomic vector rij of length rij between atoms pi and
pj with respect to an arbitrary coordinate frame. The parameters Ŵl are defined as:

Ŵl = Wl(∑
m ‖Qlm‖2

)3/2 . (5)
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They are normalized versions of the third-order invariants

Wl =
∑

m1 ,m2 ,m3
m1+m2+m3=0

(
l l l

m1 m2 m3

)
Q̄lm1Q̄lm2Q̄lm3 , (6)

where the coefficients (· · ·) are the so-called Wigner 3j symbols (Weisstein, 2010). Stein-
hardt and coworkers showed that the parameters Q4, Q6, Ŵ4, and Ŵ6 are sufficient for
a detailed cluster shape spectroscopy (Steinhardt et al., 1983) of liquids, crystals, and
glasses, since they discriminate between the most important symmetry groups. Specific
atomic packings have unique combinations of values for this set. For instance, the pa-
rameter Q4 discriminates between icosahedral (ico) and face-centered cubic octahedral
(fcc) packing systems with values Qico

4 = 0 and Qfcc
4 = 0.1909, respectively. In the con-

text of black box optimization, we suggest using bond-order parameters as structural
fingerprints of putative optimal cluster solutions, as well as for convenient visualization
of optimization trajectories.

Alternative invariants can be constructed directly from the distance spectrum of
the configurations. A wealth of such techniques exists in computer graphics and image
processing for symmetry and shape descriptions. One instance is the concept of shape
distributions (Osada et al., 2002), which might be interesting to examine in the context
of black box optimization.

4 Cohn-Kumar Clusters

The first cluster instances we propose are based on pair potentials recently introduced
by Cohn and Kumar (2009). Inspired by the inverse statistical mechanics approach,
they designed pair potentials that result in provable ground states for certain cluster
instances. To the best of our knowledge, there is no publication that considers these
potentials. We hence introduce the name Cohn-Kumar (CK) potentials for the interac-
tion potentials and Cohn-Kumar (CK) clusters for the resulting ground state clusters.
The four pair potentials (CK1 – CK4) form the following provable minimum energy
configurations:

1. An eight-particle CK1 cluster forms a 3D cube with six identical square faces.

2. A 20-particle CK2 cluster forms a 3D regular dodecahedron with 12 identical
pentagonal faces.

3. A 16-particle CK3 cluster forms a 4D hypercube with eight identical cubic faces.

4. A 600-particle CK4 cluster forms a regular 120-cell in 4D with 120 dodecahedral
faces.

We restrict ourselves to the first two potentials with ground state clusters living in
3D space. In both cases, the ambient space of the particles is S2, leading to 2 DOF per
particle. The CK1 pair potential is defined as:

uCK1(r) = 1
r3 − 1.13

r6 + 0.523
r9 , (7)

where r is the Euclidean distance between two particles. The CK2 pair potential is
defined as:

uCK2(r) = (1 + t)5 + (t + 1)2(t − 1/3)2(t + 1/3)2(t2 − 5/9)2

6(t − 1)2 (8)
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Figure 1: The Cohn-Kumar (CK) potentials uCK1(r) and uCK2(r) in log scale versus dis-
tance r for r ∈ [0.01, 2]. In linear scale both pair potentials are strictly convex.

with t = 1 − r2/2. Both functions are designed to be monotonically decreasing and
convex. Their graphs are depicted in Figure 1. For a system of N particles with positions
pi , the energy functions are:

ECK1(x) = 1
2

N∑
i=1

N∑
j=1

uCK1(rij ) , (9)

and

ECK2(x) = 1
2

N∑
i=1

N∑
j=1

uCK2(rij ) . (10)

Again, x = {p1, . . . , pi , . . . , pN } and rij = dE(pi , pj ).
Let us first consider the two instances of CK1 and CK2 clusters for which the

ground states have been proven by Cohn and Kumar (2009). The proofs are based on
techniques from coding theory and linear programming. Details are given in Cohn and
Kumar (2009). The optimal eight-particle CK1 (CK18) cluster configuration xCK1

min is the
3D cube with identical square faces. This configuration belongs to the class of platonic
solids and is depicted on the left of Figure 2. Due to the restriction of particle positions
to the unit sphere, the following three unique distances occur: the cube edge length of
2/

√
3, the face diagonal of length

√
8/3, and the cube diagonal length of 2. The energy

minimum is ECK1(xCK1
min ) ≈ 6.34338764. The dual polygon is the octahedron.

The optimal 20-particle CK2 (CK220) cluster configuration xCK2
min is a dodecahedron

with 12 identical pentagonal faces. Five unique distances occur in this platonic solid:
The length le of the pentagonal edges is related to the radius rSph of the sphere on which
the particles are located via rSph = le/4 (

√
15 + √

3). This leads to le = 4/(
√

15 + √
3) ≈

0.713644. The second, third, and fourth nearest neighbor distances have values of 2/
√

3,√
8/

√
3, and (

√
15 + √

3)/3, respectively. The largest occurring distance is the sphere
diameter of 2. The minimum energy is ECK2(xCK2

min ) ≈ 746 2
3 . The dual polygon is the

icosahedron. This dodecahedral configuration is depicted on the right of Figure 2.
Although these configurations are geometrically simple, it is hard to make them

ground states of any classical pair potential energy function. Cohn and Kumar state
the following (which is valid for all ground state configurations listed above): “The
problem is that their facets are too large, which makes them highly unstable. Under
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Figure 2: Configurations of the optimal eight-atom CK1 cluster (left) and the optimal
20-atom CK2 cluster (right).

ordinary potential functions, such as inverse power laws, these configurations are never
even local minima, let alone global minima. In the case of the cube, one can typically
improve it by rotating two opposite facets so they are no longer aligned. That lowers
the energy, and indeed the global minimum appears to be the antiprism arrived at
via a 45◦ rotation (and subsequent adjustment of the edge lengths) (Cohn and Kumar,
2009, p. 9572). The square antiprism (or anticube) is, for instance, the minimum of
the eight-electron Thomson problem, as well as the putative ground state for the eight-
particle CK2 cluster. Despite the convexity of the CK pair potentials, the resulting energy
functions are nonconvex even for the clusters with proven optimal configurations. Cohn
and Kumar do not comment on the exact number of basins or the basin depths. For the
optimal CK1 cluster they empirically found that out of 1,000 local optimization runs
only six did not converge to the global minimum (Cohn and Kumar, 2009). Our own
numerical results did not identify any local minima on the landscapes of the eight-atom
CK1 cluster and the 20-atom CK2 cluster.

These results suggest two ways of using CK clusters as black box optimization
benchmarks. The first way is solely based on the proven optimal configurations. A
benchmark set with variable dimensionality can be constructed by fixing a number of
optimal atomic positions, leading to well-defined multimodal problems. Consider the
optimal eight-particle CK1 cluster. Fixing seven particles to optimal relative positions,
we arrive at a 2D cluster problem with four basins of attraction: three that correspond to
the square faces of equal size and one large basin consisting of the remaining three faces
with the global minimum at the vacant corner position. Likewise, one could construct a
2D 10-funnel landscape from the optimal 20-particle CK2 cluster with nine suboptimal
basins (the stable pentagons) and a large basin with the global minimum at the vacant
position surrounded by three pentagonal faces. Decreasing the number of fixed atomic
positions results in higher-dimensional problems with varying landscape structure.

The second way of constructing a standard benchmark set for black box opti-
mization based on CK1 and CK2 clusters consists of varying the number of atoms
on the sphere. We prefer this approach for its simplicity and suggest the following
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specification. We consider a CK1 and CK2 cluster with up to N = 25 atoms. A system
of N atoms confined to the surface of the unit sphere results in n = 2N DOF. A natural
landscape representation is based on spherical coordinates. The position pi of atom i is
defined by the pair of polar and azimuthal angles at unit radius, that is, pi = (θi, ϕi, 1).
In order to construct a box-constrained problem, we restrict the angles to the interval
[−π, π ], leading to x ∈ X = [−π, π ]n. In principle, one could remove 4 DOF by fixing
the position of a single atom on the sphere and fixing one polar and one azimuthal angle
of one pair of atoms, thus removing certain symmetry properties of the problem. We do
not, however, follow this approach here since we want to construct a benchmark with
full isospectral symmetry. As in the CEC 2005 and BBOB test suite, we suggest the use
of a budget of MAX_FES = 104 n for a single optimization run, and 25 independent runs
per problem. We first focus on the eight-atom CK1 cluster and the 20-atom CK2 cluster,
for which the optimal configurations and the corresponding energy values are known
exactly. We then derive putative global optima for all other instances from numerical
optimization runs in Section 4.2. These are used to specify a termination criterion for
the level of solution accuracy εsol. We also provide BOP values in order to characterize
the symmetry of the optimal configurations.

4.1 Reference Black Box Experiments on the CK18 and CK220

Cluster Problems

In order to illustrate the use of black box optimizers on the eight-atom CK1 and the
20-atom CK2 cluster problems, and to provide a baseline for future performance com-
parisons, we run two sets of numerical optimization experiments. The first uses the
covariance matrix adaptation evolution strategy (CMA-ES) with an increased popula-
tion at each restart (IPOP-CMA-ES; Auger and Hansen, 2005). The second optimizer is
MATLAB’s fminsearch.m function, implementing the Nelder-Mead (NM) simplex
method (Nelder and Mead, 1965). CMA-ES is a stochastic optimization heuristic that
iteratively samples a population of candidate solutions from a multivariate normal dis-
tribution. In each generation, CMA-ES adapts the mean and covariance matrix of the
search distribution such as to increase the likelihood of sampling previously successful
search directions. Additional adaptation of a step size parameter σ allows learning the
appropriate scale of the problem. We refer to Hansen (2008) for further details. The
NM simplex method is a deterministic direct-search heuristic that iteratively modifies
the shape of an n-dimensional simplex so as to improve the worst candidate solution
among the n simplex corners.

For IPOP-CMA-ES, we use the standard parameter settings reported by Auger
and Hansen (2005; i.e., initial step size σinit = π ), except for the parameter incPop that
controls the population increase upon restart. We set this factor to 1.25 (instead of the
standard value 2) since both our own experience and parameter tuning results (Smit
and Eiben, 2010) showed superior performance when using a reduced factor on the
CEC 2005 benchmarks as compared to the standard settings. For the NM algorithm, we
perform independent restarts if it converges before reaching the global minimum, until
the FES budget is exhausted. All initial configurations are drawn uniformly at random
from the search domain. We use a solution accuracy of εsol = 10-6 for both test problems
(see also Table 5, discussed in Section 4.2).

The eight-atom CK1 cluster problem poses little challenge to either of the algo-
rithms. Both methods almost always converge to the global minimum within the speci-
fied accuracy (CMA-ES with 100% and NM with 96% success rate). The statistics about
the minimum energies reached by NM and CMA-ES are summarized in the left part of
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Table 1: Statistics about the minimum energies reached by NM and CMA-ES for the
CK18 and CK220 cluster problems.

CK18 CK220

Energy NM CMA-ES NM CMA-ES

Min 6.343388 6.343388 746.730558 746.666667
7th 6.343388 6.343388 746.775331 746.666667
Median 6.343388 6.343388 746.825053 746.666667
19th 6.343388 6.343388 746.872171 746.666667
Max 6.343692 6.343388 746.910767 746.666667
Mean 6.343400 6.343388 746.823867 746.666667
SD 0.000061 0.000000 0.052601 0.000000

Table 2: Statistics about the number of FES used by NM and CMA-ES to reach the
optimal configurations for the CK18 and CK220 cluster problems.

Problem Min 7th Median 19th Max Mean SD ps

CK18

CMA-ES 5,317 5,845 6,085 6,745 7,933 6,320.20 715.43 1
NM 5,879 7,296 10,791 12,976 — 10,298.96 2,969.71 .96

CK220

CMA-ES 36,631 44,086 55,756 66,331 111,736 59,333.20 19,133.11 1
NM — — — — — — — —

Table 1. The statistics about the number of FES that NM and CMA-ES needed to solve
CK18 are summarized in Table 2. From Table 2 we see that CMA-ES is more efficient in
finding the ground state. While the minimum number of FES is comparable (5,317 vs.
5,879), the average number of FES (6,320.20 vs. 10,791.00) is considerably lower for
CMA-ES.

The 20-atom CK2 cluster problem reveals a different picture: While CMA-ES always
converges to the global minimum within the specified accuracy, Nelder-Mead fails in
all 25 runs. The minimum energies reached by NM range from 746.730 to 746.910 (right
part of Table 1). CMA-ES always reaches the perfect dodecahedral configuration with
energy 746.666 without restarts.

Comprehensive structural information about the cluster configurations is provided
by Steinhardt’s bond-order parameters. In order to compute them, each cluster is aug-
mented by a dummy atom placed at the origin. We suggest using a cutoff distance of
r0 = 1.01 for the calculation of BOP values in CK clusters. In Figure 3 we summarize
the BOP values for the suboptimal configurations found by NM and the optimal ones
reached by CMA-ES. We also depict the best configurations found by NM and CMA-
ES. The BOP values for the suboptimal NM configurations indicate great structural
diversity. Although the individual energy values are comparable, the BOP values vary
considerably, especially for Q6 and Ŵ6. Among all BOP traces, the values of the best
NM structure (highlighted in gray in Figure 3) are the closest ones to the BOP values
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Figure 3: The left panel shows the traces of the BOP values Q4, Q6, and Ŵ6 for all
minimum configurations found by NM (black lines) and CMA-ES (dots). The trace for
the best NM structure is highlighted in gray. The right panel shows this best CK220
configuration of NM and the optimal configuration as found by CMA-ES. The NM
structure is dodecahedral with distorted pentagonal faces. One face is highlighted in
either configuration.

Figure 4: Trajectories of a typical CMA-ES run. BOP values of CMA-ES’ mean m(g) are
plotted versus generation number (g). The left panel shows a CMA-ES trajectory from
the CK18 cluster problem, the right panel one from the CK220 cluster problem. The dots
represent the BOP values of the optimal solutions.

of a perfect dodecahedron. This is confirmed by visual inspection of this structure, re-
vealing a dodecahedron with distorted pentagonal faces (see right panel of Figure 3),
as opposed to most other suboptimal structures that do not show any clear packing.

The BOP values can also be used to conveniently visualize the optimization path.
In Figure 4 we show the trajectories of a typical CMA-ES run on the CK18 and CK220
cluster problems. For the CK18 clusters, the Q4, Q6, Ŵ4, and Ŵ6 values of CMA-ES’
mean m(g) converge to the optimal values after about 200 generations. For the CK220
clusters, stable optimal BOP values for Q4, Q6, and Ŵ6 are reached after about 2,600
generations. The Ŵ4 values (data not shown) do not converge to the optimum CK220
cluster. Such variation has also been observed for other instances. We therefore suggest
to use the triplet Q4, Q6, and Ŵ6 as a structural fingerprint for general CK clusters. For
efficient restart strategies, it is conceivable to define (local) convergence of an algorithm
in structure space in terms of these bond-order parameters rather than in terms of the
original variables (i.e., the spherical coordinates).
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Figure 5: The left panel shows ECK1 of the putative ground states versus the number
of atoms in cluster N. The dots represent the results from the CMA-ES runs, and the
dashed curve is the best exponential least-squares fit. The right panel shows box plots
of the number of FES needed until CMA-ES converges as a function of N.

The failure of the Nelder-Mead algorithm on the CK220 cluster problem suggests
that CK clusters are a nontrivial test case for black box optimizers. For now, we can only
speculate about the poor performance of NM on this problem since NM and CMA-ES
have the same invariance properties. Hansen tested a restart NM algorithm on the BBOB
2009 test suite and concluded that NM with restarts “allows searching unstructured
multimodal landscapes comparatively effective, while a global topography within a
multimodal or rugged landscape is not well exploited” (Hansen, 2009b). The robust
performance of CMA-ES suggests a global single funnel topology of CK220 with local
minima on a smaller scale.

4.2 Putative Ground States of CK1 and CK2 Clusters for N = 2, . . . , 25

So far we have analyzed two CK cluster instances with proven ground states. These
instances have dimensionality n = 16 and n = 40, respectively. In order to construct
a benchmark that spans a wider range of dimensions, we now consider all CK1 and
CK2 clusters for even n = 4, . . . , 50, that is, clusters containing up to N = 25 atoms.
Given the promising performance of CMA-ES on the previous instances, we use it as a
tool for identifying putative ground states and low-energy local minima. We define the
following computational experiments. For each instance, we run 25 standard CMA-ES
runs without restarts until any of the standard convergence criteria are met. The initial
step size is σinit = 0.4π . The FES budget is restricted to MAX_FES = 104n. We store
all putative global and local optima, energy values, and the number of FES CMA-ES
needed to converge. We also calculate the values of the BOPs Q4, Q6, and Ŵ6 for all
observed structures.

We first report the results on the CK1 clusters. For these clusters, assuming an
exponential scaling of the energies ECK1 of the putative ground states with cluster
size yields the best least-squares fit (see Figure 5). The optimal fit is ECK1(xmin) ≈
0.9205 × exp (0.2328 N ). The number of FES CMA-ES needed until convergence in-
creases with N. The average number of FES scales linearly with cluster size. For
N = 2 . . . 12, 17, 20, 21, 24, the variance is very low. For the other instances, however,
some CMA-ES runs need considerably more FES to converge than others. This indicates
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Table 3: Summary statistics of the putative CK1 ground states and low-energy minima
as identified by CMA-ES. The number of particles, energy, and the BOP values Q4,
Q6, and Ŵ6 are reported for all instances. ForN = 10, 14, 16, 22, 23, 25, multiple minima
were identified. The putative ground states are labeled “A”, other minima “B” or “C”.

N Energy Q4 Q6 Ŵ6

2 0.1084 1 1 −0.0931
3 0.4630 0.3750 0.7408 −0.0463
4 1.0583 0.5092 0.6285 0.0132
4 1.1029 0.5619 0.4369 0.0076
5 1.9838 0.6250 0.4556 0.0466
6 3.1501 0.7638 0.3536 0.0132
7 4.6241 0.5118 0.2861 0.0598
8 6.3434 0.5092 0.6285 0.0132
9 8.3580 0.1387 0.3561 −0.0342

10A 10.6645 0.2574 0.3289 0.0407
10B 10.6646 0.2740 0.3651 0.0254
11 13.3828 0.0198 0.1129 0.1293
12 16.1847 0 0.0415 −0.1698
13 20.5410 0.0736 0.2470 −0.0032
14A 25.1733 0.0771 0.2328 0.0131
14B 25.1880 0.0729 0.2212 0.0111
14C 25.2088 0.0278 0.0285 −0.0931
15 30.9350 0.0332 0.1080 0.1196
16A 38.4985 0.0464 0.0090 0.0931
16B 38.5386 0.0615 0.2061 −0.0631
17 47.3064 0.1044 0.0509 0.0931
18 59.9795 0.0052 0.1623 −0.0931
19 78.2895 0.0487 0.1009 0.1476
20 94.1138 0.0630 0.1052 −0.0407
21 122.3120 0.0173 0.1709 −0.0274
22A 151.7772 0.0294 0.0043 0.0132
22B 153.1696 0.0307 0.0481 0.0026
23A 202.9820 0.0139 0.1418 −0.0329
23B 203.0328 0.0145 0.1410 −0.0277
24 236.1115 0.0164 0.0363 0.0132
25A 314.0809 0.0047 0.1300 −0.0158
25B 314.0909 0.0048 0.1299 −0.0176
25C 321.7856 0.0235 0.1466 −0.0316

that some problem instances exhibit considerably more complex landscapes than oth-
ers, and that this phenomenon is not completely determined by the problem dimension.
Nevertheless, all runs converge far before exhausting the FES budget. We summarize
the information about putative CK1 ground states and low-energy minima as identified
by CMA-ES in Table 3. We report the energies along with the BOP values for all min-
ima. For N = 10, 14, 16, 22, 23, 25, multiple low-energy minima were identified. From
the wealth of generated data we discuss three instances in more detail.

The first instance is the CK112 cluster. Its putative ground state is a Mackay icosa-
hedron with 20 triangular faces (see Figure 12, discussed in section 5.1) with the
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Figure 6: Putative ground state configuration (CK114A) and two low-energy stable con-
figurations (CK114B and CK114C) of the CK114 cluster.

Figure 7: Putative ground state configuration (CK116A) and a competing sub-optimal
configuration (CK116B) of the CK116 cluster.

well-known BOP pattern Q4 = 0, Q6 = 0.0415, and Ŵ6 = −0.1698. The 13-atom Lennard-
Jones cluster that is discussed in the next section exhibits the same symmetry with a
central atom at the origin. From the CMA-ES runtimes, we see that CK112 can be found
rapidly (in less than 2.5 × 104 FES on average) and robustly (all runs converge to the
putative ground state).

For CK114 clusters, CMA-ES converges to three different minima. In 21 out of the 25
runs, CMA-ES identifies the putative ground state (labeled 14A) with energy 25.1733.
Two runs converge to a low-energy local minimum (labeled 14B) with energy 25.1880
and two runs to a local minimum (labeled 14C) with energy 25.2088. The corresponding
configurations are shown in Figure 6. We highlight this cluster instance because the
putative ground state might seem counterintuitive at first. A human observer would
possibly favor structures 14B and 14C over 14A due to their apparent symmetry. They
are, however, higher in energy than the putative ground state 14A. Moreover, structure
14A attains a value of Ŵ6 = 0.0131, indicative of maximal cubic symmetry (Steinhardt
et al., 1983).

The energy landscape of CK116 clusters exhibits two competing low-energy struc-
tures as depicted in Figure 7. Eighteen out of the 25 CMA-ES runs converge to struc-
ture 16A, the remaining 7 runs find structure 16B. CK116A consists of two oppo-
site rotated square faces (like the anticube), and triangular faces otherwise. CK116B
has three square faces grouped around a central triangle, and otherwise triangu-
lar ones, leading to a different set of BOP values (see Table 3). In order to check
whether the energy landscape explored by CMA-ES exhibits a single-funnel topol-
ogy with two low energy minima at the bottom, or rather a double-funnel landscape,
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Figure 8: The left panel shows the σ -dependent transition probability P(16B → 16A)
for CMA-ES. The right panel depicts a typical trajectory of CMA-ES’ mean in the
Q6 − Ŵ6 plane for σinit = 0.1π . Each configuration is color-coded by the log10 �ECK1 =
log10 (ECK1(x) − ECK1(xmin)).

we conduct the following experiment. We start CMA-ES runs from the suboptimal
low energy structure as the initial configuration with increasing initial σ values. These
experiments reveal how much the initial configuration needs to be perturbed until
CMA-ES is able to detect the putative globally optimal solution. We choose σinit ∈
{0.001π, 0.01π, 0.025π, 0.05π, 0.075π, 0.1π, 0.125π, 0.175π, 0.2π} and repeat the experi-
ment 50 times per σinit. We monitor whether CMA-ES returns to the suboptimal solution
or enters the putative ground state. The frequency of transition serves as an estimator
for the transition probability P(CK116B → CK116A) under CMA-ES exploration, and
hence for the relative basin size of the suboptimal structure. The σ -dependent tran-
sition probability and a typical trajectory of CMA-ES in Q6 − Ŵ6 space leading from
the suboptimal basin to the putative optimal basin are shown in Figure 8. The ex-
periment suggests that below σinit = 0.01π , CMA-ES does not leave the basin of the
suboptimal solution. For larger σinit the probability increases until it reaches a simi-
lar level as with global CMA-ES settings. Using σinit = 0.07π , the probability is about
1/2 to fall into either minimum. The example CMA-ES trajectory for σinit = 0.1π re-
veals an interesting pattern in Q6 − Ŵ6 space. Starting from the 16B structure, CMA-ES
first performs a random walk until it clusters around configurations with BOP values
Q6 ≈ 0.12, Ŵ6 ≈ −0.05, which most probably include the transition state between the
two minima. The trajectory then smoothly converges to the final BOP values of the 16A
structure. Trajectories that return to the suboptimal structure 16B behave similarly, with
a cluster at Q6 ≈ 0.15, Ŵ6 ≈ −0.05, before smoothly converging back to the BOP values
of the 16B configuration (data not shown). In summary, our experiments suggest that
the CK116 cluster landscape under CMA-ES exhibits a single-funnel topology with two
competing minima at the bottom of the funnel. The putative optimal configuration is
located in a considerably larger basin, hence representing a moderately difficult prob-
lem for CMA-ES. Nevertheless, it will be interesting to test other search heuristics on
this problem, especially with respect to their susceptibility to the competing suboptimal
solution.
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Figure 9: The left panel shows ECK2 of the putative ground states versus the number
of atoms in the cluster N. The dots represent the results from the CMA-ES runs, the
dashed curve is the best quadratic least-squares fit. The right panel shows box plots of
the number of FES needed until CMA-ES converges as a function of N.

We now present the key results for CK2 clusters. The scaling of the minimum energy
with cluster size is shown in Figure 9. For the cluster sizes considered, the energies ECK2
of the putative ground states scale quadratically with cluster size. The best least-squares
fit is achieved by ECK2(xmin) ≈ 2.764N2 − 19.58N + 31.23. Note that this result can be
explained by the moderate increase of the pair potential in the range of the observed
distances for these cluster sizes (see Figure 1). The addition of a single particle hence
only results in a quadratic increase of the energy. The average number of FES required
by CMA-ES to converge to the putative minimum scales linearly with cluster size up
to N = 12. For N = 2, . . . , 10, 12, 14, 17, the variance is very low. Compared to CK1
clusters, the number of FES needed to converge is considerably higher for larger CK2
clusters (well above 5 × 104 FES on average), but is still an order of magnitude below the
allowed FES budget. We summarize the information about putative ground states and
local minima of CK2 clusters as identified by CMA-ES in Table 4. The energies and BOP
values of all detected minima are reported. For N = 4, 13, 16, 19, 21, . . . , 25, multiple
minima were found. While these could be discussed analogously to our findings for
CK1 clusters, we restrict ourselves to the interesting case of four-atom CK2 clusters. In
24 out of the 25 runs, CMA-ES finds the putative optimal ground state 4A, which is a
regular tetrahedron with all pairwise distances equal to

√
8/3. In one run, CMA-ES finds

a high-energy local minimum structure where the atoms form a pyramid with a larger
triangular base face and three smaller triangular side faces (4B). The atoms form three
distances of length

√
3 and three distances of length

√
2. Both structures are depicted

in Figure 10. It is surprising that the strictly convex CK2 pair potential produces a
nonconvex energy landscape even in the four-atom case. Although the 4B structure is
much higher in energy (3.0958) than the 4A tetrahedron (0.7901), its basin is relatively
stable. Similar transition path experiments as were done for the CK116 cluster reveal
that when starting CMA-ES from the pyramidal structure, there is a high probability to
converge back to the suboptimal structure even for σinit as high as 0.4π . Nevertheless,
given the empirical hitting probability of 1/25, the overall basin size is negligible for
CMA-ES.
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Table 4: Summary statistics of the putative CK2 ground states and local minima as
identified by CMA-ES. The number of particles, energy, and the BOP values Q4, Q6,
andŴ6 are reported for all instances. ForN = 4, 13, 16, 19, 21, . . . , 25, multiple minima
were identified. The putative ground states are labeled “A”.

V Energy Q4 Q6 Ŵ6

2 0 1 1 −0.0931
3 0.0939 0.3750 0.7408 −0.0463
4A 0.7901 0.5092 0.6285 0.0132
4B 3.0958 0.5312 0.5040 0.0048
5 6.0977 0.6250 0.4556 0.0466
6 12.0076 0.7638 0.3536 0.0132
7 29.2253 0.5536 0.0625 −0.0931
8 49.3528 0.3736 0.2502 −0.0931
9 75.8984 0.1502 0.3391 −0.0436

10 108.7305 0.1702 0.1579 −0.0931
11 149.0286 0.1043 0.3329 −0.0515
12 192.0350 0 0.0415 −0.1698
13A 243.5499 0.0780 0.2679 0.0066
13B 243.5531 0.1199 0.2714 0.0115
14 298.9590 0.2813 0.5036 0.0132
15 360.5035 0.0875 0.2977 0.0076
16A 426.8723 0.0225 0.2791 −0.0219
16B 426.8726 0.0352 0.2890 −0.0258
17 499.0473 0.1055 0.1994 0.0019
18 576.1469 0.1608 0.3495 0.0566
19A 658.8684 0.1027 0.2900 0.1166
19B 658.8689 0.0929 0.2822 0.1205
20 746.6667 0 0.2718 0.1698
21A 840.1743 0.0389 0.1921 0.1141
21B 840.1976 0.0372 0.1824 0.0835
21C 840.2036 0.0364 0.1575 0.0922
22A 938.8178 0.0353 0.1494 0.1517
22B 938.8197 0.0326 0.1782 0.1098
23A 1,042.8819 0.0335 0.0571 −0.0206
23B 1,042.8846 0.0193 0.0592 −0.0507
23C 1,042.8900 0.0185 0.1077 −0.0846
23D 1,042.9105 0.0181 0.1098 0.0301
24A 1,152.1594 0.0058 0.0153 0.0132
24B 1,152.1789 0.0037 0.0050 −0.0931
25A 1,266.8947 0.0130 0.0852 0.0706
25B 1,266.9774 0.0186 0.0201 0.0931

In summary, we presented a detailed analysis of Cohn-Kumar clusters arising from
two different strictly convex pair potentials. We analyzed the configurations where
proven global minima exist and extended to other instances for up to N = 25 atoms. In
order to show the richness of the energy landscapes, we analyzed several instances in
further detail using CMA-ES as a search heuristic and Steinhardt’s bond-order param-
eters as measures to characterize the found energy minima. Table 5 summarizes our
suggested CK cluster test suite settings.
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Figure 10: Putative tetrahedral ground state configuration (CK14A) and a competing
suboptimal pyramidal configuration (CK24B) of the CK24 cluster.

Table 5: Suggested benchmark settings for the CK1/CK2 cluster test suite.

Problems CK1, CK2

Runs/problem 25
n 4, 6, 8, . . . , 50
MAX_FES 10000 × n

Termination If FES = MAX FES or
ECKi(x) ≤ ECKi(xmin) + 10-6

Initialization and bounds Uniformly at random in [−π, π ]n

5 Lennard-Jones Clusters

Energy landscapes of collections of atoms that interact according to the Lennard-Jones
(LJ) pair potential are among the best studied models in theoretical chemistry and bio-
physics. In theoretical chemistry, the LJ potential is widely used to model the behavior
of noble gases such as argon. Biophysicists use the LJ potential to model hydrophobic
forces in polymers such as proteins and alkanes. The problem of finding minimum-
energy configurations of LJ clusters fascinated researchers for over three decades and
is regularly used as a standard test case for first-order search heuristics. In LJ clusters,
each pair of atoms interacts through the following pair potential:

uLJ(rij ) = 4ε

((
σLJ

rij

)12

−
(

σLJ

rij

)6
)

, (11)

where rij = dE(pi , pj ) and pi = (xi, yi, zi), the 3D position of atom i. Parameter ε is
the potential well depth (in units of energy) and 2

1
6 σLJ is the equilibrium interatomic

distance (in units of length) at zero temperature. Figure 11 depicts the unimodal shape
of the LJ pair potential and the role of the parameters. The potential energy ELJ of a
cluster of N LJ atoms is given by:

ELJ(x) = 4ε

N−1∑
i=1

N∑
j=i+1

((
σLJ

rij

)12

−
(

σLJ

rij

)6
)

. (12)

Again, x = {p1, . . . , pi , . . . , pN } and rij = dE(pi , pj ). The ambient space of the atoms
is the 3D Euclidean space. Knowledge about minimum-energy (or ground-state) con-
figurations of LJ clusters allows predicting properties of crystallization or solid-liquid
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Figure 11: The Lennard-Jones pair potential uLJ(r) versus distance r for r ∈ [0.01, 3]. The
minimum is at r = 21/6σLJ with energy −ε. For r → ∞, the potential asymptotically
approaches 0.

transitions of noble atomic mixtures at low temperatures. The presence of a well in
the LJ pair potential implies that a collection of atoms faces the problem of frustration.
Although all atoms “like” to have their neighbors at equilibrium distance, there is no ge-
ometric configuration that could achieve this for N > 4. This introduces multimodality
in the landscape with competing low energy configurations.

For a long time it was believed that ground states of LJ clusters could be efficiently
constructed by aufbau algorithms (Hoare, 1979). Starting from a seed structure with
specific symmetry and N − 1 atoms, these algorithms construct a putative ground state
of N atoms by placing an additional atom at the energetically most favorable location
and relaxing the resulting structure by energy-gradient descent. In the past 25 years,
however, it has been shown that such algorithms are not able to identify many of today’s
known putative ground states. Wille (1987) identified the putative ground state of the
LJ24 cluster using simulated annealing with a specialized problem-specific move set.
This is the only ground state that has first been found by a method without the use of
gradient information. Northby (1987) identified putative ground states for 13 ≤ N ≤ 147
by searching lattices with icosahedral symmetry and gradient minimization. However,
not all LJ instances follow an icosahedral symmetry, a fact that was only discovered
in the mid-1990s. The ground states of LJ clusters with N = 38, 75 − 77, 98, 101 − 103
atoms follow different packing schemes. They have mostly been identified by extensive
application of unbiased gradient-based optimizers such as the hybrid genetic algorithm
by Deaven and coworkers (Deaven et al., 1996) or basin-hopping (Li and Scheraga, 1987;
Wales and Doye, 1997). The late discovery of these ground states is explained by the
deceptive landscape topology with the global minimum located in a narrow funnel. In
Section 5.2 we consider the archetypal (Wales and Scheraga, 1999) double funnel energy
landscape of the LJ38 cluster and present a tuning technique that is able to smoothly
deform the topology to a single funnel problem.

While large LJ clusters are prohibitive for black box optimization benchmarking due
to their staggering number of local minima, we nonetheless propose small instances
with up to N ≤ 19 atoms as meaningful benchmark problems. Minimizing the potential
energy of a cluster of N atoms in 3D space defines a continuous optimization problem
in n = 3N − 6 dimensions, since three translational and three rotational DOF can be
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Table 6: Summary statistics of the putative LJ ground states from the Cambridge Cluster
Database (Wales et al., 2009). The number of particles, energy, and the BOPs Q4, Q6, and
Ŵ6 are given for each instance.

N Energy Q4 Q6 Ŵ6

3 −3 0.3750 0.7408 −0.0463
4 −6 0.1909 0.5745 −0.0132
5 −9.1039 0.0013 0.4297 0.0314
6 −12.7121 0.1909 0.5745 −0.0132
7 −16.5054 0.0148 0.1604 −0.0931
8 −19.8215 0.0644 0.1467 0.0015
9 −24.1134 0.0156 0.1226 −0.0391

10 −28.4225 0.0382 0.1359 −0.0349
11 −32.7660 0.0298 0.1384 0.0485
12 −37.9676 0.0178 0.1186 0.1209
13 −44.3268 0 0.0415 −0.1698
14 −47.8452 0.0283 0.0437 0.0128
15 −52.3226 0.0069 0.0437 −0.0790
16 −56.8157 0.0208 0.0653 −0.0888
17 −61.3180 0.0216 0.0849 −0.0778
18 −66.5309 0.0148 0.0676 0.1613
19 −72.6598 0.0043 0.0056 0.0931

removed from the system. This is achieved by placing the first atom at the origin of
the Cartesian coordinate system, the second along the x-axis, and the third in the x−y
plane. Hence, N = 19 defines a problem in n = 51 dimensions. We characterize the
putative ground states of LJ clusters with N ≤ 19 in section 5.1 and present numerical
optimization runs for selected instances. We emphasize that LJ clusters have, despite
their widespread use in chemistry and physics, not been subject to rigorous studies using
black box heuristics. We are only aware of two publications where certain small cluster
instances have been optimized using evolutionary algorithms: Müller and coworkers
presented some initial results for CMA-ES on LJ clusters with N = 8, 27 (Müller et al.,
2003); and Call and coworkers optimized LJ26 with a specialized PSO (Call et al., 2007).

5.1 Lennard-Jones Clusters for N ≤ 19

All known putative ground states of LJ clusters for the standard parameterization
ε = σLJ = 1 are available from the Cambridge Cluster Database (Wales et al., 2009).
We characterize the structures using the BOP parameters Q4, Q6, and Ŵ6 with the
suggested r0 = 1.391 for LJ clusters (Doye et al., 1999b). The data are summarized in
Table 6. Most of the structures have a low Q4 value, indicating icosahedral symmetry
(Steinhardt et al., 1983). As previously mentioned, the LJ13 ground state is identical (with
identical BOP values) to the putative CK112 ground state with an additional central atom
at the origin (see also Figure 12). This instance is also the first of the so-called magic
number structures. Magic number LJ clusters are based on complete multilayer Mackay
icosahedra with N = (2i + 1)(5/3 i(i + 1) + 1), i = 1, 2, 3, . . . atoms. They are so stable
that they are regularly found in NMR experiments, for instance, of Xeon clusters (Hasse,
1991). The number of energy minima in these clusters scales exponentially with cluster
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Figure 12: Putative ground states for LJ clusters with seven atoms (top left), 13 atoms
(top right), and 19 atoms (bottom). The packing of LJ13 is a Mackay icosahedron. The
putative optimal CK112 cluster, overlaid in black, shares the same structure.

size. For the largest cluster considered here, the LJ19 instance, Kunz and Berry (1995)
estimated the number of geometrically distinct local minima to be around half a million.

We now provide numerical experiments on three select instances: LJ7, LJ13, and LJ19.
The putative ground state structures of these clusters are depicted in Figure 12. We focus
on these three instances since they have been extensively analyzed in Wales (2005). LJ13
and LJ19 are also considered in Doye et al. (1999a). Detailed information is available
about the number of unique local minima, first-order and higher-order saddle points, as
well as disconnectivity graphs of low-energy minima. Prior analysis also showed that
the energy landscapes of these clusters exhibit single funnel topologies, which should
make them feasible for many black box optimizers, despite the huge number of local
minima (Doye et al., 1999a).

We imagine these instances as cluster analogs of Rastrigin-like test functions. For
the numerical experiments, we suggest the benchmark settings summarized in Table 8.
We illustrate the performance of a black box optimizer on these test cases by running
IPOP-CMA-ES with standard settings (σinit = 2 in this benchmark case), yet again with
a smaller increase factor for the population size (incPop = 1.25; restarts occurred in all
LJ cluster test cases). The statistics about the number of FES and the success rate ps for
CMA-ES runs on LJ7, LJ13, and LJ19 are summarized in Table 7. CMA-ES always finds the
optimal structure of LJ7. In 24 out of the 25 runs, it also solves the LJ13 cluster problem.
Inspection of Doye’s and Wales’s disconnectivity graphs for LJ13 (Doye et al., 1999a)
reveals that CMA-ES converges to the second-best optimum in the one case where it
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Table 7: Statistics about the number of FES for CMA-ES runs that reach the globally
optimal configurations for the LJ7, LJ13, and LJ19 cluster problems, and the success rate
ps.

Min 7th Median 19th Max Mean std ps

LJ7 3,805 5,509 15,108 23,980 89,819 18,220.36 18,218.27 1
LJ13 13,007 51,827 101,726 178,359 — 109,377.12 80,713.15 0.96
LJ19 31,726 — — — — 270,870.50 338,201.40 0.08

Table 8: Suggested benchmark settings for the LJ cluster test suite.

Problems LJ

Runs/problem 25
n 3, 6, 9, . . . , 51
MAX_FES 10000 × n

Termination If FES = MAX FES or
ELJ(x) ≤ ELJ(xmin) + 10-6

Initialization and bounds Uniformly at random in [−2, 2]n

does not find the global optimum. The LJ19 problem is more challenging. Only in two
out of the 25 runs is CMA-ES able to identify the putative ground state. In the other runs,
CMA-ES detects twice the second-best minimum, and in the remaining cases, a diverse
set of local low energy minima. These results confirm that LJ clusters with moderate
numbers of atoms are amenable for black box optimization, but are considerably more
difficult for CMA-ES than CK1/CK2 clusters with the same number of degrees of
freedom. In benchmark scenarios with a limited function evaluation budget, LJ clusters
with larger numbers of atoms are likely to be hard for black box search.

5.2 The LJ38 Cluster as a High-Dimensional Benchmark with Tunable
Landscape Topology

All cluster instances introduced so far have a static landscape topology that is solely
determined by the underlying pair potential and the number of atoms. We complement
the set of cluster benchmarks with a problem instance that (1) is high-dimensional,
but solvable in reasonable time, and (2) exhibits a tunable landscape topology. The
benchmark is based on the LJ38 cluster problem, which has also been the inspiration for
Lunacek’s double funnel test case (Whitley, 2010). We provide a complete description of
the proposed benchmark. An initial description with extensive numerical optimization
runs using IPOP-CMA-ES was reported by Müller and Sbalzarini (2009). The topology
of the standard LJ38 energy landscape was widely studied in the literature (Barron et al.,
1996; Doye et al., 1999b; Wales, 2004). It exhibits a double funnel structure where the
global minimum-energy configuration with fcc octahedral symmetry lies in the narrow
funnel. The majority of local minima, most of them with icosahedral (ico) symmetry,
populate the wider funnel. Figure 13a shows a sketch of this landscape. Leary (2000)
estimated the size of the optimal funnel from monotonic sequence BH runs to be around
12.4% of the entire configuration space. For 1,000 randomly generated configurations
Leary applied the BH move set and only accepted improving configurations. In 124
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Figure 13: Sketch of the μc-dependent evolution of the LJ38 energy landscape. The x axis
represents a suitable order parameter that can discriminate between different cluster
topologies, the y axis represents the potential energy ELJ,μc . The global topology of the
landscape is a double funnel with a suboptimal ico structure at the bottom of the wider
funnel. The narrow funnel contains the global minimum with fcc symmetry. Increasing
μc gradually changes the landscape topology from a double funnel to a single funnel.

out of the 1,000 runs, BH reached the fcc structure. For standard BH, however, the
probability is much lower, since most runs converge to structures within the larger,
suboptimal funnel. In fact, the optimal fcc structure was not found by unbiased opti-
mization methods, but by a combination of geometric intuition and local minimization
(Barron et al., 1996). Barron and coworkers first constructed initial LJ38 configurations
on fcc lattices and then applied gradient-based minimization in order to relax these
structures under the LJ pair potential (Barron et al., 1996). Doye and coworkers (Doye
et al., 1999b) eventually revealed the paradigmatic double-funnel nature of the land-
scape. They characterized it in terms of the number and location of minima, structural
diversity of the minima, and the energy barrier between the two funnels. Based on this
information, Doye realized that the problem of finding the global minimum of LJ38 can
be simplified by introducing a penalty term that simulates compression in the origi-
nal energy function (Doye, 2000). Compression can be seen as a transformation of the
PES that favors more compact structures. This broadens the funnel that contains the
more compact fcc structures and narrows the ico funnel. Doye proposed the following
penalized energy function:

ELJ,μc (x) = ELJ(x) + μc Qc(x) , (13)

where Qc(x) = ∑N
i=1

dE(pi ,pcm)2

σ 2
LJ

and where pcm is the center of mass of the cluster. The
compression term has the form of an atomic positional variance. For the best icosahedral
structure, it is Qc(xico) = 96.1624; and for the best fcc structure Qc(xfcc) = 91.6369, hence
distorting the energy difference between the two competing structures in favor of
the octahedron. The scalar parameter μc controls the magnitude of compression. The
effect of the μc-dependent compression on the topology of the PES is visualized with
disconnectivity graphs in Doye (2000) and Wales (2004, pp. 338–339). When μc = 0ε, we
recover the original LJ38 cluster problem. For μc ≥ 5ε, the PES exhibits a clear single-
funnel topology. We sketch this phenomenon in Figure 13. Although the compression
term also lowers the average barrier between local minima (Doye, 2000), the system
still contains a staggering number of local minima for all considered μc values.

Evolutionary Computation Volume 20, Number 4 567



C. L. Müller and I. F. Sbalzarini

Table 9: Characteristics of the putative ground states of compressed LJ38 clusters for
different values of μc. We report the final energy and the BOPs Q4, Q6, and Ŵ6 of each
structure.

μc Energy Q4 Q6 Ŵ6

0 −173.92843 0.19090 0.57446 −0.01316
0.5 −128.42914 0.19090 0.57445 −0.01316
1 −83.50595 0.19090 0.57444 −0.01316
1.5 −39.08437 0.19091 0.57443 −0.01316
2 4.89246 0.19091 0.57442 −0.01316
2.5 48.46946 0.19091 0.57441 −0.01316
3 91.68310 0.19092 0.57440 −0.01316
3.5 134.56362 0.19092 0.57439 −0.01316
4 177.13651 0.19092 0.57438 −0.01316
4.5 219.42358 0.19092 0.57437 −0.01316
5 261.44371 0.19092 0.57436 −0.01316

We propose the 38-atom LJ cluster with the energy function defined in
Equation (13) as a high-dimensional tunable test case to study the performance of black
box optimization methods as a function of landscape topology. In particular, we suggest
the following benchmark scenario. First, the budget of allowed FES should be consider-
ably increased. Second, an algorithm should be tested with μc ∈ {0ε, 0.5ε, . . . , 5ε}. The
lower the μc for which the algorithm can still find the putative ground state, the less
sensitive it is to the landscape topology. We obtain the putative ground states for the
different μc using reference CMA-ES runs. Therefore, we start CMA-ES from the known
optimal xfcc structure of the original problem with a small σinit = 0.001. From there, it
quickly converges to slightly different fcc structures for varying μc. The energies and
BOP values of the putative ground states are summarized in Table 9. For μc = 1ε, 5ε, the
resulting energies match the ones reported in Doye (2000), providing further confidence
that the ground states found here are correct. Visual inspection and the computed BOP
values indicate that the structures minimizing the modified energy function in Equation
(13) are almost identical to the optimal fcc configuration of the original, uncompressed
problem. Doye and coworkers (Doye et al., 1999b) show that, among the different BOPs,
Q4 is best suited for discriminating between fcc and ico structures, with Q4(xico) = 0
and Q4(xfcc) = 0.1909. Table 10 summarizes our proposed specification for the tunable
LJ38 cluster benchmark. The bounds are far from being tight with respect to the optimal
structure. Both xico and xfcc would fit into the [−2, 2]n box. We propose the larger bounds
for two reasons: First, we want to minimize effects from boundary handling techniques.
Second, we want to test the capability of the optimization algorithm to cope with un-
informative regions of parameter space. Enlarging the box adds plateau-like regions to
the energy landscape, because a particle that is far away from the cluster experiences
only a small force that draws it toward the cluster.

Numerical experiments on this benchmark show that IPOP-CMA-ES can solve it for
μc = 5ε, but not for μc = 0ε, even when using billions of function evaluations (Müller
and Sbalzarini, 2009). It is an open question whether CMA-ES variants that are designed
for multi-funnel problems, such as the particle swarm CMA-ES (Müller et al., 2009) or
BIPOP-CMA-ES (Hansen, 2009a), can cope with this problem. To date, no gradient-free
black box optimization algorithm has been reported to solve the LJ38 test case without
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Table 10: Suggested benchmark settings for the tunable LJ38 cluster test case.

Problem LJ38 with compression

Runs/problem 25
n 108
μc 0ε, 1ε, . . . , 5ε

MAX_FES ∼ 106n

Termination If FES = MAX FES or
ELJ,μc (x) ≤ ELJ,μc (xmin) + 10-6

Initialization and bounds Uniformly at random in [−4, 4]n

compression. Since many real-world applications involve multi-funnel landscapes, we
believe that the tunable LJ38 problem with varying degree of compression presents
a challenging test case for the black box optimization community that might prove
instrumental in the design and analysis of new search heuristics.

6 Discussion and Conclusions

Finding the optimal spatial arrangement of atoms that minimizes the potential energy
of a cluster system constitutes a promising problem class for continuous black box
optimization benchmarks. To this end, we presented several atomic cluster problems
and analyzed their energy landscapes and putative optima. We specifically proposed
Cohn-Kumar (CK) clusters and Lennard-Jones (LJ) clusters, whose energies are given
by sums over distance-dependent pairwise potentials.

We showed that CK clusters exhibit smooth landscapes with a single global mini-
mum or few local minima. On CK cluster instances for which proven ground states are
known, we illustrated the performance of a restart Nelder-Mead simplex algorithm and
of IPOP-CMA-ES. IPOP-CMA-ES outperformed Nelder-Mead in terms of robustness,
speed, and solution quality. For all other CK clusters up to N = 25, we found putative
global minima and several low-energy local minima from extensive numerical simula-
tions. This provides the necessary information for a benchmark suite in up to n = 50
dimensions.

The presented LJ cluster instances are known to exhibit rugged single-funnel topolo-
gies, as well as tunable double-funnel topologies. IPOP-CMA-ES was able to identify
putative ground states for LJ clusters up to N = 19. We further proposed the 38-atom
LJ cluster with compression as a benchmark to assess the sensitivity of optimization
heuristics with respect to landscape topology.

All cluster problems possess isospectral symmetry as a novel characteristic that is
not covered by the test functions in current black box benchmark suites. They hence al-
low for an assessment of whether and how well black box algorithms can cope with this
problem feature. We suggested using bond-order parameters as symmetry-invariant
measures to characterize and compare structures. Search trajectories of black box opti-
mizers can also be conveniently represented in the space spanned by these parameters.

We note that the present benchmarks could be extended to be composed of further
cluster problems with properties that are not represented in the proposed benchmark
set. We believe that two meaningful extensions would be Morse clusters and minimum
second-moment sphere packings. Morse clusters can be used to design fixed dimen-
sional problems with a tunable degree of ruggedness, but identical global topology.
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For the 13-atom Morse cluster, a thorough characterization of the landscape topogra-
phy in function of a single parameter ρ of the Morse pair potential can be found in
Cox et al. (2006). Putative ground states of Morse clusters for N ≤ 80 and different ρ

values are reported in the Cambridge Cluster Database (Wales et al., 2009). The mini-
mum second-moment sphere packing problem consists of finding the configuration of
nonoverlapping spheres of identical radius that has the smallest second moment of the
positions about the center of mass (Sloane et al., 1995). This defines a convex objective
function with nonconvex quadratic constraints. The objective function is, in fact, iden-
tical to the compression penalty Qc of the LJ38 test case. The hard-sphere constraints,
however, turn the minimum second-moment sphere packing problem into a discontin-
uous problem where derivatives do not exist. Sloane and coworkers applied a variety
of methods to this problem, ranging from direct search heuristics (simulated anneal-
ing) to complete enumeration. In the original article, they presented putative optimal
configurations up to N = 32. Putative optimal configurations up to N = 99 are listed,
elsewhere (Sloane et al., 1997). Both theoretical and experimental results (Meng et al.,
2010) suggest that the energy landscapes of sphere-packing problems are not strongly
funneled, but contain distinct local minima that are separated by large barriers. We ex-
pect that confirming or improving the currently known putatively optimal finite sphere
packings is a formidable challenge for black box optimization methods.

In summary, we propose that atomic cluster problems should be included in
black-box benchmark suites in order to better assess the efficacy, efficiency, and gen-
erality of modern search heuristics. We invite all researchers in the black-box op-
timization community to test their favorite algorithms on the presented test cases.
Along with this article we will release publicly available MATLAB/Octave code that
implements the presented cluster problems and the relevant bond-order parameter
calculations.1
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