Chapter 28
Global Parameter Identification of Stochastic
Reaction Networks from Single Trajectories

Christian L. Miiller*, Rajesh Ramaswamy™*, and Ivo F. Sbalzarini

Abstract We consider the problem of inferring the unknown parameters of a
stochastic biochemical network model from a single measured time-course of the
concentration of some of the involved species. Such measurements are available,
e.g., from live-cell fluorescence microscopy in image-based systems biology. In
addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy
(FCS) provide additional information about the system dynamics that can be used
to more robustly infer parameters than when considering only mean concentrations.
Estimating model parameters from a single experimental trajectory enables single-
cell measurements and quantification of cell—cell variability. We propose a novel
combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation
(GaA), and efficient exact stochastic simulation algorithms (SSA) that allows
parameter identification from single stochastic trajectories. We benchmark the
proposed method on a linear and a non-linear reaction network at steady state and
during transient phases. In addition, we demonstrate that the present method also
provides an ellipsoidal volume estimate of the viable part of parameter space and
is able to estimate the physical volume of the compartment in which the observed
reactions take place.

1 Introduction

Systems biology implies a holistic research paradigm, complementing the reduc-
tionist approach to biological organization [15, 16]. This frequently has the goal of
mechanistically understanding the function of biological entities and processes in
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interaction with the other entities and processes they are linked to or communicate
with. A formalism to express these links and connections is provided by network
models of biological processes [1,4]. Using concepts from graph theory [26] and
dynamic systems theory [44], the organization, dynamics, and plasticity of these
networks can then be studied.

Systems biology models of molecular reaction networks contain a number of
parameters. These are the rate constants of the involved reactions and, if spatiotem-
poral processes are considered, the transport rates, e.g., diffusion constants, of the
chemical species. In order for the models to be predictive, these parameters need
to be inferred. The process of inferring them from experimental data is called
parameter identification. If in addition also the network structure is to be inferred
from data, the problem is called systems identification. Here, we consider the
problem of identifying the parameters of a biochemical reaction network from a
single, noisy measurement of the concentration time-course of some of the involved
species. While this time series can be long, ensemble replicas are not possible, either
because the measurements are destructive or one is interested in variations between
different specimens or cells. This is particularly important in molecular systems
biology, where cell—cell variations are of interest or large numbers of experimental
replica are otherwise not feasible.

This problem is particularly challenging and traditional genomic and proteomic
techniques do not provide single-cell resolution. Moreover, in individual cells the
molecules and chemical reactions can only be observed indirectly. Frequently,
fluorescence microscopy is used to observe biochemical processes in single cells.
Fluorescently tagging some of the species in the network of interest allows measur-
ing the spatiotemporal evolution of their concentrations from video microscopy and
fluorescence photometry. In addition, fluorescence correlation spectroscopy (FCS)
allows measuring fluctuation time-courses of molecule numbers [23].

Using only a single trajectory of the mean concentrations would hardly allow
identification of network parameters. There could be several combinations of
network parameters that lead to the same mean dynamics. A stochastic network
model, however, additionally provides information about the fluctuations of the
molecular abundances. The hope is that there is then only a small region of
parameter space that produces the correct behavior of the mean and the correct
spectrum of fluctuations [31]. Experimentally, fluctuation spectra can be measured
at single-cell resolution using FCS.

The stochastic behavior of biochemical reaction networks can be due to low copy
numbers of the reacting molecules [10,39]. In addition, biochemical networks may
exhibit stochasticity due to extrinsic noise. This can persist even at the continuum
scale, leading to continuous—stochastic models. Extrinsic noise can, e.g., arise
from environmental variations or variations in how the reactants are delivered into
the system. Also measurement uncertainties can be accounted for in the model
as extrinsic noise, modeling our inability to precisely quantify the experimental
observables.
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We model stochastic chemical kinetics using the chemical master equation
(CME). Using a CME forward model in biological parameter identification amounts
to tracking the evolution of a probability distribution, rather than just of a single
value. This prohibits predicting the state of the system and only allows statements
about the probability for the system to be in a certain state, hence requiring
sampling-based parameter identification methods. In the stochastic—discrete con-
text, a number of different approaches have been suggested. Boys et al. proposed
a fully Bayesian approach for parameter estimation using an explicit likelihood for
data/model comparison and a Markov Chain Monte Carlo (MCMC) scheme for
sampling [5]. Zechner et al. developed a recursive Bayesian estimation technique
[45] to cope with cell—cell variability in experimental ensembles. Toni and co-
workers used an approximate Bayesian computation (ABC) ansatz, as introduced
by Marjoram and co-workers [25], that does not require an explicit likelihood
[43]. Instead, sampling is done in a sequential Monte Carlo (or particle filter)
framework. Reinker et al. used a hidden Markov model where the hidden states
are the actual molecule abundances, and state transitions model chemical reactions
[40]. Inspired by Prediction Error Methods [24], Cinquemani et al. identified the
parameters of a hybrid deterministic—stochastic model of gene expression from
multiple experimental time courses [7]. Randomized optimization algorithms have
been used, e.g., by Koutroumpas et al. who applied a Genetic Algorithm to a
hybrid deterministic—stochastic network model [21]. More recently, Poovathingal
and Gunawan used another global optimization heuristic, the Differential Evolution
algorithm [32]. A variational approach for stochastic two-state systems has been
proposed by Stock and co-workers based on Maximum Caliber [41], an extension of
Jaynes’ Maximum Entropy principle [14] to non-equilibrium systems. If estimates
are to be made based on a single trajectory, the stochasticity of the measurements
and of the model leads to noisy similarity measures, requiring optimization and
sampling schemes that are robust against noise in the data.

Here, we propose a novel combination of exact stochastic simulations for a CME
forward model and an adaptive Monte Carlo sampling technique, called Gaussian
Adaptation (GaA), to address the single-trajectory parameter estimation problem
for monostable stochastic biochemical reaction networks. Evaluations of the CME
model are done using exact partial-propensity stochastic simulation algorithms
(SSA) [35]. Parameter optimization uses GaA. The method iteratively samples
model parameters from a multivariate normal distribution and evaluates a suitable
objective function that measures the distance between the dynamics of the forward
model output and the experimental measurements. In addition to estimates of the
kinetic parameters in the network, the present method also provides an ellipsoidal
volume estimate of the viable part of parameter space and is able to estimate the
physical volume of the compartment in which the reactions take place.

We assume that quantitative experimental time series of either a transient or
the steady state of the concentrations of some of the molecular species in the
network are available. This can, for example, be obtained from single-cell fluo-
rescence microscopy by translating fluorescence intensities to estimated chemical
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concentrations. Accurate methods that account for the microscope’s point-spread
function and the camera noise model are available to this end [6, 12, 13]. Addi-
tionally, FCS spectra can be analyzed in order to quantify molecule populations,
their intrinsic fluctuations, and lifetimes [23,34,39]. The present approach requires
only a single stochastic trajectory from each cell. Since the forward model is
stochastic and only a single experimental trajectory is used, the objective function
needs to robustly measure closeness between the experimental and the simulated
trajectories. We review previously considered measures and present a new distance
function in Sect. 5. First, however, we set out the formal stochastic framework
and problem description below. We then describe GaA and its applicability to the
current estimation task. The evaluation of the forward model is outlined in Sect. 4.
We consider a linear cyclic chain and a non-linear colloidal aggregation model as
benchmark test cases in Sect. 6 and conclude in Sect. 7.

2 Background and Problem Statement

We consider a network model of a biochemical system given by M coupled
chemical reactions

N N

k:
Y oS —— > vhs Vi=1...M (28.1)
i=1 i=1

between N species, where v~ = [v; ] and vt o= [v +] are the stoichiometry
matrices of the reactants and products respectively, and S; is the ith species in
the reaction network. Let n; be the population (molecular copy number) of species
Si. The reactions occur in a physical volume £2 and the macroscopic reaction
rate of reaction j is k;. This defines a dynamic system with integer-valued state
n(t) = [n;(t)] and M + 1 parameters 0 = [ky,...,ky, 2].

The state of such a system can be interpreted as a realization of a random
variable n(¢) that changes over time ¢. Every one can know about the system is
the probability for it to be in a certain state at a certain time f; given the system’s
state history, hence

P(n(t;) | n(tj-1), ....n(t).n(t)) d"n
= Prob{n(t;) € [n(¢;), n(t;) +dn) |n(t), i=0,...,j—1}. (28.2)

A frequently made model assumption, substantiated by physical reasoning, is
that the probability of the current state depends solely on the previous state, i.e.,

P(n(tj) | n(tj-1),....n(t), n(t)) = P(n(t;) | n(tj-1)). (28.3)
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The system is then modeled as a first-order Markov chain where the state n
evolves as:

n(t + At) = n(t) + Z(At; n,t). (28.4)

This is the equation of motion of the system. If n is real-valued, it defines a
continuous—stochastic model in the form of a continuous-state Markov chain.
Discrete n, as is the case in chemical kinetics, amount to discrete—stochastic
models expressed as discrete-state Markov chains. The Markov propagator & is
itself a random variable, distributed with probability distribution /7 (E | At; n,t) =
P(n+§.t + At|n,1) for the state change £. For continuous-state Markov chains,
IT is a continuous probability density function (PDF), for discrete-state Markov
chains a discrete probability distribution. If I7(§) = 8(§ — E ), with § the Dirac
delta distribution, then the system’s state evolution becomes deterministic with
predictable discrete or continuous increments £ . Deterministic models can hence
be interpreted as a limit case of stochastic models [22].

In chemical kinetics, the probability distribution I7 of the Markov propagator
is a linear combination of Poisson distributions with weights given by the reaction
stoichiometry. This leads to the equation of motion for the population n given by

121
n(t+ A =n0)+ @ —v)| |, (28.5)

Ym

where ¥; ~ P(a;(n(t))At) is a random variable from the Poisson distribution
with rate A = a;(n(¢))At. The second term on the right-hand side of (28.5)
follows a probability distribution I7 (& | At;n,t) whose explicit form is analytically
intractable in the general case. The rates a j»J = 1,...M, are called the reaction
propensities and are defined as:

a:ﬁ my__ & (28.6)
/ Vo 914'2:{\;:1”,7,,' '

i=1\ 1/

They depend on the macroscopic reaction rates and the reaction volume and can be
interpreted as the probability rates of the respective reactions. Advancing (28.5)
with a Az such that more than one reaction event happens per time step yields
an approximate simulation of the biochemical network as done in approximate
SSA [3,9].

An alternative approach consists in considering the evolution of the state
probability distribution P(n,t |n,,t) of the Markov chain described by (28.5),
hence:

aP a -
=) l_[E E —1)a;(n())P(n,t) (28.7)

j=1 \i=1
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with the step operator EY f(n) = f (Q + pi ) for any function f, where i is
the N-dimensional unit vector along the ith dimension. This equation is called
the CME. Directly solving it for P is analytically intractable, but trajectories
of the Markov chain governed by the unknown state probability P can be sampled
using exact SSA [8]. Exact SSAs are exact in the sense that they sample Markov
chain realizations from the exact solution P of the CME, without ever explicitly
computing this solution. Since SSAs are Monte Carlo algorithms, however, a
sampling error remains.

Assuming that the population n increases with the volume £2, n can be
approximated as a continuous random variable in the limit of large volumes, and
(28.5) becomes

m
n(t+ A =n@)+ @ —v)| | (28.8)
nm

where 1n; ~ A (a;(n(t))At, a;(n(t))At) are normally distributed random vari-
ables. The second term on the right-hand side of this equation is a random
variable, that is, distributed according to the corresponding Markov propagator
I1(&| At; n,t), which is a Gaussian. Equation (28.8) is called the chemical Langevin
equation with IT given by:

i (§| At;g,t) = @m) V2| g et W' (), (28.9)

where

ar(1)) )
n=At (g+ —g_) and ¥ =Ar (v -V ) dlaga(_(t))( - ) .
ay (n(1))

The corresponding equation for the evolution of the state PDF is the non-linear
Fokker—Planck equation, given by:

0P 1
DV — )
o =V’ (zg_ E) P(n,t), (28.10)
where
d d
Vie|—, ..., —| 28.11
- |:3n1 a}’lNi| ( )
1 +o00
F, = lim — dg,- & H(glAt;Q,t), (28.12)

Ar—0 At
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and

+o00

) 1 +o00
D,'j :AI;QOE o /_oo dgidegiSj H(§|Al,ﬂ,l)—EFj (2813)

At much larger £2, when the population z is on the order of Avogadro’s number,
(28.8) can be further approximated as:

$1(n(1)) At

n(t + At) = n(1) + (g - g) : (28.14)

bum(n(2)) At

_\\N - -
where ¢;(n) = kj.Ql N ]_[lN:l n,.v"’ (v )~L. Note that the second term
on the right-hand side of this equation is a random variable whose probability
distribution is the Dirac delta

$1(n(1)) At

(s An) =5 &= (v —v) (28.15)

dur (0(0)) At

Equation (28.14) hence is a deterministic equation of motion. In the limit Az — 0
this equation can be written as the ordinary differential equation

$1(x(1))
: (28.16)

Par (1))

for the concentration x = n$2~". This is the classical reaction rate equation for the
system in (28.1).

By choosing the appropriate probability distribution I7 of the Markov propa-
gator, one can model reaction networks in different regimes: small population n
(small £2) using SSA over (28.7), intermediate population (intermediate £2) using
(28.8), and large population (large £2) using (28.16). The complete model definition
therefore is . (0) = {g‘,gﬂ 17}.

The problem considered here can then be formalized as follows: Given a forward
model .Z(0) and a single noisy trajectory of the population of the chemical
species 7i(fy + (¢ — 1)Atep) at K discrete time points ¢ = ty + (¢ — 1) Atexp,
qg = 1,...,K, we wish to infer 8 = [ky,...,ky, §2]. The time between two
consecutive measurements Atex, and the number of measurements K are given by
the experimental technique used. As a forward model we use the full CME as given
in (28.7) and sample trajectories from it using the partial-propensity formulation of
Gillespie’s exact SSA as described in Sect. 4.
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3 Gaussian Adaptation for Global Parameter Optimization,
Approximate Bayesian Computation, and Volume
Estimation

Gaussian Adaptation, introduced in the late 1960s by Gregor Kjellstrom [17,19], is a
Monte Carlo technique that has originally been developed to solve design-centering
and optimization problems in analog electric circuit design. Design-centering solves
the problem of determining the nominal values (resistances, capacitances, etc.) of
the components of a circuit such that the circuit output is within specified design
bounds and is maximally robust against random variations in the circuit components
with respect to a suitable criterion or objective function. This problem is a superset
of general optimization, where one is interested in finding a parameter vector that
minimizes (or maximizes) an objective function without any additional robustness
criterion. GaA has been specifically designed for scenarios where the objective
function f(6) is only available in a black-box (or oracle) model that is defined on
a real-valued domain .« € R” and returns scalar real-valued output. The black-box
model assumes that gradients or higher-order derivatives of the objective function
may not exist or may not be available, hence including the class of discontinuous
and noisy functions. The specific objective function used here is presented in
Sect. 5.

The principle idea behind GaA is the following: Starting from a user-defined
point in parameter space, GaA explores the space by iteratively sampling single
parameter vectors from a multivariate Gaussian distribution .4"(m, X') whose mean
m € R" and covariance matrix ¥ € R are dynamically adapted based on the
information from previously accepted samples. The acceptance criterion depends on
the specific mode of operation, i.e., whether GaA is used as an optimizer or as a sam-
pler [27,28]. Adaptation is performed such as to maximize the entropy of the search
distribution under the constraint that acceptable search points are found with a
predefined, fixed hitting (success) probability p < 1 [19]. Using the definition of the

entropy of a multivariate Gaussian distribution ¢ (.4") = log ( (2me)” det@)

shows that this is equivalent to maximizing the determinant of the covariance matrix
Y. GaA thus follows Jaynes’ Maximum Entropy principle [14].

GaA starts by setting the mean m?) of the multivariate Gaussian to an initial
acceptable point 6 © and the Cholesky factor Q) of the covariance matrix to the

identity matrix /. At each iteration g > 0, the covariance X ¢ is decomposed as:
= - T =

y® = (r . Q(g)) (r . Q(g)) =r? @(g)) (Q(g)) , where r is the scalar step size

that controls the scale of the search. The matrix Q¢ is the normalized square root of

P (&) found by eigen- or Cholesky decompositial of ¥ (®)_The candidate parameter
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vector in iteration g + 1 is sampled from a multivariate Gaussian according to
¢t = @ 4 r@©Q@y© where n® ~ 4(0,1). The parameter vector is

then evaluated by the objective function f(8¢*V).

Only if the parameter vector is accepted, the following adaptation rules are
applied: The step size r is increased as r¢+tD = f, . r@® where f, > 1 is termed
the expansion factor. The mean of the proposal distribution is updated as:

1 1
e+h — (1 — () 4 _—_gle+D 28.17
e = (1 )+ o0 s

m m

Ny, is a weighting factor that controls the learning rate of the method. The successful

search direction i(gﬂ) = (Q(gH) — m(g)) is used to perform a rank-one update of

the covariance matrix: X ¢t = (1 — NLC) 2@ 4 NLCi(gH)i(gH)T. Nc weights
the influence of the accepted parameter vector on the covariance matrix. In order to
decouple the volume of the covariance (controlled by r¢+1) from its orientation,

0©*Y is normalized such that det @(gH)) =1

In case 0 €+ s not accepted at the current iteration, only the step size is adapted
as r@*D = f£..r® where f, < 1 is the contraction factor.

The behavior of GaA is controlled by several strategy parameters. Kjellstrom
analyzed the information-theoretic optimality of the acceptance probability p for
GaA in general regions [19]. He concluded that the efficiency E of the process and
p are related as E o« —plog p, leading to an optimal p = % ~ 0.3679, where
e is Euler’s number. A proof is provided in [18]. Maintaining this optimal hitting
probability corresponds to leaving the volume of the distribution, measured by

det (g), constant under stationary conditions. Since det (2) = r2" det ( 2 QT),

the expansion and contraction factors f, and f. expand or contract the volume by
a factor of f*" and f", respectively. After S accepted and F rejected samples,
a necessary condition for constant volume thus is: ]_[lS: 1! £ ]_[lF: 1! )Y = 1.
Using p = S—l—LF’ and introducing a small 8 > 0, the choice f. = 1 + (1 — p) and
fe. = 1 — Bp satisfies the constant-volume condition to first order. The scalar rate §
is coupled to N¢. N¢ influences the update of ¥ € R"*", which contains n? entries.

Hence, N should be related to n%. We suggested using Nc = (n + 1)?/log(n + 1)
as a standard value, and coupling 8 = NLC [29]. A similar reasoning is also applied
to Np,. Since Ny, influences the update of m € R”, it is reasonable to set Ny,  n.
We propose N,, = en as a standard value.

Depending on the specific acceptance rule used, GaA can be turned into a global
optimizer [29], an adaptive MCMC sampler [27,28], or a volume estimation method
[30], as described next.
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3.1 GaA for Global Black-Box Optimization

In a minimization scenario, GaA uses an adaptive-threshold acceptance mechanism.

Given an initial scalar cutoff threshold c}o) , We accept a parameter vector 6 &+ ¢

iteration g + 1 if f (Q(g +l)) < c%g). Upon acceptance, the threshold ct is lowered

as ¥V = (1 - NLT) 9 v f (Q<g+l)), where Nt controls the weighting

between the old threshold and the objective-function value of the accepted sample.
This sample-dependent threshold update renders the algorithm invariant to linear
transformations of the objective function. The standard strategy parameter value is
Nt = en [28]. We refer to [28] for further information about convergence criteria
and constraint handling techniques in GaA.

3.2 GaA for Approximate Bayesian Computation and Viable
Volume Estimation

Replacing the threshold acceptance-criterion by a probabilistic Metropolis criterion,
and setting Ny, = 1, turns GaA into an adaptive MCMC sampler with global
adaptive scaling [2]. We termed this method Metropolis-GaA [27,28]. Its strength
is that GaA can automatically adapt to the covariance of the target probability
distribution while maintaining the fixed hitting probability. For standard MCMC,
this cannot be achieved without fine-tuning the proposal using multiple MCMC
runs. We hypothesize that GaA might also be an effective tool for ABC [43]. In
essence, the ABC ansatz is MCMC without an explicit likelihood function [25].
The likelihood is replaced by a distance function — which plays the same role as
our objective function — that measures closeness between a parameterized model
simulation and empirical data &, or summary statistics thereof. When a uniform
prior over the parameters and a symmetric proposal are assumed, a parameter vector
in ABC is unconditionally accepted if its corresponding distance function value
f@ (8 +l)) < cr [25]. The threshold ct is a problem-dependent constant that is fixed
prior to the actual computation. Marjoram and co-workers have shown that samples
obtained in this manner are approximately drawn from the posterior parameter
distribution given the data . While Pritchard et al. used a simple rejection sampler
[33], Marjoram and co-workers proposed a standard MCMC scheme [25]. Toni
and co-workers used sequential MC for sample generation [43]. To the best of our
knowledge, however, the present work presents the first application of an adaptive
MCMC scheme for ABC in biochemical network parameter inference. Finally, we
emphasize that when GaA’s mean, covariance matrix, and hitting probability p
stabilize during ABC, they provide direct access to an ellipsoidal estimation of the
volume of the viable parameter space as defined by the threshold cr [30]. Hafner
and co-workers have shown how to use such viable volume estimates for model
discrimination [11].
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4 Evaluation of the Forward Model

In each iteration of the GaA algorithm, the forward model of the network needs to be
evaluated for the proposed parameter vector 6. This requires an efficient and exact
SSA for the chemical kinetics of the reaction network, used to generate trajectories
n(t) from .#(0). Since GaA could well propose parameter vectors that lead to
low copy numbers for some species, it is important that the SSA be exact since
approximate algorithms are not appropriate at low copy number.

In its original formulation, Gillespie’s SSA has a computational cost that is
linearly proportional to the total number M of reactions in the network. If many
model evaluations are required, as in the present application, this computational
cost quickly becomes prohibitive. While more efficient formulations of SSA have
been developed for weakly coupled reaction networks, their computational cost
remains proportional to M for strongly coupled reaction networks [35]. A reaction
network is weakly coupled if the number of reactions that are influenced by any
other reaction is bounded by a constant. If a network contains at least one reaction
whose firing influences the propensities of a fixed proportion (in the worst case
all) of the other reactions, then the network is strongly coupled [35]. Scale-free
networks as seem to be characteristic for systems biology models [1, 42] are
by definition strongly coupled. This is due to the existence of hubs that have a
higher connection probability than other nodes. These hubs frequently correspond
to chemical reactions that produce or consume species that also participate in the
majority of the other reactions, such as water, ATP, or CO; in metabolic networks.

We use partial-propensity methods [35, 36] to simulate trajectories according to
the solution of the chemical master (28.7) of the forward model. Partial-propensity
methods are exact SSAs whose computational cost scales at most linearly with the
number N of species in the network [35]. For large networks, this number is usually
much smaller than the number of reactions. Depending on the network model at
hand, different partial-propensity methods are available for its efficient simulation.
Strongly coupled networks where the rate constants span only a limited spectrum of
values are best simulated with the partial-propensity direct method (PDM) [35].
Multi-scale networks where the rate constants span many orders of magnitude
are most efficiently simulated using the sorting partial-propensity direct method
(SPDM) [35]. Weakly coupled reaction networks can be simulated at constant
computational cost using the partial-propensity SSA with composition-rejection
sampling (PSSA-CR) [37]. Lastly, reaction networks that include time delays can
be exactly simulated using the delay partial-propensity direct method (dPDM) [38].
Different combinations of the algorithmic modules of partial-propensity methods
can be used to constitute all members of this family of SSAs [36]. We refer to the
original publications for algorithmic details, benchmarks of the computational cost,
and a proof of exactness of partial-propensity methods.
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5 Objective Function

In the context of parameter identification of stochastic biochemical networks, a
number of distance or objective functions have previously been suggested. Reinker
et al. proposed an approximate maximum-likelihood measure under the assumption
that only a small number of reactions fire between two experimental measurement
points, and a likelihood based on singular value decomposition that works when
many reactions occur per time interval [40]. Koutroumpas et al. compared objective
functions based on least squares, normalized cross-correlations, and conditional
probabilities using a Genetic Algorithm [21]. Koeppl and co-workers proposed
the Kantorovich distance to compare experimental and model-based probability
distributions [20]. Alternative distance measures include the Earth Mover’s distance
or the Kolomogorov—Smirnov distance [32]. These distance measures, however,
can only be used when many experimental trajectories are available. In order to
measure the distance between a single experimental trajectory 7(¢) and a single
model output n(t), we propose a novel cost function f(0) = f (#(8), n) that
reasonably captures the kinetics of a monostable system. We define a compound
objective function f(0) = f1(8) + f>(0) with

4 N .
> 1o |ACF; (i1;) — ACF; (n;)|
0 . o) — . h . (8.8
@) = E Y S2(0) E " ACE, (i) ( )

i=1 i=1

where
N A~ 2
wi(nj) —Mi(”j))
Vi = — (28.19)
; ( i ()
with the central moments given by:
Ypmi ) (0 + (p = 1) Atesy) it Q=1
wi(nj) = N _
()Zfﬂ (1) (10 + (g — D) Atexp) — p1(n)) D otherwise
(28.20)

and the time—autocorrelation function (ACF) at lag / given by:

n; (to)n; (to + | Atexp) — (111(n;))?
pa(n;) ‘

ACF(n;) =

The variable z, is the lag at which the experimental ACF crosses O for the first time.
The function fi(0) measures the difference between the first four moments of n and
7. This function alone would, however, not be enough to capture the kinetics since
it lacks information about correlations in time. This is taken into account by f>(6),
measuring the difference in the lifetimes of all chemical species. These lifetimes
are systematically modulated by the volume £2 [39], hence enabling volumetric
measurements of intra-cellular reaction compartments along with the identification
of the rate constants.
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The present objective function allows inclusion of experimental readouts from
image-based systems biology. The moment-matching part is a typical readout from
fluorescence photometry, whereas the autocorrelation of the fluctuations can directly
be measured using, e.g., FCS.

6 Results

We estimate the unknown parameters 6 for two reaction networks: a weakly coupled
cyclic chain and a strongly coupled non-linear colloidal aggregation network. For
the cyclic chain we estimate 0 at steady state. For the aggregation model we estimate
0 both at steady state and in the transient phase. Every kinetic parameter is allowed
to vary in the interval [1073, 10°] and the reaction volume 2 in [1, 500]. Each GaA
run starts from a point selected uniformly at random in logarithmic parameter space.

6.1 Weakly Coupled Reaction Network: Cyclic Chain
The cyclic chain network is given by:

ki .
S,'—>Si+1 l=1,...,N—1,

kn .
Si — Sy i=N. (28.21)

In this linear network, the number of reactions M is equal to the number of species
N. The maximum degree of coupling of this reaction network is 2, irrespective of
the size of the system (length of the chain), rendering it weakly coupled [35]. We
hence use PSSA-CR to evaluate the forward model with a computational complexity
of O(1) [37]. In the present test case, we limit ourselves to 3 species and 3 reactions,
i.e., N = M = 3. The parameter vector for this case is given by 0 = [k, k2, k3],
since the kinetics of linear reactions is independent of the volume §2 [39].

We simulate steady-state “experimental” data 7 using PSSA-CR with ground
truth k; = 2, k, = 1.5, k3 = 3.2 (see Fig. 28.1a). We set the initial population of
the species to n1(t = 0) = 50, ny(t = 0) = 50, and n3(t = 0) = 50 and sample a
single CME trajectory at equi-spaced time points with Ate, = 0.1 between t = 1y
and ¢ = t9 + (K — 1) Ateyp with o = 2000 and K = 1001 for each of the 3 species
Si, Sz, and S3. For the generated data we find z, = 7.

We generate trajectories from the forward model for every parameter vector 6
proposed by GaA using PSSA-CR between t = 0 and 1 = (K — 1)Atep, = 100,
starting from the initial population n; (t = 0) = 7; (t = to).
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Fig. 28.1 In silico data for all test cases. (a) Time evolution of the populations of three species in
the cyclic chain model at steady state (starting at ¢, = 2000). (b) Time evolution of the populations
of two species in the aggregation model at steady state (starting at ¢, = 5000). (¢) Same as (b), but
during the transient phase (starting at ¢y, = 0)

Before turning to the actual parameter identification, we illustrate the topography
of the objective function landscape for the present example. We fix k3 = 3.2
to its optimal value and perform a two-dimensional grid sampling for k; and
ko over the full search domain. We use 40 logarithmically spaced sample points
per parameter, resulting in 40% parameter combinations. For each combination we
evaluate the objective function. The resulting landscapes of f1(0), f>(8), and f(8)
are depicted in Fig. 28.2a. Figure 28.2b shows refined versions around the global
optimum. We see that the moment-matching term f1(6) is largely responsible for
the global single-funnel topology of the landscape. The autocorrelation term f(6)
sharpens the objective function near the global optimum and renders it locally more
isotropic.

We perform both global optimization and ABC runs using GaA. In each of the 15
independent optimization runs the number of objective function evaluations (FES)
is limited to MAX_FES = 1000M = 3000. We set the initial step size to r® = 1
and perform all searches in logarithmic scale of the parameters. Independent restarts
from uniform random points are performed when the step size r drops below
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Fig. 28.2 (a) Global objective function landscape for the cyclic chain over the complete search
domain for optimal k3 = 3.2. The three panels from left to right show f;(8), f2(6), and f(6),
respectively. (b) A refined view of the global objective function landscape near the global optimum.
The three panels from left to right show f1(6), f2(8), and f(8), respectively. The white dots mark
the ground truth parameters

10™* [29]. For each of the 15 independent runs, the 30 parameter vectors with
the smallest objective function value are collected and displayed in the box plot
shown in the left panel of Fig. 28.3a. All 450 collected parameter vectors have
objective function values smaller than 1.6. These results suggest that the present
method is able to accurately determine the correct scale of the kinetic parameters
from a single experimental trajectory, although an overestimation of the rates is
apparent.

We use the obtained optimization results for subsequent ABC runs. We conduct
15 independent ABC runs using cr = 2. The starting points for the ABC runs
are selected uniformly at random from the 450 collected parameter vectors in
order to ensure stable initialization. For each run we again set MAX_FES =
1000M = 3000. The initial step size r® is set to 0.1, and the parameters are
again explored in logarithmic scale. For all runs we observe rapid convergence
of the empirical hitting probability pemp to the optimal p = é (see Sect. 3). We
collect the ABC samples along with the means and covariances of GaA as soon as
| pemp — p| < 0.05. As an example we show the histograms of the posterior samples
for a randomly selected run in Fig. 28.3b. The means of the posterior distributions
are again larger than the true kinetic parameters. Using GaA’s means, covariance
matrices, and the corresponding hitting probabilities that generated the posterior
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Fig. 28.3 (a) Left panel: Box plot of the 30 best parameter vectors from each of the 15 independent
optimization runs. The blue dots mark the true parameter values. Right panel: Ellipsoidal volume
estimate of the parameter space below an objective-function threshold ¢y = 2 from a single ABC
run. (b) Empirical posterior distributions of the kinetic parameters from the same single ABC run
with cr = 2. The red lines indicate the true parameters

samples, we can construct an ellipsoidal volume estimation [30]. This is done by
multiplying each eigenvalue of the average of the collected covariance matrices with
Cpemp = 1NV 13 ( Demp), the n-dimensional inverse Chi-square distribution evaluated
at the empirical hitting probability. The product of these scaled eigenvalues and
#%H)’ then yields the
ellipsoid volume with respect to a uniform distribution (see [30] for details). The
resulting ellipsoid contains the optimal kinetic parameter vector and is depicted
in the right panel of Fig. 28.3a. It has a volume of 0.045 in log-parameter space.
This constitutes only 0.0208% of the initial search space volume, indicating that
GaA significantly narrows down the viable parameter space around the true optimal
parameters despite the noise in the forward model and in the data.

the volume of the n-dimensional unit sphere, |S(n)| =
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6.2 Strongly Coupled Reaction Network: Colloidal
Aggregation

The colloidal aggregation network is given by:

k"
) — Sl

kij
Si+S; — Sit; i+j=1,....N

kij
Sivj —Si+S;, i+j=1..,N

off
ki

Si— 0 i=1,...,N. (28.22)

For this network of N species, the number of reactions is M = LNTZJ + N + 1.

The maximum degree of coupling of this reaction network is proportional to N,
rendering the network strongly coupled [35]. We hence use SPDM to evaluate the
forward model with a computational complexity of O(N) [35]. We use SPDM
instead of PDM since the search path of GaA is unpredictable and could well
generate parameters that lead to multi-scale networks. For this test case, we limit
ourselves to two s_pecies, ie., N = 2 and M = 5. The parameter vector for this
caseis § = [kn,kn,ki’“,kfff, kgff, .Q]

We perform GaA global optimization runs following the same protocol as for the
cyclic chain network with MAX_FES = 1000(M + 1) = 6000.

6.2.1 At Steady State

We simulate “experimental” data i2 using SPDM with ground truth k;; = 0.1, 1511 =
1.0, k" = 2.1, k9 = 0.01, k™ = 0.1, and 2 = 15 (see Fig. 28.1b). We set the
initial population of the species to n;(t = 0) = 0, np(t = 0) = 0, and n3(t =
0) = 0 and sample K = 1001 equi-spaced data points between t = #y and t =
to + (K — 1) Ateyp with tg = 5000 and Ateyp = 0.1.

We generate trajectories from the forward model for every parameter vector 6
proposed by GaA using SPDM betweent = 0 and t = (K — 1) Atep, = 100, stating
from the initial population n; (t = 0) = 7; (¢t = to).

The optimization results are summarized in the left panel of Fig. 28.4a. For each
of the 15 independent runs, the 30 lowest-objective parameter vectors are collected
and shown in the box plot. We observe that the true parameters corresponding to
0 = kii, 03 = k", 04 = kO, and 05 = kS are between the 25th and 75th
percentiles of the identified parameters. Both the first parameter and the reaction
volume are, on average, overestimated. Upon rescaling the kinetic rate constants
with the estimated volume, we find "™ = [0, /06, 0>, 03 s, 04, O5], which are the
specific probability rates of the reactions. The identified values are shown in the



494 C.L. Miiller et al.

......|..[H..|......,

F{LJeF
ab
log;, 0
L o 4
‘Fom—ﬂ-
. ..|..EH..|.....
L

ISP S
0
. FEﬂ_

2[4 -2
-3 ; L -3 .
1 2 3 4 6 1 2 3 5
b 7
3 3

o4 2 =
T £
H N E e B
oﬁ A ’
i _ 4
; _L$p%, -1
4

|
-3 L

3

i

logy 0;
o —_
e O

logy 0;
o
v}

o F
% .
4

t

1 2 3

i
Fig. 28.4 (a) Left panel: Box plot of the 30 best parameter vectors from each of the 15 independent
optimization runs for the steady-state data set. Right panel: Box plots of the normalized parameters
(see main text for details). (b) Left panel: Box plot of the 30 best parameter vectors from each of the

15 independent optimization runs for the transient data set. Right panel: Box plot of the normalized
parameters (see main text for details). The blue dots indicate the true parameter values

right panel of Fig. 28.4a. The median of the identified 6;°™ coincides with the
true specific probability rate. Likewise, 6{°™ is closer to the 25th percentile of
the parameter distribution. This suggests a better estimation performance of GaA
in the space of specific probability rates, at the expense of not obtaining an estimate
of the reactor volume.

6.2.2 In the Transient Phase

We simulate “experimental” data in the transient phase of the network dynamics
using the same parameters as above between ¢ = fy and t = (K — 1) Ateyp, with
fo = 0, Atexp = 0.1, and K = 1001 (see Fig. 28.1c). We evaluate the forward
model with n;(t = 0) = #;(t = fo) to obtain trajectories between t = 0 and
t = (K — 1) Ateyp for every proposed parameter vector 6.
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The optimization results for the transient case are summarized in Fig. 28.4b.
We observe that the true parameters corresponding to 65 = k{", 65 = k3, and
0 = §2 are between the 25th and 75th percentiles of the identified parameters.
The remaining parameters are, on average, overestimated. In the space of rescaled
parameters 6"°™ we do not observe a significant improvement of the estimation.

7 Conclusions and Discussion

We have considered parameter estimation in monostable stochastic biochemical
networks from single experimental trajectories. Parameter identification from single
time series is desirable in image-based systems biology, where per-cell estimates
of the fluorescence evolution and its fluctuations are available. This enables quan-
tifying cell—cell variability on the level of network parameters. The histogram of
the parameters identified for different cells provides a biologically meaningful way
of assessing phenotypic variability beyond simple differences in the fluorescence
levels.

We have proposed a novel combination of a flexible Monte Carlo method, the
GaA algorithm, and efficient exact stochastic simulation algorithms, the partial-
propensity methods. The presented method can be used for global parameter
optimization, approximate Bayesian inference under uniform prior, and ellipsoidal
volume estimation of the viable parameter space. We have introduced an objective
function that measures closeness between a single experimental trajectory and a
single trajectory generated by the forward model. The objective function comprises
a moment-matching and a time-autocorrelation part. This allows including experi-
mental readouts from, e.g., fluorescence photometry and FCS.

We have applied the method to estimate the parameters of two monostable
reaction networks from a single simulated temporal trajectory each, both at steady
state and during transient phases. We considered the linear cyclic chain network
and a non-linear colloidal aggregation network. For the linear model we were
able to robustly identify a small region of parameter space containing the true
kinetic parameters. In the non-linear aggregation model, we could identify several
parameter vectors that fit the simulated experimental data well. There are two
possible reasons for this reduced parameter identifiability: either GaA cannot find
the globally optimal region of parameter space due to high ruggedness and noise in
the objective function, or the non-linearity of the aggregation network modulates the
kinetics in a non-trivial way [10,39]. Both cases are not accounted for in the current
objective function, thus leading to reduced performance for non-linear reaction
networks.

We also used GaA as an adaptive MCMC method for approximate Bayesian
inference of the posterior parameter distributions in the linear chain network.
This enabled estimating the volume of the viable parameter space below a given
objective-function value threshold. We found these volume estimates to be stable



496 C.L. Miiller et al.

across independent runs. We thus believe that GaA might be a useful tool for
exploring the parameter spaces of stochastic systems.

Future work will include (1) alternative objective functions that include temporal
cross-correlations between species and the derivative of the autocorrelation; (2)
longer experimental trajectories; (3) multi-stable and oscillatory systems; and
(4) alternative global optimization schemes. Moreover, the applicability of the
present method to large-scale, non-linear biochemical networks, and real-world
experimental data will be tested in future work.
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