
14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

LEARNING COMPUTABLE MODELS FROM DATA

Suryanarayana Maddu1,2,3,5, Dominik Sturm1,2,3, Bevan L. Cheeseman6,
Christian L. Müller7,8,9, Ivo F. Sbalzarini1,2,3,4,5

1 Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

3 Center for Systems Biology Dresden, Dresden, Germany
4 Cluster of Excellence Physics of Life, TU Dresden, Germany

5 Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI, Dresden/Leipzig, Germany
6 ONI Inc., Oxford, United Kingdom

7 Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
8 Department of Statistics, LMU München, Munich, Germany

9 Institute of Computational Biology, Helmholtz Zentrum München, Germany

Key words: Surrogate modeling, Differential operators, Neural networks, ENO-WENO

Abstract. Numerical methods for approximately solving partial differential equations (PDE) are at

the core of scientific computing. Often, this requires high-resolution or adaptive discretization grids

to capture relevant spatio-temporal features in the PDE solution, e.g., in applications like turbulence,

combustion, and shock propagation. Numerical approximation also requires knowing the PDE in order

to construct problem-specific discretizations. Systematically deriving solution-adaptive discrete oper-

ators, however, is a current challenge. Here we present an artificial neural network architecture for

data-driven learning of problem- and resolution-specific local discretizations of nonlinear PDEs. Our

proposed method achieves numerically stable discretization of the operators in an unknown nonlinear

PDE by spatially and temporally adaptive parametric pooling on regular Cartesian grids, and by incorpo-

rating knowledge about discrete time integration. Knowing the actual PDE is not necessary, as solution

data is sufficient to train the network to learn the discrete operators. A once-trained network can be used

to predict solutions of the PDE on larger spatial domains and for longer times than it was trained for,

addressing the problem of PDE-constrained extrapolation from data. We present examples on long-term

forecasting of hard numerical problems including equation-free forecasting of the nonlinear dynamics of

the forced Burgers problem on coarse spatio-temporal grids.

1 INTRODUCTION

Mathematical modeling of spatio-temporal systems as partial differential equations (PDEs) has been in-

valuable in gaining mechanistic insight from real-world dynamical processes. This has enabled the study

of increasingly complex systems in real-world geometries. Numerical methods like finite-difference

(FD), finite-volume (FV), and finite-element (FE) methods are routinely used to approximate the solu-

tions of PDEs on computational grids or meshes [6, 5]. Such discretization methods rely on interpolating

(in some basis) the PDE solution on discrete points [5]. This often requires high-resolution or adaptive-

resolution grids with problem-specific discrete operators in order to accurately and stably represent high

frequencies in the solution.

1

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, and Ivo F. Sbalzarini

In addition, practical applications often face the situation that measurement data from a dynamical pro-

cesses in space and time are available, but a first-principles mathematical model is difficult to formulate

or too simplistic to realistically capture the data. Numerical simulation methods can then not be used

to predict system behavior. This problem is particularly prevalent in areas such as biology, medicine,

environmental science, economy, and finance.

1.1 Background and related work

Solution-adaptive discretizations of known nonlinear PDEs have been achieved using MLPs that learn

problem-specific optimal parameters for classical numerical schemes on coarser grids [4]. The resulting

consistent discretization on coarser grids can then be used to accelerate numerical simulations. Recent

work on solution- and resolution-specific discretization of nonlinearPDEs has shown CNN filters that are

able to generalize to larger spatial solution domains than what they have been trained on [1]. However,

an over-complete set of CNN filters was used, which renders learning high-level discretization features

computationally expensive and data-demanding. In all previous works, the underlying PDE and the as-

sociated discrete numerical fluxes for learning accurate solution-specific discretizations had to be known

beforehand.

Here, we present an approach that does not require knowing the PDE and is purely data-driven. We

present the neural network architecture for data-driven, solution-adaptive discretization of unknown non-

linear PDEs. Our framework uses a “Network In Network” (NIN) [3] architecture to learn high-level

discretization features from local input patches with reduced data requirements.The NIN network works

by sliding a Multi-Layer Perceptron (MLP) over the input patches to perform cascaded cross-channel

parametric pooling that enables learning complex solution features.

2 MATHEMATICAL FORMULATION

In general, the spatio-temporal evolution of a state variable u ∈ Rd is given by a PDE of the form

α1
∂u(x, t)

∂t
+α2

∂2u(x, t)

∂t2
= N

(

Ξ,u,∂xu,∂x f (u),∂xxu,∂xxxu,u2, . . .
)

, (1)

where N (·) is the nonlinear function that models the dynamics of a process, Ξ is the set of PDE coef-

ficients (e.g., diffusion constants or viscosities), and f (u) are the flux terms, e.g., f (u) = u2, f (u) = cu.

For the time derivative, we only consider the binary and mutually exclusive case, i.e., (α1 = 0,α2 = 1)
or (α1 = 1,α2 = 0).

We can then compactly formulate the spatially discretized version of the PDE as the system of ODEs

∂ui

∂t
= Nd

(

um(xi), Ξ,∆x
)

+O(∆xr1), i = 1, . . . ,Nx, (2)

where ui = u(xi), um(xi) = {u(x j) : x j ∈ Sm(xi)}, ∆x the grid resolution of the spatial discretization, and

Nd : R2m+1 → R is the nonlinear discrete approximation of the continuous nonlinear right-hand side op-

erator N (·). The discrete approximation converges to the continuous operator with spatial convergence

rate r1 as ∆x → 0. Popular examples of spatial discretization methods include finite-difference, finite-

volume, and finite-element methods. For simplicity of illustration, we only consider the case α1 = 1,

α2 = 0; the other case is analogous.

2

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, and Ivo F. Sbalzarini

Nd (•)

Û
n+1

 Runge-Kutta
time integrator Û

n+k

forward integration

Û
n-1

Û
n-k

. . .

. . .

backward integration

Û
n

discrete PDE
 operators

intermediate
 features

mlpconv
 unit

mlpconv
 unit

Figure 1: Neural architecture for data-driven discretization: The mlpconv unit performs parametric pooling by moving

the MLP network across the input vector Ûn at time n to generate the feature maps. In our case, the features reaching the output

layer are the local PDE discretization. The time integrators are then used to evolve the networks output over time for k steps

forward and backward, which is then used to compute the loss.

Approximating the integral on the right-hand side of this map by quadrature, we find

un+1
i = Td

(

un
i , Nd

(

un
m(xi),Ξ,∆x

)

,∆t

)

+O(∆tr2), n = 0, . . . ,Nt −1, (3)

where Nt is the total number of time steps. Here, Td is the explicit discrete time integrator with time-step

size ∆t. Due to approximation of the integral by quadrature, the discrete time integrator converges to

the continuous-time map with temporal convergence rate r2 as ∆t → 0. Popular examples of explicit

time-integration schemes include forward Euler, Runge-Kutta, and TVD Runge-Kutta methods. In this

work, we only consider Runge-Kutta-type methods and their TVD variants as described by [8].

2.1 Optimization problem

The computation performed by a single mlpconv layer shown in Fig. 1 is given as,

y1
q = σ

(

W1x+b1

)

,ynl
q = σ

(

Wnl ynl−1
q +bn

)

, (4)

where θ = {Wq,bq}q=1,2,...,nl
are the trainable weights and biases, respectively, and σ is the (nonlinear)

activation function. The mlpconv layer can thus be seen as cascaded cross-channel parametric pooling

on a normal convolutional layer [3], which allows complex and learnable interactions across channels

for better abstraction of the input data.

We use the rich function approximation properties for neural networks [9] to approximate the discrete

nonlinear spatial differential operator function Nd(·) described in Eq. (3), which results in the following

local non-linear parametric pooling:

ûn+1
i = Td

(

ûn
i ,Nθ

(

ûn
m(xi),Ξ

)

,∆t

)

, (5)

where Nθ : R2m+1 → R are the local nonlinear mlpconv layer rules parameterized with weights θ.

3

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, and Ivo F. Sbalzarini

Based on Eq. 5, we formulate a loss function for learning the local nonlinear discretization rules Nθ:

LMSE =
Nt

∑
n=1

Nx

∑
i=1

q

∑
k=−q

γk

∥

∥

∥
un+k

i −

(

Tk
d

(

un
i ,Nθ

(

un
m,Ξ

)

,∆t
)

)

∥

∥

∥

2

2
(6)

The scalar γk are decaying weights that account for the accumulating prediction error [7]. The positive

integer q is the number of Runge-Kutta integration steps considered during optimization, which we refer

to as the training time horizon. We penalize the noise estimates N̂ in order to prevent learning the trivial

solution associated with the minimization problem given by Eq. (6). We also impose penalty on the

weights of the network W in order to prevent over-fitting. The total loss is then given by

Loss = LMSE +λn‖N̂‖2
F +λwd

l

∑
i=1

‖Wi‖
2
F , (7)

where l is the number of network layers, N̂ ∈ RNx×Nt is the matrix of point-wise noise estimates, and

‖ ·‖F is the Frobenius norm of a matrix. We find the choice λn = 10−5 and λwd = 10−8 to work well for

all problems considered in this work. Training is done using an Adam optimizer [2] with learning rate

lr = 0.001.

3 NUMERICAL EXPERIMENTS

We apply our neural architecture to learn solution-adaptive discretizations of nonlinear PDEs. For all

problems discussed here, we use a single mlpconv unit with 3 hidden layers, each with 64 nodes and

Exponential Linear Unit (ELU) nonlinearity. The input to the network is the solution um the stencil with

m = 3 in all examples.

3.1 Learning non-trivial discretization

As a first simple example, we consider the 1D advection equation, as given by

ut + cux = 0, (8)

where c = 2 is the constant advection velocity. We train our neural architecture to learn from data the

stable computable rules for propagating sharp pulse. In Fig. 2, we show solution of sharp pulse propaga-

tion for different classical trivial and non-trivial numerics and their long-term predictions. We show that

our neural architecture is able to learn local discetization rules on coarse grids and also account for the

necessary up-winding numerics required for stable solution propagation. The data-driven computable

model is more robust and accurate than higher-order solution adaptive WENO schemes on coarse grids.

3.2 A fast and accurate predictive surrogate

The forced Burgers’ equation in 1D is given by the PDE:

∂u

∂t
+

∂(u2)

∂x
= D

∂2u

∂x2
+ f (x, t) (9)

for the unknown function u(x, t) with diffusion constant D = 0.02. Here, we use the forcing term

f (x, t) =
N

∑
i=1

Ai sin(ωit +2πlix/L+φi) (10)

4

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, and Ivo F. Sbalzarini

upwinding

central di!erences

adaptive stencils

distance (x) distance (x)

True solution

distance (x)distance (x)

A B C D

Figure 2: Numerical solutions of advection of a sharp pulse using different discretization schemes. All solutions are visualized

at time t = 3 s.

with each parameter drawn independently and uniformly at random from its respective range: A =
[−0.1,0.1], ω = [−0.4,0.4], φ = [0,2π], and N = 20. The domain size L is set to 2π (i.e., x ∈ [0,2π])
with periodic boundary conditions, and l = {2,3,4,5}. We use a smooth initial condition u(x,0) =
exp(−(x−3)2).

time
0 160

2

0

2

0
2

0

2

0

A

80

sp
a
ce

sp
a
ce

sp
a
ce

sp
a
ce

B

C

D

Figure 3: Forced Burgers’ prediction with neural

network: (A) Fifth-order WENO solution with Nx =
256. (B,C,D) Predictions of neural architecture on
(2×,4×,8×) coarser grids, respectively. The dashed box
in A is the domain used for training.

The forced Burgers’ equation with a nonlinear

forcing term can produce rich and sharply varying

solutions. The forcing term also introduces ran-

domness that can help explore the solution mani-

fold [1]. This presents an ideal challenge for test-

ing the method’s discretization capabilities. We

train our architecture on fifth-order WENO solu-

tions of the forced Burgers’ equation at different

spatial resolutions ∆xc = (C∆x), where C is the

sub-sampling factor, and ∆x the resolution of the

fine-grid solution (Fig. 3) on Fig. 3, we show a

comparison between fifth-order accurate WENO

solution on a fine grid (∆x = L/Nx,Nx = 256 with

domain length L = 2π and the corresponding neu-

ral network predictions on coarsened grids with

∆xc =C∆x, for sub-sampling factors C = {2,4,8}.

Our method learns local discretization rules and

produces stable computable solutions on coarser

spatio-temporal grids for longer times with little

compromise on accuracy

4 CONCLUSIONS

In this work, we proposed a neural network architecture that uses patch-wise parametric pooling and

discrete time integration constraints to learn coarse-grained computable models directly from spatio-

temporal data, without knowledge of the underlying symbolic PDE.

Our method fills this niche by providing a purely data-driven, equation-free way of learning predictive

computable models of complex nonlinear space-time dynamics. It can be used to produce rapid coarse-

grained predictions beyond the space and time horizon it was trained for. Beyond the applications shown

here, we anticipate the fast and accurate data-driven predictions to be useful in areas including real-

5

Suryanarayana Maddu, Dominik Sturm, Bevan L. Cheeseman, Christian L. Müller, and Ivo F. Sbalzarini

time computational steering, computer graphics, phase-space exploration, uncertainty quantification, and

computer vision

Future generalizations of the idea include an extension to 2D and 3D problems, multi-resolution numer-

ical schemes, and mesh-free particle methods. We hope that the present results provide motivation for

future works and for including neural network based surrogates into existing simulations frameworks.

REFERENCES

[1] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretizations for partial

differential equations. Proceedings of the National Academy of Sciences, 116(31):15344–15349,

2019.

[2] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[3] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.

[4] S. Mishra. A machine learning framework for data driven acceleration of computations of differential

equations. arXiv preprint arXiv:1807.09519, 2018.

[5] P. Moin. Fundamentals of engineering numerical analysis. Cambridge University Press, 2010.

[6] S. Patankar. Numerical heat transfer and fluid flow. Taylor & Francis, 2018.

[7] S. H. Rudy, J. N. Kutz, and S. L. Brunton. Deep learning of dynamics and signal-noise decomposition

with time-stepping constraints. Journal of Computational Physics, 396:483–506, 2019.

[8] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-

bolic conservation laws. In Advanced numerical approximation of nonlinear hyperbolic equations,

pages 325–432. Springer, 1998.

[9] M. Telgarsky. Neural networks and rational functions. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 3387–3393. JMLR. org, 2017.

6

