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!BSTRACT
7E CHARACTERIZE AND REMEDY A FAILURE MODE THAT MAY ARISE FROM MULTISCALE DYNAMICS WITH SCALE
IMBALANCES DURING TRAINING OF DEEP NEURAL NETWORKS� SUCH AS PHYSICS INFORMED NEURAL NETWORKS
�0)..S	� 0)..S ARE POPULAR MACHINELEARNING TEMPLATES THAT ALLOW FOR SEAMLESS INTEGRATION OF
PHYSICAL EQUATION MODELS WITH DATA� 4HEIR TRAINING AMOUNTS TO SOLVING AN OPTIMIZATION PROBLEM
OVER A WEIGHTED SUM OF DATAFIDELITY AND EQUATIONFIDELITY OBJECTIVES� #ONFLICTS BETWEEN OBJECTIVES
CAN ARISE FROM SCALE IMBALANCES� HETEROSCEDASTICITY IN THE DATA� STIFFNESS OF THE PHYSICAL EQUATION� OR
FROM CATASTROPHIC INTERFERENCE DURING SEQUENTIAL TRAINING� 7E EXPLAIN THE TRAINING PATHOLOGY
ARISING FROM THIS AND PROPOSE A SIMPLE YET EFFECTIVE INVERSE $IRICHLET WEIGHTING STRATEGY TO ALLEVIATE
THE ISSUE� 7E COMPARE WITH 3OBOLEV TRAINING OF NEURAL NETWORKS� PROVIDING THE BASELINE OF
ANALYTICALLY εOPTIMAL TRAINING� 7E DEMONSTRATE THE EFFECTIVENESS OF INVERSE $IRICHLET WEIGHTING IN
VARIOUS APPLICATIONS� INCLUDING A MULTISCALE MODEL OF ACTIVE TURBULENCE� WHERE WE SHOW ORDERS OF
MAGNITUDE IMPROVEMENT IN ACCURACY AND CONVERGENCE OVER CONVENTIONAL 0).. TRAINING� &OR
INVERSE MODELING USING SEQUENTIAL TRAINING� WE FIND THAT INVERSE $IRICHLET WEIGHTING PROTECTS A
0).. AGAINST CATASTROPHIC FORGETTING�

�� )NTRODUCTION

$ATADRIVEN MODELING HAS EMERGED AS A POWERFUL AND COMPLEMENTARY APPROACH TO FIRSTPRINCIPLES MODELING�
)T WAS MADE POSSIBLE BY ADVANCES IN IMAGING AND MEASUREMENT TECHNOLOGY� COMPUTING POWER� AND
INNOVATIONS IN MACHINE LEARNING� IN PARTICULAR NEURAL NETWORKS� 4HE SUCCESS OF NEURAL NETWORKS IN
DATADRIVEN MODELING CAN BE ATTRIBUTED TO THEIR POWERFUL FUNCTION APPROXIMATION PROPERTIES FOR DIVERSE
FUNCTIONAL FORMS� FROM IMAGE RECOGNITION ;�= AND NATURAL LANGUAGE PROCESSING ;�= TO LEARNING POLICIES IN
COMPLEX ENVIRONMENTS ;�=�

2ECENTLY� THERE HAS BEEN A SURGE IN EXPLOITING THE VERSATILE APPROXIMATION PROPERTIES OF NEURAL NETWORKS
FOR SURROGATE MODELING IN SCIENTIFIC COMPUTING AND FOR DATADRIVEN MODELING OF PHYSICAL SYSTEMS ;�� �=�
4HESE APPLICATIONS HINGE ON THE APPROXIMATION PROPERTIES OF NEURAL NETWORKS FOR 3OBOLEVREGULAR
FUNCTIONS ;�� �=� 4HE POPULAR PHYSICS INFORMED NEURAL NETWORKS �0)..S	 RELY ON KNOWING A DIFFERENTIAL
EQUATION MODEL OF THE SYSTEM IN ORDER TO SOLVE A SOFTCONSTRAINED OPTIMIZATION PROBLEM ;�� �=� 4HANKS TO
THEIR MESHFREE CHARACTER� 0)..S CAN BE USED FOR BOTH FORWARD AND INVERSE MODELING IN DOMAINS INCLUDING
MATERIAL SCIENCE ;�n��=� FLUID DYNAMICS ;�� ��n��= AND TURBULENCE ;��� ��=� BIOLOGY ;��=� MEDICINE ;��� ��=�
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EARTH SCIENCE ;��=� MECHANICS ;��= AND UNCERTAINTY QUANTIFICATION ;��=� AS WELL AS FOR SOLVING STOCHASTIC ;��=�
HIGHDIMENSIONAL ;��= AND FRACTIONAL DIFFERENTIAL EQUATIONS ;��=�

4HE WIDE APPLICATION SCOPE OF 0)..S RESTS ON THEIR PARAMETERIZATION AS DEEP NEURAL NETWORKS� WHICH CAN
BE TUNED BY MINIMIZING A WEIGHTED SUM OF DATAFITTING AND EQUATIONFITTING OBJECTIVES� (OWEVER� FINDING
NETWORK PARAMETERS THAT IMPARTIALLY OPTIMIZE FOR SEVERAL OBJECTIVES IS CHALLENGING WHEN OBJECTIVES IMPOSE
CONFLICTING REQUIREMENTS� )N ADDITION� 0)..S SUFFER FROM SPECTRAL BIAS ;��n��=� POTENTIALLY RESULTING IN LARGE
DISCREPANCIES BETWEEN CONVERGENCE RATES OF DIFFERENT OBJECTIVES DURING TRAINING ;��=� &OR MULTITASK LEARNING
�-4,	 PROBLEMS� THIS ISSUE HAS BEEN ADDRESSED BY VARIOUS STRATEGIES FOR RELATIVE WEIGHTING OF CONFLICTING
OBJECTIVES� E�G� BASED ON UNCERTAINTY ;��=� GRADIENT NORMALIZATION ;��= OR 0ARETO OPTIMALITY ;��=� 4HE 0)..
COMMUNITY IN PARALLEL HAS DEVELOPED HEURISTICS FOR LOSS WEIGHTING WITH DEMONSTRATED GAINS IN ACCURACY AND
CONVERGENCE ;��� ��=� (OWEVER� THERE IS NEITHER CONSENSUS ON WHEN TO USE SUCH STRATEGIES IN 0)..S� NOR ARE
THERE OPTIMAL BENCHMARK SOLUTIONS FOR OBJECTIVES BASED ON DIFFERENTIAL EQUATIONS�

(ERE� WE FILL THIS GAP BY CHARACTERIZING TRAINING PATHOLOGIES OF 0)..S AND PROVIDING CRITERIA FOR THEIR
OCCURRENCE� 7E MATHEMATICALLY EXPLAIN THESE PATHOLOGIES BY SHOWING A CONNECTION BETWEEN 0)..S AND
3OBOLEV TRAINING� AND WE PROPOSE A STRATEGY FOR LOSS WEIGHTING IN 0)..S BASED ON THE $IRICHLET ENERGY OF THE
TASKSPECIFIC GRADIENTS� 7E SHOW THAT THIS STRATEGY REDUCES OPTIMIZATION BIAS AND PROTECTS AGAINST
CATASTROPHIC FORGETTING� 7E EVALUATE THE PROPOSED INVERSE $IRICHLET WEIGHTING BY COMPARING WITH 3OBOLEV
TRAINING IN A CASE WHERE PROVABLY OPTIMAL WEIGHTS CAN BE DERIVED� AND BY EMPIRICAL COMPARISON WITH TWO
CONCEPTUALLY DIFFERENT STATEOFTHEART 0).. WEIGHTING APPROACHES�

�� 4RAINING A PHYSICS INFORMED NEURAL NETWORK IS A MULTIOBJECTIVE OPTIMIZATION
PROBLEM

!N OPTIMIZATION PROBLEM INVOLVING MULTIPLE TASKS OR OBJECTIVES CAN BE WRITTEN AS�

MINIMIZE LK(θ
SH,θK), K= �, . . . ,+. ��	

4HE TOTAL NUMBER OF TASKS IS GIVEN BY +� θSH ARE SHARED PARAMETERS BETWEEN THE TASKS� AND θK ARE THE
TASKSPECIFIC PARAMETERS� &OR CONFLICTING OBJECTIVES� THERE IS NO SINGLE OPTIMAL SOLUTION� BUT 0ARETODOMINATED
SOLUTIONS CAN BE FOUND USING HEURISTICS LIKE EVOLUTIONARY ALGORITHMS ;��=� !LTERNATIVELY� THE MULTIOBJECTIVE
OPTIMIZATION PROBLEM CAN BE CONVERTED TO A SINGLEOBJECTIVE OPTIMIZATION PROBLEM USING SCALARIZATION� E�G� AS
A WEIGHTED SUM WITH REALVALUED RELATIVE WEIGHTS λK ASSOCIATED WITH EACH LOSS OBJECTIVE LK�

MIN
θSH,θ�,...,θ+

+∑

K=�

λKLK(θ
SH,θK). ��	

/FTEN� THE λK ARE DYNAMICALLY TUNED ALONG TRAINING EPOCHS ;��=� 4HE WEIGHTS λK INTUITIVELY QUANTIFY THE
EXTENT TO WHICH WE AIM TO MINIMIZE THE OBJECTIVE LK� ,ARGE λK FAVOR SMALL LK� AND VICEVERSA ;��=� &OR + � ��
MANUAL TUNING OF THE λK AND GRID SEARCH BECOME PROHIBITIVELY EXPENSIVE FOR LARGE PARAMETERIZATIONS AS
COMMON IN DEEP NEURAL NETWORKS�

4HE LOSS FUNCTION OF A 0).. IS A SCALARIZED MULTIOBJECTIVE LOSS� WHERE EACH OBJECTIVE CORRESPONDS TO
EITHER A DATAFIDELITY TERM OR A CONSTRAINT DERIVED FROM THE PHYSICS OF THE UNDERLYING PROBLEM ;�� �=� ! TYPICAL
0).. LOSS CONTAINS FIVE OBJECTIVES�

L(Uθ,U) =
λ�
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∣∣∣
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. ��	

7E DISTINGUISH THE NEURAL NETWORK APPROXIMATION Uθ(TI,XΩI ) FROM THE TRAINING DATA UI = U(TI,XΩI ) SAMPLED AT
THE .INT SPACETIME POINTS (TI,XΩI ) IN THE INTERIOR OF THE SOLUTION DOMAIN Ω� .B POINTS (TI,X∂ΩI ) ON THE
BOUNDARY ∂Ω� AND .) SAMPLES OF THE INITIAL STATE AT TIME T= �� 4HE λ�� λ�� AND λ� WEIGHT THE RESIDUALS OF THE
PHYSICAL EQUATION ∂TU= F(U,Σ) WITH RIGHTHAND SIDE F AND COEFFICIENTS Σ� THE BOUNDARY CONDITION B� AND
THE INITIAL CONDITION I � RESPECTIVELY� 4HE OBJECTIVE WITH WEIGHT λ� IMPOSES AN ADDITIONAL CONSTRAINTH ON THE
STATE VARIABLE U� SUCH AS� E�G� DIVERGENCEFREENESS �∇ · U= �	 OF THE VELOCITY FIELD OF AN INCOMPRESSIBLE FLOW�
4HE WEIGHT λ� PENALIZES DEVIATIONS OF THE NEURAL NETWORK APPROXIMATION FROM THE AVAILABLE MEASUREMENT
DATA�

�
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0)..S CAN BE USED TO SOLVE BOTH FORWARD AND INVERSE MODELING PROBLEMS OF ORDINARY DIFFERENTIAL
EQUATIONS �/$%S	 AND PARTIAL DIFFERENTIAL EQUATIONS �0$%S	� )N THE FORWARD PROBLEM� A NUMERICAL
APPROXIMATION TO THE SOLUTION OF AN /$% OR 0$% IS TO BE LEARNED� &OR THIS� θSH ARE THE NETWORKS PARAMETERS
AND θK IS AN EMPTY SET� )N THE INVERSE PROBLEM� THE COEFFICIENTS OF AN /$% OR 0$% ARE TO BE LEARNED FROM DATA
SUCH THAT THE EQUATION DESCRIBES THE DYNAMICS IN THE DATA� 4HEN� THE TASKSPECIFIC PARAMETERS θK CORRESPOND
TO THE COEFFICIENTS �ξ ⊆ Σ	 OF THE PHYSICAL EQUATION THAT SHALL BE INFERRED� $URING TRAINING OF A 0)..� THE
PARAMETERS (θSH,θK) ARE DETERMINED BY MINIMIZING THE TOTAL LOSS L FOR GIVEN DATA�

���� 3OBOLEV TRAINING IS A SPECIAL CASE OF 0).. TRAINING
,IKE MOST DEEP NEURAL NETWORKS� 0)..S ARE USUALLY TRAINED BY FIRSTORDER PARAMETER UPDATE BASED ON
�APPROXIMATE	 LOSS GRADIENTS� 4HE UPDATE RULE CAN BE INTERPRETED AS A DISCRETIZATION OF THE GRADIENT FLOW� I�E�

θ(τ + �) = θ(τ)− η(τ)
+∑

K=�

λK∇θLK. ��	

4HE LEARNING RATE η(τ) DEPENDS ON THE TRAINING EPOCH τ � REFLECTING THE ADAPTIVE STEP SIZE USED IN OPTIMIZERS
LIKE !DAM ;��=� 4HE GRADIENTS ARE BATCH GRADIENTS∇θLK =

�
|"|

∑
I∈"∇&K(UIθ,UI)� WHERE " IS A MINIBATCH�

CREATED BY RANDOMLY SPLITTING THE . TRAINING DATA POINTS INTO ./|"| DISTINCT PARTITIONS� AND &K IS ONE
SUMMAND �FOR ONE DATA POINT I	 OF THE LOSS LK CORRESPONDING TO THE KTH OBJECTIVE� &OR BATCH SIZE |"|= ��
MINIBATCH GRADIENT DESCENT REDUCES TO STOCHASTIC GRADIENT DESCENT ALGORITHM�

&OR APPROXIMATING A FUNCTION U(X) FROM DATA UI� ADDING DERIVATIVESDM
X �M! �� OF THE STATE VARIABLE INTO

THE TRAINING LOSS HAS BEEN SHOWN TO IMPROVE DATA EFFICIENCY AND GENERALIZATION POWER OF NEURAL NETWORKS ;�=�
-INIMIZING THE RESULTING LOSS

.∑

I=�

[
λ� |Uθ(XI)− U(XI)|� +

+∑

K=�

λK|DK
XUθ(XI)−DK

XU(XI)|�
]

��	

USING THE UPDATE RULE IN EQUATION ��	 CAN BE INTERPRETED AS A FINITE APPROXIMATION TO THE 3OBOLEV GRADIENT
FLOW OF THE LOSS FUNCTIONAL� 7ITHOUT LOSS OF GENERALITY� WE DROP THE DEPENDENCE OF THE STATE VARIABLE ON TIME�
WRITING UI = U(XI)� 4HE NEURAL NETWORK IS THEN TRAINED WITH ACCESS TO THE �+ + �	TUPLES
{(XI,U(XI),D�

X U(XI), . . . ,D+
X U(XI))}.I=� INSTEAD OF THE USUAL TRAINING SET {(XI,U(XI))}.I=�� 3UCH 3OBOLEV

TRAINING IS AN INSTANCE OF SCALARIZED MULTIOBJECTIVE OPTIMIZATION WITH EACH OBJECTIVE BASED ON THE
APPROXIMATION OF A SPECIFIC DERIVATIVE� 4HE WEIGHTS ARE USUALLY CHOSEN AS λ� = . . .= λ+ = � ;�=�

4HE ADDITIONAL INFORMATION FROM THE DERIVATIVES INTRODUCES AN INDUCTIVE BIAS� WHICH HAS BEEN FOUND TO
IMPROVE DATA EFFICIENCY AND NETWORK GENERALIZATION ;�=� 4HIS IS AKIN TO 0)..S� WHICH USE DERIVATIVES FROM
THE PHYSICAL EQUATION MODEL TO ACHIEVE INDUCTIVE BIAS� )NDEED� THE 3OBOLEV LOSS IN EQUATION ��	 IS A SPECIAL
CASE OF THE 0).. LOSS FROM EQUATION ��	 WITH EACH OBJECTIVE BASED ON A 0$% WITH RIGHTHAND SIDE F =DK

XU�
K= �, . . . ,+�

���� 6ANISHING TASKSPECIFIC GRADIENTS ARE A FAILURE MODE OF 0)..S
4HE UPDATE RULE IN EQUATION ��	 IS KNOWN TO LEAD TO STIFF LEARNING DYNAMICS FOR LOSS FUNCTIONALS WHOSE
(ESSIAN MATRIX HAS LARGE POSITIVE EIGENVALUES ;��=� 4HIS IS THE CASE FOR 3OBOLEV TRAINING� EVEN WITH + = ��
WHEN THE FUNCTION U(X) IS HIGHLY OSCILLATORY� LEADING US TO THE FOLLOWING PROPOSITION� PROVEN IN APPENDIX "���

Proposition 2.2.1 (Stiff learning dynamics in first-order parameter update). &OR 3OBOLEV TRAINING ON THE TUPLES
{XI,U(XI),∂MX U(XI)}.I=�,M! �� WITH TOTAL LOSS L=

∑.
I=�

(
λ�|Uθ(XI)− U(XI)|� + λ�|DM

X Uθ(XI)−DM
X U(XI)|�

)
�

THE RATE OF CHANGE OF THE RESIDUAL OF THE DOMINANT &OURIER MODE R̃(K�) = Ũθ(K�)− Ũ(K�) USING FIRSTORDER PARA
METER UPDATE IS�

∣∣∣∣
D̃R(K�)

Dτ

∣∣∣∣=
η(τ)

/(K�)

[
λ�/(�)+λ�/(K

�M
� )

]∣∣∣∣
∂R̃(K�)

∂θ

∣∣∣∣ ,

WHERE /(·) IS THE "ACHMANN,ANDAU BIG/ SYMBOL� &OR λ� = λ� = �� THIS LEADS TO TRAINING DYNAMICS WITH SLOW
TIME SCALE D/DT ∈ /(K−�

� ) AND FAST TIME SCALE D/DT ∈ /(K�M−�
� ) FOR R̃(K�) ∈ /(�)�

4HIS PROPOSITION SUGGESTS THAT LOSSES CONTAINING HIGH ORDERS OF DERIVATIVESM� DOMINANT HIGH FREQUENCIES
K�� OR A COMBINATION OF BOTH EXHIBIT DOMINANT GRADIENT STATISTICS� 4HIS CAN LEAD TO BIASED OPTIMIZATION OF THE
DOMINANT OBJECTIVES WITH LARGE GRADIENTS AT THE EXPENSE OF THE OTHER OBJECTIVES WITH RELATIVELY SMALLER
GRADIENTS� 4HIS IS AKIN TO THE WELLKNOWN VANISHING GRADIENTS PHENOMENON ACROSS THE LAYERS OF A NEURAL
NETWORK ;��=� ALBEIT NOW ACROSS DIFFERENT OBJECTIVES OF A MULTIOBJECTIVE OPTIMIZATION PROBLEM� 7E THEREFORE
CALL THIS PHENOMENON VANISHING TASKSPECIFIC GRADIENTS�

�
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0ROPOSITION ����� ALSO ADMITS A QUALITATIVE COMPARISON WITH THE PHENOMENON OF NUMERICAL STIFFNESS IN
0$%S OF THE FORM

∂Ũ

∂T
= ,Ũ+ &(Ũ, T). ��	

)F THE REAL PARTS OF THE EIGENVALUES OF ,� C= 2E(λ(,))% �� THEN THE SOLUTION OF THE ABOVE 0$% HAS FAST MODES
Ũ ∈ /(�) WITH D/DT ∈ /(C) AND SLOW MODES Ũ ∈ /(�/C) WITH D/DT ∈ /(�)� 4HEREFORE� HIGH FREQUENCY MODES
EVOLVE ON SHORTER TIME SCALES THAN LOW FREQUENCY MODES� 4HE RATE AMPLITUDE FOR SPATIAL DERIVATIVES OF ORDERM
IS D/DT ∈ /(K−M) FOR THE WAVENUMBER K ;��=� $UE TO THIS ANALOGY� WE CALL THE LEARNING DYNAMICS OF A NEURAL
NETWORK WITH VANISHING TASKSPECIFIC GRADIENTS STIFF� 3TIFF LEARNING DYNAMICS LEADS TO DISCREPANCY IN THE
CONVERGENCE RATES OF DIFFERENT OBJECTIVES IN A LOSS FUNCTION�

4AKEN TOGETHER� VANISHING TASKSPECIFIC GRADIENTS CONSTITUTE A LIKELY FAILURE MODE OF 0)..S� SINCE THEIR
TRAINING AMOUNTS TO A GENERALIZED VERSION OF 3OBOLEV TRAINING�

�� 3TRATEGIES FOR BALANCED 0).. TRAINING

3INCE 0).. TRAINING MINIMIZES A WEIGHTED SUM OF MULTIPLE OBJECTIVES �EQUATION ��		� THE RESULT DEPENDS ON
APPROPRIATELY CHOSEN WEIGHTS λK� 4HE RATIO BETWEEN ANY TWO WEIGHTS λI/λJ� I &= J� DEFINES THE RELATIVE
IMPORTANCE OF THE TWO OBJECTIVES DURING TRAINING� 3UITABLE WEIGHTING IS THEREFORE QUINTESSENTIAL TO FINDING A
0ARETOOPTIMAL SOLUTION THAT BALANCES ALL OBJECTIVES�

���� 7EIGHTING BASED ONMEAN GRADIENT STATISTICS
7HILE AD HOC MANUAL TUNING IS STILL COMMONPLACE� IT HAS RECENTLY BEEN PROPOSED TO DETERMINE THE WEIGHTS AS
MOVING AVERAGES OVER THE INVERSE GRADIENT MAGNITUDE STATISTICS OF A GIVEN OBJECTIVE AS ;��=�

λ̂K(τ) =
MAX{|∇θSHL�(τ)|}
λK(τ)|∇θSHLK(τ)|

,

λK(τ + �) = αλK(τ)+ (�−α)λ̂K(τ), ��	

WHERE∇θSHL� IS THE GRADIENT OF THE RESIDUAL� I�E� OF THE FIRST OBJECTIVE IN EQUATION ��	� AND α IS A USERDEFINED
LEARNING RATE �HERE ALWAYS α= ���	� !LL GRADIENTS ARE TAKEN WITH RESPECT TO THE SHARED PARAMETERS ACROSS TASKS�
AND | · | IS THE COMPONENTWISE ABSOLUTE VALUE� 4HE OVERBAR SIGNIFIES THE ALGEBRAIC MEAN OVER THE VECTOR
COMPONENTS� 4HE MAXIMUM IN THE NUMERATOR IS OVER ALL COMPONENTS OF THE VECTOR� 7HILE THISMAX�AVG
WEIGHTING HAS BEEN SHOWN TO IMPROVE 0).. PERFORMANCE ;��=� IT DOES NOT COMPLETELY ALLEVIATE THE PROBLEM
OF VANISHING TASKSPECIFIC GRADIENTS�

���� )NVERSE $IRICHLET WEIGHTING
)NSTEAD OF DETERMINING THE LOSS WEIGHTS PROPORTIONAL TO THE INVERSE AVERAGE GRADIENT MAGNITUDE� WE HERE
PROPOSE TO USE WEIGHTS BASED ON THE GRADIENT VARIANCE� )N PARTICULAR� WE PROPOSE TO USE WEIGHTS FOR WHICH THE
VARIANCES OVER THE COMPONENTS OF THE BACKPROPAGATED WEIGHTED GRADIENTS λK∇θLK BECOME EQUAL ACROSS ALL
OBJECTIVES� THUS DIRECTLY PREVENTING VANISHING TASKSPECIFIC GRADIENTS� 4HIS CAN BE ACHIEVED IN ANY �STOCHASTIC	
GRADIENTDESCENT OPTIMIZER BY USING THE UPDATE RULE IN EQUATION ��	 WITH WEIGHTS

λ̂K(τ) =
γ(τ)

STD{∇θSHLK(τ)}
,

λK(τ + �) = αλK(τ)+ (�−α)λ̂K(τ), ��	

WHERE γ(τ) =MAXT=�,...,+ (STD{∇θSHLT(τ)})� AND STD{·} IS THE EMPIRICAL �SAMPLE	 STANDARD DEVIATION OVER
THE VECTOR COMPONENTS� 5NDER THE ASSUMPTION THAT THE BACKPROPAGATED GRADIENTS ARE NORMALLY DISTRIBUTED�
THE WEIGHTING STRATEGY IN EQUATION ��	 LEADS TO BALANCED GRADIENT DISTRIBUTIONS WITH VARIANCE γ(τ)�� I�E�

γ(τ)

STD{∇θSHLK(τ)}
N (µK,6AR{∇θSHLK(τ)}) =N

(
µK,γ(τ)

�
)
,

N (·) IS THE NORMAL DISTRIBUTION WITH MEAN µK,K= �, . . . ,+� AND GIVEN VARIANCE�
&OR OPTIMIZERS THAT ARE INVARIANT TO DIAGONAL SCALING OF THE GRADIENTS� SUCH AS THE POPULAR !DAM

OPTIMIZER ;��=� THE WEIGHTS IN EQUATION ��	 CAN BE EFFICIENTLY COMPUTED AS THE INVERSE OF THE SQUARE ROOT OF
THE $IRICHLET ENERGY OF EACH OBJECTIVE� I�E�

STD{∇θSHLK(τ)}∝

√ˆ
Ωθ

|∇θSHLK(τ)|� Dθ .

�
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7E THEREFORE REFER TO THIS WEIGHTING STRATEGY AS INVERSE $IRICHLET WEIGHTING�
4HE WEIGHTING STRATEGIES IN EQUATIONS ��	 AND ��	 ARE FUNDAMENTALLY DIFFERENT� %QUATION ��	 WEIGHTS

OBJECTIVES IN INVERSE PROPORTION TO CERTAINTY AS QUANTIFIED BY THE AVERAGE GRADIENT MAGNITUDE� %QUATION ��	
USES WEIGHTS THAT ARE INVERSELY PROPORTIONAL TO UNCERTAINTY AS QUANTIFIED BY THE VARIANCE OF THE LOSS GRADIENTS�
%QUATION ��	 IS ALSO DIFFERENT FROM PREVIOUS UNCERTAINTYWEIGHTED APPROACHES ;��= BECAUSE IT MEASURES THE
TRAINING UNCERTAINTY STEMMING FROM VARIANCE IN THE LOSS GRADIENTS RATHER THAN THE UNCERTAINTY FROM THE
MODEL�S OBSERVATIONAL NOISE�

���� 'RADIENTBASED MULTIOBJECTIVE OPTIMIZATION
7E COMPARE WEIGHTINGBASED SCALARIZATION APPROACHES WITH GRADIENTBASED MULTIOBJECTIVE APPROACHES USING
+ARUSH+UHN4UCKER �++4	 LOCAL OPTIMALITY CONDITIONS TO FIND A DESCENT DIRECTION THAT DECREASES ALL
OBJECTIVES� 3PECIFICALLY� WE ADAPT THE MULTIPLE GRADIENT DESCENT ALGORITHM �-'$!	 ;��= TO 0)..S� 4HIS
ALGORITHM LEVERAGES THE ++4 CONDITIONS

∃λ= {λK} ∈ R+
+

S�T�
+∑

K=�

λK∇θSHLK(θ
SH,θK) = � AND

+∑

K=�

λK = � ��	

TO SOLVE AN -4, PROBLEM� 4HE -'$! IS GUARANTEED TO CONVERGE TO A 0ARETOSTATIONARY POINT ;��=� 'IVEN THE
GRADIENTS∇θSHLK OF ALL OBJECTIVES K= �, . . . ,+ WITH RESPECT TO THE SHARED PARAMETERS� WE FIND WEIGHTS λK THAT
SATISFY THE ABOVE ++4 CONDITIONS� 4HE RESULTING λ LEADS TO A DESCENT DIRECTION THAT IMPROVES ALL
OBJECTIVES ;��=� SEE ALSO FIGURE !��� 7E ADAPT THE -'$! TO 0)..S AS DESCRIBED IN APPENDIX !��� 7E REFER TO
THIS ADAPTED ALGORITHM AS PINN-'$!�

�� 2ESULTS

!S WE POSIT ABOVE� 0)..S ARE EXPECTED TO FAIL FOR PROBLEMS WITH DOMINANT HIGH FREQUENCIES� I�E� WITH HIGH K�
OR HIGH DERIVATIVESM� AS IS TYPICAL FOR MULTISCALE 0$% MODELS� 7E THEREFORE PRESENT RESULTS OF NUMERICAL
EXPERIMENTS FOR SUCH CASES AND COMPARE THE APPROXIMATION PROPERTIES OF 0)..S WITH DIFFERENT WEIGHTING
SCHEMES� 4HIS SHOWCASES TRAINING FAILURE MODES ORIGINATING FROM VANISHING TASKSPECIFIC GRADIENTS�

7E FIRST CONSIDER 3OBOLEV TRAINING OF NEURAL NETWORKS� WHICH IS A SPECIAL CASE OF 0).. TRAINING� AS
DISCUSSED IN SECTION ���� $UE TO THE LINEAR NATURE OF THE 3OBOLEV LOSS �EQUATION ��		� THIS TEST CASE ALLOWS US TO
COMPUTE εOPTIMAL ANALYTICAL WEIGHTS �SEE APPENDIX !��	� PROVIDING A BASELINE FOR OUR COMPARISON� 3ECOND�
WE CONSIDER A REALWORLD EXAMPLE OF A NONLINEAR 0$%� USING 0)..S TO MODEL ACTIVE TURBULENCE�

)N THE FIRST EXAMPLE� WE SPECIFICALLY CONSIDER THE 3OBOLEV TRAINING PROBLEM WITH TARGET FUNCTION
DERIVATIVES UP TO FOURTH ORDER� I�E� + = �� AND TOTAL LOSS

.∑

I=�

[∣∣∣Uθ(XI)− U(XI)
∣∣∣
�
+

�∑

K=�

λK
∣∣∣ξ̂KDK

XUθ(XI)− ξKDK
XU(XI)

∣∣∣
� ]

. ���	

4HE NEURAL NETWORK IS TRAINED ON THE DATA U(XI) AND THEIR DERIVATIVES� 4O MIMIC INVERSEMODELING SCENARIOS�
IN ADDITION TO PRODUCING AN ACCURATE ESTIMATE Uθ(XI) OF THE FUNCTION� THE NEURAL NETWORK IS ALSO TASKED TO
INFER UNKNOWN SCALAR PREFACTORS ξ̂ = (ξ̂�, ξ̂�, ξ̂�, ξ̂�) WITH TRUE VALUES CHOSEN AS ξK = �� 4HIS MIMICS SCENARIOS
IN WHICH UNKNOWN COEFFICIENTS OF THE 0$% MODEL ALSO NEED TO BE INFERRED FROM DATA� &OR THIS LOSS� εOPTIMAL
WEIGHTS CAN BE ANALYTICALLY DETERMINED �SEE APPENDIX !��	 SUCH THAT ALL OBJECTIVES ARE MINIMIZED IN AN
UNBIASED FASHION ;��=� 4HIS PROVIDES THE BASELINE AGAINST WHICH WE BENCHMARK THE DIFFERENT WEIGHTING
SCHEMES�

���� )NVERSE $IRICHLET WEIGHTING AVOIDS VANISHING TASKSPECIFIC GRADIENTS
7E CHARACTERIZE THE PHENOMENON OF VANISHING TASKSPECIFIC GRADIENTS� DEMONSTRATE ITS IMPACT ON THE
ACCURACY OF A LEARNED FUNCTION APPROXIMATION� AND EMPIRICALLY VALIDATE 0ROPOSITION ������ &OR THIS� WE
CONSIDER A GENERIC NEURAL NETWORK WITH FIVE LAYERS AND �� NEURONS PER LAYER� TASKED WITH LEARNING A �$
FUNCTION THAT CONTAINS A WIDE SPECTRUM OF FREQUENCIES AND UNKNOWN COEFFICIENTS ξ̂ = (ξ̂�, ξ̂�, ξ̂�, ξ̂�) USING
3OBOLEV TRAINING WITH THE LOSS FROM EQUATION ���	� 4HE DETAILS OF THE TEST PROBLEM AND THE TRAINING SETUP ARE
GIVEN IN APPENDIX "�

7E FIRST CONFIRM THAT IN THIS TEST CASE VANISHING TASKSPECIFIC GRADIENTS OCCUR WHEN USING UNIFORM
WEIGHTS� I�E� WHEN SETTING λK = � FOR ALL K= �, . . . ,�� &OR THIS� WE PLOT THE GRADIENT HISTOGRAM OF THE FIVE LOSS
TERMS IN FIGURE ��!	� 4HE HISTOGRAMS CLEARLY SHOW THAT TRAINING IS BIASED IN THIS CASE TO MAINLY OPTIMIZE THE
OBJECTIVE CONTAINING THE HIGHEST DERIVATIVE K= �� !LL OTHER OBJECTIVES ARE NEGLECTED� AS PREDICTED BY

�
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&IGURE �� ,OSS GRADIENT HISTOGRAMS ILLUSTRATING VANISHING TASKSPECIFIC GRADIENTS� 4HE GRADIENT DISTRIBUTIONS OF THE DIFFERENT
OBJECTIVES �K= �, . . . ,�� SEE MAIN TEXT	 ARE SHOWN IN DIFFERENT COLORS �INSET LEGEND	 AT TRAINING EPOCH ����� 4HE PANELS CORRESPOND
TO DIFFERENT λ WEIGHTING SCHEMES AS NAMED� 4HE HISTOGRAMS SHOW NORMALIZED BACKPROPAGATED WEIGHTED GRADIENTS FOR EACH
OBJECTIVE� COMPUTED AS∇θL∗

K = λK∇θLK/MAX{|λK∇θLK|} FOR K= �, . . . ,� AND | · | IS THE COMPONENTWISE ABSOLUTE VALUE�

PROPOSITION ������ 4HIS LEADS TO A UNIFORMLY HIGH APPROXIMATION ERROR ON THE TEST DATA �TRAINING VS� TEST DATA
SPLIT ������ SEE APPENDIX "	� AS SHOWN IN FIGURE ��"	� AS WELL AS A UNIFORMLY HIGH ERROR IN THE ESTIMATED
COEFFICIENTS ξ �FIGURE ��#		� 7HEN DETERMINING THE WEIGHTS USING THE 0ARETOSEEKING PINN-'$!� THE
ACCURACY CONSIDERABLY IMPROVES �FIGURES ��"	 AND �#		� (OWEVER� THE PHENOMENON OF VANISHING TASKSPECIFIC
GRADIENTS IS STILL PRESENT� AS SEEN IN FIGURE ��"	� THIS TIME FAVORING THE OBJECTIVE FOR K= � AND NEGLECTING THE
DERIVATIVES� -AX�AVG WEIGHTING AS PROPOSED IN REFERENCE ;��= AND GIVEN IN EQUATION ��	 IMPROVES THE
ACCURACY FOR HIGHER DERIVATIVES �FIGURE ��"		� BUT STILL SUFFERS FROM UNBALANCED GRADIENT DISTRIBUTIONS
�FIGURE ��#		� WHICH LEADS TO A UNIFORMLY HIGH ERROR IN THE ESTIMATED COEFFICIENTS ξ �FIGURE ��#		� 4HE INVERSE
$IRICHLET WEIGHTING PROPOSED HERE AND DETAILED IN EQUATION ��	 SHOWS BALANCED GRADIENT HISTOGRAMS
�FIGURE ��$		 CLOSEST TO THOSE OBSERVED WHEN USING εOPTIMAL ANALYTICAL WEIGHTS �FIGURE ��%		� 4HIS LEADS TO
ORDERS OF MAGNITUDE BETTER ACCURACY IN BOTH THE FUNCTION APPROXIMATION AND THE COEFFICIENT ESTIMATES� AS
SHOWN IN FIGURES ��"	 AND �#	� REACHING THE PERFORMANCE ACHIEVED WHEN USING εOPTIMAL WEIGHTS�

4HIS IS CONFIRMED WHEN LOOKING AT THE POWER SPECTRUM OF THE FUNCTION APPROXIMATION Uθ LEARNED BY THE
NEURAL NETWORK IN FIGURE ��$	� )NVERSE $IRICHLET WEIGHTING LEADS TO RESULTS THAT ARE AS GOOD AS THOSE ACHIEVED
BY OPTIMAL WEIGHTS IN THIS TEST CASE� IN PARTICULAR WHEN APPROXIMATING HIGH FREQUENCIES� AS PREDICTED BY
PROPOSITION ������ ! CLOSER LOOK AT THE POWER SPECTRA LEARNED BY THE DIFFERENT WEIGHTING STRATEGIES ALSO REVEALS
THAT THE MAX�AVG STRATEGY FAILS TO CAPTURE HIGH FREQUENCIES� WHEREAS THE PINN-$'! PERFORMS SURPRISINGLY
WELL �FIGURE ��$		 DESPITE ITS UNBALANCED GRADIENTS �FIGURE ��"		� 4HIS MAY BE PROBLEMSPECIFIC� AS THE WEIGHT
TRAJECTORIES TAKEN BY PINN-$'! DURING TRAINING �FIGURE "��	 ARE FUNDAMENTALLY DIFFERENT FROM THE BEHAVIOR
OF THE OTHER METHODS� 4HIS COULD BE BECAUSE THE PINN-'$! USES A FUNDAMENTALLY DIFFERENT STRATEGY� PURELY
BASED ON SATISFYING 0ARETOSTATIONARITY CONDITIONS �EQUATION ��		� !S SHOWN IN FIGURE "��� THIS LEADS TO A RAPID
ATTENUATION OF THE &OURIER SPECTRUM OF THE RESIDUAL |̃R(K)| OVER THE FIRST FEW LEARNING EPOCHS IN THIS TEST CASE�
ALLOWING PINN-'$! TO ESCAPE THE STIFFNESS DEFINED IN PROPOSITION ������

)N SUMMARY� WE OBSERVE STARK DIFFERENCES BETWEEN DIFFERENT WEIGHTING STRATEGIES� /F THE STRATEGIES
COMPARED� ONLY THE INVERSE $IRICHLET WEIGHTING PROPOSED HERE IS ABLE TO AVOID VANISHING TASKSPECIFIC
GRADIENTS� PERFORMING ON PAR WITH THE εOPTIMAL SOLUTION� 4HE PINN-'$! SEEMS TO BE ABLE TO ESCAPE�
RATHER THAN AVOID� THE STIFFNESS CAUSED BY VANISHING TASKSPECIFIC GRADIENTS� 7E ALSO OBSERVE A CLEAR CORRELATION
BETWEEN HAVING BALANCED TASKSPECIFIC GRADIENT DISTRIBUTIONS AND ACHIEVING GOOD APPROXIMATION AND
ESTIMATION ACCURACY�

���� )NVERSE $IRICHLET WEIGHTING ENABLES MULTISCALE MODELING USING 0)..S
7E INVESTIGATE THE USE OF 0)..S IN MODELING MULTISCALE DYNAMICS IN SPACE AND TIME WHERE VANISHING
TASKSPECIFIC GRADIENTS ARE A COMMON PROBLEM� !S A REALWORLD TEST PROBLEM� WE CONSIDER MESOSCALE ACTIVE

�
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&IGURE �� !PPROXIMATION ACCURACY AND CONVERGENCE FOR 3OBOLEV TRAINING USING DIFFERENT WEIGHTING STRATEGIES� �!	 /NE INSTANCE OF
THE FUNCTION U GIVEN BY EQUATION �"�	� VISUALIZED ON A ���× ��� REGULAR #ARTESIAN GRID� �"	 4HE RELATIVE ,� ERROR OF THE LEARNED
FUNCTION APPROXIMATION� I�E� ‖Uθ(XI)− U(XI)‖�/‖U(XI)‖�� ACROSS ALL GRID NODES XI OF THE TEST DATA U(XI) FOR DIFFERENT OBJECTIVE
WEIGHTING METHODS �SYMBOLS� SEE INSET LEGEND	� �#	 4HE RELATIVE ,� ERROR IN THE ESTIMATED MODEL COEFFICIENTS� I�E� ‖ξ− ξ̂‖�/‖ξ‖��
FOR THE DIFFERENT OBJECTIVE WEIGHTING METHODS� �$	 4HE POWER SPECTRUM %�K	 OF THE TRUE FUNCTION U �SOLID BLACK LINE	 COMPARED
WITH THOSE OF THE LEARNED ESTIMATORS Uθ FOR THE DIFFERENT WEIGHTING METHODS �COLORED LINES WITH SYMBOLS	� !LL RESULTS ARE SHOWN
AFTER TRAINING FOR �� ��� EPOCHS USING THE !DAM OPTIMIZER� 4HE COLORED BANDS SHOW TO THE STANDARD DEVIATION OVER � REPETITIONS
FOR DIFFERENT REALIZATIONS �I�E� 2.' SEEDS	 OF THE RANDOM FUNCTION U �SEE EQUATION �"�		�

TURBULENCE AS IT OCCURS IN LIVING FLUIDS� SUCH AS BACTERIAL SUSPENSIONS ;��� ��= AND MULTICELLULAR TISSUES ;��=�
5NLIKE INERTIAL TURBULENCE� ACTIVE TURBULENCE HAS ENERGY INJECTED AT SMALL LENGTH SCALES COMPARABLE TO THE SIZE
OF THE ACTIVELY MOVING ENTITIES� LIKE BACTERIA OR INDIVIDUAL MOTOR PROTEINS� 4HE SPATIOTEMPORAL DYNAMICS OF
ACTIVE TURBULENCE CAN BE MODELED USING THE GENERALIZED INCOMPRESSIBLE .AVIERn3TOKES EQUATION ;��� ��=�

∂U

∂T
+ ξ�(U ·∇U) =−∇P+ ξ� ∇|U|� −αU−β|U|� U

+Γ� ∆U−Γ� ∆
� U ���	

∇ · U= � ,

WHERE U(T,X) IS THE MEANFIELD FLOW VELOCITY AND P(T,X) THE PRESSURE FIELD� 4HE COEFFICIENT ξ� SCALES THE
CONTRIBUTION FROM ADVECTION AND ξ� THE ACTIVE PRESSURE� 4HE α AND β TERMS CORRESPOND TO A QUARTIC
,ANDAUTYPE VELOCITY POTENTIAL� 4HE HIGHERORDER TERMS WITH COEFFICIENTS Γ� AND Γ� MODEL PASSIVE AND ACTIVE
STRESSES ARISING FROM HYDRODYNAMIC AND STERIC INTERACTIONS� RESPECTIVELY ;��=� &IGURE #�� ILLUSTRATES THE RICH
MULTISCALE DYNAMICS OBSERVED WHEN NUMERICALLY SOLVING THIS EQUATION ON A SQUARE FOR THE PARAMETER REGIME
Γ� < � AND Γ� > � ;��= �SEE APPENDIX # FOR DETAILS ON THE NUMERICAL METHODS USED	� !N IMPORTANT
CHARACTERISTIC OF EQUATION ���	 IS THE PRESENCE OF DISPARATE LENGTH AND TIME SCALES IN ADDITION TO FOURTHORDER
DERIVATIVES AND NONLINEARITIES IN U� WHICH JOINTLY LEAD TO CONSIDERABLE NUMERICAL STIFFNESS ;��=� 'IVEN SUCH
LARGE DOMINANT WAVENUMBERS K�� ANY DATADRIVEN APPROACH� FORWARD OR INVERSE� IS EXPECTED TO ENCOUNTER
SIGNIFICANT LEARNING PATHOLOGIES AS PER PROPOSITION ������

7E DEMONSTRATE THESE PATHOLOGIES BY APPLYING 0)..S TO APPROXIMATE THE FORWARD SOLUTION OF
EQUATION ���	 IN �$ FOR THE PARAMETER REGIME EXPLORED IN REFERENCE ;��= IN BOTH SQUARE �FIGURE #��	 AND
ANNULAR �FIGURE ��%		 DOMAINS� 4HE DETAILS OF THE SIMULATION AND TRAINING SETUPS ARE GIVEN IN APPENDIX #�
4HE LOSS FUNCTION INCLUDES THE TERMS AS GIVEN IN EQUATION ��	� INCLUDING THE 0$% RESIDUAL� INITIAL AND
BOUNDARY CONDITIONS� AND THE DIVERGENCEFREENESS CONSTRAINT�

&IGURES ��!	 AND �"	 SHOW THE AVERAGE �OVER DIFFERENT INITIALIZATIONS OF THE NEURAL NETWORK WEIGHTS	
RELATIVE ,� ERRORS OF THE VORTICITY FIELD OVER TRAINING EPOCHS WHEN USING DIFFERENT 0).. WEIGHTING STRATEGIES�
!S PREDICTED BY PROPOSITION ������ THE UNIFORMLY WEIGHTED 0).. FAILS COMPLETELY BOTH IN THE SQUARE
�FIGURE ��!		 AND IN THE ANNULAR GEOMETRY �FIGURE ��"		� /PTIMIZATION IS ENTIRELY BIASED TOWARDS MINIMIZING
THE 0$% RESIDUAL� NEGLECTING THE INITIAL� BOUNDARY� AND INCOMPRESSIBILITY CONDITIONS� 4HIS IMBALANCE IS ALSO
CLEARLY VISIBLE IN THE LOSS GRADIENT DISTRIBUTIONS SHOWN IN FIGURE #���!	� #OMPARING THE APPROXIMATION
ACCURACY AFTER ���� TRAINING EPOCHS CONFIRMS THE FINDINGS FROM THE PREVIOUS SECTION WITH INVERSE $IRICHLET
WEIGHTING OUTPERFORMING THE OTHER METHODS� FOLLOWED BY PINN-'$! AND MAX�AVG WEIGHTING� )NVERSE
$IRICHLET WEIGHTING IS FOUND TO ASSIGN ADEQUATE WEIGHTS FOR THE INITIAL AND BOUNDARY CONDITIONS RELATIVE TO THE
EQUATION RESIDUAL �SEE FIGURES #���!	 AND �$		�

)N FIGURE ��#	� WE COMPARE THE CONVERGENCE OF THE LEARNED APPROXIMATION Uθ TO A GROUNDTRUTH
NUMERICAL SOLUTION FOR DIFFERENT SPATIAL RESOLUTIONS H OF THE DISCRETIZATION GRID� 4HE ERRORS SCALE AS /(HR) WITH
CONVERGENCE ORDERS R AS IDENTIFIED BY THE DASHED LINES� 7HILE THE PINN-'$! AND MAX�AVG WEIGHTING
ACHIEVE LINEAR CONVERGENCE �R= �	� THE INVERSE $IRICHLET WEIGHTED 0).. CONVERGES WITH ORDER R= �� 4HE
UNIFORMLY WEIGHTED 0).. DOES NOT CONVERGE AT ALL AND IS THEREFORE NOT SHOWN IN THE PLOT� 4HE EVOLUTION OF
THE &OURIER SPECTRA |̃R(K)| OF THE RESIDUALS OF BOTH VELOCITY COMPONENTS (U,V) = U SHOWN IN FIGURE #�� CONFIRM
THE RAPID SOLUTION CONVERGENCE ACHIEVED BY INVERSE $IRICHLET WEIGHTED 0)..S�

�
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&IGURE �� &ORWARD MODELING OF ACTIVE TURBULENCE USING 0)..S� �!	 AND �"	 !VERAGE RELATIVE ,� PREDICTION ERRORS FOR THE VORTICITY
FIELD ω =∇× U OF THE ACTIVE TURBULENCE 0$% IN EQUATION ���	 IN SQUARE �!	 AND ANNULAR �"	 DOMAINS USING DIFFERENT WEIGHTING
STRATEGIES FOR 0).. TRAINING �SYMBOLS� SEE LEGEND	� 4HE DASHED VERTICAL LINES MARK EPOCHS AT WHICH THE LEARNING RATE η(τ) IS
ADJUSTED� �#	 #ONVERGENCE OF THE DIFFERENT 0).. PREDICTIONS OF THE FLOW VORTICITY TO THE GROUNDTRUTH NUMERICAL SOLUTION IN A
SQUARE DOMAIN FOR DIFFERENT GRID RESOLUTIONS� $ASHED LINES VISUALIZE INTEGER CONVERGENCE RATES� 4HE 0).. SOLUTION IS EXTRACTED AT
EPOCH ����� 4HE COLORED BANDS SHOW THE STANDARD DEVIATIONS OVER THREE DIFFERENT INITIALIZATIONS OF THE NEURAL NETWORK WEIGHTS�
�$	 0OWER SPECTRUM %�K	 OF THE TURBULENT FLOW VELOCITY FIELD �SOLID BLACK LINE	 COMPARED WITH THE POWER SPECTRA OF THE
APPROXIMATIONS LEARNED BY 0)..S WITH DIFFERENT WEIGHTING �SEE INSET LEGEND	 AT EPOCH ���� �%	 6ISUALIZATION OF THE GROUNDTRUTH
VORTICITY FIELD IN AN ANNULAR DOMAIN OBTAINED BY NUMERICALLY SOLVING EQUATION ���	 AS DETAILED IN APPENDIX #� �&	n�)	 3PATIAL
DISTRIBUTION OF THE RELATIVE PREDICTION ERRORS IN THE VORTICITY FIELD WHEN USING 0)..S WITH THE WEIGHTING STRATEGIES NAMED IN THE
PANEL TITLES�

)NVERSE $IRICHLET WEIGHTING ALSO PERFECTLY RECOVERS THE POWER SPECTRUM %�K	 OF THE ACTIVE TURBULENCE
VELOCITY FIELD� AS SHOWN IN FIGURE ��$	� 4HIS CONFIRMS THAT INVERSE $IRICHLET WEIGHTING ENABLES 0)..S TO
CAPTURE HIGH FREQUENCIES IN THE 0$% SOLUTION� CORRESPONDING TO FINE STRUCTURES IN THE FIELDS� BY AVOIDING THE
STIFFNESS PROBLEM FROM PROPOSITION ������ )NDEED� THE 0)..S TRAINED WITH THE OTHER WEIGHTING METHODS FAIL TO
PREDICT SMALL STRUCTURES IN THE FLOW FIELD� AS SHOWN BY THE SPATIAL DISTRIBUTIONS OF THE PREDICTION ERRORS IN
FIGURES ��&	n�)	 COMPARED TO THE GROUNDTRUTH NUMERICAL SOLUTION IN FIGURE ��%	�

)N !PPENDICES $ AND %� WE PROVIDE RESULTS FOR TWO ADDITIONAL EXAMPLES� APPROXIMATING THE SOLUTION OF
THE �$ 0OISSON EQUATION �SEE FIGURE $��	 ON A SQUARE WITH A LARGE SPECTRUM OF FREQUENCIES� AND LEARNING THE
SPATIOTEMPORAL DYNAMICS OF CURVATUREDRIVEN LEVELSET FLOW �SEE FIGURES %�� AND %��	 DEVELOPING SMALL
STRUCTURES� )N BOTH OF THESE ADDITIONAL MULTISCALE EXAMPLES WE NOTICE SIMILAR BEHAVIOR� WITH INVERSE $IRICHLET
WEIGHTING OUTPERFORMING THE OTHER APPROACHES EITHER IN TERMS OF ACCURACY OR CONVERGENCE RATE�

)N SUMMARY� THESE RESULTS SUGGEST THAT AVOIDING VANISHING TASKSPECIFIC GRADIENTS CAN ENABLE THE USE OF
0)..S IN MULTISCALE PROBLEMS PREVIOUSLY NOT AMENABLE TO NEURALNETWORK MODELING� -OREOVER� WE OBSERVE
THAT SEEMINGLY SMALL CHANGES IN THE WEIGHTING STRATEGY CAN LEAD TO SIGNIFICANT DIFFERENCES IN THE CONVERGENCE
ORDER OF THE LEARNED APPROXIMATION�

���� )NVERSE $IRICHLET WEIGHTING PROTECTS AGAINST CATASTROPHIC FORGETTING
!RTIFICIAL NEURAL NETWORKS TEND TO @FORGET� THEIR PARAMETERIZATION WHEN SEQUENTIALLY TRAINING FOR MULTIPLE
TASKS ;��=� A PHENOMENON REFERRED TO AS CATASTROPHIC FORGETTING� 3EQUENTIAL TRAINING IS OFTEN USED� E�G� WHEN
LEARNING TO DENOISE DATA AND ESTIMATE PARAMETERS AT THE SAME TIME� LIKE COMBINED IMAGE SEGMENTATION AND
DENOISING ;��=� OR WHEN LEARNING SOLUTIONS OF FLUID MECHANICS MODELS WITH ADDITIONAL CONSTRAINTS LIKE
DIVERGENCEFREENESS OF THE FLOW VELOCITY FIELD ;��=�

)N 0)..S� CATASTROPHIC FORGETTING CAN OCCUR� E�G� IN THE FREQUENTLY PRACTICED PROCEDURE OF FIRST TRAINING ON
MEASUREMENT DATA ALONE AND ADDING THE 0$% MODEL ONLY AT LATER EPOCHS ;��=� 3UCH SEQUENTIAL TRAINING CAN
BE MOTIVATED BY THE COMPUTATIONAL COST OF EVALUATING THE DERIVATIVES IN THE 0$% USING AUTOMATIC
DIFFERENTIATION OVER THE NETWORK� SO IT SEEMS PRUDENT TO PRECONDITION THE NETWORK FOR DATA FITTING AND
INTRODUCE THE RESIDUAL LATER IN ORDER TO REGRESS FOR THE MISSING NETWORK PARAMETERS�

5SING THE ACTIVE TURBULENCE TEST CASE DESCRIBED ABOVE� WE INVESTIGATE HOW THE DIFFERENT WEIGHTING SCHEMES
COMPARED HERE INFLUENCE THE PHENOMENON OF CATASTROPHIC FORGETTING� &OR THIS� WE CONSIDER THE INVERSE
PROBLEM OF INFERRING UNKNOWN MODEL PARAMETERS AND LATENT FIELDS LIKE THE EFFECTIVE PRESSURE P∗ FROM FLOW
VELOCITY DATA UI� 7E TRAIN THE 0)..S IN THREE SEQUENTIAL STEPS� ��	 FIRST FITTING FLOW VELOCITY DATA� ��	 LATER
INCLUDING THE ADDITIONAL OBJECTIVE FOR THE INCOMPRESSIBILITY CONSTRAINT∇ · U= �� ��	 FINALLY INCLUDING ALSO THE
OBJECTIVE FOR THE 0$% MODEL RESIDUAL� 4HIS CREATES A SETUP IN WHICH CATASTROPHIC FORGETTING OCCURS WHEN USING
UNIFORM 0).. WEIGHTS� AS CONFIRMED IN FIGURE ��!	 �ARROWS	� !S SOON AS ADDITIONAL OBJECTIVES

�
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&IGURE �� #ATASTROPHIC FORGETTING IN SEQUENTIAL 0).. TRAINING OF ACTIVE TURBULENCE� �!	 4EST ERROR IN THE VELOCITY FIELD U DURING THE
THREESTEP SEQUENTIAL TRAINING DESCRIBED IN THE MAIN TEXT WITH DIFFERENT WEIGHTING STRATEGIES �COLORS� SEE LEGEND	� 4HE SOLID VERTICAL
LINES AT EPOCHS ���� AND ���� MARK THE INTRODUCTION OF THE INCOMPRESSIBILITY CONSTRAINT AND 0$% RESIDUAL� RESPECTIVELY� 4HE
DASHED VERTICAL LINES MARK EPOCHS AT WHICH THE LEARNING RATE η(τ) IS ADJUSTED� �"	 !VERAGE RELATIVE ,� ERRORS IN THE INFERRED VALUES
FOR THE COEFFICIENTS ξ� �ξ� IS ABSORBED INTO THE EFFECTIVE PRESSURE P∗� SEE APPENDIX #	� α� β� Γ�� AND Γ� OF EQUATION ���	 OVER
TRAINING EPOCHS� �#	 !VERAGE RELATIVE ,� ERROR IN THE INFERRED LATENT EFFECTIVE PRESSURE GRADIENT∇P∗ ACROSS TRAINING EPOCHS�

�DIVERGENCEFREENESS AT EPOCH ���� AND EQUATION RESIDUAL AT EPOCH ����	 ARE INTRODUCED� THE 0).. LOSES THE
PARAMETERIZATION LEARNED ON THE PREVIOUS OBJECTIVES� LEADING TO LARGE AND INCREASING TEST ERROR FOR THE FIELD U�

$YNAMIC WEIGHTING STRATEGIES CAN PROTECT 0)..S AGAINST CATASTROPHIC FORGETTING BY ADEQUATELY ADJUSTING
THE WEIGHTS WHENEVER AN ADDITIONAL OBJECTIVE IS INTRODUCED� 4HIS IS CONFIRMED IN FIGURE ��!	 WITH INVERSE
$IRICHLET AND PINN-'$! ONLY MINIMALLY AFFECTED BY CATASTROPHIC FORGETTING� 4HE MAX�AVG WEIGHTING
STRATEGY ;��=� HOWEVER� DOES NOT PROTECT THE NETWORK QUITE AS WELL� 7HEN LOOKING AT THE TEST ERRORS FOR THE
LEARNED MODEL COEFFICIENTS �FIGURE ��"		 AND THE ACCURACY OF THE ESTIMATED LATENT PRESSURE FIELD P(T,X)
�FIGURE ��#		� FOR WHICH NO TRAINING DATA IS GIVEN� THE INVERSE $IRICHLET WEIGHTING PROPOSED HERE OUTPERFORMS
THE OTHER APPROACHES� 3NAPSHOTS OF THE RECONSTRUCTED PRESSURE FIELDS USING DIFFERENT STRATEGIES ARE SHOWN IN
FIGURE #��� 2ESULTS FOR INFERENCE FROM NOISY DATA ARE SHOWN IN FIGURES #�� AND #���

)N SUMMARY� INVERSE $IRICHLET WEIGHTING CAN PROTECT A 0).. AGAINST CATASTROPHIC FORGETTING� MAKING
SEQUENTIAL TRAINING A VIABLE OPTION� )N OUR TESTS� IT OFFERED THE BEST PROTECTION OF ALL COMPARED WEIGHTING
SCHEMES�

�� #ONCLUSION AND DISCUSSION

0)..S HAVE RAPIDLY BEEN ADOPTED BY THE SCIENTIFIC COMMUNITY FOR DIVERSE APPLICATIONS IN FORWARD AND INVERSE
MODELING� )T IS STRAIGHTFORWARD TO SHOW THAT THE TRAINING OF A 0).. AMOUNTS TO A -4, PROBLEM� WHICH IS
SENSITIVE TO THE CHOICE OF REGULARIZATION WEIGHTS� 4RIVIAL UNIFORM WEIGHTS ARE KNOWN TO LEAD TO FAILURE OF
0)..S� EMPIRICALLY FOUND TO EXACERBATE FOR PHYSICAL MODELS WITH DISPARATE SCALES OR HIGH DERIVATIVES�

!S WE HAVE SHOWN HERE� THIS FAILURE CAN BE EXPLAINED BY ANALOGY TO NUMERICAL STIFFNESS OF 0$%S WHEN
UNDERSTANDING 3OBOLEV TRAINING OF NEURAL NETWORKS ;�= AS A SPECIAL CASE OF 0).. TRAINING� 4HIS CONNECTION
ENABLED US TO PROVE A PROPOSITION STATING THAT 0).. LEARNING PATHOLOGIES ARE CAUSED BY DOMINANT
HIGHFREQUENCY COMPONENTS OR HIGH DERIVATIVES IN THE PHYSICS PRIOR� 4HE ASYMPTOTIC ARGUMENTS IN OUR
PROPOSITION INSPIRED A NOVEL DYNAMIC ADAPTATION STRATEGY FOR THE REGULARIZATION WEIGHTS OF A 0).. DURING
TRAINING� WHICH WE TERMED INVERSE $IRICHLET WEIGHTING�

7E EMPIRICALLY COMPARED INVERSE $IRICHLET WEIGHTING WITH THE RECENTLY PROPOSED MAX�AVG WEIGHTING FOR
0)..S ;��=� -OREOVER� WE LOOKED AT 0).. TRAINING FROM THE PERSPECTIVE OF MULTIOBJECTIVE OPTIMIZATION�
WHICH AVOIDS APRIORI CHOICES OF REGULARIZATION WEIGHTS� 7E THEREFORE ADAPTED TO 0)..S THE STATEOFTHEART
-'$! FOR TRAINING MULTIOBJECTIVE ARTIFICIAL NEURAL NETWORKS� WHICH HAS PREVIOUSLY BEEN PROVEN TO CONVERGE
TO A 0ARETOSTATIONARY SOLUTION ;��=� 4HIS PROVIDED ANOTHER BASELINE TO COMPARE WITH� &INALLY� WE COMPARED
AGAINST ANALYTICALLY DERIVED εOPTIMAL STATIC WEIGHTS IN A SIMPLE LINEAR TEST PROBLEM WHERE THOSE CAN BE
DERIVED� PROVIDING AN ABSOLUTE BASELINE� )N ALL COMPARISONS� AND ACROSS A WIDE RANGE OF PROBLEMS FROM �$
0OISSON TO MULTISCALE ACTIVE TURBULENCE AND CURVATUREDRIVEN LEVELSET FLOW� INVERSE $IRICHLET WEIGHTING
EMPIRICALLY PERFORMED BEST� 7E ALSO FOUND THAT ALL WEIGHTING STRATEGIES ARE IN GENERAL AGNOSTIC TO THE CHOICE
OF THE ACTIVATION FUNCTION� WITH INVERSE $IRICHLET WEIGHTING OUTPERFORMING THE OTHER STRATEGIES IRRESPECTIVE OF
THE ACTIVATION FUNCTION CHOSEN�

4HE INVERSE $IRICHLET WEIGHTING PROPOSED HERE CAN BE INTERPRETED AS AN UNCERTAINTY WEIGHTING WITH
TRAINING UNCERTAINTY QUANTIFIED BY THE BATCH VARIANCE OF THE LOSS GRADIENTS� 4HIS IS DIFFERENT FROM PREVIOUS
APPROACHES ;��= THAT USED WEIGHTS QUANTIFYING THE MODEL UNCERTAINTY� RATHER THAN THE TRAINING UNCERTAINTY�
4HE PROPOSITION PROVEN HERE PROVIDES AN EXPLANATION FOR WHY THE LOSS GRADIENT VARIANCE MAY BE A GOOD
CHOICE� AND OUR RESULTS CONFIRMED THAT WEIGHTING BASED ON THE $IRICHLET ENERGY OF THE LOSS OBJECTIVES

�
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OUTPERFORMS OTHER WEIGHTING HEURISTICS� AS WELL AS 0ARETOFRONT SEEKING ALGORITHMS LIKE PINN-'$!� 4HE
PROPOSED INVERSE $IRICHLET WEIGHTING ALSO PERFORMED BEST AT PROTECTING A 0).. AGAINST CATASTROPHIC
FORGETTING IN SEQUENTIAL TRAINING� WHERE LOSS OBJECTIVES ARE INTRODUCED ONEBYONE� MAKING SEQUENTIAL
TRAINING OF 0)..S A VIABLE OPTION IN PRACTICE�

7HILE WE HAVE FOCUSED ON 0)..S HERE� OUR ANALYSIS EQUALLY APPLIES TO 3OBOLEV TRAINING OF OTHER NEURAL
NETWORKS� AND TO OTHER MULTIOBJECTIVE LOSSES� AS LONG AS TRAINING IS DONE USING AN EXPLICIT FIRSTORDER
�STOCHASTIC	 GRADIENT DESCENT OPTIMIZER� OF WHICH !DAM ;��= IS THE MOST COMMONLY USED� )N ALL OUR EXAMPLES�
WE FOUND THAT THE !DAM OPTIMIZER LEADS TO BETTER CONVERGENCE THAN OTHER FIRSTORDER UPDATE RULES LIKE
2-3PROP OR !DAGRAD �SEE FIGURE $��	� (OWEVER� HYBRID STRATEGIES CAN ALSO BE ENVISIONED� &OR INSTANCE WHEN
THE OPTIMIZER HAS CONVERGED CLOSE TO A LOCAL OPTIMUM� THE UNCERTAINTY IN THE GRADIENTS IS SMALL RELATIVE TO THE
MEAN GRADIENT COMPONENT ;��=� )N SUCH SCENARIOS� INVERSE $IRICHLET WEIGHTING CAN LEAD TO LARGE OPTIMIZATION
STEP SIZES THAT PLATEAU THE LEARNING �SEE FIGURE %��	� ! HYBRID STRATEGY COULD THEN BE BENEFICIAL� COMBINING
INITIAL INVERSE $IRICHLET WEIGHTING WITH� E�G� ,"&'3BASED FINETUNING CLOSE TO A LOCAL OPTIMUM ;��=�

4AKEN TOGETHER� WE HAVE PRESENTED A CONNECTION BETWEEN 0)..S AND 3OBOLEV TRAINING IN ORDER TO EXPLAIN
A LIKELY FAILURE MODE OF 0)..S� AND WE HAVE PROPOSED A SIMPLE YET EFFECTIVE STRATEGY TO AVOID TRAINING FAILURE�
4HE PROPOSED INVERSE $IRICHLET WEIGHTING STRATEGY IS EASILY INCLUDED INTO ANY FIRSTORDER OPTIMIZER AT ALMOST
NO ADDITIONAL COMPUTATIONAL COST �SEE FIGURE #��	� )T HAS THE POTENTIAL TO IMPROVE THE ACCURACY AND
CONVERGENCE OF 0)..S BY ORDERS OF MAGNITUDE� TO ENABLE SEQUENTIAL TRAINING WITH LESS RISK OF CATASTROPHIC
FORGETTING� AND TO EXTEND THE APPLICATION REALM OF 0)..S TO MULTISCALE PROBLEMS THAT WERE PREVIOUSLY NOT
AMENABLE TO DATADRIVEN MODELING�

$ATA AVAILABILITY STATEMENT

4HE DATA THAT SUPPORT THE FINDINGS OF THIS STUDY ARE OPENLY AVAILABLE AT THE FOLLOWING 52,�$/)�
HTTPS���GITHUB�COM�MOSAICGROUP�INVERSEDIRICHLETPINN�

!CKNOWLEDGMENTS

4HIS WORK WAS SUPPORTED BY THE 'ERMAN 2ESEARCH &OUNDATION �$&'	 n %8#����� #LUSTER OF %XCELLENCE
@0HYSICS OF ,IFE�� AND BY THE #ENTER FOR 3CALABLE $ATA !NALYTICS AND !RTIFICIAL )NTELLIGENCE �3CA$3�!)	
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!PPENDIX !

!��� !NALYTICALLY OPTIMAL WEIGHTS
&OR 3OBOLEV LOSS FUNCTIONS BASED ON ELLIPTIC 0$%S� OPTIMAL WEIGHTS λK THAT MINIMIZE ALL OBJECTIVES IN AN
UNBIASED WAY CAN BE DETERMINED BY εCLOSENESS ANALYSIS ;��=�

Definition 1 (ε-closeness)� ! CANDIDATE SOLUTION U IS CALLED εCLOSE TO THE TRUE SOLUTION Û IF IT SATISFIES

|DβU(X)−DβÛ(X)|
|DβÛ(X)| " ε �!�	

FOR ANY MULTIINDEX β ∈ ND AND X= (X�, . . . ,XD) ∈ Ω⊂ RD� THUS DβU(X) = ∂|β|U(X)

∂X
β�
� ∂X

β�
� ...∂X

βD
D

WITH

|β|=
∑D

I=�βI�

&OR THE LOSS FUNCTION TYPICALLY USED IN 3OBOLEV TRAINING OF NEURAL NETWORKS� I�E�

LK(·) =
ˆ
Ω

(
DK
XÛ−DK

XU
)�

DX.

7E CAN USE εCLOSENESS ANALYSIS TO SHOW THAT

LK " ε�
ˆ
Ω

(
|ξKDK

X(Û)|
)�

DX . �!�	

��

https://github.com/mosaic-group/inverse-dirichlet-pinn
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&IGURE !���-ULTIPLE GRADIENT DESCENT ALGORITHM� )LLUSTRATION OF MULTIOBJECTIVE OPTIMIZATION FOR MINIMIZING TWO OBJECTIVES F�(X)
AND F�(X)� 4HE RED CURVE CORRESPONDS TO THE 0ARETOOPTIMAL FRONT� 4HE -'$! ALGORITHM SEARCHES FOR A DESCENT DIRECTION �ARROW	
THAT MINIMIZES ALL OBJECTIVES AND IS CLOSE TO THE 0ARETOOPTIMAL FRONT� 4HE GRAY REGION CORRESPONDS TO THE FEASIBLE OBJECTIVE SPACE�

5SING THIS INEQUALITY� WE CAN BOUND THE TOTAL LOSS AS

L(U)" ε�
+∑

K=�

λK

ˆ
Ω

(
|ξKDK

X(Û)|
)�

DX= ε�
+∑

K=�

λKIK, �!�	

WITH IK =
´
Ω

(
|ξKDK

X(Û)|
)�
DX� 4HIS BOUND CAN BE USED TO DETERMINE THE WEIGHTS {λK}+K=� THAT RESULT IN THE

SMALLEST ε�

LK(U)"
�

λK
L(U)" ε� λKIK ∀K= �, . . . ,+,

L(U)" ε� MIN{λ� I�, . . . ,λ+I+}. �!�	

4HE WEIGHTS λK,∀K ∈ �, . . . ,+� THAT LEAD TO THE TIGHTEST UPPER BOUND ON THE TOTAL LOSS IN EQUATION �!�	 CAN BE
FOUND BY SOLVING THE MAXIMIZATIONMINIMIZATION PROBLEM DESCRIBED IN FOLLOWING COROLLARY�

Corollary 1 ( A.1.1.). ! MAXIMIZATIONMINIMIZATION PROBLEM CAN BE TRANSFORMED INTO A PIECEWISE LINEAR CONVEX
OPTIMIZATION PROBLEM BY INTRODUCING AN AUXILIARY VARIABLE Z� SUCH THAT

MAXIMIZE Z

SUBJECT TO �$λ∗ = �;

Z" λKIK , K= �, . . . ,+.

4HE ANALYTICAL SOLUTION TO THIS PROBLEM EXISTS AND IS GIVEN BY λ∗K =
ΠJ!=KIJ∑+
K=�ΠJ !=KIJ

, K= �, . . . ,+�

&OR A 3OBOLEV TRAINING PROBLEM WITH LOSS GIVEN BY EQUATION ��	� WEIGHTS THAT LEAD TO εOPTIMAL SOLUTIONS ARE
COMPUTED USING

IK =
ˆ
Ω

(
|ξKDK

X(Û)|
)�
DX.

!��� 0)..MULTIPLE GRADIENT DESCENT ALGORITHM �PINN-'$!	
7E ADAPT THE -'$! TO 0)..S AS ILLUSTRATED IN FIGURE !�� BY FORMULATING THE CONDITIONS FOR 0ARETO STATIONARY
AS STATED IN EQUATION ��	 AS A QUADRATIC PROGRAM�

MINIMIZE
λ∈R+

�

�
λ$1λ S�T� λK ! � ∀K ∈ [+] AND

+∑

K=�

λK = �, �!�	

��
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WHERE 1= 5$5� 4HE MATRIX 5 ∈ R|"|×+ IS GIVEN BY

5=





���
���

���
∇θSHL� ∇θSHL� . . . ∇θSHL+

���
���

���



 .

7E SOLVE THE QUADRATIC PROGRAM IN EQUATION �!�	 USING THE &RANK7OLFE ALGORITHM�

!PPENDIX "� 3OBOLEV TRAINING

"��� 0ROOF OF PROPOSITION �����
,ET US ASSUME THE &OURIER SPECTRUM OF THE SIGNAL IS A DELTA FUNCTION� I�E� Ũ(K) = Γ� δ(K− K�)� WITH K� BEING
THE DOMINANT WAVENUMBER� 4HE RESIDUAL AT TRAINING TIME �T	 IS GIVEN AS R(·, T) = Uθ − U� AND ITS CORRESPONDING
&OURIER COEFFICIENTS FOR THE WAVENUMBER K IS GIVEN BY R̃(K, T) = Ũθ(K, T)− Ũ(K)� 4HE LEARNING RATE OF THE
RESIDUAL FOR THE DOMINANT FREQUENCY IS GIVEN AS�

∣∣∣
∂ R̃(K�,τ)

∂τ

∣∣∣=
∣∣∣
∂Ũθ(K�,τ)

∂θ

∣∣∣
∣∣∣
∂θ

∂τ

∣∣∣

=
∣∣∣η
∂Ũθ(K�)

∂θ

∣∣∣
∣∣∣
∂L
∂θ

∣∣∣

=
∣∣∣η
∂Ũθ(K�)

∂θ

∣∣∣
∣∣∣λ�

∂L�

∂θ
+λ�

∂L�

∂θ

∣∣∣, �"�	

WHERE L� =
∑.

I=� |Uθ(XI)− U(XI)|� AND L� =
∑.

I=� |DM
X Uθ(XI)−DM

X U(XI)|�� %QUATION �"�	 FOLLOWS FROM THE
GRADIENT FLOW OF THE PARAMETERS ∂τθ ≈ η∂θL AS DESCRIBED IN EQUATION ��	� &ROM 0ARSEVAL�S 4HEOREM ;��=� WE
CAN COMPUTE THE MAGNITUDE OF THE GRADIENTS FOR BOTH OBJECTIVES L� AND L� WITH RESPECT TO THE NETWORK
PARAMETERS θ�

∂L�

∂θ
= �

./�−�∑

K=−./�

∣∣∣2E
[
Ũθ(K)− Ũ(K)

]∂Ũθ(K)
∂θ

∣∣∣

" �
∣∣∣Γ�

∂Ũθ(K�)

∂θ

∣∣∣+ �

./�−�∑

K=−./�

∣∣∣Ũθ(K)
∂Ũθ(K)

∂θ

∣∣∣

≈ /(�)
∣∣∣
∂ R̃(K�)

∂θ

∣∣∣. �"�	

4HE SECOND STEP IN THE ABOVE CALCULATION INVOLVES TRIANGULAR INEQUALITY AND THE ASSUMPTION THAT THE &OURIER
SPECTRUM OF THE SIGNAL IS A DELTA FUNCTION� )N A SIMILAR FASHION� WE CAN REPEAT THE SAME ANALYSIS FOR THE
3OBOLEV PART OF THE OBJECTIVE FUNCTION AS FOLLOWS�

∂L�

∂θ
= �

./�−�∑

K=−./�

∣∣∣2E
[
(IK)M

(
Ũθ(K)− Ũ(K)

)]∂(IK)MŨθ(K)
∂θ

∣∣∣

= �

./�−�∑

K=−./�

∣∣∣2E
[
(IK)�M

(
Ũθ(K)− Ũ(K)

)]∂Ũθ(K)
∂θ

∣∣∣

" �
∣∣∣Γ� 2E

[
(IK�)

�M
]∂Ũθ(K�)

∂θ

∣∣∣+ �

./�−�∑

K=−./�

∣∣∣2E
[
(IK)�M

]
Ũθ(K)

∂Ũθ(K)

∂θ

∣∣∣

≈ /(K�M� )
∣∣∣
∂ R̃(K�)

∂θ

∣∣∣. �"�	

"Y SUBSTITUTING EQUATIONS �"�	 AND �"�	 INTO EQUATION �"�	� WE GET�

∣∣∣
∂ R̃(K�,τ)

∂τ

∣∣∣=
∣∣∣η
∂Ũθ(K�)

∂θ

∣∣∣
(
λ�/(�)

∣∣∣
∂ R̃(K�)

∂θ

∣∣∣+λ�/(K
�M
� )

∣∣∣
∂ R̃(K�)

∂θ

∣∣∣
)

=
η

/(K�)

[
λ�/(�)+λ�/(K

�M
� )

]∣∣∣
∂ R̃(K�)

∂θ

∣∣∣.

7E USE THE FACT THAT THE SPECTRAL RATE OF THE NETWORK FUNCTION RESIDUAL IS INVERSELY PROPORTIONAL TO THE
WAVENUMBER� I�E� ∂Ũθ(K)/∂θ = /

(
K−�

)
;��=�

��
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&IGURE "��� λ TRAJECTORIES FOR DIFFERENT WEIGHING STRATEGIES� 4HE DYNAMIC WEIGHTS λ(τ) OVER THE TRAINING EPOCHS τ FOR A SINGLE
INSTANCE OF 3OBOLEV TRAINING OF THE NEURAL NETWORKS FOR DIFFERENT METHODS� �!	 PINN-'$!� �"	 εOPTIMAL� �#	 INVERSE $IRICHLET�
�$	 MAX�AVG WEIGHTING� $IFFERENT TRAJECTORIES IN THE SAME PLOTS CORRESPOND TO THE WEIGHTS λK,K= �, . . . ,+� ASSOCIATED WITH
DIFFERENT OBJECTIVES� 7E OBSERVE THAT THE RELATIVE WEIGHTS (λI/λJ)∀(I, J) = �, . . . ,+ BETWEEN OBJECTIVES FOR THE INVERSE $IRICHLET AND
εOPTIMAL WEIGHTS ARE OF THE SAME ORDER OF MAGNITUDE� λ�/λ� ≈ ��� λ�/λ� ≈ ��� . . .���� λ�/λ� ≈ ��� . . .����
λ�/λ� ≈ ��� . . .��� �SHOWN BY RED DOUBLEHEADED ARROWS	�

&IGURE "��� %VOLUTION OF THE &OURIER SPECTRUM OF THE FUNCTION RESIDUAL R̃(K)� 4HE &OURIER SPECTRUM OF THE RESIDUAL TRACKED OVER THE
TRAINING EPOCHS FOR DIFFERENT METHODS �INSET TEXT	� 4HE COLOR INTENSITY CORRESPONDS TO THE MAGNITUDE OF THE RESIDUAL� |̃R(K)|�

"��� 3OBOLEV TRAINING SETUP
7E USE A NEURAL NETWORK Fθ : (X,Y)→ (U) WITH FIVE LAYERS AND �� NEURONS PER LAYER AND SIN(·) ACTIVATION
FUNCTION� 4HE TARGET FUNCTION IS A SINUSOIDAL FORCING TERM OF THE FORM�

U(X,Y) =
-∑

I=�

!I
X COS(�πL

I
XX/,+φI

X)!
I
Y SIN(�πL

I
YY/,+φI

Y), �"�	

��
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WHERE-= �� AND ,= �π IS THE SIZE OF THE DOMAIN� 4HE PARAMETERS !X,!Y ARE DRAWN INDEPENDENTLY AND
UNIFORMLY FROM THE INTERVAL [−�,�]� AND SIMILARLY φX,φY ARE DRAWN FROM THE INTERVAL [�,�π]� 4HE PARAMETERS
LX, LY WHICH SET THE LOCAL LENGTH SCALES ARE SAMPLED UNIFORMLY FROM THE SET {�,�,�,�,�}� 4HE TARGET FUNCTION
U(X,Y) IS GIVEN ON A �$ SPATIAL GRID OF RESOLUTION ���× ��� COVERING THE DOMAIN [�,�π]× [�,�π]� 4HE GRID
DATA IS THEN DIVIDED INTO A ��/�� TRAIN AND TEST SPLIT WHICH CORRESPONDS TO ���� TRAINING POINTS USED� 7E TRAIN
THE NEURAL NETWORK FOR �� ��� EPOCHS USING THE !DAM OPTIMIZER ;��=� %ACH EPOCH IS COMPOSED OF TWO
MINIBATCH UPDATES OF BATCH SIZE |"|= ����� 4HE INITIAL LEANING RATE IS CHOSEN AS η = ��−� AND DECREASED BY A
FACTOR OF �� AFTER �� ��� AND �� ��� EPOCHS�

!PPENDIX #� &ORWARD AND INVERSE MODELING IN ACTIVE TURBULENCE

4HE GROUND TRUTH SOLUTION OF THE �$ INCOMPRESSIBLE ACTIVE FLUID IS COMPUTED IN THE VORTICITY FORMULATION
WHICH IS GIVEN AS FOLLOWS�

∂ω

∂T
+ ξ� U ·∇ω =−(α+β|U|�)ω+β∇|U|� × U+Γ� ∆ω−Γ� ∆

� ω. �#�	

4HE SIMULATION IS CONDUCTED WITH A PSEUDOSPECTRAL SOLVER� WHERE THE DERIVATIVES ARE COMPUTED IN THE
&OURIER SPACE AND THE TIME INTEGRATION IS DONE USING THE )NTEGRATION FACTOR METHOD ;��� ��=� 4HE EQUATIONS
ARE SOLVED IN THE DOMAIN [�,�π]× [�,�π] WITH A SPATIAL RESOLUTION OF ���× ��� AND A TIMESTEP DT= �������
4HE INCOMPRESSIBILITY IS ENFORCED BY PROJECTING THE INTERMEDIATE VELOCITIES ON TO THE DIVERGENCEFREE
MANIFOLD� 4HE SIMULATIONS IN THE SQUARE DOMAIN ARE PERFORMED WITH PERIODIC BOUNDARY CONDITIONS� WHERE
THE VALUES OF THE PARAMETERS ARE CHOSEN AS FOLLOWS� ξ� = �.�,α=−�,β = �.�,Γ� =−�.���,Γ� = |Γ|� ;��=�

#��� &ORWARD PROBLEM SETUP
7E STUDY THE FORWARD SOLUTION OF THE ACTIVE TURBULENCE PROBLEM USING 0)..S IN THE (ω−ψ) FORMULATION� 7E
EMPLOY A NEURAL NETWORK Fθ : (X,Y, T)→ (U,V) WITH SEVEN LAYERS AND ��� NEURONS PER LAYER AND SINACTIVATION
FUNCTIONS� &OR CHOOSING THE ACTIVATION FUNCTION WE CONDUCTED EXTENSIVE NUMERICAL EXPERIMENTS USING
DIFFERENT ACTIVATION FUNCTIONS FOR A SIMPLE FUNCTION RECONSTRUCTION PROBLEM WITH THE OBJECTIVE

L(U,Uθ,θ) =
�

.INT

.INT∑

I=�

∣∣∣Uθ(TI,XΩI )− UI)
∣∣∣
�
,

WHERE UI = U(TI,XΩI )� )N FIGURE #�� WE CLEARLY SEE THAT THE SIN ACTIVATION FUNCTION LEADS TO THE BEST
APPROXIMATION ACCURACY FOR THE VELOCITIES AND THEIR ASSOCIATED DERIVATIVES� 4HE VORTICITY ω IS DIRECTLY
COMPUTED FROM THE NETWORK OUTPUTS USING AUTOMATIC DIFFERENTIATION� &OR THE SOLUTION IN THE SQUARE DOMAIN�
WE SELECT A SUBDOMAIN [π� ,

�π
� ]× [π� ,

�π
� ] WITH �� TIME STEPS �DT= ����	 ACCOUNTING TO A TOTAL TIME OF ��� UNITS

IN SIMULATION TIME� 7E CHOOSE .) = ���� POINTS FOR THE INITIAL CONDITIONS� ." = ����� BOUNDARY POINTS AND
A TOTAL OF .INT = ������ RESIDUAL POINTS IN THE INTERIOR OF THE SQUARE DOMAIN� 4HE NETWORK IS TRAINED FOR ����
EPOCHS USING THE !DAM OPTIMIZER WITH EACH EPOCH CONSISTING OF �� MINIBATCH UPDATES WITH A BATCH SIZE
|"|= ����� 4HE VELOCITIES ARE PROVIDED AT THE BOUNDARIES OF THE TRAINING DOMAIN�

&OR THE FORWARD SIMULATION IN THE ANNULAR GEOMETRY� THE DOMAIN IS CHOSEN WITH THE INNER RADIUS OF
RINNER ≈ �.��� UNITS AND THE OUTER RADIUS ROUTER ≈ �.�� UNITS� 7E CHOOSE .) = ���� POINTS FOR THE INITIAL
CONDITIONS� ." = ����� BOUNDARY POINTS AND A TOTAL OF .INT = ������ RESIDUAL POINTS IN THE INTERIOR OF THE
DOMAIN� 4HE NETWORK TRAINING IS AGAIN PERFORMED OVER ���� EPOCHS USING !DAM WITH EACH EPOCH CONSISTING
OF �� MINIBATCH UPDATES WITH A BATCH SIZE |"|= ����� $IRICHLET BOUNDARY CONDITIONS ARE ENFORCED AT THE
INNER AND OUTER RIMS OF THE ANNULAR GEOMETRY BY PROVIDING THE VELOCITIES� 4HE NETWORK IS OPTIMIZED SUBJECT
TO THE LOSS FUNCTION

L(U,θ) = λ� LBOUNDARY +λ� LRES +λ� LDIV +λ� LINIT.

(ERE� λ�,λ�,λ�,λ� CORRESPOND TO THE WEIGHTS OF THE OBJECTIVES FOR BOUNDARY CONDITION� EQUATION RESIDUAL�
DIVERGENCE� AND INITIAL CONDITION� RESPECTIVELY�

#��� )NVERSE PROBLEM SETUP
&OR STUDYING THE INVERSE PROBLEM WE RESORT TO THE PRIMITIVE FORMULATION (U,V,P∗) OF THE ACTIVE TURBULENCE
MODEL� WITH P∗ =−∇P+ ξ�∇|U|� AS THE EFFECTIVE PRESSURE� 7E USED A NEURAL NETWORK Fθ : (X,Y, T)→ (U,V,P∗)
WITH FIVE LAYERS AND ��� NEURONS PER LAYER AND SINACTIVATION FUNCTIONS� 'IVEN THE MEASUREMENT DATA OF FLOW
VELOCITIES {UI,VI}.I=� AT DISCRETE POINTS� WE INFER THE EFFECTIVE PRESSURE P

∗ ALONG WITH THE PARAMETERS
Σ= {ξ�,α,β,Γ�,Γ�}� 4HE TOTAL OF ������ POINTS� SAMPLED FROM THE SAME DOMAIN AS FOR THE FORWARD

��
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&IGURE #��� ,OSS TRAJECTORIES FOR THE RECONSTRUCTION PROBLEM USING DIFFERENT ACTIVATION FUNCTIONS� �!	 2ELATIVE ,� ERROR TRAJECTORIES
ALONG THE TRAINING EPOCHS FOR RECONSTRUCTING THE HORIZONTAL COMPONENT U� �"	 2ELATIVE ,� ERROR TRAJECTORIES FOR RECONSTRUCTING THE
VORTICITY FIELD ω� �#	 2ELATIVE ,� ERROR TRAJECTORIES FOR RECONSTRUCTING THE ,APLACIAN OF THE VORTICITY FIELD�∆ω� 4HE PROBLEM WAS SET
UP IN A SQUARE DOMAIN WITH .INT = �������

&IGURE #��� 4RAINING DOMAIN FOR THE ACTIVE TURBULENCE PROBLEM� ,EFT� TRAINING DOMAIN INSIDE THE DOTTED SQUARE USED FOR FORWARD
SOLUTION IN THE SQUARE DOMAIN� 2IGHT� TRAINING DOMAIN INTERIOR OF THE DOTTED ANNULAR OUTLINE USED FOR FORWARD SOLUTION IN THE
ANNULAR GEOMETRY�

&IGURE #��� λ TRAJECTORIES FOR DIFFERENT WEIGHTING STRATEGIES FOR THE ACTIVE TURBULENCE PROBLEM� �!	n�#	 CORRESPOND TO THE
λ TRAJECTORIES FOR THE FORWARD SOLUTION OF THE ACTIVE TURBULENCE PROBLEM IN THE SQUARE DOMAIN �SEE LEFT FIGURE #��	�
�$	n�&	 CORRESPOND TO THE λ TRAJECTORIES FOR THE FORWARD SOLUTION IN THE ANNULAR GEOMETRY �SEE RIGHT FIGURE #��	� 4HE COLUMNS
CORRESPOND TO THE DIFFERENT WEIGHTING STRATEGIES AS NAMED ON THE TOP LEFT CORNER OF EACH COLUMN�

SOLUTION IN THE SQUARE DOMAIN� ARE UTILIZED WITH A ��/�� TRAIN AND TEST SPLIT� WHICH CORRESPONDS TO ������
TRAINING POINTS USED� 4HE NETWORK IS TRAINED FOR A TOTAL OF ���� EPOCHS USING THE !DAM OPTIMIZER WITH EACH
EPOCH CONSISTING OF �� MINIBATCH UPDATES WITH A BATCHSIZE |"|= ����� 7E OPTIMIZE THE MODEL SUBJECT TO
THE LOSS FUNCTION

L(U,θ) = λ� LFIT +λ� LRES +λ� LDIV,

WITH λ�,λ�,λ� CORRESPONDING TO THE DATAFIDELITY� EQUATION RESIDUAL AND THE OBJECTIVE THAT PENALISES NONZERO
DIVERGENCE IN VELOCITIES� RESPECTIVELY� 4HE TRAINING IS DONE IN A THREESTEP APPROACH� WITH THE FIRST ���� EPOCHS

��
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&IGURE #��� %VOLUTION OF THE &OURIER SPECTRUM OF THE FUNCTION RESIDUAL R̃(K)� 4OP ROW� THE &OURIER SPECTRUM OF THE RESIDUAL FOR THE
HORIZONTAL VELOCITY COMPONENT U� "OTTOM ROW� THE &OURIER SPECTRUM OF THE RESIDUAL FOR THE VERTICAL VELOCITY COMPONENT V� 4HE
COLUMNS CORRESPOND TO DIFFERENT METHODS �INSET TEXT	� 4HE COLOR INTENSITY CORRESPONDS TO THE MAGNITUDE OF THE RESIDUAL� |̃R(K)|�

&IGURE #��� ,OSS GRADIENT HISTOGRAMS ILLUSTRATING VANISHING TASKSPECIFIC GRADIENTS FOR THE ACTIVE TURBULENCE PROBLEM� 4HE
WEIGHTED GRADIENT DISTRIBUTIONS OF THE DIFFERENT OBJECTIVES �INSETS ON THE RIGHT	 AT TRAINING EPOCH ���� FOR THE FORWARD PROBLEM IN
A SQUARED DOMAIN� 4HE PANELS CORRESPOND TO DIFFERENT λ WEIGHTING SCHEMES AS NAMED�

USED FOR FITTING THE MEASUREMENT DATA �PRETRAINING� λ� = �,λ� = λ� = �	� THE NEXT ���� EPOCHS TRAINING
WITH AN ADDITIONAL CONSTRAINT ON THE DIVERGENCE �λ� &= �,λ� &= �,λ� = �	� AND FINALLY FOLLOWED BY THE
INTRODUCTION OF THE EQUATION RESIDUAL �λ� &= �,λ� &= �,λ� &= �	� !T EVERY CHECKPOINT INTRODUCING A NEW TASK�

��
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&IGURE #��� #ATASTROPHIC FORGETTING IN SEQUENTIAL 0).. TRAINING OF ACTIVE TURBULENCE FROM NOISY MEASUREMENT DATA� �!	 4EST ERROR
IN THE VELOCITY FIELD U DURING THE THREESTEP SEQUENTIAL TRAINING DESCRIBED IN THE MAIN TEXT WITH DIFFERENT WEIGHTING STRATEGIES
�COLORS	� 4HE SOLID VERTICAL LINES AT EPOCHS ���� AND ���� MARK THE INTRODUCTION OF THE DIVERGENCE CONSTRAINT AND 0$% RESIDUAL�
RESPECTIVELY� 4HE DASHED VERTICAL LINES MARK EPOCHS AT WHICH THE LEARNING RATE η(τ) IS ADJUSTED� �"	 !VERAGE RELATIVE ,� ERRORS IN
THE INFERRED VALUES FOR THE COEFFICIENTS ξ� �ξ� IS ABSORBED INTO THE EFFECTIVE PRESSURE	� α� β� Γ�� AND Γ� OF EQUATION ���	 OVER
TRAINING EPOCHS� �#	 !VERAGE RELATIVE ,� ERROR FOR INFERRING THE LATENT PRESSURE GRADIENT∇P ACROSS TRAINING EPOCHS� 4HE SIMULATED
DATA U IS CORRUPTED WITH ADDITIVE 'AUSSIAN NOISE Û= U+ �.�� ε� WHERE ε∼N (�,ψ�) IS A VECTOR OF ELEMENTWISE INDEPENDENT
AND IDENTICALLY DISTRIBUTED 'AUSSIAN RANDOM NUMBERS WITH MEAN ZERO AND VARIANCE ψ� = 6AR{U�, . . . ,U.}�

&IGURE #��� )NFERRED EFFECTIVE PRESSURE� 4HE TOP ROW SHOWS THE PREDICTION OF THE HORIZONTAL COMPONENT OF THE EFFECTIVE PRESSURE
GRADIENT ∂XP∗ GIVEN THE VELOCITY FIELD U� 4HE BOTTOM ROW SHOWS THE CORRESPONDING POINTWISE RELATIVE ERROR OF THE PREDICTION�
$IFFERENT COLUMNS CORRESPOND TO DIFFERENT WEIGHTING STRATEGIES AS PER THE TITLES�

&IGURE #��� )NFERRED EFFECTIVE PRESSURE FROM NOISY MEASUREMENT DATA� 4HE TOP ROW SHOWS THE PREDICTION OF THE HORIZONTAL
COMPONENT OF THE EFFECTIVE PRESSURE GRADIENT ∂XP∗ GIVEN THE NOISY CORRUPTED VELOCITY FIELD Û= U+ �.�� ε� WHERE ε∼N (�,ψ�) IS
A VECTOR OF ELEMENTWISE INDEPENDENT AND IDENTICALLY DISTRIBUTED 'AUSSIAN RANDOM NUMBERS WITH MEAN ZERO AND VARIANCE
ψ� = 6AR{U�, . . . ,U.}� 4HE BOTTOM ROW SHOWS THE CORRESPONDING POINTWISE RELATIVE ERROR OF THE PREDICTION� $IFFERENT COLUMNS
CORRESPOND TO DIFFERENT WEIGHTING STRATEGIES AS PER THE TITLES�

WE RESET ALL λK FOR THE COMPUTATION OF λ̂K �SEE EQUATION ��	 MAIN TEXT	 OF THE MAX�AVG VARIANT TO λK = �� &OR
BOTH� FORWARD AND INVERSE PROBLEMS� WE CHOOSE AN INITIAL LEARNING RATE η = ��−� AND DECREASE IT BY A FACTOR OF
�� AFTER ���� AND ���� EPOCHS �SEE FIGURE #��	�

��
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&IGURE #��� #OMPUTATIONAL ASPECTS OF DYNAMIC WEIGHING FOR THE ACTIVE TURBULENCE PROBLEM� �!	 4RAINING TIMES PER EPOCH FOR THE
INVERSE PROBLEM IN PRIMITIVE VARIABLES WITH �� MINIBATCH UPDATES PER EPOCH OF BATCH SIZE |"|= ����� �"	 4RAINING TIMES PER
EPOCH FOR THE FORWARD PROBLEM IN VORTICITYSTREAMLINE FORMULATION WITH �� MINIBATCH UPDATES PER EPOCH OF BATCH SIZE
|"|= ����� 4HE HIGHER COMPUTATIONAL COST IN �"	 STEMS FROM USING MORE TRAINING POINTS AND FROM THE ADDITIONAL DERIVATIVE THAT
NEED TO BE COMPUTED FOR EVALUATING THE VORTICITY� 4HE PROFILING WAS DONE ON A .VIDIA '48 ���� GRAPHICS CARD WITH �'" 62!-�

&IGURE $��� #OMPARISON BETWEEN METHODS FOR SOLVING THE 0OISSON EQUATION� ,EFT� SOLUTION OF THE 0OISSON EQUATION
�EQUATION �$�		 FOR THE WAVENUMBER K= �� 2IGHT� COMPARISON BETWEEN RELATIVE ,� ERRORS FOR DIFFERENT WEIGHING STRATEGIES FOR
INCREASING WAVENUMBERS K USING THE !DAM OPTIMIZER�

!PPENDIX $� �$ POISSON PROBLEM

7E CONSIDER THE PROBLEM OF SOLVING THE �$ 0OISSON EQUATION GIVEN AS�

∆U=−�ω� COS(ωX) SIN(ωY), �$�	

WITH THE PARAMETER ω CONTROLLING THE FREQUENCY OF THE OSCILLATORY SOLUTION U(X,Y)� 4HE ANALYTICAL SOLUTION
U(X,Y) = COS(ωX) SIN(ωY) IS COMPUTED ON THE DOMAIN [�,�]× [�,�] WITH A GRID RESOLUTION OF ���× ���� 4HE
BOUNDARY CONDITION IS GIVEN AS B(X,Y) = COS(ωX) SIN(ωY)� X,Y ∈ ∂Ω� 7E SET UP THE 0).. WITH TWO OBJECTIVE
FUNCTIONS ONE FOR HANDLING BOUNDARY CONDITIONS AND THE OTHER TO COMPUTE THE RESIDUAL WITH THE LOSS

L(U,θ) = λ� LRES +λ� LBOUNDARY. �$�	

7E SET .B = ��� SAMPLED UNIFORMLY ON THE FOUR BOUNDARIES� AND RANDOMLY SAMPLE .INT = ���� POINTS FROM
THE INTERIOR OF THE DOMAIN� 7E CHOOSE A NETWORK Fθ : (X,Y)→ (U) WITH FIVE LAYERS AND �� NODES PER LAYER AND
THE TANH ACTIVATION FUNCTION IS USED� 4HE NEURAL NETWORK IS TRAINED FOR �� ��� EPOCHS USING THE !DAM
OPTIMIZER� 7E CHOOSE THE INITIAL LEARNING RATE η = ��−� AND DECREASE IT BY A FACTOR OF �� AFTER �� ���� �� ���
AND �� ��� EPOCHS� )N FIGURE $�� WE SHOW THE RELATIVE ,� ERROR FOR DIFFERENT WEIGHTING STRATEGIES ACROSS
CHANGING WAVENUMBER ω� 7E NOTICE A VERY SIMILAR TREND AS OBSERVED IN THE PREVIOUS PROBLEMS� WITH INVERSE
$IRICHLET SCHEME PERFORMING IN PAR WITH THE ANALYTICAL ε OPTIMAL WEIGHTING STRATEGY� FOLLOWED BY MAX�AVG

��
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&IGURE $��� %FFECT OF THE CHOICE OF OPTIMIZER ON THE PERFORMANCE OF WEIGHTING STRATEGIES� ,EFT� COMPARISON BETWEEN RELATIVE ,�
ERRORS FOR DIFFERENT WEIGHING STRATEGIES FOR INCREASING WAVENUMBERS K USING THE 2-3PROP OPTIMIZER� 2IGHT� THE SAME COMPARISON
WHEN USING THE !DAGRAD OPTIMIZER� 4HE LINE MARKERS AND COLORS FOLLOW THE LEGEND OF FIGURE $���

AND PINN-'$!� 5SING THE 0OISSON EXAMPLE� WE ALSO COMPARE THE EFFECT OF THE CHOICE OF THE OPTIMIZER ON
THE PERFORMANCE OF WEIGHTING STRATEGIES� )N FIGURE $��� WE SHOW THE PERFORMANCE OF WEIGHTING STRATEGIES USING
THE 2-3PROP OPTIMIZER �LEFT	 AND !DAGRAD �RIGHT	� 7E FIND THAT THE INVERSE $IRICHLET STRATEGY OUTPERFORMS
THE OTHER STRATEGIES IN BOTH CASES� %SPECIALLY FOR !DAGRAD� WE FIND OUR WEIGHTING STRATEGY TO BE THE MOST
ACCURATE BY AN ORDER OF MAGNITUDE� )NTERESTINGLY� STATIC εOPTIMAL WEIGHTS FAIL TO CAPTURE THE SOLUTION FOR HIGH
WAVENUMBERS WHEN USING !DAGRAD �SEE FIGURE $�� RIGHT	�

!PPENDIX %� #URVATUREDRIVEN LEVEL SET

4HE LEVELSET METHOD ;��= IS A POPULAR METHOD USED FOR IMPLICIT REPRESENTATION OF SURFACES� )N CONTRAST TO
EXPLICIT METHODS FOR INTERFACE CAPTURING� LEVELSET METHODS OFFER A NATURAL MEANS TO HANDLE COMPLEX CHANGES
IN THE INTERFACE TOPOLOGY� &OR THIS REASON� LEVELSET METHODS HAVE FOUND EXTENSIVE APPLICATIONS IN COMPUTER
VISION ;��=� MULTIPHASE AND COMPUTATIONAL FLUID DYNAMICS ;��=� AND FOR SOLVING 0$%S ON SURFACES ;��=� &OR
THIS EXAMPLE� WE CONSIDER THE CURVATURE DRIVEN FLOW PROBLEM THAT EVOLVES THE TOPOLOGY OF A COMPLEX INTERFACE
BASED ON ITS LOCAL CURVATURE� AND CAN BE TAILORED FOR IMAGE PROCESSING TASKS LIKE IMAGE SMOOTHING AND
ENHANCEMENT ;��� ��=� 3PECIFICALLY� WE LOOK AT THE PROBLEM OF A WOUND SPIRAL WHICH RELAXES UNDER ITS OWN
CURVATURE ;��=� 4HE PARAMETRIZATION OF THE INITIAL SPIRAL IS GIVEN BY θ = � π$

√
S WITH S= (K+ A)/(NP+ A)�

4HE POINT LOCATIONS OF THE ZERO CONTOUR CAN BE COMPUTED AS�

XS = XC +M
(
$/(�+$)

√
S COS(θ)

)
,

YS = YC +M
(
$/(�+$)

√
S SIN(θ)

)
.

4HE ZERO LEVEL SET FUNCTION CAN THEN BE COMPUTED USING THE DISTANCE FUNCTION D(X) = ‖X− XP‖ AS
φ(X, T= �) = D(X)−W WITH W BEING THE WIDTH OF THE SPIRALS� 4HE DISTANCE FUNCTION D(X)MEASURES THE
SHORTEST DISTANCE BETWEEN TWO POINTS X AND XP� 'IVEN THE LEVEL SET FUNCTION φ(X)� WE CAN COMPUTE THE �$
CURVATURE κ AS�

κ=
φXXφYφY − �φXYφXφY +φYYφXφX

(
φ�X +φ�Y

)�/�
. �%�	

4HE EVOLUTION OF THE LEVEL SET FUNCTION DRIVEN BY THE LOCAL CURVATURE κ AND IS COMPUTED USING THE 0$%�

∂φ

∂T
= κ|∇φ|.

4HE SIMULATION WAS CONDUCTED ON AN ���× ��� RESOLUTION SPATIAL GRID COVERING THE DOMAIN [−�,�]× [−�,�]
USING THE FINITEDIFFERENCE METHOD WITH NECESSARY REINITIALIZATION TO PRESERVE THE SIGN DISTANCE PROPERTY OF THE
LEVELSET FUNCTION φ� 4HE SPIRAL PARAMETERS ARE CHOSEN TO BE NP= ���,$= �.�,A= �,M= � ;��=� 4IME
INTEGRATION IS PERFORMED USING A SECONDORDER 2UNGE+UTTA SCHEME WITH A STEP SIZE OF DT= ������

��
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&IGURE %��� #URVATUREDRIVEN LEVELSET PROBLEM� �!	 2ELATIVE ,� ERROR FOR FOR DIFFERENT METHODS FOR THE CURVATUREDRIVEN LEVELSET
FLOW� �"	 4HE 0OWER SPECTRUM OF THE 0).. LEVELSET FUNCTION APPROXIMATION AFTER ���� EPOCHS COMPARED WITH THE 0OWER
SPECTRUM OF THE GROUND TRUTH� SHOWN AS SOLID BLACK LINE�

&IGURE %��� 3OLUTION SNAPSHOT OF CURVATUREDRIVEN LEVELSET FLOW� 4OP ROW� ZERO CONTOUR OF THE LEVELSET FUNCTION VISUALIZED AT
SIMULATION TIME T= ���� AFTER ���� EPOCHS OF TRAINING� $IFFERENT COLUMNS CORRESPOND TO DIFFERENT WEIGHING STRATEGIES�
�!	 UNIFORM WEIGHING� �"	 PINN-'$!� �#	 INVERSE $IRICHLET� �$	 MAX�AVG� "OTTOM ROW� 4HE CORRESPONDING POINTWISE ERROR OF
THE 0).. APPROXIMATION OF THE LEVELSET FUNCTION IN COMPARISON TO THE GROUND TRUTH SOLUTION�

%��� 4RAINING SETUP
4HE TRAINING DATA IS GENERATED FROM UNIFORMLY SAMPLING IN THE DOMAIN [−�.�,�.�]× [−�.�,�.�] WITH A
RESOLUTION OF ���× ��� IN SPACE AND �� TIME SNAPSHOTS SEPARATED WITH TIMESTEP DT= ������ 4HIS LEAD TO
.) = �����,." = ����� AND .INT = ������ POINTS IN THE INTERIOR OF THE SPACE AND TIME DOMAIN� 4HE
NETWORK IS TRAINED FOR ���� EPOCHS USING THE !DAM OPTIMIZER WITH EACH EPOCH CONSISTING OF ��� MINIBATCH
UPDATES WITH BATCH SIZE |"|= ����� 4HE NEURAL NETWORK Fθ : (X,Y, T)→ (φ) WITH � LAYERS AND �� NODES IS
CHOSEN FOR THIS PROBLEM� 7E FOUND THAT USING THE %,5 ACTIVATION FUNCTION RESULTED IN THE BEST PERFORMANCE�
4HE TOTAL LOSS IS GIVEN AS�

L(φ) = λ� LBOUNDARY +λ� LRES +λ� LINIT. �%�	

7E CHOOSE THE INITIAL LEARNING RATE AS η = ��−� AND DECREASE IT AFTER ���� AND ���� EPOCHS BY A FACTOR OF ���

!PPENDIX &� .ETWORK INITIALIZATION AND PARAMETERIZATION

,ET X ∈ R.×DINP BE THE SET OF ALL INPUT COORDINATES TO TRAIN THE NEURAL NETWORK� WHERE . DENOTES THE TOTAL
NUMBER OF DATA POINTS AND DINP THE DIMENSION OF THE INPUT DATA� I�E� DINP = � CORRESPONDING TO (X,Y, T)�
-OREOVER� 8" ∈ R|"|×DINP WILL DENOTE A SINGLE BATCH� BY RANDOMLY SUBSAMPLING X INTO ./|"| SUBSETS� 7E THEN
DEFINE AN NLAYER DEEP NEURAL NETWORK WITH PARAMETERS θ AS A COMPOSITE FUNCTION Fθ : R|"|×DINP → R|"|×DOUT �
WHERE DOUT CORRESPONDS TO THE DIMENSION OF THE OUTPUT VARIABLE� 4HE OUTPUT IS USUALLY COMPUTED AS

Fθ(8") = 4N(σ(4N−�(σ(. . .σ(4�(8")))))), �&�	

��
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WITH THE AFFINE LINEAR MAPS 4I(ZI−�) = ZI−�7
4
I + BI� I= �, . . . ,N� Z� = 8"� AND OUTPUT 9" = ZN−�7

4
N + BN�

(ERE�7I ∈ RQI×QI−� DESCRIBES THE WEIGHTS OF THE INCOMING EDGES OF LAYER I WITH QI NEURONS� BI ∈ RQI CONTAINS A
SCALAR BIAS FOR EACH NEURON AND σ(·) IS A NONLINEAR ACTIVATION FUNCTION� 4HE NETWORK PARAMETERS7I,BI ⊂ θ
ARE INITIALIZED USING NORMAL 8AVIER INITIALIZATION ;��= WITH7I ∼N (�,Ψ�)� WHEREN IS A 'AUSSIAN
DISTRIBUTION WITH ZERO MEAN AND STANDARD DEVIATION

Ψ= G ·

√
�

QI + QI−�
, �&�	

AND BI = �� 4HE GAIN G WAS CHOSEN TO BE G= � FOR ALL ACTIVATION FUNCTIONS EXCEPT FOR TANH WITH A
RECOMMENDED GAIN OF G= �

� � "EFORE FEEDING 8" INTO THE FIRST LAYER OF THE NEURAL NETWORK� WE NORMALIZE IT WITH
RESPECT TO THE TRAINING DATA X AS

8̂" =
8" −µ

ψ
, �&�	

WHERE µ= ((X�, . . . ,XDINP)) AND ψ = ((
√
6AR{X�}, . . . ,

√
6AR{XDINP})) ARE THE COLUMNWISE MEAN AND

STANDARD DEVIATIONS OF THE TRAINING DATA X �

&��� 7EIGHTS COMPUTATION
7E INITIALIZE ALL WEIGHTS TO λK = �,K= �, . . . ,+� &OR ALL EXPERIMENTS WE UPDATE THE DYNAMIC WEIGHTS AT THE
FIRST BATCH OF EVERY FIFTH EPOCH� 4HE MOVING AVERAGE IS THEN PERFORMED WITH α= ���� 4HE MINIBATCHES 8" ARE
RANDOMIZED AFTER EACH EPOCH� SUCH THAT FOR EVERY UPDATE OF THE WEIGHTS� λK WILL BE COMPUTED WITH RESPECT TO A
DIFFERENT SUBSET 8" OF ALL TRAINING POINTS X � &URTHERMORE� BATCHING IS ONLY PERFORMED OVER THE INTERIOR POINTS
. INT� !S .),." 1 .INT� THE POINTS FOR INITIAL AND BOUNDARY CONDITIONS DO NOT REQUIRE BATCHING AND REMAIN
FIXED THROUGHOUT THE TRAINING�

/2#)$ I$
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