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We present a statistical learning framework for robust
identification of differential equations from noisy
spatio-temporal data. We address two issues that
have so far limited the application of such methods,
namely their robustness against noise and the need
for manual parameter tuning, by proposing stability-
based model selection to determine the level of
regularization required for reproducible inference.
This avoids manual parameter tuning and improves
robustness against noise in the data. Our stability
selection approach, termed PDE-STRIDE, can be
combined with any sparsity-promoting regression
method and provides an interpretable criterion
for model component importance. We show that
the particular combination of stability selection
with the iterative hard-thresholding algorithm from
compressed sensing provides a fast and robust
framework for equation inference that outperforms
previous approaches with respect to accuracy, amount
of data required, and robustness. We illustrate
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the performance of PDE-STRIDE on a range of simulated benchmark problems, and we
demonstrate the applicability of PDE-STRIDE on real-world data by considering purely data-
driven inference of the protein interaction network for embryonic polarization in Caenorhabditis
elegans. Using fluorescence microscopy images of C. elegans zygotes as input data, PDE-STRIDE
is able to learn the molecular interactions of the proteins.

1. Introduction
Predictive mathematical models, validated in experiments, are of key importance for the scientific
understanding of natural phenomena. While this approach has been particularly successful in
describing spatio-temporal dynamical systems in physics and engineering, it has not seen the
same degree of success in other scientific fields, such as neuroscience, biology, finance, and
ecology. This is because the underlying first principles in these areas remain largely elusive.
Nevertheless, modelling in those areas has seen increasing use and relevance to help formulate
simplified mathematical equations where sufficient observational data are available for validation
[1–5]. In biology, modern high-throughput technologies have enabled collection of large-scale
datasets, ranging from genomics, proteomics and metabolomics data, to microscopy images and
videos of cells and tissues. These datasets are routinely used to infer parameters in hypothesized
models, or to perform model selection among a finite number of alternative hypotheses [6–8]. The
amount and quality of biological data, as well as the performance of computing hardware and
computational methods, have now reached a level that promises direct inference of mathematical
models of biological processes from the available experimental data. Such data-driven approaches
seem particularly valuable in cell and developmental biology, where first principles are hard to
come by, but large-scale imaging data are available, along with an accepted consensus of which
phenomena a model could possibly entail. In such scenarios, data-driven modelling approaches
have the potential to uncover the unknown first principles underlying the observed biological
dynamics.

Biological dynamics can be formalized at different scales, from discrete molecular processes
to the continuum mechanics of tissues. Here, we consider the macroscopic, continuum scale
where spatio-temporal dynamics are modelled by partial differential equations (PDEs) over
coarse-grained state variables [3,9]. PDE models have been used to successfully address a range
of biological problems from embryo patterning [10] to modelling gene-expression networks
[11,12] to predictive models of cell and tissue mechanics during growth and development
[13,14]. They have shown their potential to recapitulate experimental observables in cases where
the underlying physical phenomena are known or have been postulated [15–17]. In many
biological systems, however, the governing PDEs are not (yet) known, which slows progress
in discovering the underlying physical principles. Thus, it is desirable to verify existing models
and discover new ones by extracting governing laws directly from measured spatio-temporal
data.

For given observable spatio-temporal dynamics, with no governing PDE known, several
proposals have been put forward to learn mathematically and physically interpretable PDE
models. The earliest work in this direction [18] frames the problem of ‘PDE learning’ as a
multivariate nonlinear regression problem where each component in the design matrix consists
of space and time differential operators and low-order nonlinearities computed directly from
data. Then, the alternating conditional expectation (ACE) algorithm [19] is used to compute
both optimal element-wise nonlinear transformations of each component and their associated
coefficients. In [20], the problem is formulated as a linear regression problem with a fixed
predefined set of space and time differential operators and polynomial transformations that are
computed directly from data. Then, backward elimination is used to identify a compact set of
PDE components by minimizing the least-square error of the full model and pruning terms
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that worsen the fit the least. In the statistics literature [21,22], the PDE learning problem has
been formulated as a Bayesian estimation problem where the observed dynamics are learned
via non-parametric approximation, and a PDE representation serves as the prior to compute the
posterior estimates of the PDE coefficients. Recent influential work revived the idea of jointly
learning the structure and the coefficients of PDE models from data in discrete space and time
using sparse regression [23–25]. Approaches such as SINDy [23] and PDE-FIND [24] compute a
large pre-assembled dictionary of possible PDE terms from data and identify the most promising
components by penalized linear regression. PDE-FIND was able to learn different types of
PDEs from simulated spatio-temporal data, including Burgers, Kuramoto-Sivashinsky, reaction-
diffusion, and Navier–Stokes equations. PDE-FIND’s performance was evaluated on noise-free
simulated data as well as data with up to 1% additive noise and showed a critical dependence
on proper tuning of the regularization parameters, which are typically unknown in practice.
Recent works attempted to alleviate this dependence by using Bayesian sparse regression for
model uncertainty quantification [26] or information criteria for parameter tuning [27]. There is
also a growing body of literature that considers deep neural networks for PDE learning [28–30].
For instance, the deep feed-forward network PDE-NET [28] has been shown to directly learn
computable, discretized forms of the underlying governing PDEs for forecasting [28,31]. PDE-
NET exploits the connection between differential operators and order-of-sum rules of convolution
filters [32] to constrain network layers to learning valid discretized differential operators. The
forecasting capability of this approach was numerically demonstrated for predefined linear
differential operator templates. A compact and interpretable symbolic identification of the PDE
structure, however, is not available with this approach.

Here, we ask the question whether and how it is possible to extend the class of sparse
regression inference methods to work on limited amounts of noisy experimental data. We present
a statistical learning framework, PDE-STRIDE (STability-based Robust IDEntification of PDEs),
to robustly infer PDE models from noisy spatio-temporal data without requiring manual tuning
of learning parameters, such as regularization constants. PDE-STRIDE is based on the statistical
principle of stability selection [33,34], which provides an interpretable criterion for any term’s
inclusion in the learned PDE in a data-driven manner. Stability selection can be used with
any sparsity-promoting regression method, including LASSO [33,35], iterative hard thresholding
(IHT) [36], hard thresholding pursuit (HTP) [37] or sequential thresholding ridge regression
(STRidge) [24]. PDE-STRIDE therefore provides a drop-in solution to rendering existing inference
tools more robust, while reducing the need for parameter tuning. In our benchmarks, the
combination of stability selection with de-biased iterative hard thresholding (IHT-d) empirically
shows the best performance and highest consistency w.r.t. perturbations of the dictionary matrix
and the sampling of the data.

This paper is organized as follows: §2 provides the mathematical formulation of the sparse
regression problem and discusses how the design matrix is assembled. We also review the
concepts of regularization paths and stability selection and discuss how they are combined in the
proposed method. The numerical results in §3 highlight the performance and robustness of PDE-
STRIDE for recovering different PDEs from noise-corrupted data. We also perform achievability
analysis of PDE-STRIDE + IHT-d for consistency and convergence of the recovery probabilities
with increasing sample size. Section 4 demonstrates that the robustness of the proposed method is
sufficient for real-world applications. We consider learning a protein interaction model from noisy
biological microscopy images of membrane protein dynamics in a Caenorhabditis elegans zygote.
Section 5 provides a summary of our results and highlights future challenges for data-driven PDE
learning.

2. Problem formulation and optimization
We outline the problem formulation underlying the data-driven PDE inference considered here.
We review important sparse regression techniques and introduce the concept of stability selection
used in PDE-STRIDE.
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(a) Problem formulation for partial differential equations learning
We propose a framework for stable estimation of the structure and parameters of the governing
equations of continuous dynamical systems from discrete spatio-temporal measurements or
observations. Specifically, we consider PDEs for the multidimensional state variable u ∈ R

d of
the form shown in equation (2.1), composed of polynomial nonlinearities (e.g. u2, u3), spatial
derivatives (e.g., ux, uxx) and the parametric dependence modelled through Ξ ∈ R

p.

∂u
∂t

=F ([u, u2, u3, uxx, uux, . . .], x, t, Ξ ). (2.1)

Here, F (·) is the function map that models the spatio-temporal nonlinear dynamics of the system.
We limit ourselves to forms of the function map F (·) that can be written as linear combinations
of polynomial nonlinearities, spatial derivatives and combinations of both. For instance, for a
one-dimensional (d = 1) state variable u, the function map can take the form

∂u
∂t

= ξ0 + ξ1u + ξ2
∂u
∂x

+ ξ3u
∂u
∂x

+ ξ4u2 + · · · + ξku3 ∂2u
∂x2 + · · · ,︸ ︷︷ ︸

F (·)

(2.2)

where ξk are the coefficients of the PDE components for k ≥ 0. The continuous PDE of the form
described in equation (2.2), with appropriate coefficients ξk, holds true for all continuous space
and time points (x, t) in the domain of the model. Numerical solutions of the PDE try to satisfy the
equality relation in equation (2.2) for reconstituting the nonlinear dynamics of a dynamical system
at discrete space and time points (xm, tn). We assume that we have access to N noisy observational
data points ũm,n of the state variable u at such discrete space and time points. The measurement
errors are assumed to be independent and identically distributed following a normal distribution
with mean zero and variance σ 2.

We follow earlier works [20,24,25] and construct a large dictionary of potential PDE
components using discrete approximations of the terms from the data ũm,n. For instance, for the
one-dimensional example in equation (2.2), the discrete approximation of p PDE terms can be
written in vectorized form as a linear regression problem⎡

⎢⎣ |
ut

|

⎤
⎥⎦

︸ ︷︷ ︸
Ut

=

⎡
⎢⎣ | | | | | |

1 u ux . . . u3uxx . . .

| | | | | |

⎤
⎥⎦

︸ ︷︷ ︸
Θ

ξ . (2.3)

Here, the left-hand side vector Ut ∈ R
N contains the discrete approximations of the time

derivatives of u at the data points and represents the response or outcome vector of
the linear regression. Each column of the dictionary or design matrix Θ ∈ R

N×p represents
the discrete approximation of one PDE component, i.e. one of the terms in equation (2.2), at the
N discretization points in space and time. Each column is interpreted as a potential predictor
of the response vector Ut. The vector ξ = [ξ0, ξ1, . . . ξp−1]� ∈ R

p is the vector of unknown PDE
coefficients, i.e. the pre-factors of the terms in equation (2.2).

Both Ut and Θ need to be constructed from numerical approximations of the temporal and
spatial derivatives of the observed state variables. There is a rich literature in numerical analysis
on this topic (e.g. [38,39]). Here, we approximate the time derivatives by first-order forward finite
differences from ũ (i.e. the explicit Euler scheme) after initial denoising of the data. Similarly, the
spatial derivatives are computed by second-order central finite differences. For denoising, we use
truncated singular value decomposition (SVD) with a cut-off at the elbow of the singular values
curve, as shown in the electronic supplementary material, figures S1 and S2.

Given the general linear regression ansatz in equation (2.3), we formulate the data-driven PDE
inference problem as a regularized optimization problem of the form

ξ̂ λ = arg min
ξ

(
h(ξ ) + λg(ξ )

)
, (2.4)
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where ξ̂ λ is the minimizer of the objective function, h(·) is a smooth convex data-fitting
function, g(·) a regularization or penalty function and λ ≥ 0 is a scalar regularization parameter
that balances data fitting and regularization. The function g(·) is not necessarily convex or
differentiable. We follow previous works [20,24,25] and consider the standard least-squares
data-fitting term

h(ξ ) = 1
2
||Ut − Θξ ||22. (2.5)

The choice of the penalty function g(·) influences the properties of the coefficient estimates ξ̂ λ.
We seek to identify a small subset of PDE components among the p possible ones that accurately
predict the time evolution of the state variables [23–25]. This implies that we want to identify a
sparse coefficient vector ξ̂ λ, thus resulting in an simple and interpretable PDE model. This can be
achieved through sparsity-promoting penalty functions g(·). We next consider different choices for
g(·) that enforce sparsity in the coefficient vector and review algorithms that solve the associated
optimization problems.

(b) Sparse optimization for partial differential equations learning
The least-squares loss in equation (2.5) can be combined with different sparsity-promoting
penalty functions g(·). The prototypical example is the �1-norm g(·) = || · ||1 leading to the LASSO
formulation of sparse linear regression [35]:

ξ̂ λ = arg min
ξ

(
1
2
||Ut − Θξ ||22︸ ︷︷ ︸

h(·)

+ λ||ξ ||1︸ ︷︷ ︸
g(·)

)
. (2.6)

The LASSO objective comprises a convex smooth loss and a convex non-smooth regularizer. For
this class of problems, efficient optimization algorithms exist that can exploit the properties of
the functions and come with convergence guarantees. Important examples include coordinate-
descent algorithms [40,41] and proximal algorithms, including the Douglas–Rachford algorithm
[42] and the projected (or proximal) gradient method, also known as the forward-backward
algorithm [43]. In signal processing, the latter schemes are also known as iterative shrinkage-
thresholding algorithms (ISTA, see [44] and references therein), which can be extended to
non-convex penalties. Although LASSO has been previously used for PDE learning [25], the
statistical performance of LASSO estimates is known to deteriorate if certain conditions on the
design matrix are not met. For example, the studies in [45,46] provide sufficient and necessary
conditions, called the irrepresentable conditions, for consistent variable selection using LASSO,
essentially excluding strong correlations of the predictors in the design matrix. These conditions
are, however, difficult to check in practice, as they require knowledge of the true components of
the model. One way to relax these conditions is via randomization. The randomized LASSO [33]
therefore considers the objective

ξ̂ λ = arg min
ξ

(
1
2
||Ut − Θξ ||22︸ ︷︷ ︸

h(·)

+ λ

p∑
k=1

|ξk|
Wk︸ ︷︷ ︸

g(·)

)
, (2.7)

where each Wk is an i.i.d. random variable uniformly distributed over [α, 1] with α ∈ (0, 1]. For
α = 1, randomized LASSO reduces to standard LASSO. Randomized LASSO has been shown
to successfully overcome the limitations of LASSO in handling correlated components in the
dictionary [33], while simultaneously preserving the overall convexity of the objective function.
As part of our PDE-STRIDE framework, we evaluate the performance of randomized LASSO in
the context of PDE learning using cyclical coordinate descent [41].

The sparsity-promoting property of the (weighted) �1-norm comes at the expense of
considerable bias in the estimation of the non-zero coefficients [46], thus leading to reduced
variable selection performance in practice. This drawback can be alleviated by using non-convex
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penalty functions [47,48], allowing near-optimal variable selection performance at the cost of
needing to solve a non-convex optimization problem. For instance, using the �0-‘norm’ (which
counts the number of non-zero elements of a vector) as regularizer g(·) = || · ||0 leads to the
NP-hard problem

ξ̂ λ = arg min
ξ

(
1
2
||Ut − Θξ ||22︸ ︷︷ ︸

h(·)

+ λ||ξ ||0︸ ︷︷ ︸
g(·)

)
. (2.8)

This formulation has found widespread applications in compressed sensing and signal
processing. Algorithms that deliver approximate solutions to equation (2.8) include greedy
optimization strategies like orthogonal matching pursuit [49,50], compressed sampling matching
pursuit (CoSaMP) [51] and subspace pursuit [52]. We here consider the IHT algorithm [36,53],
which belongs to the class of ISTA algorithms. Given the design matrix Θ and the measurement
vector Ut, IHT computes sparse solutions ξ̂ by applying a nonlinear shrinkage (thresholding)
operator to gradient descent steps in an iterative manner. One step in the iterative scheme reads

ξn+1 = Hλ(ξn + Θ�(Ut − Θξn)) = Tξn, Hλ(x) =
{

0 x ≤ √
λ,

x otherwise.
(2.9)

The operator Hλ(x) is the nonlinear hard-thresholding operator. Convergence of the above
iteration is guaranteed if and only if ||Ut − Θξn+1||22 < (1 − c)||Ut − Θξn||22 in each iteration for
some constant 0 < c < 1. Under the condition that ||Θ||2 < 1, the IHT algorithm is guaranteed
to not increase the cost function in equation (2.8) (Lemma 1 in [36]). The IHT algorithm can be
viewed as a thresholded version of the classic Landweber iteration [54]. The fixed points ξ∗ for
which ξ∗ = Tξ∗ for the nonlinear operator T in equation (2.9) are local minima of the cost function
in equation (2.8) (Lemma 3 in [36]). Under the same condition on the design matrix, i.e. ||Θ||2 < 1,
the optimal solution of the cost function in equation (2.8) thus belongs to the set of fixed points of
the IHT algorithm (theorem 2 in [36] and theorem 12 in [55]). Although the IHT algorithm comes
with theoretical convergence guarantees, the resulting fixed points are not necessarily sparse [36].

Here, we propose a modification of the IHT algorithm that will prove to be particularly well
suited for solving PDE learning problems. Following a proposal in [37] for the HTP algorithm,
we equip the IHT algorithm with an additional debiasing step. This involves solving at each
iteration a least-squares problem restricted to the support Sn+1 = {k : ξn+1

k �= 0} obtained from the
n-th IHT iteration. We refer to this form of IHT as iterative hard thresholding with debiasing (IHT-d).
In this two-step algorithm, the standard IHT step serves to extract the explanatory variables, while
the debiasing step approximately debiases (or re-fits) the coefficients restricted to the currently
active support [56]. Rather than solving the least-squares problem to optimality, we use gradient
descent steps until a loose upper bound on the least-squares re-fit is satisfied, ||Ut − Θξn+1||22 ≤
λ|Sn+1|. This prevents over-fitting by attributing low confidence to large supports, which reduces
computational overhead and renders the algorithm practical. The complete IHT-d procedure is
detailed in Algorithm 1 in the electronic supplementary material. In PDE-STRIDE, we compare
IHT-d with a heuristic iterative algorithm, Sequential Thresholding of Ridge regression (STRidge),
that also uses �0 penalization and is available in PDE-FIND [24].

(c) Stability selection
The practical performance of sparse optimization techniques in PDE learning hinges on proper
selection of the regularization parameter λ that balances model fit and model complexity. In
model discovery tasks on real experimental data, a wrong choice of the regularization parameter
could result in incorrect PDE model selection even if true model discovery would have been,
in principle, achievable. In statistics, a large number of tuning parameter selection criteria
are available, ranging from cross-validation approaches [57] to information criteria [58], or
formulations that allow joint learning of model coefficients and tuning parameters [59,60]. Here,
we advocate stability-based model selection [33] for robust PDE learning. The statistical principle
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of stability [61] has been put forward as one of the pillars of modern data science and statistics.
It provides an intuitive approach to model selection [33,34,62]. Stability selection has found
widespread application from the analysis of gene regulatory networks [63] to graphical models
[64] and ecological studies [65] .

In the context of sparse regression, stability selection [33] proceeds as follows (see also figure 1
for an illustration): given a design matrix Θ and measurement vector Ut, generate random
subsample indices I∗i ⊂ {1, . . . , N}, i = 1, . . . , B of equal size |I∗i | = N/2 and produce reduced sub-

designs Θ[I∗i ] ∈ R
N
2 ×p and Ut[I∗i ] ∈ R

N
2 by choosing rows according to the index set I∗i . For each of

the resulting B subproblems, apply a sparse regression technique and systematically record the
recovered supports Ŝλ[I∗i ], i = 1, . . . , B, as a function of λ over a regularization path Λ = [λmax, λmin].
The values of λmax and λmin are data-dependent and are easily computable for generalized linear
models with convex penalties [41]. In our case, the parameter λmax for the non-convex problem
in equation (2.8) can be determined from optimality conditions (Theorem 12 in [55] and Theorem
1 in [36]). The lower bound λmin is set to λmin = ελmax with default ε = 0.1. The λ-dependent
importance measure for each coefficient ξk is then computed as

Π̂λ
k = P(k ∈ Ŝλ) ≈ 1

B

B∑
i=1

1(k ∈ Ŝλ[I∗i ]), (2.10)

where I∗1, . . . , I∗B are the independent random sub-samples. The importance measure Π̂λ
k of each

model coefficient can be plotted across the regularization path, resulting in a component stability
profile (see figure 1f for an illustration). This visualization provides an intuitive overview of the
importance of the different model components. Different from the original stability selection work
[33], we define the stable components of the model as

Ŝstable = {k : Π̂λmin
k ≥ πth}. (2.11)

Here, πth denotes the stability threshold parameter, which can be set to πth ∈ [0.7, 0.9] [33]. We
always use the default setting πth = 0.8. During exploratory data analysis, the threshold πth can
also be set through visual inspection of the stability plots, allowing principled exploration of
alternative PDE models. The importance measures Π̂λ

k also provide an interpretable criterion
for a model component’s stability against random sub-sampling of the data and changes to
the dictionary design, guiding the user to build the right model with high probability. As we
show in the numerical experiments, stability selection thus ensures robustness against varying
dictionary size, different types of data sampling, noise in the data and variability of the sub-
optimal solutions when non-convex penalties are used. All of these properties are critical for
consistent and reproducible model learning in real-world applications. Under certain conditions,
stability selection also provides an upper bound on the expected number of false positives
[33]. Such guarantees are not generally assured by any sparsity-promoting regression method
in isolation [34]. For instance, stability selection combined with randomized LASSO (equation
(2.7) with α < 0.5) is consistent for variable selection even when the irrepresentable condition is
violated [33].

3. Numerical experiments on simulated data
We present numerical experiments in order to benchmark the performance and robustness of
PDE-STRIDE combined with different sparsity-promoting regression methods to infer PDEs from
spatio-temporal data. To provide comparisons and benchmarks, we first use simulated data
obtained by numerically solving known ground-truth PDEs, before applying our method to a
real-world dataset from biology. The benchmark experiments on simulation data are presented in
four subsections that demonstrate different aspects of the inference framework: §a demonstrates
the use of different sparsity-promoting regression methods in our framework in a simple one-
dimensional Burgers problem. Section b then compares their performance in order to choose the
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Figure 1. Enabling data-driven mathematical model discovery through stability selection. We outline the necessary
steps in our method for learning PDE models from spatio-temporal data. (a) Extract spatio-temporal profiles
from microscopy videos of the chosen state variables. Data courtesy of Grill Laboratory, MPI-CBG/TU Dresden [66].
(b) Compile the design matrix Θ and the measurement vector Ut from the data. (c) Construct multiple linear systems
of reduced size through random sub-sampling of the rows of the design matrix Θ and Ut . (d) Solve and record the
sparse/penalized regression solutions independently for each sub-sample along the λ-paths. (e) Compute the importance
measureΠ for each component. The histogram shows the importance measureΠ for all components at a particular value
of λ. (f ) Construct the stability plot by aggregating the importance measures along the λ-path, leading to separation of the
noise variables (dashed black) from the stable components (coloured). Identify the most stable components by thresholding
Π > 0.8. (g) Build the PDE model from the identified components. (Online version in colour.)

best regression method, IHT-d. In §c, stability selection is combined with IHT-d to recover two-
dimensional vorticity-transport and three-dimensional reaction–diffusion PDEs from limited,
noisy simulation data. Section d reports achievability results to quantify the robustness of stability
selection to variations in dictionary size, sample size and noise levels. In all cases, we follow the
PDE-STRIDE procedure as explained in the box below.

STability-based Robust IDEntification of PDEs (PDE-STRIDE). Given the noise-
corrupted data ũ and a choice of regression method, e.g. (randomized) LASSO, IHT,
HTP, IHT-d, STRidge:

(i) Apply any required denoising method on the noisy data and compute the
spatial derivatives and nonlinearities to construct the design matrix Θ ∈
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R
N×p and the time-derivatives vector Ut ∈ R

N×1 for suitable sample size and
dictionary size, N and p, respectively.

(ii) Build the sub-samples Θ[I∗i ] ∈ R
N/2×p and Ut[I∗i ], for i = 1, 2, . . . , B, by

uniformly randomly sub-sampling of rows from the design matrix Θ and
the corresponding rows from Ut. For every sub-sample I∗i , standardize the

sub-design matrix Θ[I∗i ] such that
∑N/2

j=1 θjk = 0 and (1/N)
∑N/2

j=1 θ2
jk = 1, for k =

1, 2, . . . , p. Here, θjk is the element in row j and column k of the matrix Θ[I∗i ]. The
corresponding measurement vector Ut[I∗i ] is centred to zero mean.

(iii) Apply the sparsity-promoting regression method independently to each sub-
sample Θ[I∗i ], Ut[I∗i ] to construct the λ-paths for M values of λ as discussed in
§2c.

(iv) Compute the importance measures Π̂λ
k of all dictionary components ξk along

the discretized λ-paths, as discussed in §c. Select the stable support set Ŝstable by
applying the threshold πth = 0.8 to all Π̂k. Solve a linear least-squares problem
restricted to the support Ŝstable to identify the coefficients of the learned model.

(i) Adding noise to the simulation data

Let u ∈ R
N be the vector of clean simulation data sampled in both space and time. This vector is

corrupted with additive Gaussian noise to

ũ = u + ε,

such that ε = σN (0, Var(u)) is the additive Gaussian noise with an empirical variance of the entries
in the vector u, and σ is the level of Gaussian noise added.

(ii) Fixing the parameters for stability selection

We propose that PDE-STRIDE combined with IHT-d provides a PDE learning method that only
rarely requires parameter tuning. To demonstrate this, all stability selection parameters described
in §c are fixed to their standard values throughout our numerical experiments. The choice of
these standard parameter values is well-discussed in the literature [33,41,64]. We thus fix: the
repetition number B = 250, regularization path parameter ε = 0.1, λ-path size M = 20 and the
importance threshold πth = 0.8. Using these standard values, the method works robustly across
all tests presented here with no case-specific parameter tuning required. In both stability and
regularization plots, we show normalized values of the regularization parameter λ∗ = λ/λmax on
a decimal logarithmic scale. Although the stable component set Ŝstable is always evaluated at
λmin = 0.1λmax, as in equation (2.11), the stability plots sometimes have their axes scaled to large
or smaller ranges of λ∗ for better visualization.

(a) One-dimensional Burgers equation with different sparsity promoters
We show that stability selection can be combined with any sparsity-promoting penalized
regression framework to learn PDE components from noisy and limited spatio-temporal data.
We use simulated data of the one-dimensional Burgers equation

∂u
∂t

+ u
∂u
∂x

= D
∂2u
∂x2 , (3.1)
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Figure 2. Model selectionwith PDE-STRIDE for the one-dimensional Burgers equation. The top row shows regularization paths
(see §c) for three sparsity-promoting regression techniques: randomized LASSO, STRidge and IHT-d all for the same design
(N = 200, p= 19). The bottom row shows the corresponding stability plots. The inset legend at the bottom shows the colour
and line symbol correspondencewith the dictionary. The ridge parameterλR for STRidge is fixed toλR = 10−5 [24]. The value of
α for the randomized LASSO is set to 0.2. In all three cases, the standard thresholdπth = 0.8 (red solid horizontal line) correctly
identifies the true components. The ε is set to 0.001 for randomized LASSO in order to demonstrate stability selection. (Online
version in colour.)

with identical boundary and initial conditions as used in [24] to provide fair comparison between
methods: periodic boundaries in space and the following Gaussian initial condition:

u(x, 0) = e−(x+2)2
, x ∈ [−8, 8].

The simulation domain [−8, 8] is divided uniformly into 256 Cartesian grid points in space and
1000 time points. The numerical solution is visualized in space-time in figure 4. The numerical
solution was obtained using a parabolic method based on finite differences and time stepping
using explicit Euler with step size dt = 0.01 and the diffusion coefficient D = 0.1.

We test the combinations of stability selection with the three sparsity-promoting regression
techniques described in §2b: randomized LASSO, STRidge and IHT-d. The top row of figure 2
shows the regularization paths and the bottom row the corresponding stability plots for each
component in the dictionary. The coloured solid lines correspond to the advection and diffusion
terms of equation (3.1) as given in the inset legend.

Thresholding the importance measure at Π > πth = 0.8, all sparsity-promoting regression
methods are able to identify the correct components of the model and separate them from the
noise variables (dashed black lines).

(b) Comparison between sparsity-promoting techniques
Although stability selection can be used in conjunction with any �1 or �0 sparsity-promoting
regression method, the question arises whether a particular choice of regression algorithm is
particularly well suited for PDE learning. We therefore perform a systematic comparison between
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Figure 3. Comparison between different sparse regression methods for the one-dimensional Burgers equation. Each coloured
square corresponds to a design (N, p, σ ) with certain sample size N, dictionary size p and noise level σ . Colour indicates the
success frequency over 30 independent repetitions with uniformly random data samples, as given in the colour bar to the right.
‘Success’ is defined as the existence of aλ value for which the correct PDE is recovered from the data. The columns compare four
popular sparsity-promoting regression methods: randomized LASSO, STRidge, IHT-d and OMP (left to right), as labelled at the
top. (Online version in colour.)

randomized LASSO, STRidge, orthogonal matching pursuit (OMP) [67,68] as implemented in
scikit-learn, and IHT-d for recovering the one-dimensional Burgers equation under perturbations
to the sample size N, the dictionary size p and the noise level σ . An experiment for a
particular triple (N, p, σ ) is considered a success if there exists a λ ∈ Λ (see §c) for which the
true PDE components are recovered. In figure 3, the success frequencies over 30 independent
repetitions with uniformly random data sub-samples are shown for the four regression
methods.

A first observation from figure 3 is that �0 solutions (here with STRidge, IHT-d and OMP)
outperform relaxed �1 solutions (here with randomized LASSO). We also observe that IHT-d
performs better than the other three methods for large dictionary sizes p, high noise σ and small
sample sizes N. Large dictionaries with higher-order derivatives computed from discrete data
cause grouping (correlations between variables), for which randomized LASSO tends to select
one variable from each group, ignoring the others [69]. Thus, randomized LASSO fails to identify
the true support consistently. STRidge shows good recovery for large dictionary sizes p with clean
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Figure 4. Model selection with PDE-STRIDE+IHT-d for the one-dimensional Burgers equation. The top left image shows the
numerical solution of the one-dimensional Burgers equations on 256 × 1000 space and time points, respectively. The stability
plots for the design N = 250, p= 19 show clear separation of the true PDE components (in solid colour with line symbols as
identified in the inset legend) from the noise components (dashed black). The inference power of the method is tested for
additive Gaussian noise levels σ up to 4%. In all cases, perfect recovery is possible without parameter tuning. (Online version
in colour.)

data, but it breaks down in the presence of noise in the data. OMP also uses �0 regularization and
therefore outperforms randomized LASSO, but fails to compete with STRidge and IHT-d. Of all
four methods, IHT-d shows the best robustness to both noise and changes in the design. We note
a decrease in inference power with increasing sample size N, especially for large p and high noise
levels. This again can be attributed to correlations and groupings in the dictionary, which become
more significant with increasing sample size N.

Based on these results, we use IHT-d in the following sections as the sparsity-promoting
regression method in PDE-STRIDE.

(c) Stability-based model inference
We present benchmark results of PDE-STRIDE for PDE learning with IHT-d as the sparse
regression method. This combination of methods is used to recover PDEs from limited noisy
data obtained by numerical solution of the one-dimensional Burgers, two-dimensional vorticity-
transport and three-dimensional Gray–Scott equations. Once the stable support Ŝstable of the PDE
model has been learned by PDE-STRIDE with IHT-d, the actual coefficient values of the non-zero
components are determined by solving a linear least-squares problem restricted to the recovered
support Ŝstable. More sophisticated methods could instead be used for PDE parameter estimation
with known model structure [21,22]. As the sample size N exceeds the cardinality of the recovered
support (N � |Ŝstable|), however, we find that simple least-squares fits provide good estimates for
the PDE coefficients.
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Table 1. Coefficient values of the recovered one-dimensional Burgers equation for different noise levels. The stable components
of thePDE inferred fromtheplots infigure4are Ŝstable = {uxx , uux}. Theground-truth coefficient values aregiven inparentheses
in the column headings.

uux (−1.0) uxx (0.1)

clean −1.0008 0.1000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1% −0.9971 0.1016
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2% −0.9932 0.0997
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3% −0.9842 0.0976
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4% −0.9728 0.0984
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5% −0.9619 0.0967
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) One-dimensional Burgers equation

We again consider the one-dimensional Burgers equation from equation (3.1), using the same
simulated data as in §a, to quantify the performance and robustness against noise of the
PDE-STRIDE+IHT-d method. The results are shown in figure 4 for a design with N = 250 and
p = 19. Even on this small dataset, with a sample size comparable with dictionary size, our method
recovers the correct model {uxx, uux} with up to 4% noise on the data, although the least-squares
fits of the coefficient values gradually deviate from their exact values (table 1).

For comparison, the corresponding stability plots for PDE-STRIDE + STRidge are shown in
the electronic supplementary material, figure S3. STRidge creates many false positives even at
mild noise levels (less than 2%).

(ii) Two-dimensional vorticity transport equation

Next, we consider a two-dimensional domain and the vorticity transport equation given in
equation (3.2). The vorticity transport equation can be obtained by taking curl of the Navier–
Stokes equations and imposing the incompressibility constraint ∇ · u = 0 for the flow velocity
field u. This results in a governing equation for the vorticity ω = ∇ × u, which is a scalar in two
dimensions

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= μ

(
∂2ω

∂x2 + ∂2ω

∂y2

)
. (3.2)

This equation has numerous applications in oceanography and climate modelling [70]. The
velocity vector u = (u, v) has two components, and μ is the fluid’s viscosity. For the numerical
solution of the transport equation (3.2) in the unit square, we impose a no-slip boundary condition
at the left (x = 0, y ∈ [0, 1]), right (x = 1, y ∈ [0, 1]) and bottom sides (y = 0, x ∈ [0, 1]) and a shear
flow boundary condition with boundary velocity components uboundary = 2.0, vboundary = 0 on
the top side (y = 1, x ∈ [0, 1]). This is the classic ‘lid-driven cavity’ problem from fluid mechanics.
The simulation code was written using OpenFPM [71] with explicit time stepping on a 128 × 128
grid in space. A Poisson equation was solved at every time step in order to correct the velocities to
ensure divergence-freeness. The viscosity of the fluid simulated was set to μ = 0.025. In figure 5,
we show a single time snapshot of the two velocity components (u, v) and the vorticity ω in the
numerical simulation, along with the locations of the 500 sample points used for PDE inference
from these data.

Figure 6 shows the results of applying PDE-STRIDE + IHT-d to recover the two-dimensional
vorticity transport equation from these data samples. The results demonstrate consistent recovery
of the true support of the PDE for different noise levels σ . The stable components Ŝstable =
{ωxx, ωyy, uωx, vωy} correspond to the true terms of equation (3.2). In table 2, we show the re-fitted
coefficients for the recovered PDE components. Both the accuracy of the parameter fits and the
separation between the true (coloured solid lines) and the noisy (black dashed lines) components
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Figure 5. Numerical solution of the two-dimensional vorticity transport equation. We show the two components of the flow
velocity (u, v) and the vorticityω in the two-dimensional domain [0, 1]2. The black dots in the right panel show the N = 500
sample points used for PDE inference. They are uniformly randomly distributed in the rectangular box [0.0, 1.0] × [0.6, 1.0].
(Online version in colour.)
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Figure 6. Model selection with PDE-STRIDE+ IHT-d for the two-dimensional vorticity transport equation. The stability plots
for the designN = 500, p= 48 show the separation of the true PDE components (in solid colourwith line symbols as identified
in the inset legend) fromthenoise components (dashedblack). The inferencepowerof themethod is tested for additiveGaussian
noise levelsσ up to 5%. In all cases, perfect recovery is possible without parameter tuning. (Online version in colour.)

deteriorate with increasing noise levels. In the electronic supplementary material, figure S4, we
also report the plots when using STRidge in conjunction with stability selection for the same
design and stability selection parameters. STRidge fails to recover the true support even at small
noise levels.
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Table 2. Coefficient values of the recovered two-dimensional vorticity transport equation for different noise levels. The stable
components of the PDE inferred from the plots in figure 6 are Ŝstable = {ωxx ,ωyy , uωx , vωy}. The ground-truth coefficient
values are given in parentheses in the column headings.

ωxx (0.025) ωyy (0.025) uωx (−1.0) vωy (−1.0)

clean 0.02504 0.02502 −0.9994 −1.0025
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1% 0.02501 0.02504 −0.9997 −1.0006
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2% 0.02492 0.0250 −1.0003 −0.9944
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3% 0.0247 0.0250 −1.004 −0.9841
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4% 0.0245 0.0251 −1.0091 −0.9748
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5% 0.0242 0.0251 −1.0083 −0.9586
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(iii) Three-dimensional Gray–Scott equation

Finally, we consider a problem in three dimensions, namely, the three-dimensional Gray–Scott
reaction–diffusion model

∂u
∂t

= Du

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
− uv2 + f (1 − u) (3.3a)

and
∂v

∂t
= Dv

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
+ uv2 − (f + k)v. (3.3b)

Reaction and diffusion of two chemical species with scalar concentrations u and v can produce a
variety of patterns, reminiscent of those often observed in nature [72]. This is, for example, used
to describe skin patterning and pigmentation [73]. This example also has coupled variables and
is similar in structure to the real-world example discussed in §4.

We simulate equation (3.3) using second-order central finite differences implemented in
OpenFPM [71]. A snapshot of the simulated concentration field u in the three-dimensional cube
[0, 2.5]3 is shown in figure 7. The simulation used 128 × 128 × 128 discretization points in space on
a regular Cartesian mesh and explicit Euler time stepping with step size dt = 0.0005 until a final
simulated time of 5 seconds. The ground-truth model parameters used are: k = 0.053, f = 0.014,
Du = 2.0 × 10−5 and Dv = 10−5.

We test recovery of the ground-truth PDE from data sampled only from the small cube
[1.0, 1.5]3 in the centre of the domain. Figure 7 shows the PDE-STRIDE+IHT-d results for the
species u. All PDE components of the true equation (3.3a) are correctly identified for noise levels
up to 6% with as few as N = 400 samples for dictionary size p = 69. The plots for the v species
are shown in the electronic supplementary material, figure S5. Although perfect recovery was not
possible owing to the small diffusivity (Dv = 10−5) of the v species, consistent and stable recovery
of the reaction terms is seen. The re-fitted coefficients in the recovered PDEs for the u and v species
are reported in table 3 and the electronic supplementary material, table S1, respectively.

For comparison, the results when using STRidge in conjunction with stability selection are
shown in the electronic supplementary material, figures S6 and S7. STRidge is able to recover the
complete form of equation (3.3), albeit only in the noise-free case. It fails to recover any of the two
components when noise is added to the data.

(d) Achievability results
We discuss the consistency and robustness of PDE-STRIDE + IHT-d with respect to design
parameters including sample size N, dictionary size p and noise level σ . Achievability analysis
provides a compact way of checking robustness and consistency of a model selection method for
varying design parameters. It also provides approximate means to reveal the sample complexity of
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Figure 7. Model selection with PDE-STRIDE+IHT-d for the three-dimensional Gray–Scott u-component equation. The top
left figure shows a visualization of the scalar concentration field u in the three-dimensional simulation domain with red
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good separation of the true PDE components (in solid colour with line symbols as identified in the inset legend) from the noise
components (dashed black). The inference power of the method is tested for additive Gaussian noise levels σ up to 6%. In all
the cases, perfect recovery was possible without parameter tuning. (Online version in colour.)

Table3. Coefficients of the recoveredu-componentGray–Scott reaction–diffusionequation for differentnoise levels. The stable
components of the PDE inferred from theplots in figure 7 are Ŝstable = {uxx , uyy , uzz , u, uv2}. The ground-truth coefficient values
are given in parentheses in the column headings.

1 (0.014) uxx (2.0 × 10−5) uyy (2.0 × 10−5) uzz (2.0 × 10−5) u(−0.014) uv2 (−1.0)

clean 0.0140 2.0 × 10−5 2.0 × 10−5 2.0 × 10−5 −0.0140 −1.0000
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2% 0.0142 1.9664 × 10−5 1.9565 × 10−5 1.9869 × 10−5 −0.0143 −0.9915
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4% 0.0144 1.9541 × 10−5 1.8971 × 10−5 1.8780 × 10−5 −0.0146 −0.9795
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6% 0.0150 2.0494 × 10−5 1.8888 × 10−5 1.8284 × 10−5 −0.0153 −0.9843
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

any �0 and �1 sparsity-promoting technique, i.e. the number of data points N required to recover
the model with full probability. Specifically, given a sparsity-promoting regularizer, dictionary
size p, sparsity k and noise level σ , we are interested in how the sample size N scales with p, k, σ

for the recovery probability converging to one. The study in [74] reported sharp phase transitions
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Figure 8. Achievability plots for model selection with PDE-STRIDE+IHT-d for the one-dimensional Burgers equation. Each
symbol is the mean over 20 repetitions of the inference for some design (N, p, σ ) under random data sub-sampling. Different
symbols and colours correspond to different dictionary sizes p as given in the inset legend. The coloured bands show the variance
of the Bernoulli trials. Noise levelsσ are given by the red percentage in each panel. (Online version in colour.)

from failure to success for Gaussian random designs with increasing sample size N for LASSO-
based sparsity solutions. The same study also provided sufficient lower bounds for sample size
N as a function of p, k for full recovery probability. We ask the question whether sparse model
selection with PDE-STRIDE + IHT-d exhibits similar sharp phase-transition behaviour. Given
the dictionary components in PDE learning are compiled from derivatives and nonlinearities
computed from noisy data, it is also interesting to observe whether full recovery is at all
achieved and maintained with increasing sample size N. In the particular context of PDE learning,
increasing dictionary size by including higher-order nonlinearities and higher-order derivatives
tends to introduce strongly correlated components, which can negatively impact the inference
power.

In figures 8 and 9, the achievability plots for the one-dimensional Burgers system and the u-
component of the three-dimensional Gray–Scott system are shown, respectively. Each symbol in
the figures shows the mean over 20 repetitions of an experiment with some design (N, p, σ ) under
random data sub-sampling. The Bernoulli variances are shown as coloured bands. An experiment
with a design (N, p, σ ) is considered a success if and only if there exists a λ ∈ Λ for which the true
PDE support is recovered by PDE-STRIDE+IHT-d with default importance threshold πth = 0.8.

In all cases, PDE-STRIDE + IHT-d is strongly consistent and highly robust. In addition, we
also observe a sharp phase transition from failure to success with recovery probabilities quickly
approaching one for increasing sample size beyond a certain threshold. This suggests that PDE-
STRIDE not only enhances the inference power of IHT-d but also ensures consistency. The sharp
phase transition also suggests the existence of a strict lower bound on the sample complexity,
below which full recovery is not achievable [74]. From the achievability plots, we estimate the
sample complexity of the learned dynamical systems: for the one-dimensional Burgers equation,
90% success probability is achieved with as few as ≈70 data points in the noise-free and ≈200
data points in the noisy cases across different designs (p). For the three-dimensional Gray–Scott
system, 90% success probability is achieved with as few as ≈200 data points in the noise-free and
≈400 in the noisy cases across different designs (p). This demonstrates that PDE-STRIDE + IHT-d
is able to consistently and robustly learn PDE models from limited noisy data.

4. Data-driven inference on experimental data to explain C. elegans zygote
polarization

We showcase the applicability of the PDE-STRIDE with IHT-d to real experimental data.
We use microscopy images to infer a model that explains early C. elegans embryo polarity
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establishment, and we use it to confirm a previous hypothesis about the underlying protein
interaction network. Earlier studies of this process proposed a mechano-chemical mechanism
for PAR protein polarization on the cell membrane [15,16,66]. They systematically showed that
active cortical flows in the zygote provide sufficient bias to trigger symmetry breaking [16]. The
experiments conducted in [16] measured the concentration of the anterior PAR complex (aPAR),
the concentration of the posterior PAR complex (pPAR) and the cortical flow velocity field as a
function of time (figure 10a–d). The concentration and velocity fields were acquired on a grid with
a resolution of 60 × 55 in space and time, respectively. Space was modelled one-dimensional along
a circumferential line around the embryo in the mid-plane cross section as shown in figure 10a.

We challenge PDE-STRIDE + IHT-d to learn a differential equation model for the regulatory
network of the interacting PAR proteins in a purely data-driven fashion from the one single
microscopy video available as electronic supplementary material for [16]. Given the high level of
noise in the video, we limit our analysis to the first SVD mode of the data as shown in figure 10c.
We only consider the time after the initial advection trigger, when early domains of PAR proteins
have already formed. PDE-STRIDE is then directed to learn an interpretable model that evolves
the nascent protein domains to the fully developed polarity patterns shown in figure 10a.

The only mechanism included in this model is the chemical interaction between aPAR and
pPAR of the general form

ν−
a A + ν−

p P
k−→ ν+

a A + ν+
p P, (4.1)

with unknown reactant and product stoichiometries ν−
a/p and ν+

a/p for aPAR and pPAR,
respectively. The scalar fields A and P are the concentrations of aPAR and pPAR, and k is the
unknown reaction rate.

In designing the dictionary Θ , the maximum allowed stoichiometry for reactants and products
is restricted to 2, i.e. ν−

a/p, ν+
a/p ∈ {0, 1, 2}. The PDE-STRIDE + IHT-d results for the learned reaction

network from data are shown in figure 10e,f. The stable components of the model for pPAR are
ŜP

stable = {P, P2A}, and for aPAR they are ŜA
stable = {A, PA2} for N ≈ 500, p = 20. The achievability

plot in figure 10g confirms the consistency and robustness of the learned model across different
sample sizes N. The inference method achieves full recovery probability for N > 800.

The final chemical reaction model learned by PDE-STRIDE + IHT-d is

dP
dt

= cP + kPP + kPAAP2 (4.2a)
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Figure 10. Data-driven inference of the regulatory network of PAR proteins from spatio-temporal data of a C. elegans zygote.
(a) Final frame from a fluorescence microscopy video recorded by the Grill laboratory [16] at MPI-CBG showing a mid-plane
cross section through the ellipsoidal 50µm zygote. Over time, the pPAR protein complex (blue fluorescence signal) localizes to
the posterior pole of the embryo (region ‘a’), whereas aPAR (red fluorescence signal) localizes anterior (regions ‘b’ and ‘c’).
(b) Protein concentrations extracted from the fluorescence intensity along the one-dimensional midline between the two
white ellipses in (a) for aPAR (red) and pPAR (blue) for different time points (symbols, see inset legend under (a)).
(c) De-noised concentration profiles obtained by extracting the principle mode of the singular value decomposition (SVD)
of the noisy data in (b). (d) De-noised cortical flow velocity profiles (first SVD mode) in the tangential direction along
the circumferential line around the zygote for different times (colour, inset legend). (e,f ) Stability plots obtained by using
PDE-STRIDE+ IHT-d to separate the stable model components (coloured solid lines with symbols, inset legend) from the
noise components (black dashed lines) for aPAR (e) and pPAR (f ). (g) Achievability plot to test the robustness and consistency
of the inferred model for both aPAR (SAstable = {A, A2P}) and pPAR (SPstable = {P, P2A}) with increasing sample size N.
(h,i) Simulation results (dashed lines) of the learnedmodels for aPAR (h) and pPAR (i) comparedwith the denoised experimental
data (solid lines with symbols) at different times (inset legend). (Online version in colour.)

and
dA
dt

= cA + kAA + kAPPA2, (4.2b)

where kA and kP are the kinetic rate constants for membrane association and dissociation of aPAR
and pPAR, respectively. The coefficients kPA and kAP represent the rates of membrane dissociation
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Table 4. Coefficients values of the inferred model in equation (4.2).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cP −1.98 × 10−4 µm−2 s−1 cA 4.13 × 10−3 µm−2 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kP 1.07 × 10−2 1 s−1 kA 2.16 × 10−3 1 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kPA −2.79 × 10−4 µm4 s−1 kAP −1.47 × 10−4 µm4 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

due to mutually antagonistic interactions between the protein complexes. The constants cP and cA

can be interpreted as surface-to-volume conversion factors for the concentrations [16]. This purely
data-driven model recapitulates the mutual inhibitory nature of the PAR proteins [16].

Moreover, our method allows us to estimate the values of the unknown reaction-rate
parameters by least-squares re-fitting on the recovered stable support. The results are shown in
table 4.

In the figure 10h,i, we overlay the numerical solution of equation (4.2) (dashed lines) with
the denoised experimental data (solid lines with symbols) at different time points (see inset
legend) for both aPAR and pPAR. The de-noised spatio-temporal measurement data from the
early domains are taken as the initial conditions for the simulation. The results show that the
simple data-driven chemical reaction model is able to qualitatively match the temporal evolution
of the PAR protein domains in the C. elegans zygote. Although the spatial patterns match well
(e.g. the PAR domain sizes) for the two proteins, there exist non-negligible discrepancies between
the simulation and the experiments in the time scales of the pPAR domain evolution. This is
likely because our ODE model only includes the chemical reactions of the protein interactions,
but neither the diffusion nor the advective flow of the proteins. In the electronic supplementary
material, figure S8 (left), we show for N = 500, p = 20 that the advection and diffusion components
of the aPAR species carry enough importance to be included in the stable set ŜA

stable, but that this
is not the case for the pPAR components. The preferential advective displacement of aPAR to the
anterior side modelled by the advective term (vxA) is also in line with experimental observations
[16]. However, such models with advection and diffusion components exhibit inconsistency for
increasing sample size N, in contrast to our simple ODE model, as illustrated in figure 10g. We
therefore believe that it may be necessary to use structured sparsity for enforcing conservation
laws through grouping [75] in order to further develop this data-driven model to also include the
mechanical aspects of the PAR system.

5. Conclusion and discussion
We have addressed two key issues that have so far limited the application of sparse regression
methods for automated PDE inference from noisy and limited data: the need for manual
parameter tuning and the high sensitivity to noise in the data. We have shown that stability
selection combined with any sparsity-promoting regression technique provides an appropriate
level of regularization for consistent and robust recovery of the correct PDE model. Our
numerical benchmarks suggested that iterative hard thresholding with de-biasing (IHT-d) is
ideal in combination with stability selection to form a robust framework for PDE learning
with minimal parameter tuning. This combination of methods outperformed all other tested
algorithmic approaches with respect to identification performance, amount of data required and
robustness to noise. The resulting stability-based PDE-STRIDE method was tested for robust
recovery of the one-dimensional Burgers equation, two-dimensional vorticity transport equation
and three-dimensional Gray–Scott reaction–diffusion equations from simulation data corrupted
with up to 6% additive Gaussian noise. The achievability studies demonstrated the consistency
and robustness of the PDE-STRIDE method for full recovery probability of the model with
increasing sample size N and for varying dictionary size p and noise levels σ . In addition, we
confirmed the sharp phase transition in recovery performance and noted that achievability plots
provide a natural estimate for the sample complexity of the underlying nonlinear dynamical
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system. However, this empirical estimate of sample complexity depends on the choice of model
selection scheme and on how the data are sampled.

We demonstrated the capabilities of PDE-STRIDE by learning a protein-interaction model of
embryo polarization directly from fluorescence microscopy images of a C. elegans zygote. The
model recovered the regulatory reaction network of the involved proteins, complete with its
parameter values in a purely data-driven manner, with no knowledge used about the underlying
physics or symmetries. The thus-learned, data-derived model was able to correctly predict the
spatio-temporal dynamics of the embryonic polarity system from the early spatial domains to the
fully developed patterns as observed in the polarized C. elegans zygote. The model we inferred
from image data using our method confirms both the structure and the mechanisms of physics-
derived cell polarity models [16]. Importantly, the mutually inhibitory interactions between
the involved protein species, which have previously been discovered by extensive biochemical
experimentation, were automatically and unambiguously extracted from the data [16].

Besides rendering sparse inference methods more robust to noise and to parameter
settings, stability selection has the important conceptual benefit of also providing interpretable
probabilistic importance measures for all model components. This enables modellers to construct
their models with high fidelity, and to gain an intuition about correlations and sensitivities.
Graphical inspection of stability plots provides additional freedom for intervention in semi-
automated model discovery from data.

We expect that statistical learning methods have the potential to enable robust, consistent
and reproducible discovery of predictive and interpretable models directly from observational
data. Our PDE-STRIDE framework provides a first step towards this goal, but several open
issues remain. First, numerically approximating time and space derivatives in the noisy data is a
challenge for noise levels higher than a few percent. This currently limits the noise robustness of
the overall method, regardless of how robust the subsequent statistical inference is. The impact
of noise becomes even more severe when exploring models with higher-order derivatives or
stronger nonlinearities. Future work should focus on formulations that are robust to the choice
of different derivative-discretization methods, while providing the necessary freedom to impose
structure on the coefficients. Here, signal/noise decomposition techniques based on deep neural
networks with time-stepping constraints [76,77] could provide better denoising when the noise
has finite correlation length in space and time.

Second, it would be desirable to have a principled way to constrain the learning process by
physical priors, such as conservation laws and symmetries. Exploiting structural knowledge
about the dynamical system is expected to greatly improve learning performance. Structured
sparsity or grouping constraints from statistics may help express such prior knowledge in a
sparse inference problem [75,78]. In the specific example of the PAR-polarity model, decades
of experimentation and theory have revealed physical principles of mass conservation, detailed
force balance in the cell cortex and antagonistic interactions between protein complexes. Using
structured constraints to encode such physical principles leads to biologically plausible and
physically consistent models, rather than models that simply fit the data [79].

In summary, we believe that data-driven model discovery has tremendous potential to provide
novel insights into complex systems, in particular in biology. It provides an effective and
complementary alternative to theory-driven approaches. We hope that the stability-based model
selection method PDE-STRIDE presented here is going to contribute to the further development
and adoption of these approaches in the sciences.

Data accessibility. The git repository for the codes and data can be found at https://git.mpi-cbg.de/mosaic/
software/machine-learning/pde-stride. The data are provided in the electronic supplementary material [80].
Authors’ contributions. S.M.: conceptualization, data curation, formal analysis, investigation, software, validation,
visualization, writing—original draft; B.L.C.: data curation, formal analysis, resources, writing—
review and editing; I.F.S.: conceptualization, funding acquisition, investigation, methodology, project
administration, resources, supervision, writing—review and editing; C.L.M.: conceptualization, formal
analysis, investigation, methodology, project administration, resources, supervision, validation, writing—
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