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STENCIL‑NET for equation‑free 
forecasting from data
Suryanarayana Maddu 1,2,3,9,10, Dominik Sturm 4,5, Bevan L. Cheeseman 1,2,3,11, 
Christian L. Müller 6,7,8 & Ivo F. Sbalzarini 1,2,3,9*

We present an artificial neural network architecture, termed STENCIL‑NET, for equation‑free 
forecasting of spatiotemporal dynamics from data. STENCIL‑NET works by learning a discrete 
propagator that is able to reproduce the spatiotemporal dynamics of the training data. This data‑
driven propagator can then be used to forecast or extrapolate dynamics without needing to know 
a governing equation. STENCIL‑NET does not learn a governing equation, nor an approximation to 
the data themselves. It instead learns a discrete propagator that reproduces the data. It therefore 
generalizes well to different dynamics and different grid resolutions. By analogy with classic numerical 
methods, we show that the discrete forecasting operators learned by STENCIL‑NET are numerically 
stable and accurate for data represented on regular Cartesian grids. A once‑trained STENCIL‑NET 
model can be used for equation‑free forecasting on larger spatial domains and for longer times than it 
was trained for, as an autonomous predictor of chaotic dynamics, as a coarse‑graining method, and as 
a data‑adaptive de‑noising method, as we illustrate in numerical experiments. In all tests, STENCIL‑
NET generalizes better and is computationally more efficient, both in training and inference, than 
neural network architectures based on local (CNN) or global (FNO) nonlinear convolutions.

Often in science and engineering, measurement data from a dynamical processes in space and time are available, 
but a first-principles mathematical model may not be. Numerical simulation methods can then not be used to 
predict system behavior. This situation is particularly prevalent in areas such as biology, medicine, environmental 
science, economy, and finance. There has therefore been much interest in using machine-learning models for 
data-driven forecasting of space-time dynamics with unknown governing equation.

Recent advancements in data-driven forecasting techniques using artificial neural networks include the ODIL 
 framework1 and a mesh-free variant using graph neural  networks2. In addition, the feasibility of data-driven 
forecasting of chaotic dynamics has been demonstrated using neural networks with recurrent  connections3–5. The 
common goal of these approaches is to learn a discrete propagator of the observed dynamics. This propagator is 
a combination of the values on finitely many discrete sampling points at a certain time t that explains the values 
at the next time point t +�t . As such, these approaches neither learn a governing equation of the observed 
dynamics, like sparse regression  methods6–8 or PDE-nets9,10 do, nor a data-guided approximation of the solution 
to a known governing equation, like Physics-Informed Neural Networks  do11,12. Instead, they learn discrete rules 
that explain the dynamics of the data. This makes equation-free forecasting from data feasible for a number of 
applications, including prediction, extrapolation, coarse-graining, and de-noising.

The usefulness of data-driven forecasting methods, however, hinges on the accuracy and stability of the propa-
gator they learned. Ideally, the propagator fulfills the constraints for a valid numerical scheme in the discretization 
used to represent the data. Then, the learned propagators can be expected to possess generalization power. This 
has been accomplished when the governing equation is  known13 and for explicit time-integration  schemes14,15. 
Moreover, work on solution- and resolution-specific discretization of nonlinear PDEs has shown that Convo-
lutional Neural Network (CNN) filters are able to generalize to larger spatial solution domains than they have 
been trained  on16. However, an over-complete set of CNN filters was used, which renders their training com-
putationally expensive and data-demanding. It remains a challenge to achieve data-efficient and self-consistent 
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forecasting for general spatio-temporal dynamics with unknown governing equation that generalizes to coarser 
grids in order to accelerate prediction.

Here, we present the STENCIL-NET architecture for equation-free forecasting of nonlinear and/or chaotic 
dynamics from spatiotemporal data across different grid resolutions. STENCIL-NET is inspired by works on 
learning data-adaptive discretizations for nonlinear PDEs, which have been shown to generalize to coarser 
 grids17. This generalization ability derives from the inductive bias gained when a Multi-Layer Perceptron (MLP) 
architecture is combined with a known consistent time-stepping scheme, such as a Runge-Kutta  method18 or 
Total Variation Diminishing (TVD)  methods19,20. On a regular Cartesian grid, it is straightforward to represent 
the spatial discretization by a neural network architecture. STENCIL-NET relies on sliding a small MLP over the 
input patches to perform cascaded cross-channel parametric pooling, which enables learning complex features of 
the dynamics. We illuminate the mathematical relationship between this neural network architecture and ENO/
WENO finite  differences19,20. This connection to classic numerical methods constrains the propagators learned 
by STENCIL-NET to be consistent on average in the sense of numerical analysis, i.e., the prediction errors on 
average decrease for increasing spatial resolution and increasing stencil size. Therefore, STENCIL-NETs can be 
used to produce predictions beyond the space and time horizons they were trained for, for chaotic dynamics, and 
for coarser grid resolutions than they were trained for, all of which we show in numerical experiments. We also 
show that STENCIL-NETs do this better than both Convolutional Neural Networks (CNN) based local nonlinear 
convolutions and Fourier Neural Operators (FNO), which rely on a combination of global Fourier modes and 
nonlinear convolutions. As a consequence of their accuracy and stability, STENCIL-NETs extrapolate better to 
coarser grid resolutions and are computationally more efficient in both training and inference/simulation than 
CNNs and FNOs with comparable numbers of trainable parameters.

The STENCIL‑NET
Consider the following dynamic process in discrete space and time:

where ui = u(xi , tj) are the Nx data points in space and Nt in time, and � are unknown parameters. The subset 
um(xi) = {u(xj) : xj ∈ Sm(xi)} are the (2m+ 1) data points within some finite stencil support Sm of radius m 
around point xi at time t. �x is the grid resolution of the spatial discretization and Nd : R2m+1 �→ R is the 
nonlinear discrete propagator of the data. Integrating Eq. (1) on both sides over one time step �t yields a discrete 
map from u(xi , t) to u(xi , t +�t) as:

where un+1
i = u(xi , t +�t) , uni = u(xi , t) , and unm(xi) = {u(xj , t) : xj ∈ Sm(xi)} . Approximating the integral on 

the right-hand side by quadrature, we find

where Nt is the total number of time steps. Here, Td is the explicit discrete time integrator with time-step size �t . 
Due to approximation of the integral by quadrature, the discrete time integrator converges to the continuous-
time map in Eq. (2) with temporal convergence rate r as �t → 0 . Popular examples of explicit time-integration 
schemes include forward Euler, Runge-Kutta, and TVD Runge-Kutta methods. In this work, we only consider 
Runge-Kutta-type methods and their TVD variants 20. STENCIL-NET approximates the discrete nonlinear 
function Nd(·) with a neural network, leading to:

where Nθ : R2m+1 �→ R are the nonlinear network layers with weights θ . The superscript k in Tk
d denotes that 

the discrete propagator maps k time steps into the future.
Assuming point-wise uncorrelated noise η on the data, i.e., vni = uni + ηni  , Eq. (4) can be extended for map-

ping noisy data from vni  to vn+k
i  , as:

where vnm(xi) = {v(xj , t) : xj ∈ Sm(xi)} are the given noisy data and n̂nm(xi) = {η̂(xj , t) : xj ∈ Sm(xi)} the noise 
estimates on the stencil Sm centered at point xi at time t.

Neural network architecture. STENCIL-NET uses a single MLP convolutional (mlpconv) unit with Nl 
fully-connected hidden layers inside to represent the discrete propagator Nθ and a discrete Runge-Kutta time 
integrator for Tk

d . This results in the architecture shown in Fig. 1. Sliding the mlpconv unit over the input state-
variable vector un (or ûn during inference) maps the input on the local stencil patch to discretization features. 
The computation thus performed by the mlpconv unit is:
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where θ = {Wq, bq}q=1,2,...,Nl
 are the trainable weights and biases, respectively, and ς is the (nonlinear) activation 

function. Usual choices of activation functions include tanh , sigmoid, and ReLU. Sliding the mlpconv unit across 
the input vector amounts to cascaded cross-channel parametric pooling over a CNN layer 21, which allows for 
trainable interactions across channels for better abstraction of the input data across multiple resolution levels.

This is in contrast to a conventional CNN, where higher-level abstraction is achieved by over-complete sets 
of filters, at the cost of requiring more training data and incurring extra workload on the downstream layers of 
the network for composing  features21. We therefore provide a direct comparison with a CNN architecture where 
the feature map is generated by convolving the input x followed by a nonlinear activation, i.e.,

where Wm
k  is a circulant (and not dense, as in Eq. (6) matrix that represents the convolution and depends on 

the size of the filter |Sm| = (2m+ 1) , and bk is the bias term. For further comparison, we also benchmark the 
mlpconv STENCIL-NET architecture against the global operator-learning method Fourier Neural Operators 
(FNO)22. The FNO computation is:

where θ = {Wq, Rq, bq}q=1,2,...,Nl
 are the trainable weights and biases, and ς is the (nonlinear) activation func-

tion. The operators F and F−1 are the forward and inverse Fourier transforms, respectively.
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(
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(
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Figure 1.  The STENCIL-NET architecture for equation-free forecasting from data. The mlpconv unit performs 
parametric pooling by moving a small (stencil size Sm ) MLP network across the input vector ûn at time n 
to generate the feature maps. The features reaching the output layer are the stencil weights of the discrete 
propagator Nθ . A Runge-Kutta time integrator is used to evolve the network output over time for q steps 
forward and backward in time, which is then used to compute the loss.
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Loss function and training. From Eq. (5), we derive a loss function for learning the local nonlinear dis-
crete propagator Nθ:

The loss compares the forward and backward predictions Tk
d of the STENCIL-NET with the training data vn+k

i  . 
It is computed as detailed in Algorithm 1. The positive integer q is the number of Runge-Kutta integration steps 
considered during optimization, which we refer to as the training time horizon. The scalars γk are exponentially 
decaying (over the training time horizon q) weights that account for the accumulating prediction  error23. In 1D, 
we treat the noise estimates η̂i as latent variables that enable STENCIL-NET to separate dynamics from noise. 
In that case, we initialize with estimates obtained from Tikonov smoothing of the training data (initialization 
step in Algorithm 1). For higher-dimensional problems, however, learning noise as a latent variable becomes 
infeasible. We then instead directly learn a smooth (in time) propagator from the noisy data, as demonstrated 
in Section "STENCIL-NET for learning smooth dynamics from noisy data".

We penalize the noise estimates N̂ = [n̂nm]∀(m,n) in order to avoid learning the trivial solution vn+k
i = v̂ni + η̂n+k

i  
of the minimization problem in Eq. (9), where Nθ ≡ 0 and only the noise accounts for the data. We also impose 
a penalty on the weights of the network {Wi}i=1,2,...,Nl

 in order to prevent over-fitting. The total loss then becomes:

where Nl is the number of layers in the single mlpconv unit, N̂ ∈ R
Nx×Nt is the matrix of point-wise noise esti-

mates, and � · �F is the Frobenius norm of a matrix. We perform grid search through hyper-parameter space in 
order to identify values of the penalty parameters. We find the choice �n = 10−5 and �wd = 10−8 to work well for 
all problems considered in this paper. Alternatively, methods like drop-out, early-stopping criteria, and Jacobi 
regularization can be used to counter the over-fitting problem. As a data-augmentation strategy, we unroll the 
training data both forward and backward in time when evaluating the loss in Eq. (9). Numerical experiments 
(not shown) confirm that this training mode on average leads to more stable and more accurate models than 
trained solely forward in time. Regardless, inference is done only forward in time.

Training is done in full-batch mode using an Adam  optimizer24 with learning rate lr = 0.001 . As activation 
functions, we use Exponential Linear Units (ELU) for their smooth function interpolation abilities. While one 
could readily use ReLU, Leaky-ReLU, tanh , or adaptive activation functions with learnable hyper-parameters, we 
find that ELU consistently performs best in the benchmark problems considered below. The complete training 
procedure is summarized in Algorithm 1. To generate a similar CNN architecture for comparison, we replace 
the mlpconv unit in Fig. 1 with the local nonlinear convolution map from Eq. (7). Similarly, for comparison with 
FNO, we replace the mlpconv unit with the feature map from Eq. (8) in order to approximate discrete operators 
through convolutions in frequency space.

Forecasting accuracy
In classic numerical analysis, stability and accuracy (connected to consistency via the Lax Equivalence Theo-
rem) play central roles is determining the validity of a discretization scheme. In a data-driven setting, learning a 
propagator of the values on the grid nodes from a time t to a later time t +�t assumes that the discrete stencil 
of the propagator is a valid numerical discretization of some (unknown) ground-truth dynamical system. In this 
section, we therefore rationalize our choice of network architecture by algebraic parallels with known grid-based 
discretization schemes. Specifically, we analyze the approximation properties of the STENCIL-NET architecture 
and argue accuracy by analogy with the well-known class of solution-adaptive ENO/WENO finite-difference 
 schemes19,20. As we show below, WENO schemes involve reciprocal functions, absolute values, and “switch state-
ments”, and they are rational functions in the stencil values.

MLPs are particularly effective in representing rational functions 26. As a consequence, MLPs can efficiently 
represent WENO-like stencils when approximating the nonlinear discrete spatial propagator Nd . To illustrate 
this, we compare the best polynomial, rational, and MLP fits to the spike function in Fig. 2. The rational and 
MLP approximations both closely follow the true spike (black solid line), whereas polynomials fail to capture the 
“switch statement”, i.e., the division operation that are quintessential for resolving sharp functions.

This also explains the results shown in Fig. 3, where the WENO and STENCIL-NET (i.e., MLP) methods 
accurately resolve the advection of a sharp pulse. Remarkably, the STENCIL-NET can advect the pulse on 4× 
coarser grids than the WENO scheme is able to (Fig. 3D). All polynomial approximations using central-difference 
or fixed-stencil upwinding schemes fail to faithfully forecast the dynamics. Based on this empirical evidence, we 
posit that a relationship between the neural network architecture used and a known class of numerical methods 
is beneficial for equation-free forecasting, in particular in the presence of sharp gradients or multi-scale features. 
We therefore next analyze the numerical-method equivalence of the STENCIL-NET architecture.

Relation with finite‑difference stencils. The lth spatial derivative at location xi on a grid with spacing 
�x can be approximated with convergence order r using linear convolutions:
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where uj = u(xj) . The ξj are the stencil weights that can be determined by local polynomial  interpolation20,27. The 
stencil of radius m is Sm(xi) = {xi−m, xi−m+1, . . . , xi , . . . , xi+m−1, xi+m} with size |Sm| = 2m+ 1 . For a spatial 
domain of size L, the spacing is �x = L/Nx , where Nx is the number of grid points discretizing space. The fol-
lowing propositions  from9,28 define discrete moment conditions that need to be fulfilled in order for the stencil 
to be consistent for linear and quadratic operators, respectively:

Proposition 3.1 (Nonlinear convolutions9) Nonlinear terms of order 2, including products of derivatives (e.g., 
uux , u

2, uxuxx ) can be approximated by nonlinear convolution. For l1, l2, r1, r2 ∈ Z
+
0  , we can write,

such that the stencil size |Sm| ≥ |l1 + r1 − 1| and |Sm| ≥ |l2 + r2 − 1| . Eq. (12) is a convolution with a Volterra 
quadratic form, as described in Ref.29.

(11)
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)∣
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Figure 2.  Approximation properties for sharply varying functions. Best rational, polynomial, and MLP fits to 
the spike function f (x) = (a+ a|x − b|/(x − b))(1/(x + c)2) with a = 0.5 , b = 0.25 , and c = 0.1 . The rational 
function fit uses Newman  polynomials25 to approximate |x|.

Figure 3.  Numerical solutions of advection of a sharp pulse (red dashed line) using different discretization 
schemes. (A) Data-adaptive fifth-order WENO stencils; (B) second- and fourth-order central finite differences; 
(C) first- and third-order upwinding schemes; (D) STENCIL-NET on a 4× coarser grid compared with fifth-
order WENO on the same grid. In all plots the advection velocity is c = 2 in the one-dimensional advection 
equation ut + cux = 0 . All plots are at time t = 3.
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The linear convolutions in Eq. (11) and the nonlinear convolutions in Eq. (12) are based on local polynomial 
interpolation. They are thus useful to discretize smooth solutions arising in problems like reaction-diffusion, 
fluid flow at low Reynolds numbers, and elliptic PDEs. But they fail to discretize nonlinear flux terms arising, 
e.g., in problems like advection-dominated flows, Euler equations, multi-phase flows, level-set and Hamilton-
Jacobi equations 19. This is because higher-order interpolation near sharp gradients leads to oscillations that do 
not decay when refining the grid, see Fig. 3B, a fact known as “Gibbs phenomenon”.

Moreover, fixed stencil weights computed from moment conditions can fail to capture the direction of infor-
mation flow in the data (“upwinding”), leading to non-causal and hence unstable  predictions30,31. This can be 
relaxed by biasing the stencil along the direction of information flow or by constructing weights with smooth 
flux-splitting methods, like  Godunov32 and Lax-Friedrichs33 schemes. To counter the issue of spurious oscilla-
tions, artificial viscosity 34 can also be added at the cost of lower solution accuracy. Alternatively, data-adaptive 
stencils with ENO (Essentially Non-Oscillatory)19 or WENO (Weighted ENO)20 weights are available, which 
seems the correct choice for data-driven forecasting since they do not only adhere to some moment conditions, 
but also adapt to the data themselves.

The ENO/WENO method for discretely approximating a continuous function f at a point xi±1/2 can be writ-
ten as a linear convolution:

where ui±1/2 = u(xi ±�x/2) , and the function values and coefficients on the stencils are stored in 
um = {u(xj) : xj ∈ Sm(xi)} and ν(xj) , respectively. The stencils S±m(xi) are S±m(xi) = Sm(xi) \ xi±m , as illustrated 
in Fig. 4 for the example of m = 3 . Unlike the fixed-weight convolutions in Eqs. (11) and (12), the coefficients 
ν in ENO/WENO stencils are computed based on local smoothness features as approximated on smaller sub-
stencils, which in turn depend on the functions values. This leads to locally data-adaptive stencil weights and 
allows accurate and consistent approximations even if the data ui are highly varying.

The key idea behind data-adaptive stencils is to use a nonlinear map to choose the locally smoothest stencil, 
while discontinuities are avoided, to result in smooth and essentially non-oscillatory solutions. The WENO-
approximated function values ûi±1/2 from Eq. (13) can be used to approximate spatial variation in the data as 
follows:

In finite-difference methods, the function û is a polynomial flux, e.g. û(u) = c1u
2 + c2u , whereas in finite-volume 

methods, the function f is the grid-cell average û = 1
�x

∫ x+�x/2
x−�x/2 u(ξ)dξ.

It is clear from Eqs. (11) and (12) that polynomials (i.e., nonlinear convolutions) cannot approximate divi-
sion operations. Thus, methods using fixed, data-independent stencil weights or multiplications of  filters10 fail 
to approximate dynamics with sharp variations. However, as shown in Fig. 2, this can be achieved by rational 
functions. It is straightforward to see that ENO/WENO stencils are rational functions in the stencil values um . 
Indeed, from Eq. (13), the stencil weights are computed as ν =

g1(um(xi))
g2(um(xi))

 , with a polynomial g1 : R2m+1 → R 
and a strictly positive polynomial g2 : R2m+1 → R 20.

In summary, depending on the smoothness of the data ui , the propagator can either be approximated using 
fixed stencils that are polynomials in the stencil values (Eqs. 11, 12) or using solution-adaptive stencils that 
are rational functions in the stencil values (Eqs. (13), (14)). STENCIL-NET can represent either. This leads to 
the conclusion that any continuous dynamics, smooth or not, N(·) can be approximated by a polynomial or 
rational function in local stencil values um(xi) , up to any desired order of accuracy r on a Cartesian grid with 
resolution �x , thus:

where Nd(·) is the discrete propagator.

Numerical experiments
We apply the STENCIL-NET for learning stable and accurate equation-free forecasting operators for a variety 
of nonlinear dynamics. For all problems discussed here, we use a single mlpconv unit with Nl = 3 hidden layers 
(not counting the input and output layers), and Exponential Linear Unit (ELU) activation functions. Input to 
the network are the data um on a stencil of radius m = 3 in all examples. We present numerical experiments that 
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ûi±1/2 =

∑

xj∈S±(xi)

ν±j u(xj)+ O(�xr),

(14)
∂u

∂x

∣

∣

∣

∣

x=xi

=
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Figure 4.  Illustration of data-adaptive stencils. Schematic of the stencil S3(xi) centered around the point xi . 
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demonstrate distinct applications of the STENCIL-NET architecture using data from deterministic dynamics, 
data from chaotic dynamics, and noisy data.

STENCIL‑NET for equation‑free forecasting. We first demonstrate the capability of STENCIL-NET 
to extrapolate space-time dynamics beyond the training domain and to different parameter regimes. For this, 
we consider the forced Burgers equation in one spatial dimension and time. The forced Burgers equation with 
a nonlinear forcing term can produce rich and sharply varying solutions. Moreover, we choose the forcing term 
at random in order to explore generalization to different parts of the solution  manifold16. The forced Burgers 
equation in 1D is:

for the unknown function u(x, t) with diffusion constant D = 0.02 . Here, we use the forcing term

with each parameter drawn independently and uniformly at random from its respective range: A ∈ [−0.1, 0.1] , 
ω ∈ [−0.4, 0.4] , φ ∈ [0, 2π] , and N = 20 . The domain size L is set to 2π (i.e., x ∈ [0, 2π] ) with periodic bound-
ary conditions and li ∈ {2, 3, 4, 5} . We use a smooth initial condition u(x, t = 0) = exp(−(x − 3)2) and gener-
ate data on Nx = 256 evenly spaced grid points with fifth-order WENO discretization of the convection term 
and second-order central differences for the diffusion term. Time integration is performed using a third-order 
Runge-Kutta method with time-step size �t chosen as large as possible according to the Courant-Friedrichs-Lewy 
(CFL) condition of this equation. For larger domains, we adjust the range of li so as to preserve the wavenumber 
spectrum of the dynamics, e.g., for L = 8π we use li ∈ {8, 9, . . . , 40} . We use the same spatial resolution �x for 
all domain sizes, i.e., the total number of grid points Nx grows proportionally to domain size.

We train STENCIL-NET at different spatial resolutions �xc = (C�x) , where C is the sub-sampling factor. We 
use sub-sampling factors C ∈ {2, 4, 8} in space. We sub-sample the data by simply removing intermediate grid 
points. For example, for C = 2 , we only keep spatial grid points with even indices. During training, time integra-
tion is done with a step size that satisfies the CFL condition in the sub-sampled mesh, i.e., �tc ≤ (�xc)

2/D , where 
�xc = C�x and �tc are the training space and time resolutions, respectively. Training is done in the full spatial 
domain of the data for times 0 through 40, independent for each resolution. We then test how well STENCIL-
NET is able to forecast the solution to times >40. Due to the steep gradients and rapidly varying dynamics of the 
Burgers equation, this presents a challenging problem for testing STENCIL-NET’s generalization capabilities.

Figure 5A compares the STENCIL-NET prediction on a four-fold downsampled grid (i.e., C = 4 ) at the end 
of the training time interval after training on the full-resolution training data. Figure 5B compares the learned 
nonlinear discrete propagator Nθ from the STENCIL-NET with the true discrete Nd of the simulation that 
generated the data. It is thanks to the good match in this propagator that STENCIL-NET is able to generalize for 
parameters and domain-sizes beyond the training conditions. Indeed, this is what we observe in Fig. 6, where we 
compare the fifth-order accurate WENO data on a fine grid (�x = L/Nx , Nx = 256, L = 2π) with the STENCIL-
NET predictions on coarsened grids with �xc = C�x for sub-sampling factors C ∈ {2, 4, 8} and for longer times. 
STENCIL-NET produces stable and accurate forecasts on all coarser grids for times >40 beyond the training data 
(dashed black box). The point-wise absolute prediction error (right column) grows when leaving the training 
time domain, but does not “explode” and is concentrated around the steep gradients in the solution, as expected.

We compare the inference accuracy and computational performance of the mlpconv-based STENCIL-NET 
with a CNN and with the operator-learning architecture FNO. The CNN relies on local nonlinear convolutions, 
whereas the FNO learns continuous operators using a combination of nonlinear convolutions and global Fourier 
modes. Both have previously been proposed for dynamics forecasting from  data22,35. In all comparisons, we use 
a CNN with 5 hidden layers of 10 filters each, and a filter radius m = 3 that matches the stencil radius of the 
STENCIL-NET. For the FNO, we use 5 hidden layers with 6 local convolutional filters per layer. We rule out 
spectral  bias36 by verifying that the fully trained networks can represent the Fourier spectra of the ground-truth 

(16)∂u
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+

∂(u2)

∂x
= D

∂2u

∂x2
+ f (x, t)

(17)f (x, t) =

N
∑

i=1

Ai sin(ωit + 2π lix/L+ φi)

Figure 5.  Comparison between STENCIL-NET (4-fold coarsened) and fifth-order WENO for forced Burgers. 
(A) Comparison between the STENCIL-NET prediction and WENO data over the entire domain at time 
t = 40 , i.e., at the end of the training time horizon. (B) Comparison of the nonlinear discrete operators learned 
by STENCIL-NET ( Nθ ) and the ground-truth WENO scheme ( Nd ) at time t = 40.
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at the different sub-samplings tested. The results in Fig. 6 show that all three neural-network approximations 
are able to capture the power spectrum of the true signal. Next, we compare the mean-square errors of the net-
work predictions at different sub-sampling. The results in Table 1 show that while the FNO performs best for 
low sub-sampling, the STENCIL-NET has the best generalization power to coarse grids. This is consistent with 
the expectation that FNO achieves superior accuracy when trained with sufficient  data22. However, the FNO 
predictions become increasingly unstable during inference for high sub-sampling.

In contrast to the generative network proposed in Ref.14, which used all time frames for training, the para-
metric pooling on local stencil patches enables STENCIL-NET to consistently extrapolate also to larger spatial 
domains, as shown in Fig. 7. Furthermore, as shown in Fig. 8, STENCIL-NET is able to generalize to forcing 
terms (i.e., dynamics) different from the one used to generate the training data. As seen from the point-wise 
errors, all architectures perform well within the training window. Also, the largest errors always occurs near 
steep gradients or jumps in the solution, as expected. The FNO, however, develops spurious oscillations for long 
prediction intervals.

In addition to its improved generalization power, STENCIL-NET is also computationally more efficient 
than both the CNN and FNO approaches. This is confirmed in the timings reported in Table 2 for training and 
inference/simulation, respectively. All times were measured on a Nvidia A100-SXM4 GPU for networks with 
comparable numbers of trainable parameters.

Figure 6.  Forced Burgers forecasting with STENCIL-NET on coarser grids. (A) Left: fifth-order WENO 
ground-truth (GT) data with spatial resolution Nx = 256 . Right: power spectra of the predictions from 
different architectures (STENCIL-NET, CNN, FNO) compared to ground-truth. (B,C,D) Left column: output 
of STENCIL-NET on 2× , 4× , and 8× coarser grids. The dashed boxes contain the data used for training at each 
resolution. Right column: point-wise absolute error of the STENCIL-NET prediction compared to the ground-
truth (GT) data in (A) beyond the training domain.

Table 1.  Prediction Mean Square Error (MSE) comparison between STENCIL-NET, a Convolutional Neural 
Network (CNN), and a Fourier Neural Operator (FNO) of comparable sizes (i.e., numbers of trainable 
parameters) for different sub-sampling of the forced Burgers test case after training for 10,000 epochs with 
q = 2. All networks are trained on data up to time T = 40 , while the errors are evaluated for predictions up to 
time T = 160 . Best performance is highlighted in bold.

Prediction MSE 2× 4× 8×

STENCIL-NET (2264 parameters) 0.0419 0.0392 0.0741

CNN (2281 parameters) 0.0411 0.0562 0.0823

FNO (2665 parameters) 0.0351 0.0488 0.0835
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Finally, we analyze the influence of the choice of STENCIL-NET architecture on the results. Figure 9A,B 
show the effect of the choice of MLP size and of the weight regularization parameter �wd (see Eq. 10) for different 
training time horizons q. Figure 9C compares the accuracies of predictions on grids of varying resolution and 
for different sizes of the space and time domains (L and T, respectively). Training was always done for L = 2π , 
T = 40 . In Figure. 9, we also notice that the prediction error on average decreases for increasing stencil complex-
ity (Fig. 9A) and for increasing mesh resolution (Fig. 9C). This is empirical evidence that STENCIL-NET learns 
a consistent numerical discretization of the underlying dynamical system.

In summary, we find that a STENCIL-NET model trained on a small training domain can generalize well 
to longer times, larger domains, and to dynamics containing different forcing terms f(x, t) in Eq. (17) in a 

Figure 7.  STENCIL-NET extrapolation to larger spatial domains and longer times. (A) STENCIL-NET 
prediction on a 4× coarser grid. (B) Comparison between ground-truth discrete propagator Nd (solid) and 
STENCIL-NET layer output Nθ (dashed) at times 21 (within training data) and 150 (past training data) marked 
by dashed vertical lines in (A). The STENCIL-NET was trained on the data within the domain marked by the 
solid rectangle in (A).

Figure 8.  STENCIL-NET generalization to different forcing terms without re-training. Each panel (A,B,C) 
corresponds to forced Burgers dynamics with a different forcing term (see Eq. 17). Every second row in each 
panel correspond to point-wise error associated with STENCIL-NET, CNN and FNO (left to right). STENCIL-
NET was trained only once using data from (A) (training domain marked by dashed box). Nevertheless, it 
was able to accurately predict the qualitatively different dynamics for the other forcing terms, since it learned 
a discrete propagator of the dynamics rather than the solution values themselves. The plots in the first column 
show the ground-truth data for the different forcing terms, obtained by a fifth-order WENO scheme. The 
three subsequent columns show the predictions on 4× coarser grids without additional (re-)training and the 
corresponding absolute errors (w.r.t. WENO) below each plot. The three columns compare STENCIL-NET with 
a CNN and a FNO of comparable complexity (see Table 1).
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numerically consistent way. This highlights the importance of using a network architecture that mathematically 
relates to numerically valid discrete operators.

STENCIL‑NET as an autonomous predictor of chaotic dynamics. We next analyze how well the 
generalization power of STENCIL-NET forecasting transfers to inherently chaotic dynamics. Nonlinear dynam-
ical systems, like the Kuramoto-Sivashinsky (KS) model, can describe chaotic spatio-temporal dynamics. The KS 
equation exhibits varying levels of chaos depending on the bifurcation parameter L (domain size) of the  system5. 
Given their high sensitivity to numerical errors, KS equations are usually solved using spectral methods. How-
ever, data-driven models using Recurrent Neural Networks (RNNs)5,31,37 have also shown success in predicting 
chaotic systems. This is mainly because RNNs are able to capture long-term temporal correlations and implicitly 
identify the required embedding for forecasting.

We challenge these results using STENCIL-NET for long-term stable prediction of chaotic dynamics. The 
training data are obtained from spectral solutions of the KS equation for domain size L = 64 . The KS equation 
for an unknown function u(x, t) in 1D is:

The domain x ∈ [−32, 32] of length L = 64 has periodic boundary conditions and is discretized by Nx = 256 
evenly spaced spatial grid points. We use the initial condition

(18)∂u

∂t
+

∂(u2)

∂x
+

∂2u

∂x2
+

∂4u

∂x4
= 0.

(19)u(x, t = 0) =

N
∑

i=1

Ai sin(2π lix/L+ φi).

Table 2.  Top: Average (over 1000 epochs) training time per epoch compared between the STENCIL-NET, 
CNN, and FNO from Table 1 with 4× spatial sub-sampling for different training time horizons q. Bottom: 
Average (over 1000 time steps) simulation (inference) time per time-step for the forced Burgers test case with 
different sub-sampling. Best performance is highlighted in bold as measured on a Nvidia A100-SXM4 GPU.

Training time (sec) q = 2 q = 4 q = 6

STENCIL-NET 0.0145 0.0271 0.0398

CNN 0.0350 0.0668 0.0989

FNO 0.0664 0.1296 0.1926

Simulation time (sec) 2× 4× 8×

STENCIL-NET 0.00181 0.00175 0.00172

CNN 0.00346 0.00343 0.00336

FNO 0.00692 0.00685 0.00610

Figure 9.  Architecture choice, choice of �wd , and generalization power. All models are trained on the spatio-
temporal data contained in the dashed box in Fig. 6. The training box encompasses the entire spatial domain 
of length L = 2π and a time duration of T = 40 . (A) STENCIL-NET prediction accuracy (measured as mean 
squared error, MSE, w.r.t. ground truth) for different network architectures. Only hidden layers are counted, 
not the input and output layers. Each data point corresponds to the average MSE accumulated over all stable 
seed configurations. (B) Effect of the weights regularization parameter �wd (see Eq. (10) on the prediction 
accuracy for different training time horizons q. The plots in B were produced with a 3-layer, 64-nodes network 
architecture, which showed the best performance in A and is used also for all other experiments in this paper. 
(C) Plots to illustrate the generalization power of trained STENCIL-NET to larger domains. Each data point 
shows the MSE prediction error from the best model run on the grid of the respective resolution (sub-sample 
factor) for different domain lengths L and final times T. Training was always done on the data for L = 2π and 
T = 40.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12787  | https://doi.org/10.1038/s41598-023-39418-6

www.nature.com/scientificreports/

Each parameter is drawn independently and uniformly at random from its respective range: A ∈ [−0.5, 0.5] , 
φ ∈ [0, 2π] , and li ∈ {1, 2, 3} . We use a spectral method to numerically solve the KS equation using the chebfun39 
package. Time integration is performed using a modified exponential time-differencing fourth-order Runge-
Kutta  method40 with step size �t = 0.05 . For the STENCIL-NET predictions, we use a grid sub-sampling factor 
of C = 4 in space, i.e., Nc = 64 , and we train on data up to time 12.5. The prediction time-step size is chosen as 
large as possible to satisfy the CFL condition.

The spatio-temporal dynamic data from the chaotic KS system is shown in Fig. 10. The STENCIL-NET pre-
dictions on a 4× coarser grid diverge from the true data over time (see bottom row of Fig. 10). This is due to the 
chaotic behavior of the dynamics for domain lengths L > 22 , which causes any small prediction error to grow 
exponentially at a rate proportional to the maximum Lyaponuv exponent of the system. Despite this fundamen-
tal unpredictability of the actual space-time values, STENCIL-NET is able to correctly predict the value of the 
maximum Lyaponuv exponent and the spectral statistics of the system (see Fig. 11). This is evidence that the 
equation-free STENCIL-NET forecast is consistent in that it has correctly learned the intrinsic ergodic properties 
of the dynamics that has generated the data. In Fig. 12, we show a STENCIL-NET forecast on a 4× coarser grid 
for a different initial condition obtained from Eq. (19) with a different random seed, and for longer times ( 8× ) 
than it was trained for. This shows that the statistically consistent propagator learned by STENCIL-NET can also 
be run as an autonomous predictor of chaotic dynamics beyond the training domain.

STENCIL‑NET for learning smooth dynamics from noisy data. The discrete time-stepping con-
straints force any STENCIL-NET prediction to follow a smooth time trajectory. This property can be exploited 
for filtering true dynamics from noise. We demonstrate this de-noising capability using numerical solution data 
from the Korteweg-de Vries (KdV) equation with artificially added noise. The KdV equation for an unknown 
function u(x, t) in 1D is:

Figure 10.  Equation-free forecasting of chaotic Kuramoto-Sivashinsky spatio-temporal dynamics. (Top) 
Spectral solution of the KS equation on a domain of length L = 64 , where the system behaves chaotically. 
Data within the dashed rectangle are used for training of the STENCIL-NET model. (Middle) STENCIL-NET 
forecast on a 4× coarser grid for a 4× longer time. (Bottom) Point-wise absolute difference between the ground-
truth data in the top row and the STENCIL-NET forecast in the middle row.

Figure 11.  Statistical characteristics of the chaotic system. (Left) Comparison of the power spectral density 
(PSD) of the ground-truth solution and the STENCIL-NET prediction on a 4× coarser grid. (Right) Growth 
of the distance between nearby trajectories in the STENCIL-NET prediction, characterizing the maximum 
Lyaponuv exponent (slope of the dashed red line), compared to the ground truth value ≈ 0.084 38.

Figure 12.  Autonomous prediction of chaotic spatio-temporal dynamics. STENCIL-NET can run as an 
autonomous predictor of long-term chaotic dynamics with different initial condition and for longer times that it 
was trained for (training data in the dashed rectangle in Fig. 10) and on a (here 4× ) coarser grid.
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where we use δ = 0.0025 . We again use a spectral method to generate numerical data from the KdV equation 
using the chebfun39 package. The domain is x ∈ [−1, 1] with periodic boundary conditions, and the initial 
condition is u(x, t = 0) = cos(πx) . The spectral solution is represented on Nx = 256 equally spaced grid points 
discretizing the spatial domain.

We corrupt the data vector U = [u(xi , tj)]∀(i,j) ∈ R
NxNt with element-wise independent additive Gaussian 

noise:

with each element of η , η = σN(0, std2(U)) , where N(m,V) is the normal distribution with mean m and vari-
ance V, and std(U) is the empirical standard deviation of the data U , rendering the noise data-dependent. The 
parameter σ is the magnitude of the noise.

We use σ = 0.1 and train a STENCIL-NET over the entire space-time extent of the noisy data with C = 4
-fold sub-sampling in space and a training time-step size of �t = 0.02 . We use a third-order TVD Runge-Kutta 
method for time integration up to final time T = 1 during training. With this configuration, STENCIL-NET is 
able to learn a stable and accurate propagator for the discretized KdV dynamics from the noisy data V , enabling 
it to separate data from noise, as shown in Fig. 13.

Also for this noisy case, we compare STENCIL-NET with CNN and FNO architectures, as in the Burgers 
case without noise. The results in Table 3 show that for low sub-sampling factors, the CNN better predicts the 
ground-truth signal than the STENCIL-NET, but the STENCIL-NET generalizes significantly better to coarser 
grids. However, we were unable to train a stable STENCIL-NET with 2264 parameters (used on 4× and 8× down-
sampling) for prediction with 2× downsampling. This difference in parameterization could cause the spectral 
properties of the neural networks to differ, such that error estimates cannot be compared across resolutions in this 
case. Like in the forced Burgers case, the STENCIL-NET is computationally more efficient than both the CNN 
and FNO (Table 4). Taken together, this example shows the potentially powerful capabilities of STENCIL-NET 
to extract consistent dynamics from noisy data.

Conclusions
We have presented the STENCIL-NET architecture for equation-free forecasting from data. STENCIL-NET 
uses patch-wise parametric pooling and discrete time integration constraints to learn propagators of the discrete 
dynamics on multiple resolution levels. The design of the STENCIL-NET architecture rests on a formal con-
nection between MLP convolutional layer, rational functions, and solution-adaptive WENO finite-difference 

(20)∂u
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∂(u2)

∂x
+ δ

∂3u
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Figure 13.  STENCIL-NET for learning smooth dynamics from noisy data. (A) Korteweg-de Vries data with 
point-wise data-dependent additive Gaussian noise of σ = 0.1 used for training. (B) STENCIL-NET prediction 
after training for 10,000 epochs on a 4× coarser grid using data up to time 1.0 (dashed vertical line). (C) Point-
wise absolute error between the STENCIL-NET prediction and the noise-free ground-truth KdV dynamics.

Table 3.  Prediction Mean Square Error (MSE) comparison for the Korteweg-de Vries (KdV) test case with 
different spatial sub-sampling and q = 4 after 10,000 epochs of training. For 4× and 8× sub-sampling, the 
STENCIL-NET has 2264 parameter, the CNN 2281, and the FNO 2665. For 2× sub-sampling, the STENCIL-
NET has 8897 parameters, the CNN 8761, and the FNO 8681. In all cases, the prediction error is averaged over 
a time window two times longer than the training domain. MSEs are averaged over all stable configurations 
from 5 independent repetitions of the experiment for different network initialization. Best performance is 
highlighted in bold.

Prediction MSE 2× 4× 8×

STENCIL-NET 0.03276 0.01024 0.02509

CNN 0.01532 0.02174 0.07613

FNO 0.03078 0.04860 0.06978
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schemes. This renders STENCIL-NET approximations valid numerical discretizations of some latent nonlinear 
dynamics. The accuracy of the predictions also translates to better generalization power and extrapolation sta-
bility to coarser resolutions than both Convolutional Neural Networks (CNNs) and Fourier Neural Operators 
(FNOs), while being computationally more efficient in both training and inference/simulation. Through spectral 
analysis, we also found that neural architectures capture the power spectrum of the true dynamics, discount-
ing the effects of spectral bias when checking for consistency. We have thus shown that STENCIL-NET can be 
used as a fast and accurate forecaster of nonlinear dynamics, for model-free autonomous prediction of chaotic 
dynamics, and for detecting latent dynamics in noisy data.

STENCIL-NET provides a general template for learning representations conditioned on discretized numeri-
cal operators in space and time. It combines the expression power of neural networks with the inductive bias 
enforced from numerical time-stepping, leveraging the two for stable and accurate data-driven forecasting. 
Beyond being a fast and accurate extrapolator or surrogate model, achieving three to four orders of magnitude 
speedup over traditional numerical solvers for cases where governing equations are known, a STENCIL-NET can 
be repurposed to learn closure corrections in computational fluid dynamics and in active material models. Along 
the same lines, a STENCIL-NET can also be repurposed to learn corrections in coarse-grained discretizations 
using existing numerical methods (e.g., spectral methods or finite-volume methods) in a hybrid machine-learn-
ing/simulation workflow. Finally, since STENCIL-NET is able to directly operate on noisy data, as we have shown 
here, it can also be used to decompose spatiotemporal dynamics from “propagator-free” noise in application areas 
such as biology, neuroscience, and finance, where physical models of the true dynamics may not be available.

Future work includes extensions of the STENCIL-NET architecture to 2D and 3D problems over time and 
to delayed coordinates for inferring latent variables. In addition, combined learning of local and global stencils 
could be explored.

In the interest of reproducibility, we publish our GPU and multi-core CPU Python implementation of STEN-
CIL-NET and also make all of our trained models and raw training data available to users. They are available 
from https:// github. com/ mosaic- group/ STENC IL- NET.

Code availability
The source code, trained models, and data reported in this study are available at: https:// github. com/ mosaic- 
group/ STENC IL- NET.
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