
SOFTWARELPRACTICE AND EXPERIENCE, VOL. 15(11). 1025-1040 (NOVEMBER 1985)

A File Comparison Program
WEBB MILLER AND EUGENE W. MYERS

Ikpartmrnt of Cbmputer Science, L*nic.etrity of;lti,-otra, Tiicsoir. .-U 85721, I-..S.. I.

SUMMARY
This paper presents a simple method for computing a shortest sequence of insertion and deletion
commands that converts one given file to another. The method is particularly efficient when the
difference between the two files is small compared to the files' lengths. In experiments performed
on typical files, the program often ran four times faster than the UNIX diff command.

KEY WORDS Edit distance Edit script Filc comparison

INTRODUCTION

A file comparison program produces a list of differences between two files. These
differences can be couched in terms of lines, e.g. by telling which lines must be inserted,
deleted or moved to convert the first file to the second. Alternatively, the list of
differences can identify individual bytes. Byte-oriented comparisons are useful with
non-text files, such as compiled programs, that are not divided into lines.

The approach adopted here is to generate only instructions to insert or delete entire
lines. Since lines are treated as indivisible objects, files can be treated as containing lines
consisting of a single symbol. In other words, an n-line file is modelled by a string of n
symbols.

In more formal terms, the file comparison problem can be rephrased as follows. The
edit distance between two strings of symbols is the length of a shortest sequence of
insertions and deletions that will convert the first string to the second. T h e goal, then, is
to write a program that computes the edit distance between two arbitrary strings of
symbols. In addition, the program must explicitly produce a shortest possible edit script
(i.e. sequence of edit commands) for the given strings.

Other approaches have been tried. For example, Tichy ' discusses a file-comparison
tool that determines how one file can be constructed from another by copying blocks of
lines and appending lines. However, the ability to economically generate shortest-
possible edit scripts depends critically on the repertoire of instructions that are allowed
in the scripts.2

File comparison algorithms have a number of potential uses beside merely producing
a set of edit commands to be read by someone trying to understand the evolution of a
program or document. For example, the edit scripts might be text editor instructions
that are saved to avoid the expense of storing nearly identical files. Rather than storing

0038-0644/85/111025-16$01.60
0 1985 by John Wiley & Sons, Ltd.

Receizyed I October 1984
Revised 21 January f985

1026 WEBB MILLER AND EUGENE W. MYERS

two long files, just one of the files and a (presumably short) file containing instructions
like

replace lines 6-8 by the line "*s++ = *t++;"

is stored. Rochkind3 and Tichy4 discuss version control systems based on this technique.
As further testimony to the range of uses for file comparison techniques, one of the

earliest algorithms for the problem was invented simultaneously by biologists interested
in comparing long molecules such as proteins and by speech processing experts trying to
compare spoken words with known words.' These algorithms have also been used in
information retrieval systems to cope with spelling mistakes6 and for video redisplay,
where the problem is to send the computer terminal a minimal set of display
modification commands that will bring the image up to date.'

STRAIGHTFORWARD APPROACHES

The simplest method of file comparison is to look through the two files line by line until
they disagree, then search forward in the files until a matching pair of lines is found.
Regardless of the strategy for resynchronization, this simple approach suffers from the
defect of sometimes producing edit scripts that are much longer than necessary.

T o see what goes awry, let the first string consist of n repetitions of the six symbols
axxbxx and let the second string be derived by adding bxx to the front of the first string.
Most of the simple resynchronization strategies will match xs. For the case n = 1, the
matching looks as follows:

Simple strategy
axxbxx

I I I I
bxxaxxbxx

Optimal strategy
axxbxx
\\\\\

bxxaxxbxx

For each of the n segments in the general case, a and b are deleted, then inserted in the
opposite order; bxx is inserted at the end. This produces an edit script of length 4n + 3.
On the other hand, the minimal edit script just inserts bxx at the front.

In practice, it is common for file comparison programs to require that several
consecutive lines match before resynchronization. In the above example, the same edit
script of length 4n + 3 is produced even if resynchronization requires that two
contiguous symbols must match. But if three symbols must match before resynchroniza-
tion is achieved, then the optimal script is found. None the less, the example can be
modified to show that any resynchronization strategy that looks fork aligning symbols is
not optimal. Moreover, for large k more time is required and matching substrings of
length less than k will be missed.

The failure of simple file comparison algorithms is more than just a theoretical
curiosity; it can easily happen in practice. For example, suppose that a procedure is
added to the beginning of a source file for a program and this file is then compared

A FILE COMPARISON PROGRAM 1027

0 1 2 3 4 5 6
1 2 3 2 3 4 5 a
2 3 2 3 2 3 4 6
3 2 3 4 3 4 3 c
4 3 4 3 4 3 4 a
5 4 3 4 3 4 5 6
6 5 4 5 4 5 6 6
7 6 5 4 5 4 5 ~

against the original file. Where is the first point that lines of the files match? Quite
possibly, the match occurs at the ends of the first procedures in each file where there are,
for example, several blank lines. If the file comparison program resynchronizes at this
point by, in effect, removing the first procedure from each file, then the resulting
situation is the same as at the start:file2 is justfirel with an additional procedure tacked
on the front. Thus the algorithm may report that the two files are entirely different,
except for blank lines.

AN EFFICIENT ALGORITHM

The algorithm described below always produces a shortest possible edit script. It works
very well on files where the differences are small, and poorly only when the files are quite
different. These performance characteristics make for a very efficient comparison tool in
the frequently occurring situations where differences are expected to be small. An earlier
algorithm' enjoys the same general property, but is substantially more complicated. T h e
detailed analysis verifying the correctness and time complexity of the algorithm is
deferred until the next section.,

All the information needed to compute the edit distance between strings A and H can
be determined by comparing every element of A with every element of B. Thus,
denoting the length of A by rn and the length of B by n, nixn comparisons suffice. A
systematic approach is developed that uses three rules to build up a solution from the
solutions to the subproblems that are obtained by considering initial segments of the
given strings. Which subproblems need to be solved cannot be determined until the final
solution is in hand. This fact is confirmed by the straightforward algorithms, which fail
because they fix on specific edit instructions before the two files are completely known.

Let D [i j] be the edit distance between the first i symbols of A(denoted A[1 4) and the
first j symbols of B (denoted B[1 ?I). D [i j] makes sense even when i or j is zero; for
example U[i,O] is the edit distance between a string of i symbols and a string of 0
symbols, which obviously equals i. These values are arranged as a matrix with 1 +rn rows
(one row giving the values D[O,j] and one row for each entry of A) and l+n columns
(one column giving the values D[i,O] and one for each entry of H). For example, if A =
abcabba and B = cbabac, the matrix of edit distances is

c b a b a c l

In this example, the entry 0[5,4], which lies at the intersection of row 5 and column

1028 WEBB MILLER AND EUGENE W . MYERS

4, (row and column numbers start with 0) is the edit distance between abcab (the string
labelling rows 1-5) and cbab (the string labelling columns 1-4). The value in that
position is 3 because abcab can be transformed into cbab by deleting the leading a and
the c from the first string, then inserting a c at the front, but there is no shorter edit
script for the transformation. (There may be more than one shortest edit script for a
given pair of strings; in this case, delete a and b and insert a b.)

The above matrix exhibits several useful patterns that appear for any choice of the two
input strings. The ith row (for any i) begins with i, and each pair of adjacent values
differs by 1. The same is true of columns. Diagonals, however, have a different
structure. T o make this precise, number the diagonals of D as follows.

...
diagonal 2

diagonal 0
diagonal-l:0,1,2,3 4 5 6
diagonal-2 1 2 3,2 3 4 5

3 2\3\4\3\4,3

6 5 4 5 4,5,6
7 6 5 4 5 4 5

... \ \ \ 2,3,2\322\3 4

4 3 4 \ 3 \ 4 \ 3 \ 4
5 4 3 4 \3 \4 \5

The values of D along diagonal k begin with lkl, then jump to Ikl + 2, then to Ikl + 4,
and so on. T h e validity of this pattern follows from another of particular algorithmic
interest: all occurrences of a given value d are on diagonals -d , -cf +2, . . . , d-2 and d.
That is, the entries with value d lie along alternate diagonals in a band of half-width d ,
centered around diagonal 0. A formal proof of these observations is not given here but
can be inferred from the algorithm’s proof of correctness given beow.

The file comparison algorithm systematically constructs a solution by using three
rules to fill values in the D matrix. Along with each value D[i j] , the algorithm
accumulates an edit script of length D [i j] that converts A [1 :i] to B [1 i] . T h e algorithm
begins operation by determining all entries in the D matrix that are 0. As is evident,
these entries are just the values D[i,i] on diagonal 0 where A[k] = B[k] for all k 5 i. In
other words, the algorithm starts by finding identical prefixes of A and B . Then the
algorithm applies the three rules to determine all entries in D that equal 1. Then it fills in
the 2s, then the 3s and so on. This continues until the ‘south-east’ value IJ[m,n] is
determined, at which point the algorithm has found a shortest possible edit script for
converting the first input string to the second. In specifying the rules, the notation A[i]
denotes the ith symbol of A and B [j] denotes thej th symbol of B.

Rule 1: ‘Move right’
Suppose that:

(i) D[i, j-11 (the value just to the left of D[i,j]) is known.
(ii) An edit script of lengthD[i,j- 11 that converts A[1 : i] toB[1 :j- 11 is known.

(iii) D[i, j] is unknown.

A FILE COMPARISON PROGRAM 1029

Then D[i, j] = D[i, j - 11 + 1, and adding the command ‘Insert B [j] after symbol i’
to the edit script of (ii) produces a shortest edit script for converting A [l : i] to
B[1 : j] .
If the algorithm has determined the value of D[i, j - 13, but not that of Z>[i, j] , then

U[;,j] must be greater than D[i j - 13. Consequently, Z l [; j] must equal U[i j - 13 + 1 ,
since the rule shows how to construct a script of this length.

As an example, consider D[3,3], the edit distance from abc to c-ba in the sample
problem. Suppose that (i) D[3,2], the edit distance from abc to cb, is 3, that (ii)

Delete symbol 1
Delete symbol 2
Insert b after symbol 3

is a shortest possible edit script for converting abc to cb, and that (iii) Z>[3,3] has not
been filled in. Rule 1 then asserts that D[3,3] must equal 4, and appending the command
‘Insert a after symbol 3’ to the edit script given in (ii) yields a shortest edit script for
converting abc to cba.

Edit commands refer to symbol positions in the otigittul string. Thus the second
delete command in the script above removes the b in uhc and not the c. Also, a sequence
of insertions after the same position are assumed to occur in order. Thus the first insert
command in the script above places a b after the c in abc and the second ‘Insert after
symbol 3’ places an a after the b just inserted. These ‘parallel’ scripts are not sequentially
executable by common text editors but are oriented towards users, who cannot retain the
intermediate states of a long edit. None the less, these scripts perform the desired
transformation if executed sequentially in reverse order.

Rule 2: ‘Move down’
Suppose that:

(i) D[i-1, j] (the value just above D[i, j]) is known.
(ii) An edit script of length D[i- 1, j] that converts A[1 : i- 11 to Z3[1 : j] is

(iii) D[i , j] is unknown.
Then D[i, j] = D[i- 1, j] + 1, and adding the command ‘Delete symbol i’ to the edit
script of (ii) produces a shortest edit script for convertingA[l: i] to B[1 : J] .

As an example, again consider D[3,3] in the sample problem, which is the edit
distance from abc to cba. Suppose that (i) ZJ[2,3], the edit distance from a6 to cba, is 3,
that (i i)

known.

Delete symbol 1
Insert c after symbol 1
Insert a after symbol 2

is a shortest possible edit script for converting ab to cba, and that (iii) ZJ[3,3] has not
been filled in. Rule 2 then asserts that D [3,3] = 4, and appending the command ‘Delete
symbol 3’ to the edit script given in (ii) yields a shortest edit script for converting abc to
cba .

1030 WEBB MILLER AND EUGENE W. MYERS

0 1 2
1 2 . 2 . . .
2 . 2 . 2 . . b
. 2
.
.
.
.

Rule 3. ‘Slide down the diagonal’
Suppose that

(i) D[i-1,j-11) (the value just above and to the left of D[ij]) is known.
(ii) An edit script of lengthD[i- 1, j- 13 that convertsA[1 : i- 11 to B [1 : j - 11 is

known.
(iii) A[;] = B[j].
Then D[i, j] = D[i-1, j-11, and the edit script of (ii) is a shortest edit script for
converting A [1 : i] to B[1 : 11.

As an example, look at D[5,4] in the sample problem. Rule 3 says that any edit script
of length D[4,3] for abca and cba, such as

a

c
a
b
b
a

Delete symbol 1
Delete symbol 2
Insert a b after symbol 3

is an edit script for abcab and cbab of length D[5,4]

For an illustration of how values of D are determined, suppose that the Os, 1s and 2s
have been filled in the sample matrix of edit distances:

I c b a b a c

Now apply Rules 1-3 to see how far 3s extend down diagonal 1. Rules 1 and 2 imply that
any unfilled position that is immediately to the right of, or immediately below, a 2 must
contain a 3. Thus these rules place 3s in positions [1,2], [2,3] and [3,4]. Rule 3 then
permits a 3 to fill in the [4,5] location, since the row and column labels there are both a,
and since this position has a 3 immediately to its north-west. The same sort of reasoning
fills in the 3s shown on the next page in diagonals -3, - 1 and 3.

The example illustrates that the algorithm finds the d entries of the D matrix by moving
right or down from ad- 1 entry and then making a sequence of diagonal moves. It follows
that d values are filled in only on diagonals -d, -d+2, . . . ,d-2,d. As already mentioned,
all 0s go on diagonal 0. The 1s are filled in by either moving down from diagonal 0 to
diagonal - 1, or moving right from diagonal 0 to diagonal 1, then sliding down a diagonal.

A FILE COMPARISON PROGRAM 103 1

0 1 2 3 . . .
1 2 3 2 3 . .
2 3 2 3 2 3 .
3 2 3 . 3 . 3
. 3 . 3 . 3 .
. . 3 . 3 . .
.
.

c b a b a C I

For the 2s, the algorithm moves right or down from diagonals k 1, from which it can reach
only diagonals -2, 0 and 2, then slides diagonally. Continuing inductively shows the
general pattern to be true.

For efficiency, not all the entries of I> are explicitly computed and stored. The
algorithm only records those d entries nearest the bottom of I) in each relevant diagonal
(i.e. diagonals -d, -d+2, . . ., d-2,d). T h e notation l a s t d [k] indicates the last row
containing the most recent value of d to be filled in diagonal k . This simplification is
valid since the sought-after corner D[m,n] is such an entry. Furthermore, since the
diagonals containing ((1- 1)s alternate with diagonals containing ds, the algorithm can
use the same array to hold both the (d - 1) entries and the d entries it is computing from
them.

Assuming that l a s t l l [k - 11 and l a s t d [k + 11 indicate the positions of the last (d- 1)s
on diagonals k - 1 and k + 1, how is the last d on diagonal k located? T h e first problem is
to find a value of d on diagonal k . One possibiiity is to move right from the last d - 1 in
diagonal k-1 to the row lastA[k-1] on diagonal k . T h e other possibility is to move
down from the last d - 1 in diagonal k+ 1 to the row l a s t A [k + 13 + 1 on diagonal k . The
algorithm selects the more advantageous of the two moves. Thus if l as t i l [k+l] 2
lustl l[k-l] it moves down, otherwise it moves right. (Special care is needed for k =
+d, i.e. for the diagonals that have (d- 1)s on only one side.) Once on diagonal k , the
algorithm slides as far as is permitted by Rule 3.

For an example, return to the problem of filling 3s in diagonal 1 of the sample
problem. Just after the 2s have been filled in, lastd[O] = 2 and lastA[2] = 2. Moving
right from diagonal 0 would yield a 3 in row 2 of diagonal 1, whereas moving down from
diagonal 2 yields a 3 in row 3. Hence the algorithm applies the move down rule to reach
position [3,4], slides down to row 4 using Rule 3, and sets last_d[l] to 4.

Given this method of determining edit distances, producing a corresponding edit
script is straightforward. An edit script denoted script[k] is associated with each
lasti i[k], and updated according to Rules 1-3. The algorithm fragment that locates the
last d on diagonal k is given in Figure 1.
The test

if (k = -d or (k =l d and l a s t d [k + l] 2 lastd[k-11))

1032 WEBB MILLER AND EUGENE W. MYERS

I* Find a d on diagonal k. *I
if (k = -d or (k f d and lastd[k+l] 2 lastd[k-l])){

I* Moving down from the last d - l on diagonal k+l *I
I* puts you further along diagonal k than does V
I* moving right f m m the last d-1 on diagonal k - I . *I
row = lastd[k+l] + 1
script[k] = script[k+l] with the command

‘Delete the mwth symbol’ appended
1 el= {

I* Move right from the last d - I on diagonal k - I . *I
row = lastd[k-1]
script[k] = script[k-1] with the command

‘Insert B[row+k] after the mwth symbol’ appended
}
I* Column where mw intersects diagonal k *I
col = row + k

I* Slide down the diagonal. #I
while (row < m and col < n and A[row+l] =B[col+l]) {

row = row + 1
col = col + 1

1
lastd[k] = row

Figure 1. Locating the last d on diagonal k

takes special care with the cases k = f d . When k is -d , the algorithm is working on the
lowest diagonal that contains ds. The diagonal above it (diagonal k + 1) contains one or
more (d - l) s , but the diagonal just below (diagonal k - 1) contains none, and last-
d[k- 11 is not defined. The clause ‘k = -d’ guarantees that the move down rule will be
applied. Similarly, the clause ‘k # d’ guarantees that the move right rule is applied when
k equals d .

The next step is to enclose the above algorithm fragment in loops that vary d and k
appropriately. Perhaps the first pair of looping statements that one might try is:

ford = 1,2,3, . . .
for k = -d, -d+2, . . . , d-2, d

However, an alternative approach (Figure 2) helps to guarantee that array references
stay in bounds and further restricts the ‘search band’ of the algorithm. For example,
suppose TOW reaches rn, meaning that the algorithm has hit the bottom of the I) matrix,
say on diagonal k. It is pointless to fill in values to the left of diagonal k, since they
cannot contribute to the value of D[rn,n]. T h e algorithm arranges that diagonal k+ 1 will
be the lowest diagonal that is considered when d is incremented. This is done by using a
pair of bounds, lower and upper, that give the range of diagonals to consider at each
iteration. Normally, lower is decremented by one and upper is incremented by one in
each iteration. However, in the situation above the algorithm sets lower to k + 2 and lets

A FILE COMPARISON PROGRAM 1033

I* Initialize: 0 entries in D indicate identical prefixes *I
row = min (i:A[i+l] # B [i+l])
lastd[O] = row
script[O] = NULL
if (row = m) lower = 1 else lower = - 1
if (row = n) upper = -1 else upper = 1
if (lower > upper)

I* for each value of the edit distance *I
for d = 1,2, . . . , m a s d {

I* for each relevant diagonal *I
for k = lower, lower + 2, . . . , upper - 2, upper {

Locate the last d on diagonal k, as in Figure 1.
if (row = m and col = n)

Print the edit script pointed to by script[k]
and terminate execution.

I* Hit last row; don’t look to the l e f t *I
lower = k + 2

I* Hit last column; don’t look to the right. *I
upper = k - 2

Report that the files are identical and terminate execution

if (row = m)

if (col = n)

}
lower = lower - 1
upper = upper + 1

1
Print a message indicating that the edit distance is greater than rnax-d.

Figure 2. The high-level structure of the algorithm

the default decrement set it correctly to k + 1. T h e bound upper is similarly set when col
reaches ?I on a given diagonal.

T h e algorithm terminates after rnaxif iterations of the outermost loop. If there are no
edit scripts of length at most m a x l l , then the algorithm quits and reports this fact. This
characteristic is desirable in the common case that one does not want to see the
difference if it is too large to be useful. If inaxl i is set to m + n, the algorithm finds the
difference regardless of its size.

An implementation of the complete algorithm in C is given in the Appendix.

ANALYSIS OF T H E A L G O R I T H M

Correctness
T h e algorithm employs the simple strategy of finding each d entry by moving right or

down from a d- 1 entry and then making a sequence of diagonal moves. It has yet to be
shown that this strategy correctly fills in the L) matrix and hence that the algorithm is

1034 WEBB MILLER AND EUGENE W. MYERS

correct. An inductive argument is needed to show that at stage d every d entry in the L)
matrix is found by the strategy. In effect, an argument about all edit scripts is required.
Certainly, scripts that insert and subsequently delete a given symbol are not optimal and
need not be considered. For the remaining scripts, assume without loss of generality that
the commands of a script are ordered according to the position in A affected by the
command. The scripts produced by Rules 1-3 have this property.

Suppose that S is a shortest edit script of length d for entryD[ij]. For the basis, d=O,
it follows that i=j and A [k] = B[k] for all k 5 i. But the algorithm correctly fills in these
entries in its initialization step. Proceeding inductively, suppose that d > 0 and let R be
the first d- 1 commands of S. The algorithm’s strategy is correct if R is a shortest script
for an entry D[p,q] that can reach D [i j] via a move right or down and a sequence of
diagonal moves. Suppose that the last command of S is ‘Delete symbol k’, where k is
between 1 and i. Then the last i - k symbols of A[1 :i] must match the last i - k symbols of
B[1 4 . Thus S must also be a shortest script for convertingA[1 :k] into B[1 i - (i - k)] . If
it were not, then the shorter script would, by Rule 3, be a shorter script for D[ij] , which
is a contradiction. I t then follows that R must be a shortest script for converting
A[l:k-1] into B[lj-(i-k)]. Again, if it were not then the shorter script plus the
command ‘Delete symbol k’ would, by Rules 1 and 3, be a shorter script for D [i j] ,
which is a contradiction. But entry D[i j] can be reached from D[k- 1, j - (i - k)] by a
move down and a sequence of diagonal moves. Similar reasoning reveals that if the last
command of S is ‘Insert an x after symbol k’ where k is between 1 and i and x is
arbitrary, then R is a shortest script for converting A[l:k] to B[1 $-(i-k)-l]. But
again, entryD[ij] can be reached fromD[kj-(i-k)- 11 by a move right and a sequence
of diagonal moves. Thus the strategy and algorithm are correct.

A more detailed discussion of the formal issues for the edit distance problem and its
generalizations is given in Reference 9.

Efficiency
At worst, the algorithm must determine all the entries of D, hence its running time is

at worst proportional to mXn. This is expected, since it is known that for every one of a
certain large class of file comparison algorithms there exists some pair of files for which
the algorithm takes time proportional to m Xn.’O

The advantage of the algorithm is that it performs efficiently when the size of the
output is small compared to m and n . Since the algorithm stops as soon as D[m,n] is
filled in, only diagonals -d to d are considered, where d = D[m,n]. Thus the running
time is proportional to the number of entries on those diagonals, which is less than
(26+ l)min(m,n). Moreover, the expected running time is proportional to min(rn,n) +
d2 under appropriate distributional assumptions. ‘ I

Most file comparison algorithms do not perform this well when the two files are nearly
identical. Some take time proportional to mXn regardless of d.” Other algorithms
depend heavily on the number r of pairs [ij] where A[;] equals Sb] , which may be large
in cases where d is small.13

An algorithm whose performance depends on r is used in the UNIX dzfcommand.133 I’
To show how disastrous this dependence on r can be, d;ff was compared to fcomp, the
new algorithm’s implementation as listed in the Appendix. Both programs were run with
file 1 consisting of 1000 blank lines, andfile 2 consisting offile 1 with a single non-blank
line added to both ends. This choice makes d = 2 and r = 10”. Thefcomp program took

A FILE COMPARISON PROGRAM 1035

about half a second of computer time (on a VAX 11/780), whereas cl i f f took over 2-5
minutes.

T o turn the tables, the two programs were run on a pair of 1000-line files with no lines in
common. This choice makes d = 2000 and I' = O;.fcoinp ran out of memory after one
minute (and reported that the edit distance was at least 617), whereas d# solved the
problem in about 8 seconds. (This mode of failure for fcomp can be avoided since the
algorithm can be modified to run in space proportional to in+n.") Thus there exist
pathological cases where fcomp's performance is much worse than cliff s, and vice versa.

To obtain a more realistic idea of how fcomp compares with ci#, figures were gathered
for their relative performance comparing 1000-line files of C programs, with various
values of d between 5 and 50. Typical values of I' were 10,00&20,000. (If one out of
every 10 lines were blank, then the pairs of blank lines, one from each file, would
contribute 10,000 to Y.) On these problems, fcomp typically ran about 4 times faster than
dqf. The only circumstances in which this trend was broken were cases when all
differences between the files fell in a small range of lines. diff begins operation by
stripping away lines that match at the fronts and rears of the two files. For example, if all
differences between the two files occur in lines 1-100, cliff quickly reduces the problem
to that of comparing two 100-line files, then applies its main algorithm. For such
problems, fcomp ran about 2-3 times faster than diff.

It is notoriously difficult to judge the relative merits of two programs, since
performance often depends critically on the data and the programming details. T o
evaluate the effect of coding differences, diff's underlying algorithm was implemented in
the spirit of fcomp. In particular, each line of the two files was saved using a call to the
storage allocation routine malloc. (To conserve space, dqf stores internally only the lines'
hash values. This strategy costs the time to compute those values and to read each file
twice, but speeds the process of comparing lines.) Again, ji-omp was more efficient by a
factor of around four. The program listing given in the Appendix will facilitate efforts to
corroborate, extend or invalidate this experimental conclusion.

ACKNOWLEDGEMENTS

We would like to thank Chris Fraser, Gary Levin and Titus Purdin for suggesting
several improvements to the paper. Walter Tichy pointed out References 5 and 8 and the
referees made several helpful suggestions. This work was supported by National Science
Foundation under Grants MCS82-10722 and MCS82-10096.

APPENDIX

The following program pp. 1036-1039 implements the file comparison algorithm in C.

1036 WEBB MILLER AND EUGENE W. MYERS

I *
fcomp - a file comparison program

A command line has the form
fcomp [-n] filel file2

where the optional flag n is an integer constant that limits the size of
edit scripts that wlll be considered by fcomp. If all edit scripts changing
filel to file2 contain more than n insertions and deletions, then a message
to that effect is all that is printed. If no n Is speclfled, then arbitrarily
long edit scripts are considered.

* I
#include cstdio.h>
#define MAXLINES 2000
#define ORIGIN MAXLINES / * subscript for diagonal 0 */
#define INSERT 1
#define DELETE 2

/ * edit scripts are stored in linked lists */

/ * maximum number of lines in a file * /

struct edit {
struct edit 'link;
int op;
int linel;
int line2;

1;
char 'A[MAXLINES], 'B[MAXLINES];

main(argc. argv)
int argc;
char 'argvo;
l

int m a i d ,
m,
n,
lower,
upper,
d,
k.
row,
col;

I * prevlous edit command *I
1' INSERT or DELETE */
/ * line number in filel */
/ * line number in file2 */

/ * pointers to lines of filel and file2 */

/ * bound on size of edit script *I
/ * number of lines in filel */
/ * number of lines in file2 '/
/ * left-most diagonal under consideration */
/* right-most diagonal under consideration * /
/ * current edit distance */
I * current diagonal */
I * row number ' 1
/ * column number * I

/ * for each diagonal, two items are saved: ' 1
lnt lastd[2'MAXLINES+l];
struct edit *script[2'MAXLINES+l];

struct edit *new;
char 'malloc();

if (argc > 1 && argv[l][O] = I - ') {

/ * the row containing the last d * I
/ * corresponding edit script * I

m a i d = atoi(&argv[l][l]);
++argv;
--argc;

m a i d = 2'MAXLiNES;

fatal("Fcomp requires two file names.");

) else

if (argc I= 3)

/ * Read In file1 and flle2. */
m = in_file(argv[l], A);
n = in_fiIe(argv[2], B);

A FILE COMPARISON PROGRAM 1037

/ * Initialize: 0 entries in D indicate identical prefixes. * /
for (row = 0; row c m && row c n 88 strcmp(A[row], B[row]) = 0; ++row)

lastd[ORIGIN] = row;
script[ORIGIN] = NULL;
lower = (row = m) 7 ORIGIN + 1 : ORIGIN - 1;
upper = (row = n) 7 ORIGIN - 1 : ORIGIN + 1;
if (lower > upper) (

puts("The files are identical.");
exit(0);

I
/ * for each value of the edit distance * /
for (d = 1; d c= maLd ; ++d) (

/ * for each relevant diagonal */
for (k = lower; k C= upper; k += 2) (

/ * Get space for the next edit instruction. * /
new = (struct edit *) malloc(sizeof(struct edit));
if (new = NULL)

exceed(d);

/ * Find a d on diagonal k. * /
if (k = ORIGIN-d 1 1 k != ORIGIN+d && lastd[k+l] >= lastd[k-11) (

/ *
Moving down from the last d-1 on diagonal k+l

* puts you farther along diagonal k than does
moving right from the last d-1 on diagonal k-1.

* I
row = lastd[k+l]+l;
neW->link = script[k+l];
new->op = DELETE;

/ * Move right from the last d-1 on diagonal k-1. * /
row = lastd[k-11;
new->link = script[k-11;
new-zop = INSERT;

] else (

I
/ * Code common to the two cases. * /
new->line1 = row;
new->line2 = col = row + k - ORIGIN;
script[k] = new;

/ * Slide down the diagonal. * /
while (row c m 88 col c n 881 strcmp(A[row],B[col]) == 0) (

++row;
++coI;

I
lastd[k] = row;

if (row = m && col = n) (
I * Hit southeast corner; have the answer. */
putscr(script[k]);
exit(0);

I
if (row = m)

/ * Hit last row; don't look to the left. * /
lower = k+2;

/ * Hit last column; don't look to the right. */
upper = k-2;

if (col = n)

1038 WEBB MILLER AND EUGENE W. MYERS

I
--lower;
++upper;

1
exceed(d);

1
/ * in-file - read in a file and return a count of the lines *I
idiie(fi1ename. P)
char 'filename, *P[];
f

char buf[100], 'malioc(), 'fgeta(), 'save, 'b;
FiLE 'fp, 'fopen();
int lines = 0

If ((fp = fopen(fiienarne, '7'')) = NULL) (
fprintf(stderr, "Cannot open file %s.\n", filename);
exit (1);

I
while (fgets(buf, 100, fp) I= NULL) (

if (lines >= MAXLINES)
fatal("Fiie is too large for fcomp.");

i f ((save = malloc(strlen(buf)+l)) = NULL)
fatai("Not enough room to save the files.");

P[iines++] = save;
for (b = buf; *savet+ = ' b y) I* copy the line *I

1
fciose(fp);
return(iine8);

1
1' putscr - print the edit script */
putscr(8tart)
struct edit *start;
(

struct edit 'ep, 'behind, 'ahead, *a, 'b;
int change;

/ * Reverse the pointers. */
ahead = start;
ep = NULL;
while (ahead I= NULL) (

behind = ep;
ep = ahead;
ahead = ahead->link;
ep->link = behind; / * Flip the pointer. */

1

/ * Print commands. * /
while (ep I= NULL) (

b = ep;
i f (ep->op = INSERT)

printf("inserted after line 9bd:\n", ep->iinel);
eiae [1' DELETE */

/ * Look for a block of conaecutive deleted lines. *I
do I

a = b;
b = b->iink;

while (bl=NULL && b->op=DELETE && b->iinel=a->linel+l);
/* Now b points to the command after the last deletion. */

A FILE COMPARISON PROGRAM 1039

change = (b!=NULL 88 b-sop==iNSERT 88 b-slinel=a->iinel);
if (change)

else

i f (a = ep)

else

/ * Print the deleted lines. */
do (

) while (ep I= b);
if (Ichange)

continue;
printf("To:\n");

. printf("Changed ");

printf("De1eted ");

printf("iine %d:\n", ep-slinel);

printf("lines %d-%d:\n", ep-slinel, a-Ainel);

printf(" %s", A[ep-Ainel-11);
ep = ep->link;

1
/ * Print the inserted lines. */
do (

printf(" 96s". B[ep-zlineS-l]);
ep = ep->link;

) while (ep I= NULL 88 ep-sop = INSERT 88 ep->iinel = b-slinel);
1

1
/ * fatal - print error message and die */
fatai(msg)
char 'msg;
(

1
/ * exceed - the difference exceeds d */
exceed(d)
int d;
(

1

fprintf(stderr, "%s\n". msg);
exit(1);

fprintf(stderr, "The files differ in at least %d iines.\n". d);
exit(1);

REFERENCES

1. W. Tichy, 'The string-to-string correction problem with block moves', A(',VI 7'runs. "wnp. Systenls, 2,

2. bl. R. Carey and D. S. Johnson, tbmputers and Intractubility: A t;uide to the 7'heoty of .\l'-t'omplete

3. bl. 1. Rochkind, 'The source code control system', IKEE Trans. .%$/ware Enginee~ing, 1, (4), 364-370

(4), 309-321 (1984).

P'roble~ns, W. H. Freeman, 1979.

(19%).
4. W. Tichy, 'RCS - a system for version control', Software -Practice and Experience, 15, (7), 637-654

(1985).
5. D. Sankoff and 1. B. Kruskal, Time \ \arps, String Edits und .bIacnimolec~ules: The 7 h i 1 ~ und t3-actice

of Sequence "ompatison, Addison-Wesley, 1983.

(1980).
6. P. A. V. Hall and G. R. Dowling, 'Approximate string matching', (iimputirig.Sttn.eys, 12, (4). 381402

7. J . A. Gosling, 'A redisplay algorithm', SIC;PLtL\ .V(itices, 16, (6) , 123-129 (1981).
8. K. Nakatsu, Y. Kambayashi and S. Yajima, 'A longest common subsequence algorithm suitable for

similar text strings', Acta Infonnatica, 18, 171-179 (1982).

1040 WEBB MILLER AND EUGENE M. MYERS

9. R. A. Wagner and N1. J. Fischer, ‘The string-to-string correction problem’, . J ’ ~ I ~ ~ ~ ~ I ~ I / o/.M’.\/, 21, (I) ,
168-173 (1974).

\ I

10. A. V. Aho, D. S. Hirschberg and J. D. Ullman, ‘Bounds on the complexity of the longest common

11. E. W. Myers, ‘An O(ND) difference algorithm and its variations’, TechnicalReport 85-6, Department of

12. D. S. Hirschberg, ‘A linear space algorithm for computing maximal coninion subsequences’, (iittirrt.

13. J . W. Hunt and T. G. Szymanski, ‘A fast algorithm for computing longest coninion subsequences’.

14. J . W. Hunt and M. D. McIlroy, ‘An algorithm for differential file comparison’, (‘ o r r + ~ t i i t , ~ .Sc.ic>rrcc,

subsequence problem’, Joziriiul ofA(’.\/, 23, (l) , 1-12 (1976).

Computer Science, University of Arizona, 1985.

.4(’.lf, 18, (6), 341-343 (1975).

(‘o i t i~r~. X W , 20, (S) , 35CL3.53 (1977).

Techi t id Repor? 41, Bell Laboratories, 1975.

