SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 16(9), 809-820 (SEP'I'EMBER 1986)

Side-effects in Automatic File Updating

WEBB MILLER AND EUGENE W. MYERS
Department of Computer Science, The University of Arizona, Tucson, AZ 85721, U.S.A.

SUMMARY

File update programs, such as the UNIX make command are invaluable, but enigmatic. They
are difficult to write because the repercussions of an algorithmic variation can be elusive. Even
experienced users often specify file relationships incorrectly, and are occasionally suprised by
the tool’s behaviour. This paper develops a rigorous conceptual model and employs it to answer
some of the questions facing writers and users of file update tools. Coupled with empirical data
about makefiles, these results motivate a conceptually simple update program.

KEY WORDS File updating Program maintenance

INTRODUCTION

File update tools" ? help manage the parts of a program. After some of the source
files have been changed, such systems automatically generate the proper sequence of
commands to derive the executable program. For example with the UNIX make utility
the user specifies dependency relations and updating commands in a makefile, such as

prog: file1.0 file2.0

cc file1.0 file2.0-0 prog
filel.0: filel.c

cc-c filel.c
file2.0: file2.c

cc-c file2.c

The first line declares that prog depends on file1.0 and file2.0, and the second line gives
the command for regenerating prog. The next two lines list the dependency for file1.0
(file1.c) and its updating command. The last two lines give the analogous information
for file2.0. make reads the makefile and executes the updating commands for out-of-
date files.

Such tools have applications beyond compiling programs. One of the simplest and
most popular uses is to subsume an arbitrary command file. A set of commands can
be given a name that is not an existing file, e.g. commands to remove unneeded files
might be called cleanup. If the update rule executes a file’s updating commands

Received 26 June 1985
0038-0644/86/090809-12$06.00 Revised 26 November 1985 and
© 1986 by John Wiley & Sons, Ltd. 24 February 1986

810 W. MILLER AND E. W. MYERS

whenever the file does not exist, the command:

update cleanup

generates the file-removal commands. Thus the ‘updating commands’ associated with
a file name need not actually update the file, but may instead alter other files.

This flexibility of file update systems comes at a price. Even experienced users
often specify file relationships incorrectly’ and are occasionally suprised by the tool’s
behaviour. Moreover, seemingly minor variations in the tool’s update rule can have
subtle ramifications, as explored below. However, this phenomenon appears only with
‘on-line’ updating, i.e. when execution of the updating commands is interleaved with
execution of the file update software. It is shown that off-line updating is insensitive
to certain alterations in the update rule.

Users of file update systems often alternate between off-line and on-line updating.
The system is first asked to list the commands that it deems proper. If the user agrees
with this decision, the system is invoked a second time to execute the commands. It
is not uncommon for the tool to then execute a command sequence different from the
one it listed. The source of the problem is the tool’s generality, i.e. that the commands
associated with a file may instead alter other files.

An experiment was conducted to determine the frequency with which these algor-
ithmic variations affected the practice of file updating. The experiment was conducted
by studying makefiles. One conclusion is that varying the update algorithm has little
effect in practice, so a simple algorithm can be chosen.

In most applications, informal reasoning about the update process is adequate.
However, a more formal approach was needed for writing a make-like utility? because
‘obvious’ statements about program behaviour routinely proved to be false. The
approach developed for reasoning about subtle tool behaviour is sometimes helpful for
tool users. In addition to describing the approach, this paper provides a precise
statement of make’s update algorithm that exposes previously undocumented capa-
bilities and implementation details.

THE MODEL

Consider a collection of related files, perhaps the source and binary files of a program.
Associated with each file f are an ordered list of zero or more precursors of f and an
ordered list of zero or more commands. Intuitively, p is a precursor of f if the contents
of f are a function of the contents of p, and f’s commands regenerate the contents of
f. However, users need not adhere to either of these intuitive principles. Bringing a
file up to date is defined recursively as follows. First, bring all of the file’s precursors
up to date. If the file is now older than one or more of its precursors, or if it does not
yet exist, then execute the list of commands associated with the file.

The following example, adapted from Reference 4, illustrates these ideas, as well as
motivating subsequent discussions. An executable file named hoc is constructed by
linking the four object files hoc.o, code.o, init.o and symbol.o. These four files are the
precursors of hoc, and the commands associated with hoc are

link hoc.o code.o init.o symbol.o; name the executable file hoc

Each of code.o, init.o and symbol.o has its source file, distinguished by a .c suffix, as
one of its precursors. A file x.h of macro definitions is included in each of those source

SIDE-EFFECTS IN AUTOMATIC FILE UPDATING 811

files with a preprocessor, so x.h is a precursor of each of the three object files. (There
is a natural tendency to say that the source files depend on x.h. However, it is the
object files that depend on x.h, because changing x.h requires regenerating the object
files, not the source files.) Each of the object files has a single associated command that
compiles the source precursor. The only precursor of x.h is y.h, and the command for
generating x.h is

if x.h # y.h, then copy v.h to x.h
hoc.o has just one precursor, hoc.y; a sequence of several commands is needed to
generate hoc.o from hoc.y. Dependencies among files can be modelled as a dependency

graph, whose nodes are file names, as in F igure 1. (The distinction between solid and
dashed edges is explained below.)

hoc
hj)c.o chJe.o - init.o symlbol.o

/
’
/

hoc.y init.c /" symbol.c

'
yj.h
Figure 1. Dependency graph for the hoc example

The most interesting features of this example center around the commands associated
with hoc.o and x.h. As a side-effect, hoc.o’s commands always regenerate y.h. However,
on most occasions, the contents of y.h are identical to its previous contents, though
the modification time of y.h has changed. The point of the command associated with
x.h is that the modification time of x.h will change only when its contents change.
Regeneration of hoc.o from hoc.y triggers recompilation of code.c, init.c and symbol.c
only if x.h changes.

The recursive update process can be performed by Algorithm 1. It uses a node-
marking strategy to avoid both multiple updates for files that are the precursor of
several files and infinite looping on dependency graphs containing cycles. The node
marks do not affect the actual files, but instead are recorded in internal records about
the file’s status. The algorithm assumes that all marks are initialized to ‘neither active
nor processed’. The algorithm requires a function modtime that returns the last-
modification time of a file. If the file does not exist, modtime returns 0.

update performs a depth-first search® of the dependency graph. A node is marked
active when first encountered and marked processed when the search backtracks from
the node. Because of the node-marking strategy, the algorithm detects common pre-
cursors, i.e. files that are the precursor of several files. For example, in Figure 1, the
edges init.o—x.h and symbol.o—x.h are not traversed by the search. Such non-traversed
edges in the dependency graph are depicted by dashed edges. The remaining edges,

1.e. those corresponding to update calls, form the depth-first search tree. This separation
of dependency edges into solid and dashed edges depends on both the ordering of the

812 W. MILLER AND E. W. MYERS

updatelfile)

mark file as active
for each of file's precursors (in order)
if the precursor is neither active nor processed
update(precursor)
m_time = modtimelfile)
for each of file's precursors
if precursor is not active and modtime(precursor) > m_time
record that file is out-of-date
if file is out-of-date or m_time = 0
execute file's commands
mark file as processed

Algorithm 1.

precursor lists and the start node for the depth-first search. A file’s updating commands
are executed after the search explores all edges leaving that node, so the ordering of
files according to potential command execution gives a postorder listing of the depth-
first search tree.

The distinction between active and processed nodes is drawn so that cycles in the
dependency graph are treated properly. Suppose that prog is an executable program,
source is the source file for prog, and versions contains archived versions of source that
are maintained by a version control tool.% 7 Thus the precursor of prog is source, the
precursor of source is versions (since source can be derived by running a program that
extracts it from versions) and the precursor of versions is source (since versions is
updated by executing a program that installs the contents of source). If prog and source
do not exist, then a call to update(prog) yields the depth-first search

- ~.
~
A

Prog ——» SOUrce ————pmversions

The call to update(prog) calls update(source), which calls update(versions). After versions
is found to be current, source is extracted from versions and compiled to produce prog.
If source is then edited, a second update of prog yields the same depth-first search,
and the call to update(versions) again avoids calling update(source) because source is
active. The critical point is that the modification times of source and versions are not
compared during the update decision for versions, so the installation commands associ-
ated with versions are not executed. In brief, even though source may be younger than
versions, versions is not updated if the depth-first search starts at prog or source.
However, once the edit-compile-test iteration brings prog to the desired state, the
command to update versions performs the search

—————

E \
Versions ———a=source

SIDE-EFFECTS IN AUTOMATIC FILE UPDATING 813

and runs the commands that install the contents of source in versions. In general, the
update decision for a file ignores ancestral precursors, i.e. precursors that are ancestors
in the depth-first search tree.

The effects of updating commands are modelled as strands: if the updating com-
mands for file # can alter the time stamp of file v, then a dotted arrow is drawn from
u to v. The dependency graph with these added strands is an update graph. Figure 2
gives the update graph for the hoc example. It is important to remember that the solid
and dashed edges in an update graph depict the precursor relations, whereas the dotted
edges mirror the updating commands.

Figure 2. Update graph for hocexample

A strand from u to v can have one of three effects on a file’s time stamp. First, u’s
commands might set v’s time stamp to 0 with a remove command. Secondly, the
commands might set v’s time stamp to an essentially arbitrary time by assigning the
name v to some other file with a rename command. Finally, strands such as those in
the hoc example represent touches, that is cases where #’s commands set v’s modification
time to the current time. In addition, strands can be of two varieties with regard to
determinancy. Most strands, such as those from a file to itself, are of the must variety,
i.e. successful execution of the commands will result in its time stamp being set.
Occasional strands, such as the touch loop on x.h, are of the may variety, i.e. execution
of the commands may or may not result in the time stamp being set, depending on
factors not modelled by the update graph.

EQUIVALENCE OF UPDATE ALGORITHMS

"The main results of this paper deal with ‘equivalence’ of update algorithms. In informal
terms, this means that given any member of a certain class of update problems, the
algorithms will generate identical command sequences. However, all factors affecting
the update decisions must be fixed before it makes sense to ask for identical command
sequences. Just as the contents of the files x.h and y.h affected the command sequence
in the hoc example, so can factors such as the time of day or system load. For example,
if the update program detaches the commands for a file so that they run in parallel,
then the completion of those processes might affect the update decision for a postorder

814 W. MILLER AND E. W. MYERS

successor. Such subtleties make it difficult to treat the notion of ‘equivalent update
procedures’ informally.

An update problem is an update graph in which each node and strand has been
assigned to a.non-negative integer, called a time. The integer assigned to a node
represents the time that would be returned by a call to modtime on the file. If a node’s
time is 0, then the file does not exist. Note that only the relative magnitudes of the
integers affect the problem. The integer assigned to a strand from u to v represents
the effect of #’s commands on v’s time stamp. Specifically, if the commands update
node u (i.e. determines that «’s commands should be executed), then the time on each
strand from u to v is attached to v, replacing v’s former time. Formally, two update
procedures are equivalent for an update problem if they update the same nodes. Two
update procedures are equivalent for an update graph if they are equivalent for every
conceivable update problem (i.e. assignment of times to nodes and strands) on the
given update graph.

The rule for updating is informally specified in a published description of make.'

To ‘make’ a particular node N, ‘make’ all the nodes on which it depends. If
any has been modified since N was last changed, or if N does not exist,
update N.

Although Algorithm 1 embodies a plausible interpretation of this statement, make uses
an update algorithm that differs in two respects:

1. make bases each update decision on modification times that are sampled earlier
in the update process.

2. make’s update rule incorporates an ad hoc clause designed to support ‘fictitious’
files, such as cleanup, whose commands do not actually produce a file with that
name.

The implications of these two differences are considered separately.

Algorithm 2 samples times in the same manner as make. Whereas Algorithm 1
samples file’s modification time after processing all precursors, Algorithm 2 samples it
before processing the precursors. Also, Algorithm 1 samples a precursor’s modification
time after processing all precursors, whereas Algorithm 2 samples the time either the
instant that the precursor becomes active (if it is not updated) or just after the precursor
is processed (if it is updated). An attribute remembered_time is associated with each
node. The attribute’s value is set just before the node’s processing is complete, and it
is subsequently used in place of modtime.

Algorithm 1 calls modtime once for each node and once for each dependency edge
to an inactive node, whereas Algorithm 2 calls it just once or twice per node. This fact
and the relatively high cost of system calls to modtime help motivate Algorithm 2.

There exist update problems where Algorithms 1 and 2 produce different results.
For example, consider the update problem
J

)

P4

- <

SIDE-EFFECTS IN AUTOMATIC FILE UPDATING 815

updatelfile)
{
mark file as active
m_time = modtime(file)
for each of file's precursors {
if the precursor is neither active nor processed
update(precursor)
if precursor is not active and remembered_time[precursor]>m_time
record that file is out-of-date
}
if file is out-of-date or m_time = G {
execute file's commands
m_time = modtime(file)
}
remembered_time[file] = m_time
mark file as processed

Algorithm 2.

Algorithm 1 updates u, which resets v’s time to 4. Then modtime(v) is computed as
4, so v is not updated. However, Algorithm 2 computes modtime(v) before updating
u, and hence updates both u and v. The difference is caused by the strand from u to
a proper ancestor of « in the depth-first search tree. Similarly, with the update problem

3 VV--.....- Lu ol

t 2

Algorithm 1 updates « and w, whereas Algorithm 2 updates only u. The algorithms
differ because there is a strand from u to a node, v, preceding « in postorder that has
an antecedent, w, that follows x in postorder.

Algorithms 1 and 2 are equivalent for update graph G if and only if G has no strands
from u to v such that either v is a proper ancestor of u in the depth-first search tree,
or v precedes « in postorder and v is a precursor of some node that follows # in
postorder. This fact is rigorously proved in Reference 8, as are all subsequent equiv-
alence claims. When interpreting these statements, algorithms are equivalent for an
update graph if their execution is the same for all possible assignments of time stamps
to nodes and strands. For example, if all strands are of the fouch variety then the
conditions guarantee equivalence but are overly stringent. This is illustrated below,
where equivalence is observed for a makefile not satisfying the conditions, but for
which every strand is labelled with the current time.

The second difference between make’s update algorithm and Algorithm 1, i.e. the
difference between make’s update algorithm and Algorithm 2, is explained informally
in the UNIX Programmer’s Manual:°

816 W. MILLER AND E. W. MYERS

If the file exists after the commands are executed, its time of last modification
is used in further decisions; otherwise the current time is used.

The rationale for this addition is to support rules, such as cleanup, with mnemonic
names for commands that do not actually generate the named file. Without this
provision, antecedents of such fictitious files will not be updated when the file’s
commands are executed. Algorithm 3, which is essentially make’s update algorithm,
adds the appropriate clause to Algorithm 2. To obtain Algorithm 3, the clause

if m_time = 0
m_time = current_time({)

is added just after the second assignment to m_time in Algorithm 2. In this algorithm,

the values of remembered_time need not be actual file modification times. Algorithms

2 and 3 are equivalent for update graph G if and only if every node, except possibly

the root, has a touch loop.*

OFF-LINE UPDATE ALGORITHMS

There are circumstances under which an update procedure will not actually execute
the updating commands that it determines are necessary. First, users sometimes want
the procedure to merely report what commands it thinks need to be executed. Visual
inspection of the commands before they are run might avoid an expensive disaster.
Secondly, there are computer systems where command execution cannot be interleaved
with execution of the update procedure. Instead, commands are written to a file and
executed later.

When files are not modified by a call to update(precursor), the update procedure
cannot subsequently call modtime to see whether precursor was modified. In effect, the
procedure must work with just the dependency graph and the initial times on files; it
will not have any information about the strands and their attached times. An off-line
version of an update algorithm constructs a simple update problem from the given
dependency graph and initial file times, then solves the simple problem by simulating
on-line (i.e. normal) updating. Specifically, at every node u in the submitted depen-
dency graph that has commands, the off-line procedure adds a touch loop, i.e. a strand
from u to u whose attached time exceeds the time on every node. In the absence of
strand information, this construction is plausible assuming that a file is regenerated by
its associated commands.

make provides the option of off-line updating. In effect, make simulates on-line
updating of a file by labelling a loop at that node with the current time, i.e. the time
that would be stamped on the file if it were updated at the current instant. This
approach is natural because the clause added to Algorithm 2 to give Algorithm 3 need
only be changed to

if m_time = 0 or updating is off-line
m_time = current_time()

With Algorithms 1 and 2, the use of current__time is not so natural, and simpler
implementations of off-line updating are possible. For example, Algorithm 4 handles
both the on- and off-line problems and was obtained by augmenting Algorithm 1 as

SIDE-EFFECTS IN AUTOMATIC FILE UPDATING 817

shown by the italicized code fragments. It suffices to know only the initial time stamps
for each file and whether or not a file has been updated. The time stamp of the file
after the update is not relevant since it is known to be greater than the initial time
stamp of every file. Thus the off-line variant only needs a single bit, changed, for each
file. This bit is only set in the off-line case and hence does not affect on-line operation.
'This bit is distinct from a file’s status (active, processed, neither active nor processed)
and is assumed to be initially clear for each file.

update(file)
{
mark file as active
for each of file's precursors (in order)
if the precursor is neither active nor processed
update(precursor)
m_time = modtimefile)
for each of file's precursors
if precursor is not active and
(modtime(precursor) > m_time or precursor’s change bit is set)
record that file is out-of-date
if file is out-of-date or m_time = 0 {
if updating is on-line
execute file's commands
else if file has commands {
print file's commands
set file's change bit

}

mark file as processed

Algorithm 4. An onloff-line extension of Algorithm 1

The off-line version of Algorithm 3 used by make makes a precursor look younger
than an antecedent if that precursor has no commands and does not exist. (This is not
totally out of the question — another file may have commands that create the precursor).
For this reason, Algorithm 3 is not equivalent to Algorithms 1 and 2 in the off-line
situation. However, if every file with precursors has commands, then every node has
a touch-loop and all three off-line algorithms are equivalent.

OFF-LINE VS. ON-LINE UPDATING

In essence, off-line updating assumes that each file with commands has a must-touch
loop and that side-effects are limited. The hoc example illustrates that failure of either
assumption can cause off-line updating to diverge from on-line updating. First, consider
update’s assumption that commands always modify the associated file. Suppose that
hoc is brought up to date, then y.h is touched without altering its contents. A subsequent
off-line update will assume that x.h would be modified by its updating command, and
will generate the report

818 W. MILLER AND E. W. MYERS

if x.h #y.h, then copy y.h to x.h

compile code.c

compile init.c

compile symbol.c

link hoc.o code.o init.o symbol.o; name the executable file hoc

Only the first command would be executed by on-line updating.

This example also illustrates the problems caused by side-effects. Suppose that hoc
is brought up to date, then hoc.y is modified. A subsequent off-line update discovers
that hoc.y is younger than hoc.o and reports that hoc.0’s commands should be executed.
It is unable to anticipate that updating hoc.o has the side-effect of modifying y.h. Thus
off-line updating generates just the commands for hoc.o and hoc. On-line updating also
executes the command for x.h and may recompile code.c, init.c and symbol.c.

The on-line and off-line versions of Algorithms 1-3 are equivalent for update graph
G if and only if G satisfies

(i) Every node with precursors has commands and a touch loop except possibly the

root.

(ii) For every other strand from u to v, v precedes u in postorder and is not the

precursor of a node that follows u in postorder.*

Taking u to be the node init.o in Figure 1, conditions (i) and (ii) disallow strands to
any nodes except init.o, hoc.y, code.c, init.c and y.h. Except for the special case of a
loop on init.o, strands to these nodes are permitted because their time stamps affect
only update decisions that are made before init.o is updated. Other strands affect update
decisions made after the side-effect occurs. For example, a strand from init.o to x.h
would mean that init.0’s commands can alter the time stamp on x.h, thereby affecting
the update decision for symbol.o.

EXPERIENCE

make is the first and foremost tool of its kind. However, it has been ten years since
make was introduced and there is now a larger reservoir of experience to draw upon
when designing or examining update tools. This experience is recorded in

1. makefiles, which are the best indicators of users’ needs, since they do not share

the requirement of backward compatibility that propagates outdated or ill-chosen
features in programs and descriptive documents

2. make itself, which can serve as the final authority for the fine structure of its

update algorithm

3. documents describing make, which help interpret information from the other

sources.

A modest file update tool, update,” draws on this experience. In preference to
Algorithm 3, update uses Algorithm 1 because it is easier to motivate informally and
describe accurately. These qualities were particularly desirable since update’s code is
intended for study. However, it was necessary to assess the practical impact of using
a different algorithm, so makefiles were inspected. The study had to be performed by
hand because it is insufficient to, say, run two versions of make on every makefile and
see if they differ. The extra effort is needed to determine equivalence on all conceivable
update problems; testing a single situation does not suffice.

All the makefiles used for building the commands in the UNIX 4.2 Berkeley

SIDE-EFFECTS IN AUTOMATIC FILE UPDATING 819

Distribution were examined. The 10 makefiles contained a total of 721 lines, 521 of
which were hand-written. The remaining 200 were simple dependency lines generated
by a preprocessor.

No cycles were found in any of the dependency graphs specified by the makefiles.
However, a robust tool must detect dependency cycles in order to avoid crashing if
one is inadvertently introduced by a naive user, and it takes no more code to handle
them in a useful way than to treat them as a fatal error. It may be that an absence of
literature discussing dependency cycles has contributed to their scarcity in actual
makefiles.

The core of every makefile studied consisted of executable files that depended on
object files, which in turn usually depended on one source file and a number of header
files. Each executable and object file had a must-touch loop, some of which involved
scripts of three or more commands. In addition, every makefile had two to five fictitious
files used to encapsulate frequently executed command sequences. For example, cleanup
removes all object files, print makes a listing of all the source and header files, install
moves an executable program to a system area, get fetches the most recent version of
a source file from a version control system and comp constructs a new executable
program, compares it to the installed version, and then removes the files it made. The
commands for these fictitious files induced either no strands (e.g. print, install), must-
remove strands (e.g. cleanup, comp), or must-touch strands (e.g. get). However, these
files had no antecedents, implying that they are either the root of a make or not visited
at all. Hence the conditions for equivalence between off-line and on-line versions hold,
and thus all algorithms and their off-line versions operate identicallly on such makefiles.

The investigation uncovered only one example where strands did not fit into the
simple pattern above. The makefile is very similar to the hoc example. Its update
graph contains one ancestral must-touch edge and one may-touch loop. The may-touch
loop corresponds to the one on x.h and the ancestral strand results from reversing the
order of hoc’s precursors, which in turn forces one to add a dependency edge from y.h
to hoc.o. The on-line and off-line algorithms can differ for this makefile. However, all
the on-line algorithms are equivalent, even though the conditions for the equivalence
of Algorithms 1 and 2 are violated. This is because the relevant strands are of the
must-touch variety. This fact suggests that as a topic for further research, one should
consider refining the equivalence conditions to consider the types (touch, remove or
rename) of the strands in an update graph.

ACKNOWLEDGEMENTS

Stu Feldman kindly discussed several aspects of make’s update algorithm. Use of the
Kernighan—Pike example to illustrate differences between off-line and on-line updating
was suggested by Dave Hanson. Chris Fraser made numerous useful suggestions. The
referees’ suggestions improved the paper. This work was supported in part by the U.S.
National Science Foundation under Grant MCS82-10096.

REFERENCES

1. S. 1. Feldman, ‘Make—a program for maintaining computer programs’, Softwcare—Practice and
Experience, 9, (3), 255-265 (1979).
2. W. Miller, A Software Tools Sampler, Prentice-Hall, Englewood Cliffs, NJ, 1986.

820 W. MILLER AND E. W. MYERS

. K. Walden, ‘Automatic generation of make dependencies’, Softwcare—Practice and Experience, 14,
(6), 575-585 (1984).

. B. W. Kernighan and R. Pike, The Unix Programming Environment, Prentice-Hall, Englewood Cliffs,
NJ, 1984.

. A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data Structures and Algorithms, Addison-Wesley,
Reading, MA, 1983.

. M. J. Rochkind, ‘The source code control system’, IEEE Transactions on Software Engineering, 1,
(4), 364-370 (1975).

. W. Tichy, ‘RCS—a system for version control’, Software—Practice and Experience, 15, (7), 637-654
(1984).

. W. Miller and E. W. Myers, ‘Side-effects in automatic file updating’, TR 85-/2, Department of
Computer Science, University of Arizona, Tucson, AZ, June 198S.

. S. 1. Feldman, ‘Make—a program for maintaining computer programs’, UNIX Programmer’s Manual:
Supplementary Documents (4.2BSD), University of California, Berkeley, 1984.

