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We consider efficient methods for computing a difference metric between two sequences of 
symbols, where the cost of an operation to insert or delete a block of symbols is a concave 
function of the block's length. Alternatively, sequences can be optimally aligned when gap 
penalties are a concave function of the gap length. Two algorithms based on the 'candidate list 
paradigm' first used by Waterman (1984) are presented. The first computes significantly more 
parsimonious candidate lists than Waterman's method. The second method refines the first to 
the point of guaranteeing O(N21g N) worst-case time complexity, and under certain conditions 
O(N2). Experimental data show how various properties of the comparison problem affect the 
methods' relative performance. A number of extensions are discussed, among them a technique 
for constructing optimal alignments in O(N) space in expectation. This variation gives a practical 
method for comparing long amino sequences on a small computer. 

I .  Introduction.  Sequences A = a l a 2 . . . a  u and B = b l b 2 . . . b  N can be 
compared by determining a sequence of'basic operations' that converts A to B 
and minimizes the sum of the operations' weights. The most thoroughly studied 
set of basic operations are those that insert a single symbol, delete a symbol, or 
replace one symbol by another (Sankoff and Kruskal, 1983). Each such basic 
operation is assigned a nonnegative real number, called the operation's weight  

or cost, that may depend on the affected symbol or symbols. 
An alternative approach is to treat an indel (i.e. insertion or deletion) of k > 0 

consecutive symbols as an atomic operation, rather than k operations on 
individual symbols. Traditionally, the operation is assigned a weight w k that 
depends only on the number of symbols inserted or deleted. Allowing 'block' 
indels is more natural than considering only single-symbol indels for certain 
applications in biology (Fitch and Smith, 1983) and computer science (Miller 
and Myers, 1986; Myers and Miller, 1988). 

Unfortunately, determining a minimum-weight set of operations seems more 
expensive with multisymbol indels if the weights w k can be arbitrary. In 

t This work was supported in part by NSF Grant DCR-8511455. 
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particular, the algorithm of Waterman et al. (1976) runs in time O(N 3) 
(assuming A and B have approximately the same length, iV), whereas sequence 
comparison with single-symbol indels can be performed in time O (N 2) (Sankoff 
and Kruskal, 1983). 

On the other hand, Gotoh (1982) showed how to perform sequence 
comparison with multisymbol indels in time O(N 2) if the weighting function is 
affine, i.e. has the form w k = a + bk with a, b constant. Fredman (1984) and 
Gotoh (1986) extended the method to simultaneously compare more than two 
sequences. Gotoh's result for two sequences has been generalized to a wider 
class of basic operations by Myers and Miller (1988). For the case that costs are 
integers and independent of the affected symbols, Myers and Miller (1988) also 
gave an O(CN) 'greedy' algorithm. Here C is the optimal cost of converting A to 
B, so the algorithm is fast when A and B are similar. Miller and Myers (1986) 
developed a third algorithm, which has inferior worst case performance, but 
which works very efficiently in the context of screen updating applications. 

This paper focuses on the efficient treatment of a wider class of 'concave' 
weighting functions. Waterman (1984) sketched an approach for concave 
weights that was conjectured to run in 0(N219 N) expected-time. However, 
empirical tests reveal the algorithm to frequently exhibit O(N 3) behavior, 
especially in cases where inputs are similar or w 2 - wl is larger than the average 
replacement cost. We present two new algorithms based on the 'candidate list 
paradigm'. The first algorithm is asymptotically faster in expectation than 
Waterman's and does not exhibit the same O(N 3) weaknesses. The second 
algorithm refines the first to the point of guaranteeing 0(N219 N)  worst-case 
time complexity. Moreover, this method subsumes a number of additional 
results, e.g. it is O(N 2) for affine weights, 0(N219 P) for piece-wise affine 
weighting functions with P pieces, and O( N  2) if the equation w k = Wk_ x + y  is 
analytically solvable for arbitrary x and y. In addition, application of the 
divide-and-conquer technique of Hirschberg (1975) to Methods 1 and 2 
reduces their space complexity to O(N) in expectation. A suite of empirical tests 
demonstrates the practical efficiency of our methods and confirms that 
Method 2 is the preferred method, both in theory and in practice. A software 
package written in C that delivers an optimal alignment in linear space using 
Method 2 is available from the authors upon request. 

2. The W S B  Algorithm for Arbitrary Weightin9 Functions. The starting point 
for this work is an O ( M N ( M + N ) )  algorithm by Waterman et al. (1976) for 
determining the minimum cost of converting ala 2 . . .  a M to bib 2 . . .  b~ via 
symbol-dependent replacements and arbitrarily weighted block indels. Assume 
a k-symbol indel costs w k, and the cost of replacing a by b is denoted 6(a, b). In 
the common case where 6 is a metric, 6(a, a ) = 0  and 6(a, b)--6(b,  a)~O. 
However, throughout this paper 6 may be arbitrary. For i t [0 ,  M] and 
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j e [0 ,  N], let C(i, j)  denote the minimum cost of converting a l a 2 . . ,  a~ to 
b x b 2 . . ,  bj. The desired value is C(M,  N) and the algorithm proceeds by 
determining all C(i,j)  in row major order. 

"The WSB Algorithm" 

define icost(i, j ,  p) =- C(i, p) + wj_p 
define dcost( i, j ,  p) - C(p, j) + w i_ p 

c(0, o) -o 
for j ~  1, 2 . . . .  , Ndo 

{I(O, j )~min{icos t (O, j ,  p) : p c  [ 0 , j -  1]} 
C(O,j)+--I(O,j) 

} 
for i ~ l ,  2 , . . . ,  Mdo 

{D(i, O)~-min{dcost(i, O, p) : p c  [0, i -  13} 
C(i, 0)*-D(i, 0) 
for j . -  1, 2, . . ,  , N d o  

{ I ( i , j )~min{ icos t ( i , j ,  p) : p~[0 , j - -1]}  
D( i , j )~min{dcos t ( i , j ,  p) : pe[0,  i -  1]} 
C ( i , j ) ~ m i n { I ( i , j ) ,  D(i , j ) ,  C ( i -  1 , j -  1) + 6(ai, bj)} 

) 
} (1) 

Informally, the computation of C(i,j)  for i, j > 0 in the innermost loop is 
justified as follows. An optimal conversion of ala 2 . . . a i to b~b z . . .  bj must 
either (i) insert b j, (ii) delete ai, or (iii) replace a i by bj. The algorithm 
considers all three possibilities, then picks the best. Let I(i, j) be the minimum 
cost over all conversions of a x a z . . ,  a i to b ~ b 2 . . ,  bj that insert bj. The 
insertion must involve a block o f j - p  symbols for some p, where the remaining 
operations optimally convert a x a 2 . . ,  a i to b i b 2 . . ,  bp. Thus, defining 
icost(i,j, p)=C(i,  p )+wj_p  for p c [ 0 , j - 1 ] ,  we have I ( i , j ) = m i n  
{icost( i , j ,p)  : p e [ 0 , j - 1 ] } .  Similarly, D(i, j) ,  the minimum cost over all 
conversions of ala 2 . . .  a~ to bib 2 . . . bj that delete ai, is min{dcost( i , j ,  p) : 
pc[0,  i - 1 ] }  where d c o s t ( i , j , p ) = C ( p , j ) + w i _  p. For the third possibility, 
C ( i - 1 , j - 1 ) + 6 ( a ~ ,  bfl is the minimum cost of a conversion that replaces a~ 
with bj. Thus C( i , j )=min{ I ( i , j ) ,  D(i , j ) ,  C ( i - 1 , j - 1 ) +  6(a~, bj)}. 

3. Concave Weighting Functions. To see how the WSB algorithm can be made 
more efficient, consider the minimization operations, 

I(i , j)*--min{icost(i , j ,  p) : p e  [0, j - -  1]}, (2) 
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for fixed row i. A given pc [0 ,  N - l ]  enters into this minimization for all 
columns j e [ p + l , N ] .  It is helpful to visualize the 'p-curve' 
{(x, icost( i ,  x N , P))}x=p+~,  which shows p's contribution to these later oper- 
ations. Note that the p-curve has the same shape as the q-curve for any other 
q ~ [0, N -  1], i.e. if q < p, then translating horizontally by q - p  and vertically 
by C(i,  q ) -  C(i ,  p) maps the p-curve into the q-curve. 

It is often possible to determine that p need not be considered in any 
subsequent minimization operations. For  example, if there is a q such that the 
p-curve lies above the q-curve for all columns x, then p can be omitted. 
Comparing the p-curve and q-curve may be time-consuming if w is arbitrary, 
but we will show that such comparisons are 'easy' for the class of concave 
curves. Formally, a weighting function w is concave  if and only if: 

AWk ~ AWk + 1 for all k >/1, where Aw k = w k + 1 - Wk" (3) 

In words, w is concave if the cost of inserting or deleting an additional 
symbol decreases with the size of the affected substring. Thus, every p-curve is 
concave downward since its domain is [-p+ 1, N]. The least concave curve 
possible is a straight line ( A w  k = A w  k § 1 for all k), and since A w  k < 0 is permitted, 
more concave curves can have a maximum as in Fig. 1. The concavity 
condition is equivalent to Waterman's  (1984) condition: Wm+,,+k--Wm+,,<~ 

W m §  m for all m, n, k~> 1. If the concavity condition were strengthened to 
r equ i r e  Wl>~Awl,  then concavity would imply that Wm+n~Wm'~-W n for all 
m, n~> 1. As it stands, the two conditions are incomparable. The class of 
concave weighting functions was argued to be of biological interest by 
Waterman (1984). He cites the study of Fitch and Smith (1983) and suggests 
that concave functions such as w k = a + b log k have intuitive appeal. 

C(i~ p]+w I - -- -- 

p-curve 

o/~ 
-- . ~  

p+l 

Figure 1. A sample p-curve. 

N 

icost ( i, x, p)  
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The simple result given as Lemma 1 shows that concavity guarantees that a 
p-curve intersects a q-curve at most once.t  This captures everything we need 
about concavity; subsequent proofs do not refer back to the original definition. 
In fact, there is a partial converse theorem that the reader is invited to formalize 
and prove, namely, if w is neither concave nor convex ('convex' means that the 
sequence {AWk} is nondecreasing), then there exist a p-curve and a q-curve that 
cross more than once. 

Lemma 1, and all that follows, uses the notat ion p < xq and p ~< xq to mean 
that the p-curve lies strictly below (in the first case) or on-or-below (in the 
second case) the q-curve at point x. Formally: 

P < xq iff p, q ~ [0, x -- 1] and icost(i, x, p) < icost(i, x, q) 
P <<- xq iff p, q e [0, x -  1] and icost(i, x, p) <<. icost(i, x, q) (4) 

Keep in mind that a fixed i is implicit in these definitions. 

LEMMA 1. I f  w is concave and p < q  then: 
1. I f  p<<.jq then p<<.~qfor all xe[ j ,  N-J; 
2. I f  p < jq then p < xq for all x e [j, N-J; 
3. I f  q<<.jp then q<~xpfor all x e [ q +  l , j];  
4. I f  q < jp then q < xP for all x e [q + 1, j]. 

Proof. We only prove part 1; the other proofs are quite similar. Since p < q, 
Aw _ > ~ A w r _  p for all y>q.  Thus, for xe [ j ,  N-J, icost(i, x, p)=ieest(i , j ,  p)+ 
S ~xr--lq Aw r p<.icost(i, j, q) L,r:j  ..~x--ll...~y=j --q _~+ ~ - - 1  Awr_p<<icost(i, j, q) Aw r = z..~y = j  

icost(i, x, q), i.e. p<<.xq. �9 
The notation p-~jq, which can be read "p dominates q beyond f ' ,  signifies 

that the p-curve lies on or below the q-curve in all columns x e I j,  N]. 
Additionally, we require that either the p-curve is strictly below the q-curve for 
at least one point or, in case the curves are equal everywhere, that p >~ q. 
Formally: 

p~ jq  iffp<<.xq for all xe [ j ,  N-] and either p ) q  or P<xq for some x e [ j ,  N-J. 
(5) 

For  concave weights, part  1 of the following lemma shows that to determine 
the ---,j-relationship between two curves, it is sufficient to compare them at the 
end points, j  and N. Part  2 of the lemma asserts that ifp dominates q beyond j, 
then p dominates q beyond every x >~j. This result illustrates the importance of 
breaking ties properly. For  if we had defined P~iq  when p = xq for all x e [j, N] 
and p < q, then Lemma 2.2 and much that follows would fail. Part  3 guarantees 
that two mutually nondominat ing curves properly intersect, i.e. if p < q, then 

t A contiguous set of points for which the curves are equal is considered a single intersection. This subtlety 
is important when, for example, the weighting function is a piece-wise affine curve. 
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the p-curve must begin strictly higher (q <jp) and end strictly lower (p <uq). 
Conversely, if two curves do not properly intersect, then one dominates the 
other. 

LEMMA 2. f f  W is concave then: 
1. p--.jq iff p < q and p <<.jq and P <sq or p >~q and P <<-Nq ; 
2. p ~  jq iff p~xq  for all xe[j ,  N]; 
3. p < q and p-~ jq and q-~ jp iff q < jp and P < Nq. 

Proof 
(1) First, suppose p<q. Then P~fl~P<<-xq for all xe[ j ,  N] and P<xq for 

some xe  [j, N-J~Lemraal.2p ~ fl and p < Nq. (=~Lemmal.2 m e a n s  "implies by 
part 2 of Lemma 1".) Conversely, p<<.fl and p<uq=~Lemmal.lp~xq for 
all xe[ j ,  N] and p<xq for x = N e [ j ,  N ] ~ p ~ l q .  Second, suppose p>~q. 
Then P~jq~P<<-uq and, conversely, p~uq=~zemmal.3P<.xq for all 
xe  [p+ 1, N ] ~ p ~ j q .  

(2) Supose p---~jq and x e [j, N]. Then by part 1 either p < q, p ~< fl, and p < uq or 
p/> q and p ~< uq. Thus, either p < q, p ~< xq and p < uq or p >~ q and p ~< uq by 
Lemma 1.1. But by part 1, this implies p ~ q .  

(3) First, suppose p < q, p-~fl and q-~jp. Since p-~fl, part 1 implies that either 
q<jp or q<<-uP. Likewise, q-~jp implies P<uq, ruling out the possibility 
that q ~< uP- Thus, q <jp  and p < uq. Conversely, suppose that q <jp and 
P<Nq. Then q<jp=~p-~jq and p<uq~q-~jp .  Moreover, if p>q, then 
P < Uq~Lemmal.4P < fl, a contradiction. Thus, p < q. �9 

4. The Candidate List Paradigm. Two methods will be given to speed up the 
WSB algorithm when w is concave. Both approaches maintain N +  2 lists of 
'candidates'. For a row, the candidates are column positions, and vice versa. 
One list, R, is for the current row of the C matrix. R is 'conservative' for posi- 
tion (i, j) in the sense that R excludes a value q e [ 0 , j - 1 ]  only if 
min{icost(i, x, p) :peR}  is unaffected for all xe [ j ,  N]. Similarly, a conserva- 
tive list, S(j), is maintained for each column j e [-0, N]. 

Recently, Waterman (1984) presented a conservative candidate list algor- 
ithm. Both of the methods presented here compute significantly smaller 
candidate lists. Furthermore, the min computation for I(i,j) and D(i,j) is 
avoided by our methods since both guarantee that the first candidate in the list 
is optimal for position (i, j), i.e. 

I(i, j) = icost(i, 1, R[1]) and D(i, j) = dcost(i, j, S(j) [ 1]). (6) 

Methods 1 and 2 differ only in the procedures Iupdate and Dupdate for 
updating candidate lists and both have the overall form shown in (7). 
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"The General Structure of Methods 1 and 2" 

C(0, 0)~-0 
for j ~  1, 2 . . . . .  N d o  

{ R ~- Iupdate( R, j) 
C(O, j)*--ieost(O, j, R[1]) 

} 
for i ~ l ,  2 , . . . ,  Mdo 

{S(O)~ Dupdate(S(O), O) 
C(i, O)~dcost(i, O, S(0)[1]) 
for j ~  1, 2 , . . .  , N d o  

{ R ~  Iupdate(R,j) 
S( j )~  Dupdate(S(j), i) 
C(i,j).--min{ icost(i,j, R[1]), deost(i,j, S(j)[1]), C(i -  1,j - 1) + 6(a i, b j)} 

} 
} (7) 

Method 1 culls all positions that are dominated by another according to the 
relation ~ j .  Method 2 goes further by computing lists that are minimal with 
respect to conservation, i.e. removal of any element gives a nonconservative 
list. Thus, Method 2's lists are in some sense optimal. Additionally, Method 2's 
lists are sublists of Method l's lists, which are, in turn, sublists of Waterman's 
lists. Our discussions of the two methods focus exclusively on the computat ion 
of the R-lists for a given row i. The treatment of an S(j)-list for column j is 
symmetric. 

5. Method 1. As each of the two methods sweeps across row i, it culls 
unnecessary values from R. Method 1 is based on the informal observation that 
one of p or q can be discarded if the p-curve and the q-curve do not properly 
intersect between columns j and N. To correctly handle such cases as two 
curves that are equal everywhere in [j, N], Method 1 adopts the precise 
criterion that p is eliminated if and only if q ~ jp  for some q ~ R. 

For j~  [1, N] define the ordered list 

R] = < p c  [ 0 , j - 1 ]  :q~ jp  for all qe [ 0 , j - 1 ] - p  > ,  in decreasing order. (8) 

The relation ~ is reflexive, asymmetric, and transitive, i.e. a partial order. R) 
is the set of p ~ [ 0 , j - 1 ]  having no ~j-predecessors. It follows that if 
q ~ [0, j -  1], then there exists a p ~ R) such that p ~ f l .  Moreover, Lemma 2.3 
implies that every pair of curves in R) properly intersect on the interval [j, N-J. 
Figure 2 gives an example. 

In conformance with the previous section, we will show that I(i,j)= 
icost(i,j, R ] [ 1 ] ) a n d  that R~=Iupdatel(R~_x,j) where Iupdate 1 is given 
below. In the procedure description, '.' is list concatenation, ',-~' is deletion of 
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/ / /  / / "  

/ / /  / / /  .,/)j, 

0 ~ io/ 20~3e~4 i' /7/!=<'4'5'2> 

I I  
j=5 N 

Figure 2. A sample Method 1 candidate list. 

-'- X 

an element from a list, and T[k] is the kth element of list T. 

"The Iupdate Procedure for Method 1" 

procedure Iupdate 1 ( T, j) 
{ifj = 1 then 

(0) 
else 

1).r 
while IT( > 1 and T[1] ~<NT[2] do 

T~- T~  T[23 
k~-2 
while k ~<]r] do 

(while k>  1 and T[k] ~<jT[k-1] do 
( k ~ k -  1 
T~  T,,~ T[k] 

k ~ k + l  
) 

return T 
} (9) 

LEMMA 3. If w is concave and je[1, iV] then I(i,j)=icost(i,j, R~[1]). 
Proof. First, suppose q~R)~R)[1].  Then q<R)[1 ] ,  q@jR)[1], and 

R)[1]-~fl,  so Lemma 2.3 implies that R)[1]<~q. For an arbitrary 
q e [ 0 , j - 1 ] ,  there is a peR) satisfying p~fl ,  so R][1]<~p<.fl. Thus, 
R)[1]~<jq for all q e [ 0 , j - 1 ] ,  and consequently I(i,j)=min{icost(i,j, q): 
qe[O,j-- 1]} =icost(i,j, R)[1]). �9 
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THEOREM 1. Let w be concave. Then R~ = Iupdate 1 (R, 1)for any initial value of 
R, and R] = Iupdate l(R)_ l, j) for j ~ [2, N-]. 

Proof. R~ = ( 0 ) =  Iupdatel(R, 1), so consider the call Iupdatel(R]_l,j) for 
j e  [2, N-]. We first show that R] ~_ T:i,a~, where T:i,a ~ denotes T's value at the 
end of the procedure. After the assignment T ~ - ( j - 1 ) .  T, T contains 
R]_ 1 w {j -- 1 }. But then R] _ T, since if q ~ [0, j - 2] - R]_I, then p ~ j_l  q for 
some p # q, hence Lemma 2.2 implies that p ~ f l  and q ~ R]. Ifq is eliminated by 
the first while loop, then j - 1  >q  and j - 1  ~<Nq, so Lemma 2.1 implies that 
j - l ~ f l  and qCR). 

If p < q and p, q e T at the end of the first while loop, then p < Nq" To see this, 
first suppose p, q eR)_ 1. Then p and q are mutually nondominating, so 
Lemma 2.3 implies p < Nq. The other possibility is that q = j - 1 ,  in which case 
the first while loop guarantees p < Nq" 

If q is eliminated from T by the second while loop, then p <~ jq for some p < q. 
Since p < Nq, as shown in the previous paragraph, Lemma 2.1 implies p ~ q  and 
qq~R). Thus, R ] ~ Z f i n a l  . 

Suppose p < q and p, q e Tf,,, t. Then q < jp. The second while loop enforces 
this condition for adjacent pairs (T[k], T [ k - 1 ] ) ,  which guarantees the 
ordering in general. Together with the condition p < Nq (guaranteed by the first 
while loop), this implies p-pfl and q-p~p by Lemma 2.3. Now, if q~R] then 
there exists a p~R~ ~ Zfina I such that p ~ f l ,  and this implies qq~ Tit,a t. Thus, 
R] _= T:,.~ �9 

6. Method 2. Method 1 updates R]_ 1 to R] by comparing curves atj  and at N. 
Tests for x~ [j + 1, N - 1 ]  are avoided, but two inefficiencies result. First, at 
each new column j, R] must be exhaustively checked for curves that cross 
between columns j - 1  and j. Second, R) may contain values p such that at 
every column xe [ j ,  N] there is a qe[O, j -1 ]  with q<xP, e.g. the 3-curve in 
Fig. 3. The definition of R) merely guarantees that no single q beats p for all x. 

/ / f  / f / /  

0 ~ o , /  
- ,  I 

I 
I 
I = , X  

/=5 x(4) x(2)=N 
Figure 3. A sample Method 2 candidate list. 
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Method 2 avoids these problems by maintaining an explicit piece-wise 
representation of the 'minimum envelope' of the first j curves, i.e. the curve 
{(x, Ei(x)}~= j where 

Ej(x)=min{icost(i, x, p) : p e [ O , j - 1 ] } .  (10) 

To insure that Method 2's candidate lists are always smaller than Method l's, 
care is required when deciding which curve to let represent Ej(x) for each x. 
Specifically, if more than one curve equals Ej(x) at x then the candidate p that 
has no ~-predecessors  must be chosen. In this case we say "p represents the 
first j curves at x" and write p@jx. Formally: 

p@jx i f f p ~ [ 0 , j - 1 ]  and x6[ j ,  N] and (p<<.~q and q-~xP) for every 
q~[O,j--1]--p. (11) 

The following argument shows that if w is concave, then for each x ~ [j, N] 
there is exactly one p representing the firstj curves at x. For x e [j, N],  the set of 
curves that could represent Ei(x ) is P~(x)= {p~ [0 , j - -  1] : icost(i, x, p )=  Ej(x)}. 
The relation ~ x  is a partial order on Pj(x), and any p in Pj(x) having no 
~x-predecessors represents the first j curves at x. If p and q both represented 
the first j curves at x, with p<q, it would follow that P-b~q and q-~xP. 
Lemma 2.3 would then imply that q < xP, a contradiction. Thus, there is a 
unique maximal element of P~(x) under ~x,  and this element uniquely 
represents the first j curves at x. 

F o r j ~ [ 1 ,  N] define the ordered candidate list 

R f = (p~ [ 0 , j - 1 ]  :p@jx for some x~ [j, N ] ) ,  in decreasing order. (12) 

Figure 3 gives an example. Suppose peR~. For all q e [ 0 , j - l ] - p ,  q~xP for 
some x, so q ~  jp by Lemma 2.2. Hence p~ R], proving that R 2 _~ R). Thus, by 
breaking ties with ~ x  we guarantee that Method 2's candidate list is a subset of 
Method l's. Moreover, the following result shows that the first element of the 
candidate list is optimal for position (i, j). 

LEMMA 4. If w is concave and je[1, iV], then I(i,j)=icost(i,j, R2[1]). 
Proof. Lemma 3 implies that I(i, j)= icost(i, j, R)[1]), so we need only show 

that R2[1]=Rl.[1] RI[1]@. j  because g ] [1 ]  ~<fl for all q e [ 0 , j - 1 ] ,  and j �9 j 

q-~ig][1] whenever q e R ~  by the definition of R). Thus, R ] [ 1 ] e R  2. But 
R 2 ~_ R) so Rj[ 1 ], being the largest element of R 1, must be the largest member 
of R 2 . �9 

We now turn to showing that the p-curves in R 2 form a piece-wise 
representation of the Ei-curve. Since R 2 ~ R) ,  every curve in R 2 properly 
intersects every other in the interval [j, iV]. For p > q whose curves properly 
intersect on [j, N], define the 'crossing point of p and q' as follows: 
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p x q = m a x { x ~ [ j ,  N] : P<xq}" (13) 

Note  that  p • q e [j, N -  1] and by L e m m a  1 p < xq for x <~ p • q and q ~< xP for 
x > p  • q. Suppose R]  = (Pa, P2, �9 �9 �9 P,) ,  i.e. p k = R ~ [ k ] .  Define the part i t ion 
point,  X(Pk), of Pk for all k as follows: 

Z(pk )=  {~rX  Pk+ l ifk<nif k = n "  (14) 

Since every pair of curves in R ] properly intersect on [j, N] it follows that  Z(Pk) is 
properly defined and an element of [j, N]. Figure 3 illustrates the definition of Z. 

LEMMA 5. Suppose that w is concave, j  e [1, N],  and R f = @ i ,  P2, �9 �9 �9 P, ) .  Le t  
z ( p l ) =  j and Z(pk )=Z(pk_ l )+  l f o r  k >  1. Then: 
1. For k611, n - 1 ] ,  Z(pk)< Z(pk+ ~). 
2. For ke [1 ,  n], Pk@j x for  all Xe[Z(pk)  , Z(PR)]. 

Proof. For  k > 1, Pk- a < z(pk- 1)Pk and L e m m a  1.1 imply that  Pk - 1 < xPk for 
X<X(xPk for X<X(Pk_l ) .  Thus Pk cannot represent the first j curves for all 
x < Z(pk). For  k < n, Pk + ~ < x(pk) + lPk and L e m m a  1.1 imply that  Pk + x <<- xPk for 
x > Z(Pk). Moreover,  since Pk + 1 < NPk(Pk > Pk + ~ properly intersect), it follows 
that  Pk + x--%Pk for x > X(Pk)" Thus  Pk cannot represent the first j curves for any 
x > X(Pk). N ow Pk e R f ,  so it must  represent the first j curves at some x. By the 
above it must  be that  Z(pk) <~ X <<. Z(Pk) for such an x. Thus  L e m m a  5.1 follows as 
Z(Pk-1)  < Z(Pk)<<-Z(Pk) and Lemma  5.2 follows as Pk is the only candidate that  
could represent the curves in the interval [-'C(pk) , X(Pk)]" �9 

L e m m a  5.1 shows that  the intervals [z(pk) , X(Pk)] form a part i t ion of [j, N]  
and L e m m a  5.2 shows that  the Pk-Curve represents Ej(x)  on the interval 
[Z(Pk), Z(Pk)]" Thus,  R 2 together with the list (X(Pk))  constitutes a piece-wise 
representat ion of the Ej-curve. Me thod  2 uses the following procedure to 
update  R 2. Method  l 's exhaustive check for curves that  cross between columns 
j -  1 a n d j  is avoided, and the dominan t  t ime complexity is shifted to the binary 
search comput ing  ( j -  1) x 711]. 

"The Iupdate Procedure  for Method  2" 

proeedure Iupdate 2 ( T, j )  
{ifj  = 1 then 

z(O) N 
} 

else 
{ifj > x(TI-1]) then 

T ~  T ~  TEl] 
if j -  1 <jT[1]  or j -  1 <.NT[1] then 
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{while IT] >0  and ( j -  1 <x~Ttl~)T[1] or j - -  1 ~<NT[1]) do 
T~- T,~ T[1] 

if I TI = o then 
z( j -1) , -U 

else 
z(j-- 1)~-( j -  1) x T[1] 

T,--(j-- 1> �9 T 
} 

} 
return T 

} (15) 

THEOREM 2. Let w be concave. Then R~ = Iupdate2(R, 1)for any initial value of 
R, and R} = Iupdate 2 (R~_ I, j) for j ~ [2, N]. 

Proof. R 2 = (0> = Iupdate 2(R, 1 ), SO consider the call Iupdate 2(R~_ 1 , j) for 
j 6 [2, N]. By the definition of R]_ 1, the initial value of T satisfies 

T = ( p e [ O , j - 2 ]  :p@j_lx  for some x ~ [ j -  1, N]>. (16) 

Define 

Q = ( p ~ [ O , j - 2 ]  : p@s_aX for some xe[ j ,  N]>. (17) 

The initial values of X are inherited from the previous call to Iupdate 2 (i.e. 
associated with RZ_x), so the definition of Z implies x ( T [ 1 ] ) e [ j - 1 ,  N]. It 
follows from Lemma 5 that if z ( T [ 1 ] ) = j - 1  then Q= T,-~ T[-1], otherwise 
Q = T. Thus, the lines 

if j >  z(T[1])  then 
T~ T,-~ T[1] (18) 

result in T= Q. 
We next show that the test 

if j - -  1 <jT[1] or j - -  1 ~<NT[1] then (19) 

correctly decides whether j - 1  e R } . First, suppose that j - 1  satisfies the test 
(and hence is inserted in Tby Iupdate2). Q[1] represents the first j -  1 curves at 
j, so Q [ 1] ~< fl  for all q e [0, j -  2]. If j -  1 < jQ[1], then for every q E [0, j -  2] we 
h a v e j - l < f l  and q-p f i -1 ,  so j - l @ f i  and j - I ~ R ] .  I f j - I~<NQ[1 ], then 
j - 1  ~<iQ[1] by Lemma 1.3 and j - 1  ~jQ[1]  by Lemma 2.1. Thus for every 
q e [ 0 , j - 2 ]  we h a v e j - l ~ < f l  and q -p f l -1  as Q[1] -p f l -1  and q-~sQ[1] if 
q # Q[1]. Once again j -  l@fl andj  - 1 eR ]. Conversely, suppose that the test 
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fails, i.e. Q[1] ~<fl- 1 and Q[1] < n J -  1. Then Q [ 1 ] ~ f l -  1 by Lemma 2.1, so 
j -- 1 r R) and, hence, j - 1 r R 2. 

If the test fails then j -  1 r R f implies that j -  1 doesn't represent the Ej-curve 
anywhere. Thus the Ej_ x" and E:-curves are identical over [j, N]. So in this 
case, Iupdate 2 returns T=  Q = Rf. 

If the test succeeds then clearly j -  1 ~ R 2 and R f - { j -  1 } __ Q. So what 
remains is to show that the while loop of Iupdate 2 correctly discards elements 
from Q. First, suppose that p is discarded, i.e. j -  1 < xtp)P or j -  1 ~< NP" If 
j - -  1 <xtp)P, then j - -  1 <xP for all xe  Iv(p), Z(P)] by Lemma 1.2. Thus p cannot 
represent the first j curves for any x in the range where it represented the first 
j - 1  curves. So p cannot represent the first j curves for all x, i.e. p e R  2. If 
j -  1 <~NP, then j -  l ~ j p  and pCR), hence p e R  2. Conversely, suppose p is not 
removed from Q by the while loop. Then some q preceding or equaling p in Q 
satisfies q <~ xtq~J- 1 and q < N J-- 1. It follows by induction that p ~< xtp)J- 1 and 
P<NJ--1, SO j--l~xtp)p. Since the definition of Q implies that p@j_ xZ(P), P 
represents the first j curves at X(P), and hence pc R 2. �9 

Hirschberg and Larmore (1987) developed an algorithm related to 
Method 2 for solving what they call the 'least weight common subsequence 
problem'. Phrased in the terminology of this paper, their work differs from ours 
as follows. Least weight subsequence problems treat a family of p-curves that 
are each convex, i.e. concave upward. A p-curve is generally not a simple 
translation of a q-curve and a condition more complicated than the convexity 
of w k is needed to guarantee that two curves cross at most once (in the sense of 
Lemma 1). Hirschberg and Larmore's algorithm is not entirely symmetric with 
Method 2 because they must delete candidates from both ends of the list and 
because Method 2 is crafted so that its lists are sublists of Method l's. Also, 
Hirschberg and Larmore prefer recomputation of crossing points to saving 
Z(Pk)" Finally, a single application of their algorithm solves the least weight 
subsequence problem, whereas Method 2 is applied repeatedly when two 
sequences are compared. 

7. Performance. Apart from the time spent in Iupdate and Dupdate, our 
candidate list algorithms spend O(MN) time in the outline of Section 4. To 
formally account for the aggregate performance of the update calls, let Ri, j and 
Si,j be the conservative lists for position (i, j). With this notation the average 
candidate list size, T, of a given method is '~i,j(lgi,j[-Jr-[S~j[)/(2MN+ M +  N). 
Note that T~ [ 1 , ( M + N +  2)/4] and T~> 2r2(~r m is the average candidate list 
size for method m). This parameter influences Method l's time complexity and 
the space consumption of both methods. The efficiency of Method 2 depends 
on the number of intersection computations, which occur only when IR,,jl >i 2 
and j -  1 ~ Ri, j. Suppose B intersections are required for an application of the 
algorithm. Then . , ( = B / ( 2 M N + M + N )  is the frequency with which an 
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intersection computation is needed in an update call. Note that .~6 [0, 1], i.e. if 
an intersection is never needed then .Y= 0 and at worst one is needed in every 
call, implying X =  1. 

LEMMA 6. Method 1 takes O( TIMN) time and Method 2 takes 0((1 + Xlg( M + 
N))MN) time. 

Proof. An examination of Iupdate I shows that a call, IupdateX(Ri,j_ l, J), 
takes O( Ri j_ 1 ) time ifj > 1 and 0(1) time ifj = 1. Since IR~ NI = 1, it follows that 
O(Ef= 1 R~jI) time is spent in Iupdate I for a given row i.'A similar argument 
holds for Dupdate 1 and columns. Thus the total time spent updating lists in 
Method 1 is O(Ei,jlR~.jl + [Si.j[)= O( T 1MN). 

Computing p x q requires finding the smallest x~[p+ 1, N] such that 
icost(i, x, p) - icost(i, x, q) >10. An O(lg(N-  p) ) binary search may be employed 
as icost(i, x, p) - icost(i, x, q) monotonically increases in x. Thus a given call to 
Iupdate 2 spends O(lgN) time if an intersection computation is needed, on the 
order of the number of elements deleted by the while loop, and a constant 
amount of time on the rest. Since an element can be deleted at most once, it 
follows that the amount of time spent in the while loop when amortized over a 
given row is O(N). Thus, over the entire algorithm, O(MN) time is spent in 
Iupdate 2 excluding the time needed for computing intersections. The same 
statement holds for the time spent in Dupdate 2. Letting B be the total number 
of binary searches, Method2 spends O(MN+Blg(M+N))=O((I+.~I9  
(M+ N))MN) time updating candidate lists. �9 

Since X~< 1, Lemma 6 implies that Method 2 takes O(MNlg(M+ N)) time in 
the worst case. Thus Method2 is asymptotically superior to the 
O(MN(M+N))  WSB algorithm and only a log factor worse than Gotoh's 
algorithm for aftine weighting functions (Gotoh, 1982). In terms of M and N, 
Method l's worst case performance is the same as the WSB algorithm. 
However, the empirical tests that follow, reveal that ~r~ grows very slowly as M 
and Nincrease. Thus Method l's performance is slightly worse than O(MN) in 
practice. On the other hand, X is rarely smaller than 0.1, implying that 
Method 2's worst-case and expected-case behavior are the same. So which 
method is superior in practice depends on the interplay between , (  and T 1. 

The empirical performance of Methods 1 and 2 will be compared with 
Waterman's method (Waterman, 1984). This method computes candidate lists 
R~ = (p ~ [0, j--  1]: p ~< p + ~q for all q < p) for column positionj in a given row. 
It then follows that candidate lists increase in size across rows (i.e., R~ ~ R~_ ~ ), 
and Method l's lists are always a subset of Waterman's (i.e. R~ ~ R J). Since 
this method takes O(7"~MN) time and 7"~> T 1, Method 1 is asymptotically 
superior. However, candidate lists are simple stacks for Method 2 and 
Waterman's method, whereas stacks with arbitrary element deletion are 
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needed for Method1.  These implementation issues along with the statistical 
behavior of the T and J? quantities, leave open the question of superiority in 
practice. 

Figures 4A-F give a glimpse of the expected behavior of the iP and J~ 
variables as a function of six parameters that control the nature of the input 
sequences, substitution costs, and weighting function. For each setting of the 
parameters, the expected value of each variable was estimated with 100 trials. 
Three parameters--N> 0, Se  [0, 1], and Z > 1---control the length, similarity, 
and underlying alphabet size of the input sequences. For each trial, two 
sequences of length N were obtained in the following manner. First a sequence 
of length SN was generated by randomly selecting symbols from a E-symbol 
alphabet with uniform probability. Then two sets of ( 1 - S ) N  random 
insertions (locations and symbols chosen uniformly) were performed on two 
copies of this common sequence to form the N-symbol inputs for the trial. Note 
that when S = 0, the inputs are uncorrelated, and at the other extreme, they are 
identical when S = 1. 

A class of weighting functions was specified by two parameters: Ce [0, 2] 
and R > 0. For a given C and R, the function w c'R is the parabola x ( 2 - x )  
linearly scaled so that domain [0, C] is mapped to [1, iV] and its range over this 
domain is mapped to [1, RN-], i.e. 

( R N - 1 )  k - 1  ( 2 _ c k - l ~  
1+ 2 - C  N - l \  N-l /  ifC~<l 

C,R__ 
W k - -  

I+(RN-1) C ~  2 - C ~  ifC>l. (20) 

All functions have w 1 = 1. C controls the concavity of the function: for C =  0 it is 
affine, for C~< 1 it is still strictly increasing; for C >  1 it 'peaks', reaching a 
maximum when k = ( N -  1)/C + 1; and for C = 2 it is so concave that w N = 1. 
The parameter R controls the maximum gap penalty which is RN regardless of 
C. Finally, substitution costs were zero for identical symbols (i.e. 5(a, a)= 0), 
and A > 0  for all other symbol pairs (i.e. 6(a, b)=A). 

Years of computer time would be required to thoroughly explore the 
dependence of the expected values of T and X on the six parameters. In 28 user 
hours on a VAX 8600, we obtained the plots in Fig. 4A-F for which one 
parameter was varied and the others held constant. Every such 'slice' passes 
through the point (N, S, Z, C, R, A) = (100, 0.85, 10, 1.3, 0.1, 1.0) shown as a 
solid circle in each figure. Combined with some additional experimentation, 
several observations and conjectures arose. 

(i) Candidate list sizes are modest for both our methods over the range of 
experiments in Fig. 4: Tl's largest value was 5.73 and T2's was 2.01. On 
the other hand, .~is substantial (0.1 or more) except when S or C is small. 
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cavity, C; (B) range, R; (C) substitution cost, A; (D) length, N; (E) similarity, S; (F) 

alphabet size, E. 
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(ii) The T variables for our methods appear to be bounded functionst of 
substitution cost, similarity and alphabet size. However, Waterman's 
candidate lists become O(N) as A or E decreases, and as R or S increases. 
In fact, we conjecture that his algorithm is O(N 3) whenever A < Aw 1 or Sis 
near 1. 

(iii) Waterman's candidate lists appear to grow linearly with N and not 
logarithmically as conjectured by Waterman (1984). Our lists grow at a 
decreasing rate; perhaps they are logarithmic or even bounded. Indeed, for 
experiments with w k = a + b lg k and w c'Rm (i.e. the range I-1, R] of this w is 
independent of N), ~r 1 and T 2 appear to be bounded functions of N, and , (  
appears to vanish in the limit of N. We thus conjecture that our methods 
are O(N 2) whenever the range of w is not functionally dependent on N. 

(iv) Methods 1 and 2 are provably O(N 2) when S =  1 and C~< 1 or when C=0 .  
The latter case, w affine, implies that our methods subsume Gotoh's 
algorithm (Gotoh, 1982) as a special case. 

Figure 5 plots the average running time of the algorithms for the 'slice' in 
Fig. 4D. The algorithms were written in C and run on a VAX 8600 running 
UNIX. For comparison, the time taken by the basic algorithm for single- 
symbol indels, Gotoh's algorithm for affine weighting functions, and the WSB 
algorithm are also shown. Waterman's algorithm exhibits O(N 3) behavior as 
7"~ grows linearly in N in Fig. 4D. Both of our methods are much closer to the 
O(N 2) curves for the basic and Gotoh algorithms. Method 2 is the clear winner 
in this case, but note that it crosses over with Method 1 for N around 50 in the 
close-up at the lower left of Fig. 5. In other experiments, Method 2 was always 
faster than Method 1 for large enough N, but the crossover point varied 
between 30 and 200. Finally, observe that in Fig. 5 the generality of Method 2 
costs a factor of less than 3 over Gotoh's algorithm although this factor is 
increasing logarithmically as N increases. 

To compute just the cost of an optimal conversion, only the current N +  2 
candidate lists and the current and previous rows of the C-matrix need be 
retained. Moreover, as shown in the next section, a divide-and-conquer 
technique permits one to deliver an optimal conversion in the same space and 
time efficiency as the cost-oriented problem. Since two rows of the C-matrix 
require O(N)  space, the main space constraint on our methods is T peak the 
maximum, over all positions, of the space consumed by the current N + 2  
candidate lists. For the experiments in Fig. 4, the largest consumption for 
Method 1 was 13.4(N+ 2) and 3.4(N+ 2) for Method 2. While T peak does not 
exactly correlate with T, Tpeak<~3TI(N+2)  and Tpeak<.2T2(N+2)  for this 
range of experiments. Waterman's method requires O(N 2) space for those 

We mean precisely that for a given setting of the other five parameters, there is a constant bounding T for 
all possible values of the parameter in question. 



114 WEBB MILLER AND EUGENE W. MYERS 

30 

20 

0.50 

0.25 100 200 

0 V- - ' - - -T  i i 
20 40 60 80 

Figure 5. Running times as N varies. 
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problems on which it performs poorly and always consumes more space than 
our methods. 

In summary, Waterman's algorithm is competitive for small problems and 
some particular choices of input parameters. However, it is frequently cubic 
whereas both our methods exhibit near quadratic performance for all 
parameter choices. Methods 1 and 2 are competitive for mid-sized problems 
but Method 2 is superior for large N. Moreover, Method 2's space consump- 
tion is always the most parsimonious, a characteristic of importance when 
optimal conversions must be delivered. We conclude that Method 2 is the 
preferred algorithm, both theoretically and practically. 

8. Variations. This section begins by sketching how the algorithms given in 
this paper can be applied to compute optimal sequence alignments. Then, the 
efficiency of Method 2 is improved for two classes of concave weighting 
functions, and Methods 1 and 2 are extended to a somewhat wider class of 
weights. The bulk of the section is devoted to showing how the space 
requirements of Method 2 can be reduced to O(N) in expectation, when an 
optimal conversion (not merely its cost) is desired. Similar results hold for 
Waterman's method and Method 1. Finally, some open problems are 
mentioned. 

8.1. Alignments. In the biological literature, an optimal alignment between 
sequences A and B is often desired (Needleman and Wunsch, 1970). The WSB 
algorithm can be used to compute optimal alignments using the rule that the 
gap penalty w~, for k-symbol gaps in the alignment corresponds to the indel 
weight 
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p 1 
W k ~- W k -~ ~#k 

where # is the max imum of 6(a, b) over all symbols a and b. For  details, see 
Smith et al. (1981). The relation between w~, and w k is impor tan t  for this paper  
because it preserves concavity. Thus,  the algori thms given in this paper  can be 
used to compute  opt imal  alignments with 'concave' gap penalties. 

8.2. Analytically expressible crossin9 points. The dominan t  cost of 
Method  2 is the 0(19 N) computa t ion  ofp  x q. This cost can be reduced for two 
practical types of concave weighting functions. First, consider w for which an 
analytic e'xpression k* (x, y) can be formulated for the min imum solution to the 
equat ion Wk=Wk_x+y where x > 0 .  For  example, if w k = a + b l g k  then 
k*(x, y ) = x / ( 1 - 2 - r / b ) .  Given an expression for k*, 
p x q = q + [k*( p - q, C(i, p ) - C(i, q ))] - 1 can be computed  in O (1) time. Thus,  
for 'analytically solvable' concave weighting functions, Me thod  2 can be 
modified to take O(MN) worst-case time. 

8.3. Piece-wise affine curves. A complexity reduct ion is also possible for 
concave weighting functions that  are P-piece affine curves, i.e. the domain  of w 
can be part i t ioned into P intervals such that  an affine function delivers the 
values of w in each interval. For  example, the curve of Fig. 1 is a 3-piece affine 
curve. Formally,  let a P-piece affine curve be specified by a P-element list of 
'segments' ,  ((z  1 , a 1, b ~ ) , . . .  (h,, a~,, be) ), where z 1 = 1 and ~2f < ' C f +  1. For  
convenience, introduce Zs equal to Zs+ 1 - 1 if f < P ,  and oo i f f = P .  For  k in 
segment f ' s  interval [z s, )Cs], Wk is given by the affine function ~os(k ) = a s + bsk. 
We show that  for concave piece-wise affine curves, k*(x, y) can be found in 
O(lo P) time. 

Since p x q is computed  only for properly intersecting curves, we can assume 
the equat ion wk=Wk_x+y has a min imum solution, k*, in the interval 
[1, N- -1 ] .  Let g be the min imum segment for which the equat ion e)g(k)= 
w k_:, + y has a solution in the interval [%, Zg] and let k* be the min imum such 
solution. Similarly, let h be the min imum segment such that  w k = COb(k--x)+ y 
has a m in imum solution k* in the interval [z h + x, Xh + X]. Because o~9(k)= w k 
for k~[%, X0] and O~h(k--x)=Wk_x+y for k~[zh+x ,  Zh+X], it follows that  
k* = k o* -- k]. But then k* is the min imum solution not  less than max(%, T h + x) 
to the equat ion ~o(k)= cob(k--x)+ y. Thus, k* can be computed  analytically in 
O(1) time once O and h have been found. Since w is concave, a segment f for 
which w~f f> w~_ x + y and wxs <<. wxf_ ~ + y must  have a solution to the equat ion 
tos(k)=Wk_:,+y in the interval [z l ,  Zs]- Thus  9 is the smallest segment 
satisfying this condi t ion and it may  be found with an O(Io P) binary search over 
the segment list of w since w k -  w k_x is strictly decreasing in k by the concavity 
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of w. Similarly, h is the smallest segment satisfying the condition, w~h >~ w~h + x - 
y and wz<<.wx,+x-y, and so can be found in O(lg P) time. Thus when w is 
P-piece affine, p • q can be computed in O(lg P) time improving Method 2 to 
only O(MNlg P) worst-case time. 

8.4. Ultimately concave weighting functions. In the direction of greater 
generality, both methods can be extended to handle weighting functions that 
are concave after K, i.e. Aw k >>-AWk+ 1 for all k ~> K. This class of curves permits 
the first K values of w to be arbitrary. The methods correctly handle the case 
where K =  1, i.e. w is concave. To treat larger K it suffices to treat indels of 
length less than Kas in the WSB algorithm, and those of greater length with the 
candidate list paradigm. Thus a row candidate list R for position (i, j) will 
contain candidates in the range [0, j -  K]. The impact on the formalisms is that 
< j , ~ j  and @j are all relations with domain [0, j - K ] .  Algorithmically, the 
expression j - 1  is replaced with j - K  and the predicate j = 1 is replaced with 
j = K in the Iupdate procedures. Then for i, j ~> K: 

C(i, j) = min {min{ieost(i, j, R[ 1]), dcost(i, j, S(j)[1], C ( i -  1, j -  1) + 6(ai, b j)}, 
min{icost(i,j, p) : p c [ j - K +  1 , j -  1]}, 
min{dcost(i,j, p) : p c [ i - - K +  1, i-- 1]} 

}. (21) 

A simple exercise yields similar expressions for the i<  K and j < K boundary 
cases. The additional min-terms in the expression for C(i, j) require O(K) time 
implying that O(KMN) time is spent in the outline of the algorithms. The time 
spent in Update calls remains unchanged. Thus, for weighting functions 
concave after K, Method 1 yields an O((K+ ~I)MN) algorithm, and Method 2 
an O((K + Xlg(M + N))MN) algorithm. 

8.5. Optimal conversions in linear space. In Section 7 it was noted that the 
cost of an optimal conversion can be computed in O(T ~eak) space, but 
delivering such a conversion naively requires O(MN) space. The application of 
the divide-and-conquer technique of Hirschberg (1975) gives candidate list 
algorithms that deliver an optimal conversion with only O(T peak + Ig M) space 
and no change in their asymptotic time complexities. This reduction is 
especially desirable since in practice it is space consumption that limits the 
maximum problem solvable on a given machine. 

All the algorithms discussed in this paper compute optimal conversions for 
progressively longer prefixes of the input sequences. One could equally well 
formulate algorithms that proceed by considering progressively longer suffixes. 
Specifically, let cR(i, j) be the cost of an optimal conversion of a i + 1 ai + 2 " " " aM 
to b j+ abj+ 2 �9 �9 �9 bN. The 'reverse' analog of a 'forward' algorithm computes C R 
in decreasing order of i and j in a row major fashion. Designing the reverse 
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algorithms is left as a simple exercise. The discussion now focuses on the 
modification of Method 2, but note that Method 1 and Waterman's method 
can be similarly treated. 

Hirschberg's central idea is to compute the 'mid-point' of an optimal 
conversion using the forward and reverse cost-only algorithms in O(T peak) 
space. The optimal conversion can then be delivered by recursively determin- 
ing the optimal conversions on both sides of its mid-point. Observe that any 
conversion of A to B must either (i) convert a 1 . . .  ap to b 1 . . .  bj and a x . . .  a u 
to bj+ x . . .  b N for p= M/2 = x and some j, or (ii) convert a 1 . . .  ap to b 1 . . .  bj, 
delete x - p  symbols, and convert a x + ~ . . . a M  to bj+~. . .bN for some 
j, p < M/2, and x > M/2. Term (p, j, x) is a mid-point of type 1 in case (i), and of 
type 2 in case (ii). Let the cost of a mid-point be: 

fC(p , j )+CR(x , j )  i f p = x  (type 1) 
Cost(p,j, x )=  (dcost(p,j, x)+ CR(x,j) if p < x  (type 2)" (22) 

Note that if the minimum cost of converting A to B is C then C = Cost(p, j, x) 
for the mid-point of an optimal conversion. Also, for such an optimal mid- 
point, p must be a column candidate at position (x, j) and without loss of 
generality must represent the first x curves at x. But since p < M/2, it follows 
that p is a column candidate for position (M/2, j) and represents the first M/2 
curves at x. Thus givenj and x of an optimal mid-point, there is only one choice 
p(j, x) for p. Specifically, if x = M/2 then p(j, x) = M/2, otherwise p(j, x) is the 
unique candidate in SM]2, j for which x e [z(p), ~(p)] (recall SM/2, j is the column 
candidate list for position (M/2,j)). Thus to find the mid-point of an optimal 
conversion it suffices to find a triple (P0", x),j ,  x) of minimum cost, i.e. 

C=min{Cost(p(j,  x),j ,  x) : j e [0 ,  N] and xeEM/2, M]}. (23) 

This requires (M/2 + 1) (N+ 1) comparisons given that Cost is available for the 
relevant mid-points. 

To find an optimal mid-point, first compute C(M/2, j) and SM/2,j for allj with 
the forward algorithm. This takes O(T peak) space using two vectors for the 
current and previous C rows and associating the value C(p,j) needed for 
evaluating dcost(p,j, x) with the record for candidate p. Then compute 
CR(M/2, j) using a similar version of the reverse algorithm and simultaneously 
record the minimum mid-point of type 2. This can be done, as at the time 
CR(x, j) is computed, p = p(j, x) can be found in O(1) time by 'walking' aM/2, j in 
the reverse direction as x decreases and dcost(p, j, x) is available in the record 
for candidate p. Finally, the type 1 mid-points are evaluated as the relevant C 
and C R values are available. Only O(MN) time is spent recording the optimal 
mid-point, so the dominant  complexity is for the forward and reverse 
algorithms which take O(MNIg(M+ N)) time and O(T peak) space. 
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Given an optimal mid-point (p, j, x), an optimal conversion of A to B is an 
optimal conversion of a I . . .  ap to b I . . .  bj, followed by a deletion of x - p  
symbols if pr followed by an optimal conversion of a x + l . . ,  aM to 
b j+ ~ . . .  b N. Thus for N, M >  1, an optimal M-by-Nconversion can be obtained 
by finding an optimal mid-point, and then recursively finding an optimal p-by-j 
conversion and an optimal (M-x)-by-(N-j)  conversion. For the boundary 
case M~< 1, O(N) time suffices to evaluate all possible conversions of A to B. 
Similarly, O(M) time suffices when N~< 1. Thus for large enough c the time, 
T(M, N), to compute an optimal M-by-N conversion satisfies the recurrence 
inequality: 

~cMNl9 (M + N) + T(p, j) if N, M > 1 and 0 <~ p, x <~ M/2 
T(M, N) <~l ~ + T(x, N--j) and 0 ~<j ~< U 

[Lc(M+N) ifN~<l or M~<I. (24) 

It follows that T(M, N) <~ 2cMNIo(M+ N) + c(M+ N), i.e. an optimal conver- 
sion is delivered in O(MNIo(M+N)) worst-case time. Each recursive 
invocation needs to locally record only its mid-point as the O(T peak) candidates 
and O(N) row vectors needed for a mid-point computation may be discarded 
once the mid-point is known. Moreover, the recursion depth is at most 
0(19 M). Thus the algorithm requires O(TPeak+19 M) space: 0(19 M) for a 
recursion stack and O(T peak) for a globally-shared mid-point computation 
structure. Since in practice T peak is linear in N for Method 2, this variation 
delivers an optimal script in O(N) space in expectation. 

A software package implementing this linear space variation of Method 2 is 
available from the authors upon request. It uses o(40N+ 15T pe~k) bytes of 
memory and over a range of experiments was never more than 1.98 times 
slower than the cost-only version timed in Section 7. Estimating T p~ak at 5N 
seems sufficient for all problems and implies a space consumption of o(120N) 
bytes in terms of N alone. A problem with M = N =  4,000 required 370 Kbytes 
and 28 minutes on a VAX 8600. Configured with one megabyte of memory the 
package will handle problems as large as M =  N =  8,500. 

In our experience, Hirschberg's technique appears applicable to most 
sequence comparison algorithms giving rise to linear-space, conversion- 
delivering variations that are never more than twice as slow as their cost-only 
counterparts. Also, the space consumption of these variations is asymptotically 
and practically much superior to methods based on the 'trace back' technique. 
For these reasons, we highly recommend this approach to software implemen- 
tors. For example, Gotoh's affine gap penalty algorithm when so refined, uses 
only o(16N) bytes of memory to deliver a conversion. Configured with a 
megabyte of memory, problems as large as M =  N =  64,000 can be solved. 
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8.6. Open problems. For weighting functions where A w  k approaches 0 
rapidly as k increases, an optimal alignment consists of a sequence of disjoint 
locally optimal alignments separated by large gaps. Intuitively, this is because 
once a sufficiently large gap is allowed, increasing its size does not substantially 
increase the score. This suggests that concave weighting functions may be 
useful in detecting local homologies within a global alignment. However, the 
use of concave gap penalties in conjunction with other local homology 
techniques (Smith and Waterman, 1981; Sellers, 1984), though technically 
feasible, has not yet been shown to have practical value. 

In the RNA secondary structure problem (Zuker and Sankoff, 1984), 
thermodynamic experiments reveal the destabilizing free energy of loops to be a 
concave function of their length. Waterman and Smith (1986) have achieved 
practical efficiency gains by applying Waterman's (1984) method for concave 
weights. Application of our methods is expected to produce further efficiency 
improvements. However, unlike the sequence comparison context, it is an open 
problem whether our approach attains a worst-case asymptotic improvement 
for the RNA secondary structure problem. 

Several additional issues remain to be investigated. First, it appears that an 
O(CN) algorithm is possible where C is the cost of an optimal conversion. The 
algorithms of Fickett (1984) and Ukkonen (1985) appear to generalize with our 
methods for handling concave weights. The technical details need to be 
addressed and the utility of the complex algorithms that arise needs to be 
assessed. In another direction, a point of concern is the effect of numerical 
instability on our algorithms:can the use of finite precision arithmetic cause the 
computed optimum conversion to drift away from the true optimum? Is it 
possible to efficiently compute the Kbest conversions? Can arbitrary weighting 
functions be handled in less than O(N 3) times? Are more than the class of 
concave functions needed in practical applications such as those in biology? 

The authors are indebted to the reviewers for their helpful suggestions. Stephen 
Ntschul's 1987 Ph.D. dissertation at MIT, entitled Aspects of  Biological 
Sequence Comparison, devotes several pages to a discussion of the O(N 3) 
behaviour of Waterman's (1984) algorithm. 
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