
Bulletin of Mathematical Biolooy Vol. 50, No, 2, pp. 97-120, 1988.
Printed in Great Britain.

0092 8240/8853.00+0.00
Pergamon Press plc

�9 1988 Society for Mathematical Biology

S E Q U E N C E C O M P A R I S O N W I T H C O N C A V E
W E I G H T I N G F U N C T I O N S

�9 WEBB MILLER
Department of Computer Science,
The Pennsylvania State University,
University Park, PA 16802, U.S.A.

�9 EUGENE W. MYERS~
Department of Computer Science,
University of Arizona,
Tucson, AZ 85721, U.S.A.

We consider efficient methods for computing a difference metric between two sequences of
symbols, where the cost of an operation to insert or delete a block of symbols is a concave
function of the block's length. Alternatively, sequences can be optimally aligned when gap
penalties are a concave function of the gap length. Two algorithms based on the 'candidate list
paradigm' first used by Waterman (1984) are presented. The first computes significantly more
parsimonious candidate lists than Waterman's method. The second method refines the first to
the point of guaranteeing O(N21g N) worst-case time complexity, and under certain conditions
O(N2). Experimental data show how various properties of the comparison problem affect the
methods' relative performance. A number of extensions are discussed, among them a technique
for constructing optimal alignments in O(N) space in expectation. This variation gives a practical
method for comparing long amino sequences on a small computer.

I . Introduction. Sequences A = a l a 2 . . . a u and B = b l b 2 . . . b N can be
compared by determining a sequence of'basic operations' that converts A to B
and minimizes the sum of the operations' weights. The most thoroughly studied
set of basic operations are those that insert a single symbol, delete a symbol, or
replace one symbol by another (Sankoff and Kruskal, 1983). Each such basic
operation is assigned a nonnegative real number, called the operation's weight

or cost, that may depend on the affected symbol or symbols.
An alternative approach is to treat an indel (i.e. insertion or deletion) of k > 0

consecutive symbols as an atomic operation, rather than k operations on
individual symbols. Traditionally, the operation is assigned a weight w k that
depends only on the number of symbols inserted or deleted. Allowing 'block'
indels is more natural than considering only single-symbol indels for certain
applications in biology (Fitch and Smith, 1983) and computer science (Miller
and Myers, 1986; Myers and Miller, 1988).

Unfortunately, determining a minimum-weight set of operations seems more
expensive with multisymbol indels if the weights w k can be arbitrary. In

t This work was supported in part by NSF Grant DCR-8511455.

97

98 WEBB MILLER AND EUGENE W. MYERS

particular, the algorithm of Waterman et al. (1976) runs in time O(N 3)
(assuming A and B have approximately the same length, iV), whereas sequence
comparison with single-symbol indels can be performed in time O (N 2) (Sankoff
and Kruskal, 1983).

On the other hand, Gotoh (1982) showed how to perform sequence
comparison with multisymbol indels in time O(N 2) if the weighting function is
affine, i.e. has the form w k = a + bk with a, b constant. Fredman (1984) and
Gotoh (1986) extended the method to simultaneously compare more than two
sequences. Gotoh's result for two sequences has been generalized to a wider
class of basic operations by Myers and Miller (1988). For the case that costs are
integers and independent of the affected symbols, Myers and Miller (1988) also
gave an O(CN) 'greedy' algorithm. Here C is the optimal cost of converting A to
B, so the algorithm is fast when A and B are similar. Miller and Myers (1986)
developed a third algorithm, which has inferior worst case performance, but
which works very efficiently in the context of screen updating applications.

This paper focuses on the efficient treatment of a wider class of 'concave'
weighting functions. Waterman (1984) sketched an approach for concave
weights that was conjectured to run in 0(N219 N) expected-time. However,
empirical tests reveal the algorithm to frequently exhibit O(N 3) behavior,
especially in cases where inputs are similar or w 2 - wl is larger than the average
replacement cost. We present two new algorithms based on the 'candidate list
paradigm'. The first algorithm is asymptotically faster in expectation than
Waterman's and does not exhibit the same O(N 3) weaknesses. The second
algorithm refines the first to the point of guaranteeing 0(N219 N) worst-case
time complexity. Moreover, this method subsumes a number of additional
results, e.g. it is O(N 2) for affine weights, 0(N219 P) for piece-wise affine
weighting functions with P pieces, and O(N 2) if the equation w k = Wk_ x + y is
analytically solvable for arbitrary x and y. In addition, application of the
divide-and-conquer technique of Hirschberg (1975) to Methods 1 and 2
reduces their space complexity to O(N) in expectation. A suite of empirical tests
demonstrates the practical efficiency of our methods and confirms that
Method 2 is the preferred method, both in theory and in practice. A software
package written in C that delivers an optimal alignment in linear space using
Method 2 is available from the authors upon request.

2. The W S B Algorithm for Arbitrary Weightin9 Functions. The starting point
for this work is an O (M N (M + N)) algorithm by Waterman et al. (1976) for
determining the minimum cost of converting ala 2 . . . a M to bib 2 . . . b~ via
symbol-dependent replacements and arbitrarily weighted block indels. Assume
a k-symbol indel costs w k, and the cost of replacing a by b is denoted 6(a, b). In
the common case where 6 is a metric, 6(a, a) = 0 and 6(a, b)--6(b, a)~O.
However, throughout this paper 6 may be arbitrary. For i t [0 , M] and

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 99

j e [0 , N], let C(i, j) denote the minimum cost of converting a l a 2 . . , a~ to
b x b 2 . . , bj. The desired value is C(M, N) and the algorithm proceeds by
determining all C(i,j) in row major order.

"The WSB Algorithm"

define icost(i, j , p) =- C(i, p) + wj_p
define dcost(i, j , p) - C(p, j) + w i_ p

c(0, o) -o
for j ~ 1, 2 , Ndo

{I(O, j)~min{icos t (O, j , p) : p c [0 , j - 1]}
C(O,j)+--I(O,j)

}
for i ~ l , 2 , . . . , Mdo

{D(i, O)~-min{dcost(i, O, p) : p c [0, i - 13}
C(i, 0)*-D(i, 0)
for j . - 1, 2, . . , , N d o

{ I (i , j)~min{ icos t (i , j , p) : p~[0 , j - -1]}
D(i , j)~min{dcos t (i , j , p) : pe[0, i - 1]}
C (i , j) ~ m i n { I (i , j) , D(i , j) , C (i - 1 , j - 1) + 6(ai, bj)}

)
} (1)

Informally, the computation of C(i,j) for i, j > 0 in the innermost loop is
justified as follows. An optimal conversion of ala 2 . . . a i to b~b z . . . bj must
either (i) insert b j, (ii) delete ai, or (iii) replace a i by bj. The algorithm
considers all three possibilities, then picks the best. Let I(i, j) be the minimum
cost over all conversions of a x a z . . , a i to b ~ b 2 . . , bj that insert bj. The
insertion must involve a block o f j - p symbols for some p, where the remaining
operations optimally convert a x a 2 . . , a i to b i b 2 . . , bp. Thus, defining
icost(i,j, p)=C(i, p)+wj_p for p c [0 , j - 1] , we have I (i , j) = m i n
{icost(i , j ,p) : p e [0 , j - 1] } . Similarly, D(i, j) , the minimum cost over all
conversions of ala 2 . . . a~ to bib 2 . . . bj that delete ai, is min{dcost(i , j , p) :
pc[0, i - 1] } where d c o s t (i , j , p) = C (p , j) + w i _ p. For the third possibility,
C (i - 1 , j - 1) + 6 (a ~ , bfl is the minimum cost of a conversion that replaces a~
with bj. Thus C(i , j)=min{ I (i , j) , D(i , j) , C (i - 1 , j - 1) + 6(a~, bj)}.

3. Concave Weighting Functions. To see how the WSB algorithm can be made
more efficient, consider the minimization operations,

I(i , j)*--min{icost(i , j , p) : p e [0, j - - 1]}, (2)

100 WEBB MILLER AND EUGENE W. MYERS

for fixed row i. A given pc [0 , N - l] enters into this minimization for all
columns j e [p + l , N] . It is helpful to visualize the 'p-curve'
{(x, icost(i , x N , P))}x=p+~, which shows p's contribution to these later oper-
ations. Note that the p-curve has the same shape as the q-curve for any other
q ~ [0, N - 1], i.e. if q < p, then translating horizontally by q - p and vertically
by C(i, q) - C(i , p) maps the p-curve into the q-curve.

It is often possible to determine that p need not be considered in any
subsequent minimization operations. For example, if there is a q such that the
p-curve lies above the q-curve for all columns x, then p can be omitted.
Comparing the p-curve and q-curve may be time-consuming if w is arbitrary,
but we will show that such comparisons are 'easy' for the class of concave
curves. Formally, a weighting function w is concave if and only if:

AWk ~ AWk + 1 for all k >/1, where Aw k = w k + 1 - Wk" (3)

In words, w is concave if the cost of inserting or deleting an additional
symbol decreases with the size of the affected substring. Thus, every p-curve is
concave downward since its domain is [-p+ 1, N]. The least concave curve
possible is a straight line (A w k = A w k § 1 for all k), and since A w k < 0 is permitted,
more concave curves can have a maximum as in Fig. 1. The concavity
condition is equivalent to Waterman's (1984) condition: Wm+,,+k--Wm+,,<~

W m § m for all m, n, k~> 1. If the concavity condition were strengthened to
r equ i r e Wl>~Awl, then concavity would imply that Wm+n~Wm'~-W n for all
m, n~> 1. As it stands, the two conditions are incomparable. The class of
concave weighting functions was argued to be of biological interest by
Waterman (1984). He cites the study of Fitch and Smith (1983) and suggests
that concave functions such as w k = a + b log k have intuitive appeal.

C(i~ p]+w I - -- --

p-curve

o/~
-- . ~

p+l

Figure 1. A sample p-curve.

N

icost (i, x, p)

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 101

The simple result given as Lemma 1 shows that concavity guarantees that a
p-curve intersects a q-curve at most once.t This captures everything we need
about concavity; subsequent proofs do not refer back to the original definition.
In fact, there is a partial converse theorem that the reader is invited to formalize
and prove, namely, if w is neither concave nor convex ('convex' means that the
sequence {AWk} is nondecreasing), then there exist a p-curve and a q-curve that
cross more than once.

Lemma 1, and all that follows, uses the notat ion p < xq and p ~< xq to mean
that the p-curve lies strictly below (in the first case) or on-or-below (in the
second case) the q-curve at point x. Formally:

P < xq iff p, q ~ [0, x -- 1] and icost(i, x, p) < icost(i, x, q)
P <<- xq iff p, q e [0, x - 1] and icost(i, x, p) <<. icost(i, x, q) (4)

Keep in mind that a fixed i is implicit in these definitions.

LEMMA 1. I f w is concave and p < q then:
1. I f p<<.jq then p<<.~qfor all xe[j , N-J;
2. I f p < jq then p < xq for all x e [j, N-J;
3. I f q<<.jp then q<~xpfor all x e [q + l , j];
4. I f q < jp then q < xP for all x e [q + 1, j].

Proof. We only prove part 1; the other proofs are quite similar. Since p < q,
Aw _ > ~ A w r _ p for all y>q. Thus, for xe [j , N-J, icost(i, x, p)=ieest(i , j , p)+
S ~xr--lq Aw r p<.icost(i, j, q) L,r:j ..~x--ll...~y=j --q _~+ ~ - - 1 Awr_p<<icost(i, j, q) Aw r = z..~y = j

icost(i, x, q), i.e. p<<.xq. �9
The notation p-~jq, which can be read "p dominates q beyond f ' , signifies

that the p-curve lies on or below the q-curve in all columns x e I j, N].
Additionally, we require that either the p-curve is strictly below the q-curve for
at least one point or, in case the curves are equal everywhere, that p >~ q.
Formally:

p~ jq iffp<<.xq for all xe [j , N-] and either p) q or P<xq for some x e [j , N-J.
(5)

For concave weights, part 1 of the following lemma shows that to determine
the ---,j-relationship between two curves, it is sufficient to compare them at the
end points, j and N. Part 2 of the lemma asserts that ifp dominates q beyond j,
then p dominates q beyond every x >~j. This result illustrates the importance of
breaking ties properly. For if we had defined P~iq when p = xq for all x e [j, N]
and p < q, then Lemma 2.2 and much that follows would fail. Part 3 guarantees
that two mutually nondominat ing curves properly intersect, i.e. if p < q, then

t A contiguous set of points for which the curves are equal is considered a single intersection. This subtlety
is important when, for example, the weighting function is a piece-wise affine curve.

102 WEBB MILLER AND EUGENE W. MYERS

the p-curve must begin strictly higher (q <jp) and end strictly lower (p <uq).
Conversely, if two curves do not properly intersect, then one dominates the
other.

LEMMA 2. f f W is concave then:
1. p--.jq iff p < q and p <<.jq and P <sq or p >~q and P <<-Nq ;
2. p ~ jq iff p~xq for all xe[j , N];
3. p < q and p-~ jq and q-~ jp iff q < jp and P < Nq.

Proof
(1) First, suppose p<q. Then P~fl~P<<-xq for all xe[j , N] and P<xq for

some xe [j, N-J~Lemraal.2p ~ fl and p < Nq. (=~Lemmal.2 m e a n s "implies by
part 2 of Lemma 1".) Conversely, p<<.fl and p<uq=~Lemmal.lp~xq for
all xe[j , N] and p<xq for x = N e [j , N] ~ p ~ l q . Second, suppose p>~q.
Then P~jq~P<<-uq and, conversely, p~uq=~zemmal.3P<.xq for all
xe [p+ 1, N] ~ p ~ j q .

(2) Supose p---~jq and x e [j, N]. Then by part 1 either p < q, p ~< fl, and p < uq or
p/> q and p ~< uq. Thus, either p < q, p ~< xq and p < uq or p >~ q and p ~< uq by
Lemma 1.1. But by part 1, this implies p ~ q .

(3) First, suppose p < q, p-~fl and q-~jp. Since p-~fl, part 1 implies that either
q<jp or q<<-uP. Likewise, q-~jp implies P<uq, ruling out the possibility
that q ~< uP- Thus, q <jp and p < uq. Conversely, suppose that q <jp and
P<Nq. Then q<jp=~p-~jq and p<uq~q-~jp . Moreover, if p>q, then
P < Uq~Lemmal.4P < fl, a contradiction. Thus, p < q. �9

4. The Candidate List Paradigm. Two methods will be given to speed up the
WSB algorithm when w is concave. Both approaches maintain N + 2 lists of
'candidates'. For a row, the candidates are column positions, and vice versa.
One list, R, is for the current row of the C matrix. R is 'conservative' for posi-
tion (i, j) in the sense that R excludes a value q e [0 , j - 1] only if
min{icost(i, x, p) :peR} is unaffected for all xe [j , N]. Similarly, a conserva-
tive list, S(j), is maintained for each column j e [-0, N].

Recently, Waterman (1984) presented a conservative candidate list algor-
ithm. Both of the methods presented here compute significantly smaller
candidate lists. Furthermore, the min computation for I(i,j) and D(i,j) is
avoided by our methods since both guarantee that the first candidate in the list
is optimal for position (i, j), i.e.

I(i, j) = icost(i, 1, R[1]) and D(i, j) = dcost(i, j, S(j) [1]). (6)

Methods 1 and 2 differ only in the procedures Iupdate and Dupdate for
updating candidate lists and both have the overall form shown in (7).

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 103

"The General Structure of Methods 1 and 2"

C(0, 0)~-0
for j ~ 1, 2 N d o

{ R ~- Iupdate(R, j)
C(O, j)*--ieost(O, j, R[1])

}
for i ~ l , 2 , . . . , Mdo

{S(O)~ Dupdate(S(O), O)
C(i, O)~dcost(i, O, S(0)[1])
for j ~ 1, 2 , . . . , N d o

{ R ~ Iupdate(R,j)
S(j)~ Dupdate(S(j), i)
C(i,j).--min{ icost(i,j, R[1]), deost(i,j, S(j)[1]), C(i - 1,j - 1) + 6(a i, b j)}

}
} (7)

Method 1 culls all positions that are dominated by another according to the
relation ~ j . Method 2 goes further by computing lists that are minimal with
respect to conservation, i.e. removal of any element gives a nonconservative
list. Thus, Method 2's lists are in some sense optimal. Additionally, Method 2's
lists are sublists of Method l's lists, which are, in turn, sublists of Waterman's
lists. Our discussions of the two methods focus exclusively on the computat ion
of the R-lists for a given row i. The treatment of an S(j)-list for column j is
symmetric.

5. Method 1. As each of the two methods sweeps across row i, it culls
unnecessary values from R. Method 1 is based on the informal observation that
one of p or q can be discarded if the p-curve and the q-curve do not properly
intersect between columns j and N. To correctly handle such cases as two
curves that are equal everywhere in [j, N], Method 1 adopts the precise
criterion that p is eliminated if and only if q ~ jp for some q ~ R.

For j~ [1, N] define the ordered list

R] = < p c [0 , j - 1] :q~ jp for all qe [0 , j - 1] - p > , in decreasing order. (8)

The relation ~ is reflexive, asymmetric, and transitive, i.e. a partial order. R)
is the set of p ~ [0 , j - 1] having no ~j-predecessors. It follows that if
q ~ [0, j - 1], then there exists a p ~ R) such that p ~ f l . Moreover, Lemma 2.3
implies that every pair of curves in R) properly intersect on the interval [j, N-J.
Figure 2 gives an example.

In conformance with the previous section, we will show that I(i,j)=
icost(i,j, R] [1]) a n d that R~=Iupdatel(R~_x,j) where Iupdate 1 is given
below. In the procedure description, '.' is list concatenation, ',-~' is deletion of

104 WEBB MILLER AND EUGENE W. MYERS

/ / / / / "

/ / / / / / .,/)j,

0 ~ io/ 20~3e~4 i' /7/!=<'4'5'2>

I I
j=5 N

Figure 2. A sample Method 1 candidate list.

-'- X

an element from a list, and T[k] is the kth element of list T.

"The Iupdate Procedure for Method 1"

procedure Iupdate 1 (T, j)
{ifj = 1 then

(0)
else

1).r
while IT(> 1 and T[1] ~<NT[2] do

T~- T~ T[23
k~-2
while k ~<]r] do

(while k> 1 and T[k] ~<jT[k-1] do
(k ~ k - 1
T~ T,,~ T[k]

k ~ k + l
)

return T
} (9)

LEMMA 3. If w is concave and je[1, iV] then I(i,j)=icost(i,j, R~[1]).
Proof. First, suppose q~R)~R)[1]. Then q<R)[1] , q@jR)[1], and

R)[1]-~fl, so Lemma 2.3 implies that R)[1]<~q. For an arbitrary
q e [0 , j - 1] , there is a peR) satisfying p~fl , so R][1]<~p<.fl. Thus,
R)[1]~<jq for all q e [0 , j - 1] , and consequently I(i,j)=min{icost(i,j, q):
qe[O,j-- 1]} =icost(i,j, R)[1]). �9

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 105

THEOREM 1. Let w be concave. Then R~ = Iupdate 1 (R, 1)for any initial value of
R, and R] = Iupdate l(R)_ l, j) for j ~ [2, N-].

Proof. R~ = (0) = Iupdatel(R, 1), so consider the call Iupdatel(R]_l,j) for
j e [2, N-]. We first show that R] ~_ T:i,a~, where T:i,a ~ denotes T's value at the
end of the procedure. After the assignment T ~ - (j - 1) . T, T contains
R]_ 1 w {j -- 1 }. But then R] _ T, since if q ~ [0, j - 2] - R]_I, then p ~ j_l q for
some p # q, hence Lemma 2.2 implies that p ~ f l and q ~ R]. Ifq is eliminated by
the first while loop, then j - 1 >q and j - 1 ~<Nq, so Lemma 2.1 implies that
j - l ~ f l and qCR).

If p < q and p, q e T at the end of the first while loop, then p < Nq" To see this,
first suppose p, q eR)_ 1. Then p and q are mutually nondominating, so
Lemma 2.3 implies p < Nq. The other possibility is that q = j - 1 , in which case
the first while loop guarantees p < Nq"

If q is eliminated from T by the second while loop, then p <~ jq for some p < q.
Since p < Nq, as shown in the previous paragraph, Lemma 2.1 implies p ~ q and
qq~R). Thus, R] ~ Z f i n a l .

Suppose p < q and p, q e Tf,,, t. Then q < jp. The second while loop enforces
this condition for adjacent pairs (T[k], T [k - 1]) , which guarantees the
ordering in general. Together with the condition p < Nq (guaranteed by the first
while loop), this implies p-pfl and q-p~p by Lemma 2.3. Now, if q~R] then
there exists a p~R~ ~ Zfina I such that p ~ f l , and this implies qq~ Tit,a t. Thus,
R] _= T:,.~ �9

6. Method 2. Method 1 updates R]_ 1 to R] by comparing curves atj and at N.
Tests for x~ [j + 1, N - 1] are avoided, but two inefficiencies result. First, at
each new column j, R] must be exhaustively checked for curves that cross
between columns j - 1 and j. Second, R) may contain values p such that at
every column xe [j , N] there is a qe[O, j -1] with q<xP, e.g. the 3-curve in
Fig. 3. The definition of R) merely guarantees that no single q beats p for all x.

/ / f / f / /

0 ~ o , /
- , I

I
I
I = , X

/=5 x(4) x(2)=N
Figure 3. A sample Method 2 candidate list.

106 W E B B M I L L E R A N D E U G E N E W. M Y E R S

Method 2 avoids these problems by maintaining an explicit piece-wise
representation of the 'minimum envelope' of the first j curves, i.e. the curve
{(x, Ei(x)}~= j where

Ej(x)=min{icost(i, x, p) : p e [O , j - 1] } . (10)

To insure that Method 2's candidate lists are always smaller than Method l's,
care is required when deciding which curve to let represent Ej(x) for each x.
Specifically, if more than one curve equals Ej(x) at x then the candidate p that
has no ~-predecessors must be chosen. In this case we say "p represents the
first j curves at x" and write p@jx. Formally:

p@jx i f f p ~ [0 , j - 1] and x6[j , N] and (p<<.~q and q-~xP) for every
q~[O,j--1]--p. (11)

The following argument shows that if w is concave, then for each x ~ [j, N]
there is exactly one p representing the firstj curves at x. For x e [j, N], the set of
curves that could represent Ei(x) is P~(x)= {p~ [0 , j - - 1] : icost(i, x, p)= Ej(x)}.
The relation ~ x is a partial order on Pj(x), and any p in Pj(x) having no
~x-predecessors represents the first j curves at x. If p and q both represented
the first j curves at x, with p<q, it would follow that P-b~q and q-~xP.
Lemma 2.3 would then imply that q < xP, a contradiction. Thus, there is a
unique maximal element of P~(x) under ~x, and this element uniquely
represents the first j curves at x.

F o r j ~ [1 , N] define the ordered candidate list

R f = (p~ [0 , j - 1] :p@jx for some x~ [j, N]) , in decreasing order. (12)

Figure 3 gives an example. Suppose peR~. For all q e [0 , j - l] - p , q~xP for
some x, so q ~ jp by Lemma 2.2. Hence p~ R], proving that R 2 _~ R). Thus, by
breaking ties with ~ x we guarantee that Method 2's candidate list is a subset of
Method l's. Moreover, the following result shows that the first element of the
candidate list is optimal for position (i, j).

LEMMA 4. If w is concave and je[1, iV], then I(i,j)=icost(i,j, R2[1]).
Proof. Lemma 3 implies that I(i, j)= icost(i, j, R)[1]), so we need only show

that R2[1]=Rl.[1] RI[1]@. j because g] [1] ~<fl for all q e [0 , j - 1] , and j �9 j

q-~ig][1] whenever q e R ~ by the definition of R). Thus, R] [1] e R 2. But
R 2 ~_ R) so Rj[1], being the largest element of R 1, must be the largest member
of R 2 . �9

We now turn to showing that the p-curves in R 2 form a piece-wise
representation of the Ei-curve. Since R 2 ~ R) , every curve in R 2 properly
intersects every other in the interval [j, iV]. For p > q whose curves properly
intersect on [j, N], define the 'crossing point of p and q' as follows:

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 107

p x q = m a x { x ~ [j , N] : P<xq}" (13)

Note that p • q e [j, N - 1] and by L e m m a 1 p < xq for x <~ p • q and q ~< xP for
x > p • q. Suppose R] = (Pa, P2, �9 �9 �9 P,) , i.e. p k = R ~ [k] . Define the part i t ion
point, X(Pk), of Pk for all k as follows:

Z(pk)= {~rX Pk+ l ifk<nif k = n " (14)

Since every pair of curves in R] properly intersect on [j, N] it follows that Z(Pk) is
properly defined and an element of [j, N]. Figure 3 illustrates the definition of Z.

LEMMA 5. Suppose that w is concave, j e [1, N], and R f = @ i , P2, �9 �9 �9 P,) . Le t
z (p l) = j and Z(pk)=Z(pk_ l)+ l f o r k > 1. Then:
1. For k611, n - 1] , Z(pk)< Z(pk+ ~).
2. For ke [1 , n], Pk@j x for all Xe[Z(pk) , Z(PR)].

Proof. For k > 1, Pk- a < z(pk- 1)Pk and L e m m a 1.1 imply that Pk - 1 < xPk for
X<X(xPk for X<X(Pk_l) . Thus Pk cannot represent the first j curves for all
x < Z(pk). For k < n, Pk + ~ < x(pk) + lPk and L e m m a 1.1 imply that Pk + x <<- xPk for
x > Z(Pk). Moreover, since Pk + 1 < NPk(Pk > Pk + ~ properly intersect), it follows
that Pk + x--%Pk for x > X(Pk)" Thus Pk cannot represent the first j curves for any
x > X(Pk). N ow Pk e R f , so it must represent the first j curves at some x. By the
above it must be that Z(pk) <~ X <<. Z(Pk) for such an x. Thus L e m m a 5.1 follows as
Z(Pk-1) < Z(Pk)<<-Z(Pk) and Lemma 5.2 follows as Pk is the only candidate that
could represent the curves in the interval [-'C(pk) , X(Pk)]" �9

L e m m a 5.1 shows that the intervals [z(pk) , X(Pk)] form a part i t ion of [j, N]
and L e m m a 5.2 shows that the Pk-Curve represents Ej(x) on the interval
[Z(Pk), Z(Pk)]" Thus, R 2 together with the list (X(Pk)) constitutes a piece-wise
representat ion of the Ej-curve. Me thod 2 uses the following procedure to
update R 2. Method l 's exhaustive check for curves that cross between columns
j - 1 a n d j is avoided, and the dominan t t ime complexity is shifted to the binary
search comput ing (j - 1) x 711].

"The Iupdate Procedure for Method 2"

proeedure Iupdate 2 (T, j)
{ifj = 1 then

z(O) N
}

else
{ifj > x(TI-1]) then

T ~ T ~ TEl]
if j - 1 <jT[1] or j - 1 <.NT[1] then

108 WEBB MILLER AND E U G E N E W. MYERS

{while IT] >0 and (j - 1 <x~Ttl~)T[1] or j - - 1 ~<NT[1]) do
T~- T,~ T[1]

if I TI = o then
z(j -1) , -U

else
z(j-- 1)~-(j - 1) x T[1]

T,--(j-- 1> �9 T
}

}
return T

} (15)

THEOREM 2. Let w be concave. Then R~ = Iupdate2(R, 1)for any initial value of
R, and R} = Iupdate 2 (R~_ I, j) for j ~ [2, N].

Proof. R 2 = (0> = Iupdate 2(R, 1), SO consider the call Iupdate 2(R~_ 1 , j) for
j 6 [2, N]. By the definition of R]_ 1, the initial value of T satisfies

T = (p e [O , j - 2] :p@j_lx for some x ~ [j - 1, N]>. (16)

Define

Q = (p ~ [O , j - 2] : p@s_aX for some xe[j , N]>. (17)

The initial values of X are inherited from the previous call to Iupdate 2 (i.e.
associated with RZ_x), so the definition of Z implies x (T [1]) e [j - 1 , N]. It
follows from Lemma 5 that if z (T [1]) = j - 1 then Q= T,-~ T[-1], otherwise
Q = T. Thus, the lines

if j > z(T[1]) then
T~ T,-~ T[1] (18)

result in T= Q.
We next show that the test

if j - - 1 <jT[1] or j - - 1 ~<NT[1] then (19)

correctly decides whether j - 1 e R } . First, suppose that j - 1 satisfies the test
(and hence is inserted in Tby Iupdate2). Q[1] represents the first j - 1 curves at
j, so Q [1] ~< fl for all q e [0, j - 2]. If j - 1 < jQ[1], then for every q E [0, j - 2] we
h a v e j - l < f l and q-p f i -1 , so j - l @ f i and j - I ~ R] . I f j - I~<NQ[1], then
j - 1 ~<iQ[1] by Lemma 1.3 and j - 1 ~jQ[1] by Lemma 2.1. Thus for every
q e [0 , j - 2] we h a v e j - l ~ < f l and q -p f l -1 as Q[1] -p f l -1 and q-~sQ[1] if
q # Q[1]. Once again j - l@fl andj - 1 eR]. Conversely, suppose that the test

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 109

fails, i.e. Q[1] ~<fl- 1 and Q[1] < n J - 1. Then Q [1] ~ f l - 1 by Lemma 2.1, so
j -- 1 r R) and, hence, j - 1 r R 2.

If the test fails then j - 1 r R f implies that j - 1 doesn't represent the Ej-curve
anywhere. Thus the Ej_ x" and E:-curves are identical over [j, N]. So in this
case, Iupdate 2 returns T= Q = Rf.

If the test succeeds then clearly j - 1 ~ R 2 and R f - { j - 1 } __ Q. So what
remains is to show that the while loop of Iupdate 2 correctly discards elements
from Q. First, suppose that p is discarded, i.e. j - 1 < xtp)P or j - 1 ~< NP" If
j - - 1 <xtp)P, then j - - 1 <xP for all xe Iv(p), Z(P)] by Lemma 1.2. Thus p cannot
represent the first j curves for any x in the range where it represented the first
j - 1 curves. So p cannot represent the first j curves for all x, i.e. p e R 2. If
j - 1 <~NP, then j - l ~ j p and pCR), hence p e R 2. Conversely, suppose p is not
removed from Q by the while loop. Then some q preceding or equaling p in Q
satisfies q <~ xtq~J- 1 and q < N J-- 1. It follows by induction that p ~< xtp)J- 1 and
P<NJ--1, SO j--l~xtp)p. Since the definition of Q implies that p@j_ xZ(P), P
represents the first j curves at X(P), and hence pc R 2. �9

Hirschberg and Larmore (1987) developed an algorithm related to
Method 2 for solving what they call the 'least weight common subsequence
problem'. Phrased in the terminology of this paper, their work differs from ours
as follows. Least weight subsequence problems treat a family of p-curves that
are each convex, i.e. concave upward. A p-curve is generally not a simple
translation of a q-curve and a condition more complicated than the convexity
of w k is needed to guarantee that two curves cross at most once (in the sense of
Lemma 1). Hirschberg and Larmore's algorithm is not entirely symmetric with
Method 2 because they must delete candidates from both ends of the list and
because Method 2 is crafted so that its lists are sublists of Method l's. Also,
Hirschberg and Larmore prefer recomputation of crossing points to saving
Z(Pk)" Finally, a single application of their algorithm solves the least weight
subsequence problem, whereas Method 2 is applied repeatedly when two
sequences are compared.

7. Performance. Apart from the time spent in Iupdate and Dupdate, our
candidate list algorithms spend O(MN) time in the outline of Section 4. To
formally account for the aggregate performance of the update calls, let Ri, j and
Si,j be the conservative lists for position (i, j). With this notation the average
candidate list size, T, of a given method is '~i,j(lgi,j[-Jr-[S~j[)/(2MN+ M + N).
Note that T~ [1 , (M + N + 2)/4] and T~> 2r2(~r m is the average candidate list
size for method m). This parameter influences Method l's time complexity and
the space consumption of both methods. The efficiency of Method 2 depends
on the number of intersection computations, which occur only when IR,,jl >i 2
and j - 1 ~ Ri, j. Suppose B intersections are required for an application of the
algorithm. Then . , (= B / (2 M N + M + N) is the frequency with which an

110 WEBB MILLER AND EUGENE W. MYERS

intersection computation is needed in an update call. Note that .~6 [0, 1], i.e. if
an intersection is never needed then .Y= 0 and at worst one is needed in every
call, implying X = 1.

LEMMA 6. Method 1 takes O(TIMN) time and Method 2 takes 0((1 + Xlg(M +
N))MN) time.

Proof. An examination of Iupdate I shows that a call, IupdateX(Ri,j_ l, J),
takes O(Ri j_ 1) time ifj > 1 and 0(1) time ifj = 1. Since IR~ NI = 1, it follows that
O(Ef= 1 R~jI) time is spent in Iupdate I for a given row i.'A similar argument
holds for Dupdate 1 and columns. Thus the total time spent updating lists in
Method 1 is O(Ei,jlR~.jl + [Si.j[)= O(T 1MN).

Computing p x q requires finding the smallest x~[p+ 1, N] such that
icost(i, x, p) - icost(i, x, q) >10. An O(lg(N- p)) binary search may be employed
as icost(i, x, p) - icost(i, x, q) monotonically increases in x. Thus a given call to
Iupdate 2 spends O(lgN) time if an intersection computation is needed, on the
order of the number of elements deleted by the while loop, and a constant
amount of time on the rest. Since an element can be deleted at most once, it
follows that the amount of time spent in the while loop when amortized over a
given row is O(N). Thus, over the entire algorithm, O(MN) time is spent in
Iupdate 2 excluding the time needed for computing intersections. The same
statement holds for the time spent in Dupdate 2. Letting B be the total number
of binary searches, Method2 spends O(MN+Blg(M+N))=O((I+.~I9
(M+ N))MN) time updating candidate lists. �9

Since X~< 1, Lemma 6 implies that Method 2 takes O(MNlg(M+ N)) time in
the worst case. Thus Method2 is asymptotically superior to the
O(MN(M+N)) WSB algorithm and only a log factor worse than Gotoh's
algorithm for aftine weighting functions (Gotoh, 1982). In terms of M and N,
Method l's worst case performance is the same as the WSB algorithm.
However, the empirical tests that follow, reveal that ~r~ grows very slowly as M
and Nincrease. Thus Method l's performance is slightly worse than O(MN) in
practice. On the other hand, X is rarely smaller than 0.1, implying that
Method 2's worst-case and expected-case behavior are the same. So which
method is superior in practice depends on the interplay between , (and T 1.

The empirical performance of Methods 1 and 2 will be compared with
Waterman's method (Waterman, 1984). This method computes candidate lists
R~ = (p ~ [0, j-- 1]: p ~< p + ~q for all q < p) for column positionj in a given row.
It then follows that candidate lists increase in size across rows (i.e., R~ ~ R~_ ~),
and Method l's lists are always a subset of Waterman's (i.e. R~ ~ R J). Since
this method takes O(7"~MN) time and 7"~> T 1, Method 1 is asymptotically
superior. However, candidate lists are simple stacks for Method 2 and
Waterman's method, whereas stacks with arbitrary element deletion are

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 111

needed for Method1. These implementation issues along with the statistical
behavior of the T and J? quantities, leave open the question of superiority in
practice.

Figures 4A-F give a glimpse of the expected behavior of the iP and J~
variables as a function of six parameters that control the nature of the input
sequences, substitution costs, and weighting function. For each setting of the
parameters, the expected value of each variable was estimated with 100 trials.
Three parameters--N> 0, Se [0, 1], and Z > 1---control the length, similarity,
and underlying alphabet size of the input sequences. For each trial, two
sequences of length N were obtained in the following manner. First a sequence
of length SN was generated by randomly selecting symbols from a E-symbol
alphabet with uniform probability. Then two sets of (1 - S) N random
insertions (locations and symbols chosen uniformly) were performed on two
copies of this common sequence to form the N-symbol inputs for the trial. Note
that when S = 0, the inputs are uncorrelated, and at the other extreme, they are
identical when S = 1.

A class of weighting functions was specified by two parameters: Ce [0, 2]
and R > 0. For a given C and R, the function w c'R is the parabola x (2 - x)
linearly scaled so that domain [0, C] is mapped to [1, iV] and its range over this
domain is mapped to [1, RN-], i.e.

(R N - 1) k - 1 (2 _ c k - l ~
1+ 2 - C N - l \ N-l / ifC~<l

C,R__
W k - -

I+(RN-1) C ~ 2 - C ~ ifC>l. (20)

All functions have w 1 = 1. C controls the concavity of the function: for C = 0 it is
affine, for C~< 1 it is still strictly increasing; for C > 1 it 'peaks', reaching a
maximum when k = (N - 1)/C + 1; and for C = 2 it is so concave that w N = 1.
The parameter R controls the maximum gap penalty which is RN regardless of
C. Finally, substitution costs were zero for identical symbols (i.e. 5(a, a)= 0),
and A > 0 for all other symbol pairs (i.e. 6(a, b)=A).

Years of computer time would be required to thoroughly explore the
dependence of the expected values of T and X on the six parameters. In 28 user
hours on a VAX 8600, we obtained the plots in Fig. 4A-F for which one
parameter was varied and the others held constant. Every such 'slice' passes
through the point (N, S, Z, C, R, A) = (100, 0.85, 10, 1.3, 0.1, 1.0) shown as a
solid circle in each figure. Combined with some additional experimentation,
several observations and conjectures arose.

(i) Candidate list sizes are modest for both our methods over the range of
experiments in Fig. 4: Tl's largest value was 5.73 and T2's was 2.01. On
the other hand, .~is substantial (0.1 or more) except when S or C is small.

112 WEBB MILLER AND EUGENE W. MYERS

A

~ _ 7 n

I
0 0.5 IO 1.5 2.0

0,4 t - - I I I

0.3
0.2 �9 .,)?
O. I ~ " -

0

C

2O

o ~

I0--

I
0 1.0

0.4]-- I

~

I
2,0

50

40

30

20

I0

0.4
03
0.2
0.1

0

L 3 w

, ~ _ 3 '
' - - ; I I �9 32

50 I00 150 */=
_ / ~ ~ , , , , ~ I -

30

2O

3w

I0

3'
t ~2

0

~ w

_ T I

I00 200

o., I 0.3
Q2
0.1

0

30

20

I0

0

0.4 f 0.3
0.2
0.1

0

E

i [

/
3 W

20 40 60 80 I00 */*
I I I I

3o I F

20] ~ e ~

I 0 -

0.4i[_ I I I

, 3 w

3'
It 7 2

�9 ;?

Figure 4. Slices through (N, S, Z, C, R, A)= (100, 0.85, 10, 1.3, 0.1, 1.0). (A) Con-
cavity, C; (B) range, R; (C) substitution cost, A; (D) length, N; (E) similarity, S; (F)

alphabet size, E.

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 113

(ii) The T variables for our methods appear to be bounded functionst of
substitution cost, similarity and alphabet size. However, Waterman's
candidate lists become O(N) as A or E decreases, and as R or S increases.
In fact, we conjecture that his algorithm is O(N 3) whenever A < Aw 1 or Sis
near 1.

(iii) Waterman's candidate lists appear to grow linearly with N and not
logarithmically as conjectured by Waterman (1984). Our lists grow at a
decreasing rate; perhaps they are logarithmic or even bounded. Indeed, for
experiments with w k = a + b lg k and w c'Rm (i.e. the range I-1, R] of this w is
independent of N), ~r 1 and T 2 appear to be bounded functions of N, and , (
appears to vanish in the limit of N. We thus conjecture that our methods
are O(N 2) whenever the range of w is not functionally dependent on N.

(iv) Methods 1 and 2 are provably O(N 2) when S = 1 and C~< 1 or when C=0 .
The latter case, w affine, implies that our methods subsume Gotoh's
algorithm (Gotoh, 1982) as a special case.

Figure 5 plots the average running time of the algorithms for the 'slice' in
Fig. 4D. The algorithms were written in C and run on a VAX 8600 running
UNIX. For comparison, the time taken by the basic algorithm for single-
symbol indels, Gotoh's algorithm for affine weighting functions, and the WSB
algorithm are also shown. Waterman's algorithm exhibits O(N 3) behavior as
7"~ grows linearly in N in Fig. 4D. Both of our methods are much closer to the
O(N 2) curves for the basic and Gotoh algorithms. Method 2 is the clear winner
in this case, but note that it crosses over with Method 1 for N around 50 in the
close-up at the lower left of Fig. 5. In other experiments, Method 2 was always
faster than Method 1 for large enough N, but the crossover point varied
between 30 and 200. Finally, observe that in Fig. 5 the generality of Method 2
costs a factor of less than 3 over Gotoh's algorithm although this factor is
increasing logarithmically as N increases.

To compute just the cost of an optimal conversion, only the current N + 2
candidate lists and the current and previous rows of the C-matrix need be
retained. Moreover, as shown in the next section, a divide-and-conquer
technique permits one to deliver an optimal conversion in the same space and
time efficiency as the cost-oriented problem. Since two rows of the C-matrix
require O(N) space, the main space constraint on our methods is T peak the
maximum, over all positions, of the space consumed by the current N + 2
candidate lists. For the experiments in Fig. 4, the largest consumption for
Method 1 was 13.4(N+ 2) and 3.4(N+ 2) for Method 2. While T peak does not
exactly correlate with T, Tpeak<~3TI(N+2) and Tpeak<.2T2(N+2) for this
range of experiments. Waterman's method requires O(N 2) space for those

We mean precisely that for a given setting of the other five parameters, there is a constant bounding T for
all possible values of the parameter in question.

114 WEBB MILLER AND EUGENE W. MYERS

30

20

0.50

0.25 100 200

0 V- - ' - - -T i i
20 40 60 80

Figure 5. Running times as N varies.

WSB /

problems on which it performs poorly and always consumes more space than
our methods.

In summary, Waterman's algorithm is competitive for small problems and
some particular choices of input parameters. However, it is frequently cubic
whereas both our methods exhibit near quadratic performance for all
parameter choices. Methods 1 and 2 are competitive for mid-sized problems
but Method 2 is superior for large N. Moreover, Method 2's space consump-
tion is always the most parsimonious, a characteristic of importance when
optimal conversions must be delivered. We conclude that Method 2 is the
preferred algorithm, both theoretically and practically.

8. Variations. This section begins by sketching how the algorithms given in
this paper can be applied to compute optimal sequence alignments. Then, the
efficiency of Method 2 is improved for two classes of concave weighting
functions, and Methods 1 and 2 are extended to a somewhat wider class of
weights. The bulk of the section is devoted to showing how the space
requirements of Method 2 can be reduced to O(N) in expectation, when an
optimal conversion (not merely its cost) is desired. Similar results hold for
Waterman's method and Method 1. Finally, some open problems are
mentioned.

8.1. Alignments. In the biological literature, an optimal alignment between
sequences A and B is often desired (Needleman and Wunsch, 1970). The WSB
algorithm can be used to compute optimal alignments using the rule that the
gap penalty w~, for k-symbol gaps in the alignment corresponds to the indel
weight

SEQUENCE COMPARISON WITH CONCAVE W E I G H T I N G FUNCTIONS 115

p 1
W k ~- W k -~ ~#k

where # is the max imum of 6(a, b) over all symbols a and b. For details, see
Smith et al. (1981). The relation between w~, and w k is impor tan t for this paper
because it preserves concavity. Thus, the algori thms given in this paper can be
used to compute opt imal alignments with 'concave' gap penalties.

8.2. Analytically expressible crossin9 points. The dominan t cost of
Method 2 is the 0(19 N) computa t ion ofp x q. This cost can be reduced for two
practical types of concave weighting functions. First, consider w for which an
analytic e'xpression k* (x, y) can be formulated for the min imum solution to the
equat ion Wk=Wk_x+y where x > 0 . For example, if w k = a + b l g k then
k*(x, y) = x / (1 - 2 - r / b) . Given an expression for k*,
p x q = q + [k*(p - q, C(i, p) - C(i, q))] - 1 can be computed in O (1) time. Thus,
for 'analytically solvable' concave weighting functions, Me thod 2 can be
modified to take O(MN) worst-case time.

8.3. Piece-wise affine curves. A complexity reduct ion is also possible for
concave weighting functions that are P-piece affine curves, i.e. the domain of w
can be part i t ioned into P intervals such that an affine function delivers the
values of w in each interval. For example, the curve of Fig. 1 is a 3-piece affine
curve. Formally, let a P-piece affine curve be specified by a P-element list of
'segments' , ((z 1 , a 1, b ~) , . . . (h,, a~,, be)), where z 1 = 1 and ~2f < ' C f + 1. For
convenience, introduce Zs equal to Zs+ 1 - 1 if f < P , and oo i f f = P . For k in
segment f ' s interval [z s,)Cs], Wk is given by the affine function ~os(k) = a s + bsk.
We show that for concave piece-wise affine curves, k*(x, y) can be found in
O(lo P) time.

Since p x q is computed only for properly intersecting curves, we can assume
the equat ion wk=Wk_x+y has a min imum solution, k*, in the interval
[1, N- -1] . Let g be the min imum segment for which the equat ion e)g(k)=
w k_:, + y has a solution in the interval [%, Zg] and let k* be the min imum such
solution. Similarly, let h be the min imum segment such that w k = COb(k--x)+ y
has a m in imum solution k* in the interval [z h + x, Xh + X]. Because o~9(k)= w k
for k~[%, X0] and O~h(k--x)=Wk_x+y for k~[zh+x , Zh+X], it follows that
k* = k o* -- k]. But then k* is the min imum solution not less than max(%, T h + x)
to the equat ion ~o(k)= cob(k--x)+ y. Thus, k* can be computed analytically in
O(1) time once O and h have been found. Since w is concave, a segment f for
which w~f f> w~_ x + y and wxs <<. wxf_ ~ + y must have a solution to the equat ion
tos(k)=Wk_:,+y in the interval [z l , Zs]- Thus 9 is the smallest segment
satisfying this condi t ion and it may be found with an O(Io P) binary search over
the segment list of w since w k - w k_x is strictly decreasing in k by the concavity

116 WEBB MILLER AND EUGENE W. MYERS

of w. Similarly, h is the smallest segment satisfying the condition, w~h >~ w~h + x -
y and wz<<.wx,+x-y, and so can be found in O(lg P) time. Thus when w is
P-piece affine, p • q can be computed in O(lg P) time improving Method 2 to
only O(MNlg P) worst-case time.

8.4. Ultimately concave weighting functions. In the direction of greater
generality, both methods can be extended to handle weighting functions that
are concave after K, i.e. Aw k >>-AWk+ 1 for all k ~> K. This class of curves permits
the first K values of w to be arbitrary. The methods correctly handle the case
where K = 1, i.e. w is concave. To treat larger K it suffices to treat indels of
length less than Kas in the WSB algorithm, and those of greater length with the
candidate list paradigm. Thus a row candidate list R for position (i, j) will
contain candidates in the range [0, j - K]. The impact on the formalisms is that
< j , ~ j and @j are all relations with domain [0, j - K] . Algorithmically, the
expression j - 1 is replaced with j - K and the predicate j = 1 is replaced with
j = K in the Iupdate procedures. Then for i, j ~> K:

C(i, j) = min {min{ieost(i, j, R[1]), dcost(i, j, S(j)[1], C (i - 1, j - 1) + 6(ai, b j)},
min{icost(i,j, p) : p c [j - K + 1 , j - 1]},
min{dcost(i,j, p) : p c [i - - K + 1, i-- 1]}

}. (21)

A simple exercise yields similar expressions for the i< K and j < K boundary
cases. The additional min-terms in the expression for C(i, j) require O(K) time
implying that O(KMN) time is spent in the outline of the algorithms. The time
spent in Update calls remains unchanged. Thus, for weighting functions
concave after K, Method 1 yields an O((K+ ~I)MN) algorithm, and Method 2
an O((K + Xlg(M + N))MN) algorithm.

8.5. Optimal conversions in linear space. In Section 7 it was noted that the
cost of an optimal conversion can be computed in O(T ~eak) space, but
delivering such a conversion naively requires O(MN) space. The application of
the divide-and-conquer technique of Hirschberg (1975) gives candidate list
algorithms that deliver an optimal conversion with only O(T peak + Ig M) space
and no change in their asymptotic time complexities. This reduction is
especially desirable since in practice it is space consumption that limits the
maximum problem solvable on a given machine.

All the algorithms discussed in this paper compute optimal conversions for
progressively longer prefixes of the input sequences. One could equally well
formulate algorithms that proceed by considering progressively longer suffixes.
Specifically, let cR(i, j) be the cost of an optimal conversion of a i + 1 ai + 2 " " " aM
to b j+ abj+ 2 �9 �9 �9 bN. The 'reverse' analog of a 'forward' algorithm computes C R
in decreasing order of i and j in a row major fashion. Designing the reverse

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 117

algorithms is left as a simple exercise. The discussion now focuses on the
modification of Method 2, but note that Method 1 and Waterman's method
can be similarly treated.

Hirschberg's central idea is to compute the 'mid-point' of an optimal
conversion using the forward and reverse cost-only algorithms in O(T peak)
space. The optimal conversion can then be delivered by recursively determin-
ing the optimal conversions on both sides of its mid-point. Observe that any
conversion of A to B must either (i) convert a 1 . . . ap to b 1 . . . bj and a x . . . a u
to bj+ x . . . b N for p= M/2 = x and some j, or (ii) convert a 1 . . . ap to b 1 . . . bj,
delete x - p symbols, and convert a x + ~ . . . a M to bj+~. . .bN for some
j, p < M/2, and x > M/2. Term (p, j, x) is a mid-point of type 1 in case (i), and of
type 2 in case (ii). Let the cost of a mid-point be:

fC(p , j)+CR(x , j) i f p = x (type 1)
Cost(p,j, x)= (dcost(p,j, x)+ CR(x,j) if p < x (type 2)" (22)

Note that if the minimum cost of converting A to B is C then C = Cost(p, j, x)
for the mid-point of an optimal conversion. Also, for such an optimal mid-
point, p must be a column candidate at position (x, j) and without loss of
generality must represent the first x curves at x. But since p < M/2, it follows
that p is a column candidate for position (M/2, j) and represents the first M/2
curves at x. Thus givenj and x of an optimal mid-point, there is only one choice
p(j, x) for p. Specifically, if x = M/2 then p(j, x) = M/2, otherwise p(j, x) is the
unique candidate in SM]2, j for which x e [z(p), ~(p)] (recall SM/2, j is the column
candidate list for position (M/2,j)). Thus to find the mid-point of an optimal
conversion it suffices to find a triple (P0", x),j , x) of minimum cost, i.e.

C=min{Cost(p(j, x),j , x) : j e [0 , N] and xeEM/2, M]}. (23)

This requires (M/2 + 1) (N+ 1) comparisons given that Cost is available for the
relevant mid-points.

To find an optimal mid-point, first compute C(M/2, j) and SM/2,j for allj with
the forward algorithm. This takes O(T peak) space using two vectors for the
current and previous C rows and associating the value C(p,j) needed for
evaluating dcost(p,j, x) with the record for candidate p. Then compute
CR(M/2, j) using a similar version of the reverse algorithm and simultaneously
record the minimum mid-point of type 2. This can be done, as at the time
CR(x, j) is computed, p = p(j, x) can be found in O(1) time by 'walking' aM/2, j in
the reverse direction as x decreases and dcost(p, j, x) is available in the record
for candidate p. Finally, the type 1 mid-points are evaluated as the relevant C
and C R values are available. Only O(MN) time is spent recording the optimal
mid-point, so the dominant complexity is for the forward and reverse
algorithms which take O(MNIg(M+ N)) time and O(T peak) space.

118 WEBB MILLER AND EUGENE W. MYERS

Given an optimal mid-point (p, j, x), an optimal conversion of A to B is an
optimal conversion of a I . . . ap to b I . . . bj, followed by a deletion of x - p
symbols if pr followed by an optimal conversion of a x + l . . , aM to
b j+ ~ . . . b N. Thus for N, M > 1, an optimal M-by-Nconversion can be obtained
by finding an optimal mid-point, and then recursively finding an optimal p-by-j
conversion and an optimal (M-x)-by-(N-j) conversion. For the boundary
case M~< 1, O(N) time suffices to evaluate all possible conversions of A to B.
Similarly, O(M) time suffices when N~< 1. Thus for large enough c the time,
T(M, N), to compute an optimal M-by-N conversion satisfies the recurrence
inequality:

~cMNl9 (M + N) + T(p, j) if N, M > 1 and 0 <~ p, x <~ M/2
T(M, N) <~l ~ + T(x, N--j) and 0 ~<j ~< U

[Lc(M+N) ifN~<l or M~<I. (24)

It follows that T(M, N) <~ 2cMNIo(M+ N) + c(M+ N), i.e. an optimal conver-
sion is delivered in O(MNIo(M+N)) worst-case time. Each recursive
invocation needs to locally record only its mid-point as the O(T peak) candidates
and O(N) row vectors needed for a mid-point computation may be discarded
once the mid-point is known. Moreover, the recursion depth is at most
0(19 M). Thus the algorithm requires O(TPeak+19 M) space: 0(19 M) for a
recursion stack and O(T peak) for a globally-shared mid-point computation
structure. Since in practice T peak is linear in N for Method 2, this variation
delivers an optimal script in O(N) space in expectation.

A software package implementing this linear space variation of Method 2 is
available from the authors upon request. It uses o(40N+ 15T pe~k) bytes of
memory and over a range of experiments was never more than 1.98 times
slower than the cost-only version timed in Section 7. Estimating T p~ak at 5N
seems sufficient for all problems and implies a space consumption of o(120N)
bytes in terms of N alone. A problem with M = N = 4,000 required 370 Kbytes
and 28 minutes on a VAX 8600. Configured with one megabyte of memory the
package will handle problems as large as M = N = 8,500.

In our experience, Hirschberg's technique appears applicable to most
sequence comparison algorithms giving rise to linear-space, conversion-
delivering variations that are never more than twice as slow as their cost-only
counterparts. Also, the space consumption of these variations is asymptotically
and practically much superior to methods based on the 'trace back' technique.
For these reasons, we highly recommend this approach to software implemen-
tors. For example, Gotoh's affine gap penalty algorithm when so refined, uses
only o(16N) bytes of memory to deliver a conversion. Configured with a
megabyte of memory, problems as large as M = N = 64,000 can be solved.

SEQUENCE COMPARISON WITH CONCAVE WEIGHTING FUNCTIONS 119

8.6. Open problems. For weighting functions where A w k approaches 0
rapidly as k increases, an optimal alignment consists of a sequence of disjoint
locally optimal alignments separated by large gaps. Intuitively, this is because
once a sufficiently large gap is allowed, increasing its size does not substantially
increase the score. This suggests that concave weighting functions may be
useful in detecting local homologies within a global alignment. However, the
use of concave gap penalties in conjunction with other local homology
techniques (Smith and Waterman, 1981; Sellers, 1984), though technically
feasible, has not yet been shown to have practical value.

In the RNA secondary structure problem (Zuker and Sankoff, 1984),
thermodynamic experiments reveal the destabilizing free energy of loops to be a
concave function of their length. Waterman and Smith (1986) have achieved
practical efficiency gains by applying Waterman's (1984) method for concave
weights. Application of our methods is expected to produce further efficiency
improvements. However, unlike the sequence comparison context, it is an open
problem whether our approach attains a worst-case asymptotic improvement
for the RNA secondary structure problem.

Several additional issues remain to be investigated. First, it appears that an
O(CN) algorithm is possible where C is the cost of an optimal conversion. The
algorithms of Fickett (1984) and Ukkonen (1985) appear to generalize with our
methods for handling concave weights. The technical details need to be
addressed and the utility of the complex algorithms that arise needs to be
assessed. In another direction, a point of concern is the effect of numerical
instability on our algorithms:can the use of finite precision arithmetic cause the
computed optimum conversion to drift away from the true optimum? Is it
possible to efficiently compute the Kbest conversions? Can arbitrary weighting
functions be handled in less than O(N 3) times? Are more than the class of
concave functions needed in practical applications such as those in biology?

The authors are indebted to the reviewers for their helpful suggestions. Stephen
Ntschul's 1987 Ph.D. dissertation at MIT, entitled Aspects of Biological
Sequence Comparison, devotes several pages to a discussion of the O(N 3)
behaviour of Waterman's (1984) algorithm.

LITERATURE

Fickett, J. W. 1984. "Fast optimal alignment." Nucleic Acids Res. 12, 175-179.
Fitch, W. M. and T. F. Smith. 1983. "Optimal sequence alignments." Proc. natn. Acad. Sci.

U.S.A. 80, 1382-1386.
Fredman, M. L. 1984. "Algorithms for computing evolutionary similarity measures with length

independent gap penalties.'~ Bull. math. Biol. 46, 553-566.
Gotoh, O. 1982. "An improved algorithm for matching biological sequences." J. molec. Biol. 162,

705-708.

120 WEBB MILLER AND EUGENE W. MYERS

�9 1986. "Alignment of three biological sequences with an efficient traceback procedure." J.
theor. Biol. 121,327-337.

Hirschberg, D. S. 1975. "A linear space algorithm for computing maximal common
subsequences." Communications of ACM 18, 341-343.

- - and L. L. Larmore. 1987. "The least weight subsequence problem." SIAM J. on
Computing 16, 628-638.

Miller, W. and E. W. Myers. 1986. "A simple row-replacement method." TR 86-28, Dept. of
Computer Science, University of Arizona, Tucson, AZ 85721 (submitted to Software--Prac-
tice and Experience).

Myers, E. W. and W. Miller. 1988. "Row replacement algorithms for screen editors." Trans. on
Prog. Lang. and Systems (in press).

Needleman, S. B. and C. D. Wunsch. 1970. "A general method applicable to the search for
similarities in the amino acid sequences of two proteins." J. molec. Biol. 48, 443-453.

Sankoff, D. and J. B. Kruskal. 1983. Time Warps, Strings Edits, and Macromolecules : The Theory
and Practice of Sequence Comparison. Reading, MA: Addison-Wesley.

Smith, T. F., M. S. Waterman. 1981. "Identification of common molecular subsequences." J.
molec. Biol. 147, 195-197.

- - and W. M. Fitch. 1981. "Comparative biosequence metrics." J. molec. Evol. 18,
38-46.

Ukkonen, E. 1985. "Algorithms for approximate string matching." Information and Control 64,
100-118.

Waterman, M. S. 1984. "Efficient sequence alignment algorithms." J. theor. Biol. 108, 333-337.
- - a n d T. F. Smith. "Rapid dynamic programming algorithms for RNA secondary

structure." Adv. Appl. Math. 7, 455-464.
and W. A. Beyer. 1976. "Some biological sequence metrics." Adv. Math. 20,

367"387.
Zuker, M. and D. Sankoff. 1984. "RNA structures and their prediction." Bull. math. Biol. 44,

591-621.

Rece ived 17 Ju ly 1987
Revised 29 S e p t e m b e r 1987

