
SOFTWARE-PRACI'ICE AND EXPERIENCE, VOL. 18(7), 597-61 1 (JCLY 1988)

A Simple Row-replacement Method

WEBB MILLER
Department of Computer Science, The Pennsylaania State L'niwrsity,

C'niverszty Park, PA 16802, 5,S.A.

AND

EUGENE W. MYERS
Department of Computer Science, C'niuersity of Arizona, Tucson, 85721, CSA

SUMMARY

Updating a video screen involves row replacement, i.e. the task of updating an existing screen
row to produce the desired row. In many environments, screen operations require transmitting
characters to the terminal by a process that is painfully slow compared to computing speeds.
Thus, it is worth while to compute a minimal set of row updating commands, as long as the
time to do so does not outweigh the savings in character transmission time. This paper presents
a simple and practical algorithm for optimal row replacement and describes experience with
its use in a screen editor.

KEY WORDS Ron replacement Video terminal Screen editor

INTRODUCTION

At the heart of many modern screen editors and other screen-oriented programs, lies
the 'screen manager' module, which is responsible for keeping the video display up to
date. In one design, procedures that modify the biiffer (the editor's copy of the edited
file) must also inform the screen manager how to update the display. A cleaner approach
lets an autonomous screen manager determine how to update the screen by comparing
its record of the screen contents with the current buffer contents. The interface to the
screen manager is then a single routine, refresh, that synchronizes the screen with the
buffer. It is given no information other than the contents of the screen and the buffer.
An autonomous screen manager gives the editor an orderly internal structure, and
writers of screen editors are almost unanimous in recommending this approach.

Compared to the other parts of an editor, the screen manager may well involve
both the messiest implementation details and the deepest algorithmic issues. The
implementation details involve idiosyncrasies of various terminal brand^.^ Such diffi-
culties are not considered here.

This paper is concerned with one aspect of the following algorithmic problem: given
the current screen contents and the desired screen contents, determine a set of screen
updating commands having minimum cost. Often, data travels from the editor to the

0038-0644/88/070597-15$07.50
@ 1988 by John Wiley & Sons, Ltd.

Received 23 December I986
Revised 16 December 1987

598 W . MILLER AND E. W. MYERS

screen at between 100 and 1000 characters per second (e.g. 1200 or 9600 baud), which
is orders of magnitude slower than the editor’s computing speed. Such conditions
justify the use of a relatively complex scheme to minimize the number of bytes sent
to the screen, so long as the savings in character transmission time are not outweighed
by the execution time. Execution time is a critical issue because the desirable properties
of an independent screen manager are achieved at a cost in execution efficiency. T h e
screen manager operates without knowledge of the user’s edit command, so it cannot
take short-cuts tailored to particular commands. For example, when typed characters
are being inserted in the buffer, an autonomous screen manager applies the updating
algorithm for every keystroke, and a character-by-character comparison of two 24 x 80
character arrays (the current screen contents and the desired screen contents) may be
too slow.

Video terminals treat rows and columns differently. Commands usually exist for
inserting or deleting rows, but not columns, and printing or inserting a character moves
the cursor along a row, but not down a column. It is not surprising, then, that screen-
update procedures often begin by partitioning the problem into two levels. At the top
level is the decision of which rows to delete, insert, replace or leave unchanged; at the
bottom level, a row-replacement algorithm evaluates the cost of each replacement and
may then, under control of the top lcvel, perform the replacements. The top-level
techniques for reusing entire screen rows are often quite different from the bottom-
level methods for reusing parts of a row. For the top-level problem, both simple’.
and algorithmically sophisticated’. ’ approaches have been used.

In the traditional sequence-comparison model,6 which has been used for solving the
toplevel update problem,‘ the only editing operations permitted are Delete, insert and
Replace, and the cost of a script of edit operations is the sum of the individual
operations’ costs. T h e low-level row-replacement problem is not captured by the
traditional sequence-comparison model because of :

1. Non-additive costs. Screen-update operations commonly violate the assumption
that the cost of operating on k symbols is k times the cost of operating on one
symbol. For example, on ANSI-standard terminals it costs nine bytes to insert
one character, ten to insert two, eleven to insert three, and so on. The eight-byte
fixed cost comes from a four-byte command to put the terminal in ‘insert mode’
and another four-byte command to return to normal mode.

2. Cursor movement costs. With intra-line editing, cursor movement commands
often dominate the editing cost, and traditional models, which ignore cursor
position, can be misleading. For example, consider the problem of replacing the
row xaxaxaxax with yayayayay . On typical terminals, repeatedly moving the
cursor to the next x and replacing it with y is decidedly inferior to simply
replacing the entire row.

3 . The richer command repertoire. Intra-line editing caii use what is here called the
Clear command (see next section). Also, a row’s last character can be deleted by
printing a blank over it. Other such possibilities exist, and classical string edit
models fail to encompass them.

Sequence-comparison techniques have been adapted to give two ‘optimal’ row-
replacement algorithms.’ That is, under certain assumptions about the terminal and
the permissible scripts of screen-update commands, these algorithms minimize the
number of bytes sent to the screen to convert one row to another. Both algorithms

A SIMPLE ROW-REPLACEMENT METHOD 599

account for non-additive costs, the cost of cursor movement, and the use of such ‘non-
classical’ operations as Clear. The first algorithm is an O(MN) dynamic programming
algorithm, where M and N are the lengths of the original and final rows. The second
algorithm runs in time O(CX(M+N)) . Here C is the optimal cost of replacement, so
the algorithm is fast when the required update is small.

This paper develops a simple row replacement algorithm and shows it to be optimal
under certain assumptions. The algorithm’s asymptotic worst-case time complexity is
O(Wiy2). However, in practice, the method is often very fast and its average time
complexity is superior to the earlier method^.^ Its use in a screen editor is described.
The method is intended for screen updating when terminal control sequences are
transmitted over slow (e.g. 9600 baud) communication lines, not for memory-mapped
video terminals. It is appropriate for updating a display region that extends to the right
margin of the screen; it may be inappropriate for a ‘window’ lying to the left of another
window, since inserting and deleting characters affects the remainder of the screen
row. The method is closely related to sequence-comparison techniques used in molecu-
lar genetics, as outlined at the end of the paper.

T H E ROW-REPLACEMENT PROBLEM

This paper assumes the following row-modification commands, which are provided by
most modern terminals. Each operation is performed by sending an appropriate stream
of characters to the terminal.

1. Clear. The characters at, and to the right of, the cursor are deleted. The cursor
does not move.

2. Delete k . The k characters beginning at the cursor are deleted, causing later
characters to shift left. The cursor does not move, so it ends up on the character
that follows the deleted characters.

3. Insert (string). The given character string is inserted at the cursor’s location,
causing later characters to shift right. The cursor moves right the length of the
string, so it stays on the same character.

4. Move k . The cursor is moved k columns from its current position. This paper
limits use of the Move k command to k > 0, i.e. movement to the right.

5. Print (string). The given character string is displayed beginning at the cursor’s
location, overwriting previously displayed characters. The cursor moves to the
position immediately following the printed string.

A set of such commands is called an LA script because the commands move the
cursor from left to right. This paper is concerned with generating an LR script of
minimum cost that converts a given string, A, of length M to another given string, B,
of length N .

The cost of applying the edit operation op to k characters is assumed to be cost(op k)
= startup(op) + k xperchar (op), where startup(op) and perchar(op) are non-negative real
numbers. The start-up cost is paid for the first operation in a script and whenever an
operation differs from the previous operation. For example, Move 2, Print ab, Print cd,
Delete 1 costs cost(Move.2) + cost(Print,4) + cost(Delete,l). In practice, startup and
perchar are usually integers indicating the number of bytes that must be transmitted
to the screen. However, our discussion does not depend on these values being whole
numbers.

600 W. MILLER AND E. W. MYERS

The following table gives cost parameters for ANSI-standard terminals and the IBM
3101. Entries are based on the number of characters sent to the screen. For instance,
the ANSI Clear command is the three-character sequence (escape)[K, so cost(Clear, k)
= 3 for all k or, equivalently, startup(C1ear) = 3 and perchar(C1ear) = 0.

Table I simplifies cost accounting somewhat. On ANSI-standard terminals, a Move
instruction sends between 6 and 8 bytes to the screen, depending on the target address.
Moreover, it is often possible to delete characters or move the cursor in insert mode,
so our cost model may overestimate costs by charging for unnecessary mode changes.

The algorithm presented below rests on the following additional, but realistic,
assumptions.

A1 : perchar(Move) < perchar(Print)
A2: If Move commands are not allowed, then the conversion of a_,az. . .aK to an

equal-length string b,b2. . .bK- is performed optimally by printing bib2. . .bti.
(The underscore indicates cursor position.)

We do not know of any terminals that violate either assumption. If A1 did not hold,
the Move command would not be useful for cursor motion to the right; printing
characters over themselves would work at least as well. Assumption A2 is made for
reasons of visual aesthetics. We would rather print B over A instead of, say, deleting
A and inserting 8. Our algorithm relies on A2 being true, but unlike A1 it is not
essential. Simple additions to the procedures nontail and overwrite (see the next section)
would remove the algorithm's reliance on A2.

ROW REPLACEMENT W I T H O U T Move COMMANDS

As shown in the next section, the key to determining an optimal replacement strategy
is deciding when to use Move commands. However, before the first Move, between
Move commands, or after the final Move, a subproblem of the original row-replacement
problem must be optimally solved without a Move. This section shows that an optimal
LR script is easy to determine if only Clear, Delete, Insert and Print are allowed. The
next section treats Move operations.

An operation of an LR script begins with the cursor and partly-edited string in a
configuration such as

Table I

A N S I ' ANSI 3101 3101
startup perchar startup perchar

Clear 3 0 2 0
Delete 0 3 0 2
Insert 8 1 0 3
Move 8 0 4 0
Print 0 1 0 1

A SIMPLE ROW-REPLACEMENT METHOD 60 1

T o the left of the cursor is a prefix of the desired row, B; to the right is a suffix of
the original row, A. Thus, the previous operations edit a1a2. . .ai into blb2. . .bj and
leave the cursor positioned just after bj. We say that the previous operations edit to
configuration (i , j) and that the command begins at configuration (i , j) . An LR script
edits fmm configuration (i , j) to configuration (Z , J) if it transforms

blb2- . .bjai+lai+2.. .aM

to

blbz. . .bjaI+laI+2. . .aM

Case 1: nontail replacement
Consider editing from configuration (i , j) to configuration (Z , J) using an LR script

without a Move operation, where i 5 I < M and j 5 J < N . Since a Clear command
would annihilate aItlaIt2. . ., none can be used. The following procedure determines
the cost of an optimal script and, if the procedure argument script is true, it generates
an optimal script. I t prints as many characters of b,+lbj+2. . .by as will fit over
ai+lai+2. . .aI, then performs a Delete or Insert operation, as appropriate.

nontail(i,j,l,J, script)
{ total t- 0

k c min(1-i,J-j)
if k > 0 then

{ if script then transmit 'Print bjtlbj+*. . .bjtk'
total t total + cost(Print, k)
i + i + k
j t j + k

if I-i > 0 then
}

{ if script then transmit 'Delete I-i'
total t total + cost(Delete, I-i)

1
else if J-j > 0 then

{ if script then transmit 'Insert bi+,bj+*. . .bJ'
total t total + cost(lnsert, J-j)

}
return total

I

Case 2: tail replacement
Consider editing from configuration (i,j) to a 'final' configuration, i.e. blbz. . .b.v

where the cursor position is immaterial. T o generate an LR script that is optimal when
Move operations are not allowed, it is adequate to evaluate the following two strategies
and pick the more economical.

The first strategy applies the optimal non-tail replacement approach where (Z , J)

602 W. MILLER AND E . W. MYERS

corresponds to the longest common suffix of ul+lur+2. . .aAl and b,+,b,+,. . .bLv. This
strategy is at least as economical as any replacement method that leaves some of the
characters ur+lur+2. . .adl untouched.

The second strategy simply overwrites ~ ~ + , a , + ~ . . . by printing b,+Ib_I+2. . .b, and,
if necessary, removes excess characters with Clear or Delete, whichever is more economi-
cal. No replacement method that touches (with Clear, Delete or Print) every character
urt lu l t2 . . .u,%, can be more economical. (If the model allowed deleting a final character
by printing a blank over it, then the procedure would have to be modified slightly.)

tail(i , j+ sc ri pt)
{ K t length of the longest common suffix of aitlaitZ. . .aM and bj+,bj+2. . .bN

nont t nontail(i, j, M-K, N-K, false)
over t overwrite(i, j.false)
if script then

if nont 5 over then nont t nontail(i, j,M-K, N-K, true)
else over t overwriteti, j, true)

return min (nont, over)
I

overwrite(i,j,script)
{ total t 0

if J < N then
{ if script then transmit 'Print bj+lbj+2. . .bN'

total c total + cost(Print, N-j)
I

k t (M-i) - (N-j)
if k > 0 then

if cost(Clear, k) 5 cost(Delete, k) then
{ if script then transmit 'Clear'

total t total + cost(Clear, k)
I

else
{ if script then transmit 'Delete k'

total t total + cost(Delete, k)
I

return total
}

USING Move COMMANDS

A Move k command can begin at configuration (i , j) if

i.e. if A and 6 have a common substring of length k beginning at position i+l of A
and position j + 1 of B. The jump potential of configuration (i, j) is the smallest k 2 0
such that either i+k 2 M , j + k 2 N , or ai+&+1 f b j + k + , . Thus, Move k is permissible
if and only if k does not exceed (i , j) ' s jump potential. A longer jump would pass
ui+jump-potentia,+ by an LR
script.

which could then not be changed to bj+jump-potential+

A SIMPLE ROW-REPLACEMENT METHOD 603

Let min-jump be the smallest k such that cost(Move, k) < cost(Print, k). Assumption
A1 guarantees that minjump exists. More formally,

1 startup(Move)-startup(Print)
perchar(Print1-perchar(Move) min-jump = min k :k is an integer and k >

For example, with the ANSI and 3101 cost parameters given in Table I, minjump
equals 9 and 5 , respectively. If k < minjump, then a Move k operation can be
performed at no more cost by simply printing the K characters over themselves, and
hence need not be considered.

A jump-oficonfiguration for strings A and B is a configuration (i , j) where the jump
potential is at least min&mp and either i=O, j=O or a,#bj. Reasoning as in the
previous section solves the problem of optimally editing from one jump-off configuration
to another with a Move followed by non-Move operations. The general strategy reduces
to Move as far as possible, then Print as much as possible, and then perform the
appropriate Clear, Delete or Insert operation (if any).

The problem of computing an optimal LR script can be formulated in graph-
theoretical terms as follows. The nodes of the jump-offgraph consist of the jump-off
configuration together with special initial and final nodes. Edges and their weights are
determined by the following rules.

1. There is an edge from the initial node to every other node, but no edge into the
initial node. The edge from the initial node to jump-off configuration (ZJ) has
weight nontail(O,O,Z,J). The edge from the initial node to the final node has
weight tail(0,O).

2. If (i , j) and (I , J) are jump-off configurations, then there is an edge from (i , j) to
(Z , J) whenever Z 2 i + min-jump andJ 2 j + minjump. The edge weight is
computed by the procedure

jump-to-nontail(i,j, I, J, script)
{ k t min(1-i, J-j, jump potential of (i,j))

if script then transmit 'Move k'
return cost(Move, k) + nontail(i+ k, j+k, I, J,script)

}

3. No edge begins at the final node, but there is an edge from every other node to
the final node. The weight of an edge from jump-off configuration (i , j) to the
final node is computed by the procedure:

jump-to-tail(i, j, script)
{ K t length of the longest common suffix of ai+,ait2. . .aM and

nont t jump-to-nontail(i, j, M-K, N-K, false)
over t jump-to-overwrite(i, j, false)
if script then

bj+lbj+2, . b ~

if nont I over then nont c jump-to-nontail(i,j, M-K, N-K, true)
else over t jump-to-overwrite(i, j, true)

return min(nont, over)
1

604 W. MILLER AND E. W. MYERS

j u m p-to-ove rvv ri te(i , j , script)
{ k t jump potential of (i , j)

if script then transmit ’Move k‘
return cost(Move, k) + overwrite(i+k, j+ k, script)

The row replacement problem for strings A and B is equivalent to finding a shortest
path through the jump-off graph, so an algorithm such as Dijkstra’s’ can be applied.
The set of all paths from initial tofinal models the set of LR scripts converting A into
B consisting of Move commands separated by non-Move command subsequences such
that (a) the non-Move portions are optimal for the substrings they edit, (b) all Moves
are of length at least miniump, and (c) all Moves begin at jump-off configurations.

As argued earlier, the search for an optimal LR script can be limited to scripts that
satisfy (a) and (b). As discussed at the end of this section (and rigorously verified in
Reference 9), for any strings A and B there exists an optimal LR script in which every
Move operation begins at a jump-off configuration. Thus, at least one optimal LR
script is modelled by the jump-off graph, and clearly corresponds to a path of minimum
length .

1

In summary, our row-replacement algorithm is as follows:

1. Determine the nodes of the jump-off graph. (See the next section for an efficient
approach.)

2. Find a shortest path from initial to final using Dijkstra’s algorithm, terminating
as soon as the minimum distance to final is known. Calls to nontail, tail,
jump-to-nontail and jump-to-tail compute edge weights but do not generate update
instructions, i.e. the procedure argument script is false. Each edge is inspected
at most once, so the edge weights can be computed just as needed, then discarded.

3. ‘Walk’ the shortest path from initial to final by performing the appropriate
sequence of calls to nontail, tail, jump-to-nontail and jump-to-tail. In this pass,
the calls generate screen-update instructions, i.e. script is true.

Consider, for example, editing A = abcdefaabcdef into B = bcdefabcde given the
cost parameters

costKlear, k) 3
cost(Delete, k) X
cost(lnsert, k) 2 + k
cost(Move, k) 3
cost(Print, k) k
m in-jum p 4

Figure 1 gives the jump-off graph. Nodes are represented by 0. The initial and final
nodes are at the extreme upper left and extreme lower right, respectively. The jump
potential of a node is indicated by the 0 s trailing down and to the right from the node;
the 0s show the configurations that can be reached from the node by a single Move
operation.

T h e edge from the initial node to the jump-off configuration (1 ,O) has weight 2,
corresponding to the script generated by nontail(0.0.1 ,O), i.e.

A SIMPLE ROW-REPLACEMENT METHOD 605

0

a 1

b 2

c 3

d 4

e 5

f 6

a 1

a 8

b 9

c 10

d 11

e 12

f 13

Figure

Delete 1

b c d e f a b c d e

0 1 2 3 4 5 6 7 8 9 10

Jump-offgraph for A = abcdefaabcdef and B = bcdefabcde

The edge from (1 ,O) to (7,s) is weighted by the cost of editing the jump-off configur-
ation

bcdefaabcde f

into the jump-off configuration

bcde fabcdef

using jump-to-nontail(1, 0, 7, 5) = 5. The corresponding LR script is

Move 5
Delete 1

606 W. MILLER AND E. W . MYERS

Similarly, the edge from (7,s) to the final node has weight jump-to-tail(7.5) = 5,
corresponding to the script

Move 5
Delete 1

In the above example, shortest paths from the initial node to the final node have
cost 12. One such path passes through nodes (1,O) and (7,5), so concatenating the
above three scripts gives an optimal solution. Longer paths from the initial node to
the final node correspond to more expensive ways of editing A to B. For example,
taking the single edge from the initial node to (7,s) and stepping to the final node
corresponds to the script

Print bcdef
Delete 2
Move 5
Delete 1

which costs 14.
It takes some effort to see why there must always be an optimal LR script in which

every Move operation begins at a jump-off configuration. An arbitrary optimal LR
script editing A to B may apply Move operations at other configurations. However,
such a script can be transformed to one conforming to the principle without increasing
its cost. A rigorous proof of this fact is given in Reference 9, but the following example,
based on Figure 1, gives the basic idea. The script Delete 1, Move 6, Delete 1, Move
4, Delete 1 costs 12, but the second Move begins from configuration (8,6), which is
not a jump-off configuration. In terms of the picture, the first Move jumps as far as
possible, (i.e. to the last in the chain trailing down and to the right from (1 , O)) .
Then the second Delete drops down to another chain, but it reaches a 0 and not the
leading 0. However, at no extra cost we can shorten the first Move by one and lengthen
the second Move by one, so that the Delete will reach the 0.

EXPERIENCE

The screen editor s3 uses the row-replacement strategy of positioning the cursor on the
first mismatched character (just past the longest common prefix of the old and new
rows), then applying the tail procedure given above. The only use of Move is to reach
the first mismatched character, if necessary.

The new row-replacement algorithm was incorporated into s without perceptibly
degrading its performance. The algorithm's poor worst-case behaviour (i.e. for rows
of length N the jump-off graph can have O(1'V4) edges) has not been a problem. If s
ever attempts a row replacement with more than 100 jump-off configurations (this has
yet to happen), then only the first 100 constructed jump-off configurations are entered
into the jump-off graph and a suboptimal update may result. T h e following crude
probabilistic argument illustrates why the number of jump-off configurations is small.
Suppose A is the result of M Bernoulli trials, where p is the probability that two
successive characters are equal (p = l/(the alphabet size) if characters are equally
likely). Suppose B is obtained from A by deleting and inserting blocks of symbols at

A SIMPLE ROW-REPLACEMENT METHOD 607

k distinct locations. Then, there are at most k + l jump-off configurations induced by
the transformation and at most A4N(pmi"~L"nP)(1 ~ p)) that occur by chance. This latter
quantity is negligible for reasonable values of mznjump and alphabet size.

The following algorithm fragment shows how we use the initial cursor position,
initpos. If the cursor is not initially on the row (e.g. when other rows have been
modified in the current screen update), then init-pos = co.

len t length of the longest common prefix of A and B
if len 2 ini tpos - 1 then

offset t ini tpos - 1
else

1 issue a preliminary 'Move to column len+l ' command (a non-LR move)
offset t len

I
remove the first offset characters from A and B
solve the row-replacement problem with the truncated A and B

If ini tpos were ignored, then aax might be transformed to a x by moving the cursor
to the second a (the first mismatched character), deleting the a, and moving the cursor
back.

The implementation process was complicated by the fact that s folds long lines of
the edited file onto several screen rows to make all characters visible. The row-
replacement algorithm is applied to entire lines and the generated update commands
are interpreted in light of line-folding. With 80-character screen rows, for example,
Move to column 100 would be taken as referring to column 20 of the line's second
segment. We have discovered row-replacement algorithms that directly model fixed
row length, generate optimal command sequences and run in polynomial time, but
their practical value remains to be demonstrated.

To guarantee that minor row updates are handled as efficiently as with s's original
row-replacement technique, the following approach was adopted. Define

thresh = cost(Move, min-jump) + min (cost(op.1) : op # Move}

That is, thresh gives the minimum cost of a useful Move plus another command. When
replacing a row, s first computes C = tail(0,0), the cost of optimal row replacement
without Move commands. If C 5 thresh, then the general replacement procedure is
not applied since any update sequence with a Move command costs at least C. Hence,
the script generated by s is optimal in this case. In particular since thresh 2 cost(lnsert,l)
and thresh 2 cost(Print, I) , jump-off configurations are not computed while text is simply
being inserted directly into the buffer.

A considerable portion of our effort to develop a practical row-replacement technique
was devoted to efficient computation of the jump-off configurations and their jump
potentials. Construction of the jump-off graph dominates the execution time of the
row-replacement algorithm, so the efficiency of this part of computation is essential.
LetJ, M and N denote the number of jump-off configurations and the two row lengths,
respectively. Jump-off configurations can be computed in time O (J + M + N) by a
straightforward application of suffix trees.'" With some effort, we refined the method
to also compute jump potentials within the same time bound. However, the method's

W . MILLER AND E. W. MYERS 608

performance in practice was unsatisfactory.
Although not asymptotically as efficient as suffix trees, a simple hashing scheme

proved superior for a wide range of uses. With hashing, the row-replacement algorithm
runs in time OVP + M + in expectation whereJP is the sum of the jump potentials
of all jump-off configurations. The average 80 by 80 problem takes 0.8ms on a VAX
8600 running Berkeley 4.3bsd UNIX. In the worst case whenJP is of order M N (e.g. a
string of 80 xs versus itself), 2.6ms are required. Since the row replacement algorithm's
execution is dominated by this phase, execution time roughly equals the time for
transmitting one character to the screen at 9600 baud. The Appendix lists the code for
constructing jump-off graphs, and Reference 9 gives a further discussion and analysis.

CONCLUSION AND AN OPEN PROBLEM

In some respects, the subject of screen updating is reminiscent of code optimization,
i.e. the generation of optimal - or at least good - object code by a compiler. In both
areas there are theoretical results giving algorithms for generating optimal instruction
sequences. (For code optimization there are many such results; for screen updating,
only a few.) Although these theorems may fail to model all intricacies of actual
hardware, they can provide insights that are quite useful in practice." However, the
engineering trade-offs faced during implementation may mean that the most cost-
effective optimizations are some of the simplest." The method proposed in this paper
is one such simple method of practical value.

The row-replacement method developed above is quite similar to techniques used
for comparing biological sequences. A number of biosequence programs begin by
determining all common substrings of length at least k (commonly k = 2 for proteins
and k = 5 for DNA sequences). The use of suffix trees has been proposed,'3 but
hashing has been the method of choice." T o compare two sequences, several of these
programs", l 6 compute an optimal path in a graph whose nodes are common substrings.
(Biologists formulate the sequence comparison problem in such a way that the problem
is to compute a longest path.) However, in this context the computed results are not
necessarily optimal. For example, matches of length less than k are generally missed
and overlapping segments (e.g. jump-off configurations (1,O) and (7,s) of Figure 1)
are not treated optimally. However, the method is very fast, especially when heuristic
rules are applied to reduce the number of common substrings placed in the graph.16
A popular use of this approach"* is for rapid comparison of one sequence against
an extensive sequence library; promising library sequences are then compared to the
probe sequence using a more sensitive technique.

The change from terminals and serial communications to workstations and high-
speed networks does not make the screen-update problem disappear, though different
techniques are needed to minimize the cost of bitblt operations." Work has been done
on simple approaches for screen updating by a text editor2' and display updating in
computer animation,21 but the problem of optimally updating a bit-map display remains
open.

ACKNOWLEDGEMENTS

We thank Bonnie Lynn Webber and the referees for suggestions that improved the
presentation of this paper. The work of Eugene W. Myers was supported in part by
the U.S. National Science Foundation under Grant DCR-8511455.

A SIMPLE ROW-REPLACEMENT METHOD 609

APPENDIX
For sequences A, B and given value of min-jump, the following C program constructs
the nodes of the jump-off graph. As presented here, triples (i , j , rnin3urnp) are printed.
In a screen editor, the code would store the triples, add an initial and a final
node, and apply a shortest-path algorithm that calls nontail, tail, jump-to-nontail and
ju m p-to-ta i I for edge weights.

/ * Construct nodes of the juzp-off graph.

* A substring of length min-jump is hashed to an integer, hsum. Hsum is a
* weighted sum of the substring's characters, where the i-th character from
* the right is multiplied by i. Hsum can be computed by a feu additive
* operations from the preceding substring's hsum. Hash[hsum] points to a linked
* list of POS-LISTS, one POS-LIST for each key, where a position's key is the
* immediately preceding character. A POS-LIST is a list of positions in A with
* identical hsum and key. */

*

#&fine mW 10
#&fine STRMAX 100 /* limit on IAI - min-jump + 1 */
#define BSIZE 64*JMPMAX*(JMPMAXtl) /* sire of hash table */

/* limit on min-jump */

typedef struct P { char *pos; struct P *nxt;) POSITION;
typedef struct L { int key; POSITION *Val; struct L *lft;) POS-LIST;

POSITION p p O l [STRMAX] ;

POS-LIST *hash[HSIZE];
int used[STRbl&X} *utop = used; /* stack of used buckets */
int jump = -1, jmpmult[l28]; / * multiples of min-jump */

/* pool of POSITIONS */

/* hash buckets */
POS-LIST l p o l [STRMAX] ; /* pool of POS-LISTS */

/* entry point - compute juzp-off configurations and their jump potentials */

jump-off(A, 8, min-jump) char *A, *B; int min-jump;
(int mults, i;

if (min-jump != jump) (

jump = &-jump;
for (mults = -jump, i = 0; i < 128; it+)

jmpmult[i] = (mults t= jump);
1
A8c-(A) ;
BscaoW, B); /* generate jump-off configurations */

/* build table of positions in A */

1

static -8n(A) char *A;
(regirtu POSITION fptop;

regist- POS-LIST *t, **v, *hop;
regist- char *s, *p;
int csmq hsum, prev-char;

while (sop > used) /* reinitialize hash[] */
hash[*(--utop)] = 0;

ptop = pgool;
1top = l p o l ;

p = (s =I &) t jump;
prev-chau I hsum = csum = 0 ;

while (8 < p)

610 W. MILLER AND E. W . MYERS

hsum += (csum += *a++);
p = A;
for (; ;) (/ * for positions in A, find position

list with same (hsum, prev-char) */
for (t = *(v=hash+hsum); t!=O LC t->key<=prev-char; t = * (v = &(t->lft)))

if (t->key = prev-char) (
ptop->nxt = t-kal;
ptop->pos = p;
t-*a1 = ptop++;
break;

1
if (t = 0 I I t->key > prev-char) (/ * list not found * /

(utop++) = hsum; / mark bucket as used */
ptop-hut = 0; /* start a new list for the */
ptop->pos = p; /* the pair (hsum, prev-char) */
ltop-ha1 = ptopu;
ltop->key = prev-char;
ltop->lft = t;
*v = ltop++;

1
if (*s = ‘ \ O r) break;
csum += *a++ - (prev-char = *p++);
hsum += csum - jmpmult[prev-char];

1
I

static Bscan(A, B) char *A, *B;
(register POSITION *h;

register POS-LIST *t;
register char *m, *n, *p, *a;
int csum, hsum, prev-char, N;

hsum = csum = 0;
p = (s = B) + jump;
while (a < p)

p = B;
prev-char = 1;
N = strlen(B) ;
B[N] = I \ O l f ;

f o r (; ;) (/* for positions in B */

hsum += (csum += *a++);

for (t = hash[hsum]; t != 0; t = t->lft)
if (t->key != prev-char)

/* found a list of positions with identical

for (h = t-kal; h != 0; h = h->nxt) (

hsum but different preceding character. */

/ * resolve hash collisions and compute jump
potential four characters at a time. */

if (*((hit *) (m=h-+a)) = * ((int *) (n=p))) (
while (* ((int *) (m+=4)) = * ((int *) (n+=4)))

if (* (m-=3) = * (n--3))
while (*++m = *++n)

) else if (*m = *n)
while (*+* = *++n)

A SIMPLE ROW-REPLACEMENT METHOD 61 1

if (n >e s)
printf (“ (%2d, %2d, %2d) \n“, h--08-A,p-B,n-p) ;

1
if (*s = ‘\Ol‘) break;
csum += *a++ - (prev-char = *pt+);
hsum += csum - jmpmult [prev-char] ;

1
B[N] = ‘ \ O r ;

1

REFERENCES

1. D. Barach, D. Taenzer and R. Wells, ‘The design of the PEN video editor display module’,
Proceedings of the ACM Symposium on Text Manipulation, SIGPLAh’ Notices, 16, (6), 13e136
(1981).

2. J. Gosling, ‘A redisplay algorithm’, Proceedings of the ACM Symposium on Text Manipulation,
SZGPLAV Notices, 16, (6), 123-129 (1981).

3. W. Miller, A Software Tools Sampler, Prentice-Hall, 1987.
4. H. Thimbleby, ‘The design of a terminal independent package’, Software -Practice and Experience,

5. E. Myers, ‘Incremental alignment algorithms and their applications’, to appear in S I M J . Cbmput.
6. R. Wagner and M. Fischer, ‘The string-to-string correction problem’,JournalACM, 21, (I) , 168-173

7. E. Myers and W. Miller, ‘Row replacement algorithms for screen editors’, to appear in ACM Trans.

8. A. Aho, J . Hopcroft and J. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.
9. W. Miller and E. Myers, ‘A simple row-replacement algorithm’, Tech. Rept. TR86-37, Computer

10. E. McCreight, ‘A space-economical suffix tree construction algorithm’, Journal ACM, 23, (2), 262-272

11. S. Johnson, ‘A portable compiler: theory and practice’, Conference Record of the Fifth Annual AC’hf

12. D. Hanson, ‘Simple code optimizations’, Software - Practice and Experience, 13, (l l) , 745-763

13. M. Waterman, ‘General methods of sequence comparison’, Bull. Math. Riol., 46, (4), 473-500 (1984).
14. J . Dumas and J. Ninio, ‘Efficient algorithms for folding and comparing nucleic acid sequences’,

15. H. Martinez, ‘An efficient method for finding repeats in molecular sequences’, Nucleic Acids Research,

16. W. Wilbur and D. Lipman, ‘The context dependent comparison of biological sequences’, SIAM J .

17. D. Lipman and W. Pearson, ‘Rapid and sensitive protein similarity searches’, Science, 227, 1435-1441

18. C. Lawrence, D. Goldman and R. Hood, ‘Optimized homology searches of the gene and protein

19. L. Guibas and J . Stolfi, ‘A language for bitmap manipulation’, ACM Trans. Graphics, 1, (3) , 191-214

20. R. Pike, ‘The text editor Sam’, Software -Practice and Experience, 17, (l l) , 813-845 (1987).
21. M. Denber and P. Turner, ‘A differential compiler for computer animation’, Computer Graphics, 20,

17, (5), 351-367 (1987).

(1974).

Prog. Lang. and Systems.

Science Department, The Pennsylvania State University, University Park, PA 16802, 1986.

(1976).

Symposium on Principles of Programming Languages, Tucson, AZ, 97-104 (1978).

(1983).

Nucleic Acids Research, 10, (l) , 197-206 (1982).

11, (13), 4629-4634 (1983).

Appl. Math., 44, (3), 557-567 (1984).

(1985).

sequence data banks’, Bull. Math. Biol., 48, (5/6), 569-583 (1986).

(1982).

(4), (SIGGRAPH ’86), 21-27 (1986).

