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SUMMARY 

Updating a video screen involves row replacement, i.e. the task of updating an existing screen 
row to produce the desired row. In many environments, screen operations require transmitting 
characters to the terminal by a process that is painfully slow compared to computing speeds. 
Thus, it is worth while to compute a minimal set of row updating commands, as long as the 
time to do so does not outweigh the savings in character transmission time. This paper presents 
a simple and practical algorithm for optimal row replacement and describes experience with 
its use in a screen editor. 
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INTRODUCTION 

At the heart of many modern screen editors and other screen-oriented programs, lies 
the 'screen manager' module, which is responsible for keeping the video display up to 
date. In one design, procedures that modify the biiffer (the editor's copy of the edited 
file) must also inform the screen manager how to update the display. A cleaner approach 
lets an autonomous screen manager determine how to update the screen by comparing 
its record of the screen contents with the current buffer contents. The interface to the 
screen manager is then a single routine, refresh, that synchronizes the screen with the 
buffer. It is given no information other than the contents of the screen and the buffer. 
An autonomous screen manager gives the editor an orderly internal structure, and 
writers of screen editors are almost unanimous in recommending this approach. 

Compared to the other parts of an editor, the screen manager may well involve 
both the messiest implementation details and the deepest algorithmic issues. The  
implementation details involve idiosyncrasies of various terminal  brand^.^ Such diffi- 
culties are not considered here. 

This paper is concerned with one aspect of the following algorithmic problem: given 
the current screen contents and the desired screen contents, determine a set of screen 
updating commands having minimum cost. Often, data travels from the editor to the 
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screen at between 100 and 1000 characters per second (e.g. 1200 or 9600 baud), which 
is orders of magnitude slower than the editor’s computing speed. Such conditions 
justify the use of a relatively complex scheme to minimize the number of bytes sent 
to the screen, so long as the savings in character transmission time are not outweighed 
by the execution time. Execution time is a critical issue because the desirable properties 
of an independent screen manager are achieved at a cost in execution efficiency. T h e  
screen manager operates without knowledge of the user’s edit command, so it cannot 
take short-cuts tailored to particular commands. For example, when typed characters 
are being inserted in the buffer, an autonomous screen manager applies the updating 
algorithm for every keystroke, and a character-by-character comparison of two 24 x 80 
character arrays (the current screen contents and the desired screen contents) may be 
too slow. 

Video terminals treat rows and columns differently. Commands usually exist for 
inserting or deleting rows, but not columns, and printing or inserting a character moves 
the cursor along a row, but not down a column. It is not surprising, then, that screen- 
update procedures often begin by partitioning the problem into two levels. At the top 
level is the decision of which rows to delete, insert, replace or leave unchanged; at the 
bottom level, a row-replacement algorithm evaluates the cost of each replacement and 
may then, under control of the top lcvel, perform the replacements. The  top-level 
techniques for reusing entire screen rows are often quite different from the bottom- 
level methods for reusing parts of a row. For the top-level problem, both simple’. 
and algorithmically sophisticated’. ’ approaches have been used. 

In the traditional sequence-comparison model,6 which has been used for solving the 
toplevel update problem,‘ the only editing operations permitted are Delete, insert and 
Replace, and the cost of a script of edit operations is the sum of the individual 
operations’ costs. T h e  low-level row-replacement problem is not captured by the 
traditional sequence-comparison model because of : 

1. Non-additive costs. Screen-update operations commonly violate the assumption 
that the cost of operating on k symbols is k times the cost of operating on one 
symbol. For example, on ANSI-standard terminals it costs nine bytes to insert 
one character, ten to insert two, eleven to insert three, and so on. The  eight-byte 
fixed cost comes from a four-byte command to put the terminal in ‘insert mode’ 
and another four-byte command to return to normal mode. 

2. Cursor movement costs. With intra-line editing, cursor movement commands 
often dominate the editing cost, and traditional models, which ignore cursor 
position, can be misleading. For example, consider the problem of replacing the 
row xaxaxaxax with yayayayay . On typical terminals, repeatedly moving the 
cursor to the next x and replacing it with y is decidedly inferior to simply 
replacing the entire row. 

3 .  The richer command repertoire. Intra-line editing caii use what is here called the 
Clear command (see next section). Also, a row’s last character can be deleted by 
printing a blank over it. Other such possibilities exist, and classical string edit 
models fail to encompass them. 

Sequence-comparison techniques have been adapted to give two ‘optimal’ row- 
replacement algorithms.’ That is, under certain assumptions about the terminal and 
the permissible scripts of screen-update commands, these algorithms minimize the 
number of bytes sent to the screen to convert one row to another. Both algorithms 
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account for non-additive costs, the cost of cursor movement, and the use of such ‘non- 
classical’ operations as Clear. The first algorithm is an O(MN) dynamic programming 
algorithm, where M and N are the lengths of the original and final rows. The second 
algorithm runs in time O(CX(M+N)) .  Here C is the optimal cost of replacement, so 
the algorithm is fast when the required update is small. 

This paper develops a simple row replacement algorithm and shows it to be optimal 
under certain assumptions. The  algorithm’s asymptotic worst-case time complexity is 
O(Wiy2). However, in practice, the method is often very fast and its average time 
complexity is superior to the earlier  method^.^ Its use in a screen editor is described. 
The method is intended for screen updating when terminal control sequences are 
transmitted over slow (e.g. 9600 baud) communication lines, not for memory-mapped 
video terminals. It is appropriate for updating a display region that extends to the right 
margin of the screen; it may be inappropriate for a ‘window’ lying to the left of another 
window, since inserting and deleting characters affects the remainder of the screen 
row. The method is closely related to sequence-comparison techniques used in molecu- 
lar genetics, as outlined at the end of the paper. 

T H E  ROW-REPLACEMENT PROBLEM 

This paper assumes the following row-modification commands, which are provided by 
most modern terminals. Each operation is performed by sending an appropriate stream 
of characters to the terminal. 

1. Clear. The characters at, and to the right of, the cursor are deleted. The cursor 
does not move. 

2. Delete k .  The k characters beginning at the cursor are deleted, causing later 
characters to shift left. The cursor does not move, so it ends up on the character 
that follows the deleted characters. 

3. Insert (string). The given character string is inserted at the cursor’s location, 
causing later characters to shift right. The  cursor moves right the length of the 
string, so it stays on the same character. 

4. Move k .  The cursor is moved k columns from its current position. This paper 
limits use of the Move k command to k > 0, i.e. movement to the right. 

5. Print (string). The given character string is displayed beginning at the cursor’s 
location, overwriting previously displayed characters. The cursor moves to the 
position immediately following the printed string. 

A set of such commands is called an LA script because the commands move the 
cursor from left to right. This paper is concerned with generating an LR script of 
minimum cost that converts a given string, A, of length M to another given string, B,  
of length N .  

The cost of applying the edit operation op to k characters is assumed to be cost(op k )  
= startup(op) + k xperchar (op), where startup(op) and perchar(op) are non-negative real 
numbers. The start-up cost is paid for the first operation in a script and whenever an 
operation differs from the previous operation. For example, Move 2, Print ab, Print cd, 
Delete 1 costs cost(Move.2) + cost(Print,4) + cost(Delete,l). In practice, startup and 
perchar are usually integers indicating the number of bytes that must be transmitted 
to the screen. However, our discussion does not depend on these values being whole 
numbers. 
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The following table gives cost parameters for ANSI-standard terminals and the IBM 
3101. Entries are based on the number of characters sent to the screen. For instance, 
the ANSI Clear command is the three-character sequence (escape)[K, so cost(Clear, k) 
= 3 for all k or, equivalently, startup(C1ear) = 3 and perchar(C1ear) = 0. 

Table I simplifies cost accounting somewhat. On ANSI-standard terminals, a Move 
instruction sends between 6 and 8 bytes to the screen, depending on the target address. 
Moreover, it is often possible to delete characters or move the cursor in insert mode, 
so our cost model may overestimate costs by charging for unnecessary mode changes. 

The  algorithm presented below rests on the following additional, but realistic, 
assumptions. 

A1 : perchar(Move) < perchar(Print) 
A2: If Move commands are not allowed, then the conversion of a_,az. . .aK to an 

equal-length string b,b2. . .bK- is performed optimally by printing bib2. . .bti. 
(The underscore indicates cursor position.) 

We do not know of any terminals that violate either assumption. If  A1 did not hold, 
the Move command would not be useful for cursor motion to the right; printing 
characters over themselves would work at least as well. Assumption A2 is made for 
reasons of visual aesthetics. We would rather print B over A instead of, say, deleting 
A and inserting 8. Our algorithm relies on A2 being true, but unlike A1 it is not 
essential. Simple additions to the procedures nontail and overwrite (see the next section) 
would remove the algorithm's reliance on A2. 

ROW REPLACEMENT W I T H O U T  Move COMMANDS 

As shown in the next section, the key to determining an optimal replacement strategy 
is deciding when to use Move commands. However, before the first Move, between 
Move commands, or after the final Move, a subproblem of the original row-replacement 
problem must be optimally solved without a Move. This section shows that an optimal 
LR script is easy to determine if only Clear, Delete, Insert and Print are allowed. The  
next section treats Move operations. 

An operation of an LR script begins with the cursor and partly-edited string in a 
configuration such as 

Table I 

A N S I '  ANSI 3101 3101 
startup perchar startup perchar 

Clear 3 0 2 0 
Delete 0 3 0 2 
Insert 8 1 0 3 
Move 8 0 4 0 
Print 0 1 0 1 
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T o  the left of the cursor is a prefix of the desired row, B; to the right is a suffix of 
the original row, A. Thus, the previous operations edit a1a2. . .ai into blb2. . .bj and 
leave the cursor positioned just after bj. We say that the previous operations edit to 
configuration ( i , j )  and that the command begins at configuration ( i , j ) .  An LR script 
edits fmm configuration ( i , j )  to configuration ( Z , J )  if it transforms 

blb2- .  .bjai+lai+2.. .aM 

to 

blbz. .  .bjaI+laI+2. . .aM 

Case 1: nontail replacement 
Consider editing from configuration ( i , j )  to configuration ( Z , J )  using an LR script 

without a Move operation, where i 5 I < M and j 5 J < N .  Since a Clear command 
would annihilate aItlaIt2. . ., none can be used. The following procedure determines 
the cost of an optimal script and, if the procedure argument script is true, it generates 
an optimal script. I t  prints as many characters of b,+lbj+2. . .by as will fit over 
ai+lai+2. . .aI, then performs a Delete or Insert operation, as appropriate. 

nontail(i,j,l,J, script) 
{ total t- 0 

k c min(1-i,J-j) 
if k > 0 then 

{ if script then transmit 'Print bjtlbj+*. . .bjtk' 
total t total + cost(Print, k) 
i + i + k  
j t j + k  

if I-i > 0 then 
} 

{ if script then transmit 'Delete I-i' 
total t total + cost(Delete, I-i) 

1 
else if J-j > 0 then 

{ if script then transmit 'Insert bi+,bj+*. . .bJ' 
total t total + cost(lnsert, J-j) 

} 
return total 

I 

Case 2: tail replacement 
Consider editing from configuration (i,j) to a 'final' configuration, i.e. blbz. . .b.v 

where the cursor position is immaterial. T o  generate an LR script that is optimal when 
Move operations are not allowed, it is adequate to evaluate the following two strategies 
and pick the more economical. 

The first strategy applies the optimal non-tail replacement approach where ( Z , J  ) 
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corresponds to the longest common suffix of ul+lur+2.  . .aAl and b,+,b,+,. . .bLv. This 
strategy is at least as economical as any replacement method that leaves some of the 
characters ur+lur+2.  . .adl untouched. 

The second strategy simply overwrites ~ ~ + , a , + ~ .  . . by printing b,+Ib_I+2. . .b, and, 
if necessary, removes excess characters with Clear or Delete, whichever is more economi- 
cal. No replacement method that touches (with Clear, Delete or Print) every character 
urt lu l t2 .  . .u,%, can be more economical. (If the model allowed deleting a final character 
by printing a blank over it, then the procedure would have to be modified slightly.) 

tail(i , j+  sc ri pt) 
{ K t length of the longest common suffix of aitlaitZ. . .aM and bj+,bj+2. . .bN 

nont t nontail(i, j, M-K, N-K, false) 
over t overwrite(i, j.false) 
if script then 

if nont 5 over then nont t nontail(i, j,M-K, N-K, true) 
else over t overwriteti, j, true) 

return min (nont, over) 
I 

overwrite(i,j,script) 
{ total t 0 

if J < N then 
{ if script then transmit 'Print bj+lbj+2. . .bN' 

total c total + cost(Print, N-j) 
I 

k t (M-i) - (N-j) 
if k > 0 then 

if cost(Clear, k) 5 cost(Delete, k) then 
{ if script then transmit 'Clear' 

total t total + cost(Clear, k) 
I 

else 
{ if script then transmit 'Delete k' 

total t total + cost(Delete, k) 
I 

return total 
} 

USING Move COMMANDS 

A Move k command can begin at configuration ( i , j )  if 

i.e. if A and 6 have a common substring of length k beginning at position i+l  of A 
and position j +  1 of B. The jump potential of configuration (i, j )  is the smallest k 2 0 
such that either i+k 2 M ,  j + k  2 N ,  or ai+&+1 f b j + k + , .  Thus, Move k is permissible 
if and only if k does not exceed ( i , j ) ' s  jump potential. A longer jump would pass 
ui+jump-potentia,+ by an LR 
script. 

which could then not be changed to bj+jump-potential+ 
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Let min-jump be the smallest k such that cost(Move, k) < cost(Print, k). Assumption 
A1 guarantees that minjump exists. More formally, 

1 startup(Move)-startup( Print) 
perchar(Print1-perchar(Move) min-jump = min k :k is an integer and k > 

For example, with the ANSI and 3101 cost parameters given in Table I,  minjump 
equals 9 and 5 ,  respectively. If k < minjump,  then a Move k operation can be 
performed at no more cost by simply printing the K characters over themselves, and 
hence need not be considered. 

A jump-oficonfiguration for strings A and B is a configuration ( i , j )  where the jump 
potential is at least min&mp and either i=O, j=O or a,#bj. Reasoning as in the 
previous section solves the problem of optimally editing from one jump-off configuration 
to another with a Move followed by non-Move operations. The  general strategy reduces 
to Move as far as possible, then Print as much as possible, and then perform the 
appropriate Clear, Delete or Insert operation (if any). 

The problem of computing an optimal LR script can be formulated in graph- 
theoretical terms as follows. The nodes of the jump-offgraph consist of the jump-off 
configuration together with special initial and final nodes. Edges and their weights are 
determined by the following rules. 

1. There is an edge from the initial node to every other node, but no edge into the 
initial node. The  edge from the initial node to jump-off configuration (ZJ) has 
weight nontail(O,O,Z,J). The edge from the initial node to the final node has 
weight tail(0,O). 

2. If ( i , j )  and ( I , J )  are jump-off configurations, then there is an edge from ( i , j )  to 
( Z , J )  whenever Z 2 i + min-jump andJ 2 j + minjump.  The edge weight is 
computed by the procedure 

jump-to-nontail(i,j, I, J, script) 
{ k t min(1-i, J-j, jump potential of (i,j)) 

if script then transmit 'Move k' 
return cost(Move, k) + nontail(i+ k, j+k, I, J,script) 

} 

3.  No edge begins at the final node, but there is an edge from every other node to 
the final node. The weight of an edge from jump-off configuration ( i , j )  to the 
final node is computed by the procedure: 

jump-to-tail(i, j, script) 
{ K t length of the longest common suffix of ai+,ait2. . .aM and 

nont t jump-to-nontail(i, j, M-K, N-K, false) 
over t jump-to-overwrite(i, j, false) 
if script then 

bj+lbj+2, . b ~  

if nont I over then nont c jump-to-nontail(i,j, M-K, N-K, true) 
else over t jump-to-overwrite(i, j, true) 

return min(nont, over) 
1 
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j u m p-to-ove rvv ri te(i , j , script ) 
{ k t jump potential of ( i , j )  

if script then  transmit ’Move k‘ 
return cost(Move, k) + overwrite(i+k, j+ k, script) 

The  row replacement problem for strings A and B is equivalent to finding a shortest 
path through the jump-off graph, so an algorithm such as Dijkstra’s’ can be applied. 
The set of all paths from initial tofinal models the set of LR scripts converting A into 
B consisting of Move commands separated by non-Move command subsequences such 
that (a) the non-Move portions are optimal for the substrings they edit, (b) all Moves 
are of length at least miniump,  and (c) all Moves begin at jump-off configurations. 

As argued earlier, the search for an optimal LR script can be limited to scripts that 
satisfy (a) and (b). As discussed at the end of this section (and rigorously verified in 
Reference 9), for any strings A and B there exists an optimal LR script in which every 
Move operation begins at a jump-off configuration. Thus, at least one optimal LR 
script is modelled by the jump-off graph, and clearly corresponds to a path of minimum 
length . 

1 

In summary, our row-replacement algorithm is as follows: 

1. Determine the nodes of the jump-off graph. (See the next section for an efficient 
approach.) 

2. Find a shortest path from initial to final using Dijkstra’s algorithm, terminating 
as soon as the minimum distance to final is known. Calls to nontail, tail, 
jump-to-nontail and jump-to-tail compute edge weights but do not generate update 
instructions, i.e. the procedure argument script is false. Each edge is inspected 
at most once, so the edge weights can be computed just as needed, then discarded. 

3.  ‘Walk’ the shortest path from initial to final by performing the appropriate 
sequence of calls to nontail, tail, jump-to-nontail and jump-to-tail. In  this pass, 
the calls generate screen-update instructions, i.e. script is true. 

Consider, for example, editing A = abcdefaabcdef into B = bcdefabcde given the 
cost parameters 

costKlear, k) 3 
cost(Delete, k) X 
cost(lnsert, k) 2 + k 
cost(Move, k) 3 
cost(Print, k) k 
m in-jum p 4 

Figure 1 gives the jump-off graph. Nodes are represented by 0. The initial and final 
nodes are at the extreme upper left and extreme lower right, respectively. The jump 
potential of a node is indicated by the 0 s  trailing down and to the right from the node; 
the 0s show the configurations that can be reached from the node by a single Move 
operation. 

T h e  edge from the initial node to the jump-off configuration (1 ,O)  has weight 2, 
corresponding to the script generated by nontail(0.0.1 ,O), i.e. 
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b 2  

c 3  
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d 11 
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f 13 

Figure 

Delete 1 

b c d e f a b c d e  

0 1 2  3 4 5 6 7 8 9 10 

Jump-offgraph for A = abcdefaabcdef and B = bcdefabcde 

The edge from (1 ,O)  to (7,s) is weighted by the cost of editing the jump-off configur- 
ation 

bcdefaabcde f 

into the jump-off configuration 

bcde fabcdef 

using jump-to-nontail(1, 0, 7, 5) = 5. The  corresponding LR script is 

Move 5 
Delete 1 
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Similarly, the edge from (7,s) to the final node has weight jump-to-tail(7.5) = 5, 
corresponding to the script 

Move 5 
Delete 1 

In the above example, shortest paths from the initial node to the final node have 
cost 12. One such path passes through nodes (1,O) and (7,5), so concatenating the 
above three scripts gives an optimal solution. Longer paths from the initial node to 
the final node correspond to more expensive ways of editing A to B. For example, 
taking the single edge from the initial node to (7,s)  and stepping to the final node 
corresponds to the script 

Print bcdef 
Delete 2 
Move 5 
Delete 1 

which costs 14. 
It takes some effort to see why there must always be an optimal LR script in which 

every Move operation begins at a jump-off configuration. An arbitrary optimal LR 
script editing A to B may apply Move operations at other configurations. However, 
such a script can be transformed to one conforming to the principle without increasing 
its cost. A rigorous proof of this fact is given in Reference 9, but the following example, 
based on Figure 1, gives the basic idea. The script Delete 1,  Move 6, Delete 1, Move 
4, Delete 1 costs 12, but the second Move begins from configuration (8,6), which is 
not a jump-off configuration. In terms of the picture, the first Move jumps as far as 
possible, (i.e. to the last in the chain trailing down and to the right from ( 1 , O ) ) .  
Then the second Delete drops down to another chain, but it reaches a 0 and not the 
leading 0. However, at no extra cost we can shorten the first Move by one and lengthen 
the second Move by one, so that the Delete will reach the 0. 

EXPERIENCE 

The screen editor s3 uses the row-replacement strategy of positioning the cursor on the 
first mismatched character (just past the longest common prefix of the old and new 
rows), then applying the tail procedure given above. The only use of Move is to reach 
the first mismatched character, if necessary. 

The new row-replacement algorithm was incorporated into s without perceptibly 
degrading its performance. The  algorithm's poor worst-case behaviour (i.e. for rows 
of length N the jump-off graph can have O(1'V4) edges) has not been a problem. If s 
ever attempts a row replacement with more than 100 jump-off configurations (this has 
yet to happen), then only the first 100 constructed jump-off configurations are entered 
into the jump-off graph and a suboptimal update may result. T h e  following crude 
probabilistic argument illustrates why the number of jump-off configurations is small. 
Suppose A is the result of M Bernoulli trials, where p is the probability that two 
successive characters are equal (p = l/(the alphabet size) if characters are equally 
likely). Suppose B is obtained from A by deleting and inserting blocks of symbols at 
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k distinct locations. Then, there are at most k + l  jump-off configurations induced by 
the transformation and at most A4N(pmi"~L"nP )( 1 ~ p ) )  that occur by chance. This latter 
quantity is negligible for reasonable values of mznjump and alphabet size. 

The following algorithm fragment shows how we use the initial cursor position, 
initpos. If the cursor is not initially on the row (e.g. when other rows have been 
modified in the current screen update), then init-pos = co. 

len t length of the longest common prefix of A and B 
if len 2 ini tpos - 1 then 

offset t ini tpos - 1 
else 

1 issue a preliminary 'Move to column len+l '  command (a non-LR move) 
offset t len 

I 
remove the first offset characters from A and B 
solve the row-replacement problem with the truncated A and B 

If ini tpos were ignored, then aax might be transformed to a x  by moving the cursor 
to the second a (the first mismatched character), deleting the a, and moving the cursor 
back. 

The implementation process was complicated by the fact that s folds long lines of 
the edited file onto several screen rows to make all characters visible. The row- 
replacement algorithm is applied to entire lines and the generated update commands 
are interpreted in light of line-folding. With 80-character screen rows, for example, 
Move to column 100 would be taken as referring to column 20 of the line's second 
segment. We have discovered row-replacement algorithms that directly model fixed 
row length, generate optimal command sequences and run in polynomial time, but 
their practical value remains to be demonstrated. 

To guarantee that minor row updates are handled as efficiently as with s's original 
row-replacement technique, the following approach was adopted. Define 

thresh = cost(Move, min-jump) + min (cost(op.1) : op # Move} 

That is, thresh gives the minimum cost of a useful Move plus another command. When 
replacing a row, s first computes C = tail(0,0), the cost of optimal row replacement 
without Move commands. If C 5 thresh, then the general replacement procedure is 
not applied since any update sequence with a Move command costs at least C. Hence, 
the script generated by s is optimal in this case. In  particular since thresh 2 cost(lnsert,l) 
and thresh 2 cost(Print, I ) ,  jump-off configurations are not computed while text is simply 
being inserted directly into the buffer. 

A considerable portion of our effort to develop a practical row-replacement technique 
was devoted to efficient computation of the jump-off configurations and their jump 
potentials. Construction of the jump-off graph dominates the execution time of the 
row-replacement algorithm, so the efficiency of this part of computation is essential. 
LetJ, M and N denote the number of jump-off configurations and the two row lengths, 
respectively. Jump-off configurations can be computed in time O ( J  + M + N )  by a 
straightforward application of suffix trees.'" With some effort, we refined the method 
to also compute jump potentials within the same time bound. However, the method's 
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performance in practice was unsatisfactory. 
Although not asymptotically as efficient as suffix trees, a simple hashing scheme 

proved superior for a wide range of uses. With hashing, the row-replacement algorithm 
runs in time OVP + M + in expectation whereJP is the sum of the jump potentials 
of all jump-off configurations. The  average 80 by 80 problem takes 0.8ms on a VAX 
8600 running Berkeley 4.3bsd UNIX. In the worst case whenJP is of order M N  (e.g. a 
string of 80 xs versus itself), 2.6ms are required. Since the row replacement algorithm's 
execution is dominated by this phase, execution time roughly equals the time for 
transmitting one character to the screen at 9600 baud. The Appendix lists the code for 
constructing jump-off graphs, and Reference 9 gives a further discussion and analysis. 

CONCLUSION AND AN OPEN PROBLEM 

In some respects, the subject of screen updating is reminiscent of code optimization, 
i.e. the generation of optimal - or at least good - object code by a compiler. In  both 
areas there are theoretical results giving algorithms for generating optimal instruction 
sequences. (For code optimization there are many such results; for screen updating, 
only a few.) Although these theorems may fail to model all intricacies of actual 
hardware, they can provide insights that are quite useful in practice." However, the 
engineering trade-offs faced during implementation may mean that the most cost- 
effective optimizations are some of the simplest." The method proposed in this paper 
is one such simple method of practical value. 

The  row-replacement method developed above is quite similar to techniques used 
for comparing biological sequences. A number of biosequence programs begin by 
determining all common substrings of length at least k (commonly k = 2 for proteins 
and k = 5 for DNA sequences). The use of suffix trees has been proposed,'3 but 
hashing has been the method of choice." T o  compare two sequences, several of these 
programs", l 6  compute an optimal path in a graph whose nodes are common substrings. 
(Biologists formulate the sequence comparison problem in such a way that the problem 
is to compute a longest path.) However, in this context the computed results are not 
necessarily optimal. For example, matches of length less than k are generally missed 
and overlapping segments (e.g. jump-off configurations (1,O) and (7,s)  of Figure 1) 
are not treated optimally. However, the method is very fast, especially when heuristic 
rules are applied to reduce the number of common substrings placed in the graph.16 
A popular use of this approach"* is for rapid comparison of one sequence against 
an extensive sequence library; promising library sequences are then compared to the 
probe sequence using a more sensitive technique. 

The  change from terminals and serial communications to workstations and high- 
speed networks does not make the screen-update problem disappear, though different 
techniques are needed to minimize the cost of bitblt operations." Work has been done 
on simple approaches for screen updating by a text editor2' and display updating in 
computer animation,21 but the problem of optimally updating a bit-map display remains 
open. 
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APPENDIX 
For sequences A, B and given value of min-jump, the following C program constructs 
the nodes of the jump-off graph. As presented here, triples ( i , j ,  rnin3urnp) are printed. 
In a screen editor, the code would store the triples, add an initial and a final 
node, and apply a shortest-path algorithm that calls nontail, tail, jump-to-nontail and 
ju m p-to-ta i I for edge weights. 

/ *  Construct nodes of the juzp-off graph. 

* A substring of length min-jump is hashed to an integer, hsum. Hsum is a 
* weighted sum of the substring's characters, where the i-th character from 
* the right is multiplied by i. Hsum can be computed by a feu additive 
* operations from the preceding substring's hsum. Hash[hsum] points to a linked 
* list of POS-LISTS, one POS-LIST for each key, where a position's key is the 
* immediately preceding character. A POS-LIST is a list of positions in A with 
* identical hsum and key. */ 

* 

#&fine mW 10 
#&fine STRMAX 100 /* limit on IAI - min-jump + 1 */ 
#define BSIZE 64*JMPMAX*(JMPMAXtl) /* sire of hash table */  

/*  limit on min-jump */ 

typedef struct P { char *pos; struct P *nxt; ) POSITION; 
typedef struct L { int key; POSITION *Val; struct L *lft;) POS-LIST; 

POSITION p p O l  [STRMAX] ; 

POS-LIST *hash[HSIZE]; 
int used[STRbl&X} *utop = used; /* stack of used buckets */ 
int jump = -1, jmpmult[l28]; / *  multiples of min-jump */ 

/* pool of POSITIONS */ 

/* hash buckets */ 
POS-LIST l p o l  [STRMAX] ; /*  pool of POS-LISTS */ 

/* entry point - compute juzp-off configurations and their jump potentials */ 

jump-off(A, 8, min-jump) char *A, *B; int min-jump; 
( int mults, i; 

if (min-jump != jump) ( 

jump = &-jump; 
for (mults = -jump, i = 0; i < 128; it+) 

jmpmult[i] = (mults t= jump); 
1 
A8c-(A) ; 
BscaoW, B); /* generate jump-off configurations */ 

/* build table of positions in A */ 

1 

static -8n(A) char *A; 
( regirtu POSITION fptop; 

regist- POS-LIST *t, **v, *hop; 
regist- char *s, *p; 
int csmq hsum, prev-char; 

while (sop > used) /* reinitialize hash[] */ 
hash[*(--utop)] = 0; 

ptop = pgool; 
1top = l p o l ;  

p = (s =I &) t jump; 
prev-chau I hsum = csum = 0 ;  

while (8  < p) 
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hsum += (csum += *a++); 
p = A; 
for ( ; ; ) ( / *  for positions in A, find position 

list with same (hsum, prev-char) */ 
for (t = *(v=hash+hsum); t!=O LC t->key<=prev-char; t = * (v = &(t->lft))) 

if (t->key = prev-char) ( 
ptop->nxt = t-kal; 
ptop->pos = p; 
t-*a1 = ptop++; 
break; 

1 
if (t = 0 I I t->key > prev-char) ( / *  list not found * /  

*(utop++) = hsum; /* mark bucket as used */ 
ptop-hut = 0; /* start a new list for the */ 
ptop->pos = p; /* the pair (hsum, prev-char) */ 
ltop-ha1 = ptopu; 
ltop->key = prev-char; 
ltop->lft = t; 
*v = ltop++; 

1 
if (*s = ‘ \ O r )  break; 
csum += *a++ - (prev-char = *p++); 
hsum += csum - jmpmult[prev-char]; 

1 
I 

static Bscan(A, B) char *A, *B; 
( register POSITION *h; 

register POS-LIST *t; 
register char *m, *n, *p, *a; 
int csum, hsum, prev-char, N; 

hsum = csum = 0; 
p = (s = B) + jump; 
while (a < p) 

p = B; 
prev-char = 1; 
N = strlen(B) ; 
B[N] = I \ O l f ;  

f o r ( ;  ; )  ( /* for positions in B */ 

hsum += (csum += *a++); 

for (t = hash[hsum]; t != 0; t = t->lft) 
if (t->key != prev-char) 

/*  found a list of positions with identical 

for (h = t-kal; h != 0; h = h->nxt) ( 

hsum but different preceding character. */ 

/ *  resolve hash collisions and compute jump 
potential four characters at a time. */ 

if (*((hit *) (m=h-+a)) = * (  (int *) (n=p))) ( 
while ( * (  (int *) (m+=4)) = * (  (int *) (n+=4)) ) 

if (* (m-=3) = * (n--3) ) 
while (*++m = *++n) 

) else if (*m = *n) 
while (*+* = *++n) 
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if (n >e s) 
printf ( “  (%2d, %2d, %2d) \n“, h--08-A,p-B,n-p) ; 

1 
if (*s = ‘\Ol‘) break; 
csum += *a++ - (prev-char = *pt+); 
hsum += csum - jmpmult [prev-char] ; 

1 
B[N] = ‘ \ O r ;  

1 
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