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BACKGROUND. Rodent and human prominin-1 are expressed in numerous adult
epithelia and somatic stem cells. A report has shown that human PROMININ-1 carrying the
AC133 epitope can be used to identify rare prostate basal stem cells (Richardson et al., J Cell Sci
2004; 117:3539–3545). Here we re-investigated its general expression in male reproductive
tract including mouse and human prostate and in prostate cancer samples using various
anti-prominin-1 antibodies.
METHODS. The expression was monitored by immunohistochemistry and blotting. Murine
tissues were stained with 13A4 monoclonal antibody (mAb) whereas human samples were
examined either with the AC133mAb recognizing the AC133 glycosylation-dependent epitope
or 80B258 mAb directed against the PROMININ-1 polypeptide.
RESULTS. Mouse prominin-1 was detected at the apical domain of epithelial cells of ductus
deferens, seminal vesicles, ampullary glands, and all prostatic lobes. In human prostate,
immunoreactivity for 80B258, but not AC133 was revealed at the apical side of some epithelial
(luminal) cells, in addition to the minute population of AC133/80B258-positive cells found in
basal compartment. Examination of prostate adenocarcinoma revealed the absence of 80B258
immunoreactivity in the tumor regions. However, it was found to be up-regulated in luminal
cells in the vicinity of the cancer areas.
CONCLUSIONS. Mouse prominin-1 is widely expressed in prostate whereas in human only
some luminal cells express it, demonstrating nevertheless that its expression is not solely
associated with basal stem cells. In pathological samples, our pilot evaluation shows that
PROMININ-1 is down-regulated in the cancer tissues and up-regulated in inflammatory regions.
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INTRODUCTION

Identification of stem and progenitor cells is an
important issue for tissue engineering and stem cell-
based therapy, and their prospective isolation relies on
thepresence of specific cell surfacemarker(s). In the last
decade, prominin-1 (CD133) has gained an enormous
attention in the stem and cancer stem cell fields
(reviewed in [1,2]). Initially identified in mouse as a
novel marker of neuroepithelial progenitor cells [3],
it was described in human as the AC133 antigen, a
marker of hematopoietic stem and progenitor cells [4].
In addition to the hematopoietic system, human
PROMININ-1 has been described to label a large panel of
somatic stem and progenitor cells, for instance, those
derived fromneural tissues [5,6],muscle [7], kidney [8],
skin [9], and intestine [10]. As for the human prostate,
a minute population of PROMININ-1 (AC133 epitope)-
positive progenitors that possess a high proliferative
potential in vitro and can reconstitute prostatic-like
acini in immunocompromised nude mice was identi-
fied in the basal compartment [11]. Similarly, Leong
et al. [12] could impressively demonstrate that a single
murine prostate stem cell defined by the phenotype
Lin�Sca-1þprominin-1þCD44þCD117þ can generate a
prostate after transplantation in vivo.

In addition to stem cells, numerous reports have
demonstrated that PROMININ-1 (i.e., AC133 epitope)
labels cancer stem cells (reviewed in [1,2,13]). Thus,
PROMININ-1 is expressed in malignant cells found in
hematopoietic diseases [14–17] and in certain types of
solid cancers, for example, brain [18,19], kidney [20,21],
and prostate cancers [22,23] as well as various cancer
cell lines [24–30]. Moreover, PROMININ-1-positive cancer
cells are often associatedwith chemoresistance [31–33].
It is therefore generally seen as one of the most
important marker essential to cancer stem/initiating
cells that might be a molecular target for effective
cancer therapies [34–36]. Yet, to such end, it is
important to keep in mind that most studies actually
address specifically the AC133 epitope which is
thought to be dependent on the glycosylation profile
of PROMININ-1 and sensitive to tissue fixation [5,37,38]
(reviewed in [39]) and consequently that the general
expression of human PROMININ-1 as such may be more
widespread. In the same line, the complex regulation of
the expression of its different isoforms (splice variant
and/or glycoform) needs to be further investigated
[40,41].

In this context, we have demonstrated using
either a rabbit antiserum (named ahE2) [20,42] or a
novel mouse monoclonal antibody (mAb 80B258) [43]
directed against human PROMININ-1 polypeptide that it is
expressed far beyond stem cells, like was earlier
observed in rodents [3,40,44,45] (reviewed in [1,46]).

Indeed, we have detected PROMININ-1 in various human
organs or glands such as kidney, pancreas, liver,
mammary glands, salivary glands, sweat glands,
lacrimal glands, and cervical glands [20,42,43].

Because the molecular (e.g., expression of various
splice variants, binding to membrane cholesterol)
and cellular (e.g., apical localization in epithelial
cells, association with small extracellular membrane
vesicles) characteristics of prominin-1 initially demon-
strated in rodent tissues [3,40,47,48] are shared by its
human counterpart [5,20,49–51], we sought to reeval-
uate its expression within the prostate in both species
(mouse and human). Interestingly, we could demon-
strate using 80B258 mAb that the expression of
PROMININ-1 in human prostate is not restricted to stem
cells located in basal compartment; however, its
general expression in this particular organ does not
fully mirror the situation observed in mouse.

MATERIALS ANDMETHODS

Cell Culture andMembrane Preparation

Human colon carcinoma-derived Caco-2 cells were
cultured as described [5]. Tissues used in the present
study were obtained under the appropriate institu-
tional (Max-Planck-Institute of Molecular Cell Biology
and Genetics (murine tissues); Technical University of
Dresden (TUD; human tissues)) approval protocol.
Samples of human tissues came from the Department
of Pathology (TUD) and were anonymous materials
with the patient consent that had not been used for
genetic analysis. Prostate tissues were acquired from
two patients aged 76 and 79, respectively, with
prostatic hyperplasia but no cancer. Tissues from adult
(4-month-old)C57BL/6mice andhumanprostatewere
used to prepare membrane lysates according to
procedures reported previously [44]. Protein concen-
trations were determined using BCA Protein Assay
Reagent (Pierce, Rockford, IL).

EndoglycosidaseDigestion and Immunoblotting

Caco-2 cell detergent extracts corresponding to one-
tenth of a confluent 85-mm dish or proteins solubilized
from adult mouse and human membranes (20–50 mg
protein) were incubated overnight at 378C in the
absence or presence of 1U peptide-N-glycosidase F
(PNGase F) according to the manufacturer’s instruc-
tions (Roche Molecular Biochemicals, Mannheim,
Germany). Proteins were analyzed by SDS–polyacry-
lamide gel electrophoresis (SDS–PAGE; 7.5%) and
transferred to poly(vinylidene difluoride) (PVDF)
membranes (Millipore Corp., Bedford, MA; pore size
0.45 mm) using a semi-dry transfer system (Cti, Idstein,
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Germany) as described [44]. After transfer, membranes
were incubated overnight at 48C in blocking buffer
(PBS containing 5% low fat milk powder and 0.3%
Tween-20). Mouse and human prominin-1 were then
detected using rat mAb 13A4 (1 mg/ml) [3] and mouse
mAb 80B258 (1 mg/ml) [43], respectively. Primary
antibodies diluted in blocking buffer were incubated
for 1 hr at room temperature. Antigen–antibody
complexes were revealed using horseradish perox-
idase-conjugated secondary antibodies (Dianova) fol-
lowed by enhanced chemiluminescence (ECL system,
Amersham).

PCRAmplif|cation of Prominin-1 (CD133) cDNA

Oligonucleotide primers were designed to amplify
all potential PROMININ-1 splice variants from a human
prostate cDNA pool (Marathon Ready cDNA kit; BD
Biosciences) using polymerase chain reaction (PCR).
[Note that, normal prostates pooled from 32 male
Caucasians have been used as poly Aþ RNA source.]
The first PCR was performed using gene-specific 50

sense primer I (50-CTCTGAGGCAGGAGGCAC-
CAAGTTCTA-30) corresponding to the nucleotide
sequence 182–208 of the PROMININ-1 cDNA sequence
(GenBank accession number BC012089), and the linker-
specific adaptor primer 1 supplied with the Marathon
Ready cDNA kit. The nested gene-specific 50 sense
primer II (50-CCAAGTTCTACCTCATGTTTGGAG-
GAT-3) matching nucleotides 199–225 of the PROMININ-

1 sequence was used with the linker-specific adaptor
primer 2 for the second PCR reaction. PCR reactions,
performed using Advantage1 cDNA Polymerase Mix
(Clontech) according to manufacturer’s instructions,
generated a fragment of about 4 kb. An aliquot of the
nested PCR product was purified and subcloned in the
pCR1-Blunt II TOPO vector according to the manu-
facturer’s instructions (Zero Blunt TOPO PCR cloning
kit; Invitrogen, Groningen, the Netherlands). cDNA
inserts were completely sequenced on both strands
using Applied Biosystems 3730 Genetic Analyzer.

ImmunohistochemistryofMouse
andHumanTissues

Various tissue samples dissected from adult
C57BL/6 mouse were fixed by immersion in 4%
paraformaldehyde in sodium phosphate buffer,
pH 7.4, at 48C overnight. Tissues were infiltrated with
cryoprotectant (30% sucrose in sodium phosphate
buffer, pH 7.4), embedded in Tissue-Tek1 (Miles,
USA) and rapidly frozen on dry ice. Cryosections
(10 mm) were mounted on SuperFrost1Plus (Menzel-
Glaser, Germany) slides. Samples were washed three
timeswith PBS containing 0.3% Tween-20 (5min each),

and the endogenous peroxidase was then neutralized
with 1.0% H2O2 for 20min. After being washed with
PBS containing 0.3% Tween-20, cells were permeabi-
lized, and sections were blocked with 10% fetal calf
serum and 0.2% saponin in PBS (blocking solution) for
30min at room temperature. Sections were then
incubated sequentially for 1 hr at 378C with rat mAb
13A4 (10 mg/ml) and horseradish peroxidase-coupled
goat anti-rat secondary antibody (1:300; Dianova), all
diluted in blocking solution. Color reactions were
performedwith peroxidase substrate 3,30-diaminoben-
zidine (DAB tablet sets, 0.7mg/ml; Sigma) according to
the manufacturer’s protocol. Sections were counter-
stained with Mayer’s hematoxylin solution (Merck),
dehydrated, and mounted in VectaMount mounting
medium (Vector). Stained sections were observed with
an Olympus BX61 microscope equipped either with an
Olympus DP71 camera or HistoScope High resolution
RGB Imaging System (Visitron Systems GmbH, Puch-
heim, Germany). The images shown were prepared
from IPLAB data files (version 3.5) by using Adobe
Photoshop software.

Various human samples of prostate cancer (Gleason
score ranging 5–10) and non-cancerous prostatic
tissues were obtained from anonymous archival
tissues. Morphologically normal, that is, without
cancer, prostate gland tissues were collected from two
independent donors aged 60 and 69, respectively, who
had urinary bladder cancer. Samples were fixed in 10%
formalin (pH 8.0) for 24 hr at room temperature,
dehydrated with increasing concentrations of ethanol
(70%, 80%, 2� 96%, 2� 100%) for 1 hr each at room
temperature, and then treated twice with xylene
(Fluka) for 45min at room temperature. The dehy-
drated samples were incubated in paraffin at 608C for
1.5 hr and then for additional 2.5 hr with fresh paraffin.
Finally, embedded tissueswere stored at room temper-
ature. Thin sections (7 mm) were cut using Leica rotary
microtome (MICROM 540HM), mounted on Super-
Frost1Plus slides (Menzel-Glaser), and dried over-
night at room temperature. They were deparaffinized
by two successive xylene treatments (20min each),
hydrated with decreasing concentrations of ethanol
(2� 100%, 96%, 80%, 70%, 40%) for 1min (each at room
temperature), and then rinsed with distilled water
(Millipore Corp.) for 5min. Samples were washed
three times with PBS containing 0.3% Tween-20 (5min
each), and the endogenous peroxidase was then
neutralized with 1.0% H2O2 for 20min. Tissue sections
were permeabilized and stainedusing either themouse
mAb 80B258 (10 mg/ml) [43] or AC133 (1 mg/ml;
Miltenyi Biotec, Gladbach, Germany) or rabbit
antiserum ahE2 (1:500) [20] as described previously
[20,43]. Immunodetection and counterstaining were
performed as described above.
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RESULTS

Prominin-1Is ExpressedAll Along the
MurineMale ReproductiveTract

We have previously demonstrated that distinct
mouse prominin-1 splice variants are expressed at the
apical membrane of epithelial cells lining the epididy-
mal duct [40]. Here we have pursued our investigation
of its general expression all along male reproductive
tract by immunohistochemistry and immunoblotting
using the rat mAb 13A4 [3]. A strong staining
was detected at the apical, but not basolateral, side
of epithelial cells located in the ductus deferens (A,
arrow), seminal vesicles (Fig. 1B), anterior prostate
(coagulating glands; Fig. 1C), lateral prostate (Fig. 1D),
ampullary glands (Fig. 1E), ventral and dorsal prostate
(see Supplemental Materials Fig. S1). It is interesting to
note thatwithin the ventral prostate not all luminal cells
exhibit 13A4 immunoreactivity (Fig. S1C,c1–4, arrow-
head). Similar data were obtained with another anti-
prominin-1 antibody, that is, antiserum aE3 [52] (data
not shown). No staining was detected when the
primary antibody was omitted (Figs. 1A0–E0 and
S1B0,C0).

Protein expression was next investigated by
immunoblotting. The analysis of membrane lysates
prepared from lateral prostate and ampullary
glands revealed a broad 13A4-immunoreactive band
with an apparent molecular mass of 105–120 kDa
(Fig. 2, lanes 3 and 5, respectively, bracket). In
seminal vesicles, it showed a reduced electrophoretic
mobility with a sharp &120 kDa band (Fig. 2, lane 7,
arrow) compared to the kidney (&115 kDa band)
(Fig. 2, lane 1). Upon removal of N-glycans with a
PNGase F treatment, a 13A4-immunoreactive band of
&94 kDa was observed in all tissues (Fig. 2, lanes 2, 4,
6, and 8, arrowhead; data not shown) suggesting
that the prominin-1 splice variant expressed in those
tissues is s1 (for nomenclature, see Refs. [41,49])
as previously demonstrated for the kidney-derived
prominin-1 [3]. The nature of the prominin-1 iso-
form was confirmed by immunoblotting using a
rabbit antiserum (aI3) specific for the cytoplasmic
C-terminal domain of the s1 splice variant [53] (data
not shown).

Taken together, these results show that the mouse
prominin-1.s1 splice variant is expressed in various
epithelia distributed all along the male reproductive
tract, but with slightly different processing of its
complex N-glycans. In agreement with a recent study
[12], prominin-1 thus appears highly expressed in
murine prostate, which sharply contrast to the human
situation where it has been reported that only rare cells
located in basal compartment expressed it as revealed
with AC133 mAb [11].

The Expression of PROMININ-1Polypeptide inHuman
Prostate IsNot Limited to Rare Cells Located in

Basal Compartment

The apparent discrepancy observed between mur-
ine and human prostate prompted us to reinvestigate
the expression of PROMININ-1 in the latter species with
tools other than mAb AC133, which epitope is thought
to be dependent, at least in part, on glycosylation [37].
To that end, we used our newly characterized mouse
mAb 80B258 that has been generated against a
polypeptide corresponding to amino acid residues
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Fig. 1. Immunoperoxidaselocalizationofprominin-1at the apical
domain of epithelial cells lining various tissues of the mouse male
reproductive tract.Cryosections of adult murine ductus deferens
(A,A0),seminalvesicles(B,B0),anteriorprostate(C,C0), lateralpros-
tate (D,D0), andampullaryglands (E,E0)were labeledwith (A^E) or
without (A0^E0) 13A4 mAb followed by peroxidase-coupled goat
anti-rat secondary antibody. Sections were counterstained with
Mayer’s hematoxylin. Arrows indicate the 13A4 immunoreactivity
at theapicalsurfaceofvariousepithelia;Lindicates theluminalcom-
partmentofeachtissue;asteriskshowssecretioninthelumenof the
lateral lobeof theprostategland. Scalebar,25mm.
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Gly240–Ser388 of PROMININ-1 [43], and for the sake of
comparison, the AC133 mAb. In agreement with
Richardson et al. [11], we could detect AC133 immu-
noreactivity in rare cells located in basal compartment
often at branching folds or in budding regions (Fig. 3A,
arrow). Such infrequent cells were also labeled with

80B258 mAb (Fig. 3B, arrow). The nature of these cells
was not further studied here. Surprisingly, although
the AC133 immunoreactivity appeared confined to the
basally located cells [11], 80B258 immunoreactivitywas
observed, in addition, in some epithelial cells facing the
lumen of the acini (Fig. 4; see also Fig. S2). In these cells,
the 80B258 immunoreactivity was restricted to the
apical plasma membrane (Fig. 4C–E; see higher
magnification in panels c–e). In some cases, it appeared
also in the upper (i.e., apical) part of the cytoplasm of
columnar cells (Fig. 4D,d). It is interesting to note the
discontinuous expression pattern of 80B258-positive
cells (Fig. 4C,D; for details, see panels c and d,
bracket)—a situation similar to the murine ventral
prostate (see above, Fig. S1). Moreover, epithelial cells
displaying the 80B258 immunoreactivity were fre-
quently atrophic (Fig. 4e). Most of the luminal cells
were nevertheless not stained (Figs. 4A,B,a,b and S2,
panels 3 and 4). No signal was observed when the
primary antibody was omitted (Fig. 4C0–E0,e0).

To confirm that the 80B258 immunoreactivity
detected in human prostate samples was related to
PROMININ-1 we investigated the actual protein expres-
sion by immunoblotting two prostate membrane
lysates derived from independent donors (Fig. 5). An
80B258 immunoreactive bandwas observed at 120 kDa
(Fig. 5, lanes 1 and 3, arrow), as for the positive control,
that is, human colonic adenocarcinoma-derivedCaco-2
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Fig. 2. Characterization ofmurineprominin-1inmalereproduc-
tive tract. Proteins (50mg) solubilized from adult mouse lateral
prostate, ampullary gland, and seminal vesicle membranes were
incubated in the absence (�) or presence (F) of PNGase F and
analyzed by immunoblotting with 13A4 mAb. For comparison,
prominin-1 from adult kidney membranes (50mg protein) was
analyzed in parallel. Bracket, glycosylated 105 ^120kDa forms of
prominin-1; arrow, glycosylated 120-kDa form of seminal vesicle-
derived prominin-1; arrowhead,N-deglycosylated,94-kDa form of
prominin-1. Asterisk, PNGase F-insensitive immunoreactive band
ofunknownidentity.Positionofprestainedapparentmolecularmass
markers (inkDa) isindicatedontheleft.

Fig. 3. PROMININ-1 immunoreactivity in rare prostate cells located in basal compartment. Paraffin-embedded sections of a non-
cancer humanprostatewere labeledwith either AC133 (A) or 80B258mAb (B) or withoutprimary antibody (A0,B0) followedby the peroxi-
dase-coupledsecondaryantibody.SectionswerecounterstainedwithMayer’shematoxylin.ArrowsindicateeitherAC133(A)or80B258immu-
noreactivity (B) in rare single cell located in the basal compartment. Such cells are absent in negative controls (A0,B0). L indicates the luminal
compartment. Scalebar,20mm.
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cell extract (Fig. 5, lane 5). N-Deglycosylation with
PNGase F yielded a band of&92 kDa (Fig. 5, lanes 2, 4,
and 6, arrowhead). These apparent molecular masses
were those expected for N-glycosylated and deglyco-
sylated forms of human PROMININ-1 [5].

To further characterize PROMININ-1 in human prostate
we amplified its entire open-reading frame by 30-RACE
(rapid amplification of DNA ends) using a set of gene-
specific 50-primers located downstream the initial start
codon, and a cDNA pool derived from normal human
prostate (for details, see the Materials and Methods
Section). The sequencing of eight individual cDNA
clones derived from two independent PCRs revealed

the PROMININ-1.s1 splice variant (GenBank accession
number AF507034) like in mouse.

Expression of PROMININ-1in
HumanProstate Cancers

Given that PROMININ-1 (AC133 epitope) has been iden-
tified in prostate cancer cells having cancer-initiating
ability [36], we examined its general expression in
human prostate adenocarcinoma by immunohisto-
chemistry using various anti-PROMININ-1 antibodies.
Interestingly, an analysis of 18 individual cancer
samples revealed no PROMININ-1 immunoreactivity using

The Prostate

Fig. 4. Immunoperoxidase localization of PROMININ-1 at the apical side of some epithelial cells lining the human prostate. Paraffin-
embedded sections of a non-cancer prostate derived from a 69-year-old patient carrying an urinary bladder cancer were labeled with
(A^E) orwithout (C0 ^E0) 80B258mAb followedby theperoxidase-coupled secondaryantibody. Sectionswere counterstainedwithMayer’s
hematoxylin.Panels identifiedby a lowercase letter (a^e,e0) showahighmagnificationof the correspondingboxedarea inpanelsA^E andE0.
For a lower magnification of panels A^C, see Supplemental Materials Figure S2. Black lines indicate 80B258-positive cells surrounded
by unlabeled cells. L, lumen. [Note that similar data were obtained with another individual (60-year-old; not shown).] Scale bars, 150mm
(A^E,C0^E0); 14mm(a^e);30mm(e0).
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either 80B258 mAb or antiserum ahE2 in cancer (trans-
formed) regions, whatever their Gleason grading (data
are summarized in Table I; four examples are shown
either inFig. 6A,panel a1andF–HorFig. 7).However in
benign glands in the vicinity of the cancer regions, the
intensity and frequency of the 80B258 immunoreactivity
appeared to be increased (Fig. 6A, panels a2 and a3,
arrowhead; see also Fig. S3) compared to the normal
prostate (Fig. 4). Indeed, the 80B258-positivity was
especially observed in regions of inflammation
(Fig. 6A,a3,B, asterisks) and/or where residual acini
were compressed by surrounding cancer (Fig. 6C). In all
cases, 80B258 immunoreactivity was restricted to the
luminal cells (Figs. 6 and S3). Cells located in the stroma
were negative (Fig. 6). Some secretedmaterials found in
the glandular lumen were strongly labeled (Fig. 6D,d2),
which is not the case of corpora amylacea (Fig. 6E,e).
Similar datawere obtainedwith antiserumahE2 (Fig. 7).
Specifically, ahE2 immunoreactivitywas detected at the
apical side of the luminal cells located in tissues adjacent
to the cancer region,where infiltration of leukocyteswas
often detected (Fig. 7A–C, for details, see legend). The
benign acini surrounded by invasive cancer areas
were labeled aswell (Fig. 7D). It is interesting to observe
that PROMININ-1 immunoreactivities (80B258 and ahE2)
were frequently detected in atrophic epithelial cells
(Figs. 6b,d1 and 7a2, respectively; for details, see the
legend of Fig. 7) as shown for certain luminal cells
in non-cancerous tissues (see above). In contrast,
the AC133 mAb did not reveal any positive signal
with the exception of rare cells located in basal compart-
ment as observed in normal tissue (Table I; data not
shown).
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Fig. 5. PROMININ-1 in human adult prostate is a 120-kDa
glycoprotein. Proteins solubilized from adult prostate membranes
of two distinct individuals (specimen 1, 79-year-old, 30mg
protein; specimen 2, 76-year-old, 20mg protein) were incubated
in the absence (�) or presence (F) of PNGase F and analyzed
byimmunoblottingusing the80B258mAb.Forcomparison, PROM-

ININ-1endogenouslyexpressedbyhumanCaco-2cellswasanalyzedin
parallel. Arrow, native 120-kDa form of PROMININ-1; arrowhead,
N-deglycosylated92-kDa formof PROMININ-1.

TABLE I. Expression ofprominin-1inVariousHuman Prostate Cancer Samples

Adenocarcinoma
[Gleason grading]

Number of
specimens

Age
(year)

PROMININ-1 immunoreactivity

Cytomorphologically normal region
in vicinity of cancer area Cancer/transformed area

mAb
80B258

Antiserum
ahE2

mAb
AC133

mAb
80B258

Antiserum
ahE2

mAb
AC133

[2þ3] 1 68 þ þ �a � � �
[3þ2] 2 54–67 þ þ � � � �
[3þ3] 5 59–73 þ þ � � � �
[3þ4] 1 61 þ þ � � � �
[4þ3] 1 66 þ þ � � � �
[3þ5] 6 50–70 þ þ � � � �
[5þ3] 1 64 þ þ � � � �
[5þ5]b 1 71 � � �

(þ) Presence or (�) absence of prominin-1 immunoreactivity at the apical domain of epithelial cells.
aNote that AC133 immunoreactivity is observed only in rare cells located in the basal compartment of epithelium (see Fig. 3).bCancer
tissue sample only.
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Fig. 6. ImmunoperoxidasedetectionofPROMININ-1inhumanprostateadenocarcinoma.Paraffin-embeddedsectionsofvarioushumanadeno-
carcinoma sampleswere labeledwith (A^H) orwithout (A0) 80B258mAb followedby theperoxidase-coupledsecondaryantibody. Sections
were counterstainedwithMayer’shematoxylin. Samples are derived fromprostatic adenocarcinoma exhibiting variousGleasongrade; 3þ2,
67-year-old patient (A,A0,B); 3þ3, 65-year-old patient (C); 3þ 4, 61-year-old patient (D); 3þ5, 50-year-old patient (E); 3þ3, 71-year-old
patient (F); 4þ3, 66-year-old patient (G); 5þ3, 64-year-old patient (H). Panels identified by a lower case letter (a1^3,b,d1,2,e) show a high
magnificationofboxedareas inpanelsA,B,D, andE.Arrowheads show80B258 immunoreactivity at theapical side ofepithelial cells lining the
prostate acini-like structures. Asterisks indicate areas of inflammation. L, lumen; CA, corpora amylacea; c, cancer area is delimitated with
dashedline. Scalebars: 350mm(A,A0); 100mm(a1^3,C^H);200mm(B);20mm(b,d1);12mm(d2);55mm(e).
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The Prostate

Fig. 7. PROMININ-1 is detected in leukocyte-infiltrated epithelium of benign glands. Paraffin-embedded sections of two human
adenocarcinoma samples were labeled with either antiserum ahE2 (A^D) or pre-immune serum (A0,a20) followed by the peroxidase-
coupled secondary antibody. Sections were counterstainedwith Mayer’s hematoxylin. Samples are derived fromprostatic adenocarcinoma
exhibiting two Gleason grade; 3þ3, 71-year-old patient (A^C,A0); 3þ 4, 61-year-old patient (D). Panels identified by a lower case letter
(a1^3,a20) showahighmagnificationof theboxedareasinpanelsAandA0.Blackarrowheads showahE2immunoreactivity,whichisoftenfound
incellclusters (bracket), at theapical sideofepithelialcells lining theaciniadjacentto cancer area (not shown).Openarrowheads shownegative
cells adjacent to thepositive ones.Note that in numerous cases, the intensityofahE2 immunoreactivity (brown triangle) correlates inversely
with the cell basal-to-apical height (blue triangle). Black arrows indicate leukocytes (dark nuclei) infiltrated within either epithelium or
stroma(a1,a3,B,C).Openarrowindicates a leukocyte foundin thelumen(L,C). c,Cancer area isdelimitatedwithdashedline. Scalebars:100mm
(A,A0); 20mm(B,C);50mm(D).
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DISCUSSION

In this studywe report two important findings. First,
prominin-1 is widely distributed all along the murine
reproductive tract. Second, the overall expression of
PROMININ-1 in humanprostate is not strictly limited to the
rare basal stem and progenitor cells as described in an
early study using AC133 mAb [11]. Nevertheless, the
general expression of prominin-1 in mouse versus
human prostate is distinct.

As already demonstrated in various epithelia
including those found in distinct regions of the
epididymis [40], prominin-1 was found to be concen-
trated at the apical plasmamembrane of all epithelia of
the murine reproductive tract investigated reflecting
thus its selective localization in particular plasma
membrane protrusions, for example, stereocilia (as
in the cases of epididymis and ductus deferens) or
microvilli (in other tissues) (reviewed in [46,54]). The
discontinuous expression pattern specifically observed
in the epithelium of themurine ventral lobe, in contrast
to the dorsal, lateral, and anterior regions, is consistent
with the highly variable density of microvilli on
the apical surface between individual cells [55]. The
limited expression of prominin-1 protein in this
particular prostatic lobe, by comparison to the others,
is also coherent with a recent quantitative PCR analysis
of its gene expression [12]. Within these epithelia, the
glycosylation profile of prominin-1.s1 splice variant
seems to vary as previously reported for the testis
versus epididymis-associated ones [40]. Such different
N-glycan modifications in the male genital tract have
been previously reported for other glycoproteins such
as CAMPATH-1 antigen (CD52) [56], yet the physio-
logical relevance of these glycoforms needs to be
determined. Although the physiological function of
prominin-1 remains elusive, genetic analyses in human
on one hand and a knockout mousemodel on the other
have linked prominin-1 deficiencywith an impairment
of the morphogenesis of photoreceptor cell outer
segment suggesting that this molecule may play a
certain role as an organizer of plasma membrane
protrusions [52,57–59]. Similarly, prominin-1 may
be involved in the formation and/or stabilization of
functional stereocilia and microvilli present in epithe-
lial cells within the male reproductive tract. A further
detailed analysis of the prominin-1-knockout mouse
model should clarify this issue [59].

Until now, all molecular and cellular characteristics
ofmouse prominin-1 and its human ortholog including
their tissue distribution have appeared as the mirror
image of one another. Here, we demonstrated that this
does not hold true for the prostate as only a sparse
subpopulation of human luminal cells appears to
express PROMININ-1—yet the same splice variant (i.e.,

s1)—(for an overview, see Fig. S2). This discontinuity in
expression appears evenwithin one given acinus and is
reminiscent of the pattern observed in the murine
ventral prostate that has no anatomical or histological
homolog in man [60]. The mechanism underlying the
differential expression of prominin-1 between the
human and rodent is unknown but it might somehow
reflect their histological differences. For instance,
human prostate has a continuous layer of basal cells
between the secretory cells and the basement mem-
brane, whereas mouse has fewer basal cells and a
discontinuous layer around the glands [61]. In this
respect, prominin-2 (i.e., prominin-1 paralog) also
displays a distinctive cellular localization within the
prostate since its exclusively basal localization in
human is neither evident in mouse nor in rat [62,63].

In human, both PROMININ molecules thus appear
to have a distinct distribution within prostate glands;
PROMININ-2 being strongly expressed in all cells
located in the basal compartment [62], whereas PROM-

ININ-1-positive cells appear as two distinct minute
subpopulations; one located in the basal compartment
as previously reported [11] and the other distributed
within the columnar epithelial secretory cells (Fig. 4).
The lack of detection of the latter subpopulation by
AC133mAbmight be explained either by a differential
N-glycosylation pattern of PROMININ-1molecules (see the
Introduction Section) or the inaccessibility of theAC133
epitope in luminal cells. Its detection might require
some special and/or drastic techniques for antigen
retrieval asdemonstrated for other epithelia [38]. In any
case, our data indicate that PROMININ-1-negative cell
populations isolated using AC133 mAb should be
analyzed with caution [64]. What could be the physio-
logical relevance of rare PROMININ-1-positive cells within
the luminal epithelium? The answer to this question is
still open. However, in light of a recent publication
describing rare luminal cells susceptible to cellular
oncogenic transformation which are expressing the
homeobox gene Nkx3-1 in the absence of testicular
androgens (castration-resistant Nkx3-1-expressing
cells; CARNs) and acting as alternative source of stem
cells in rodent models [65], it is tempting to speculate
that luminal PROMININ-1-positive cells might represent
a second source of stem cells in human prostate. It
might be more than a coincidence that they are often
found in cluster as described for CARNs in mice [65].

Diagnosis of prostate diseases at early stages by
using biomarkers in the blood is still under inves-
tigation. No ideal biological marker that can determine
the diagnosis and the clinical stage, inform about high-
risk patients and eventually monitor the treatment
has emerged yet. Due to the disease heterogeneity
[66], which ranges from inflammation and benign
hyperplasia to carcinoma and metastatic cancer, a
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single marker is not feasible for clinical diagnosis. The
lack of PROMININ-1 in transformed regions and its up-
regulation in surrounding areas that we have observed
in various adenocarcinoma samples may find, in
conjunction with other markers, some diagnostic
application. Interestingly, a similar phenotype is also
observed in certain cancers affecting salivary glands
(J.K. and D.C., unpublished work) suggesting a
common background in the expression of PROMININ-1

in diseases associated with particular glands. Are the
PROMININ-1-positive cells in the peripheral areas of
tumor in process of oncogenic transformation? How
is the PROMININ-1 gene down-regulated upon complete
transformation? How is the PROMININ-1 gene regulated
as such? Answering these questions might shed light
onto the development and/or progression of cancers as
this molecule is expressed, not only in rare cancer stem
cells, but also in numerous embryonic (developing)
epithelia in mouse and human [3,5]. The potential
sensitivity of luminal PROMININ-1-positive cells to onco-
genic transformation would also be consistent with the
notion that human prostate cancer cells exhibit a
luminal phenotype [67]. Moreover, the particular
‘‘shrunken’’ morphology of certain PROMININ-1-positive
cells found in both normal and tissues adjacent to the
cancer region is characteristic of lesions known as
proliferative inflammatory atrophy (PIA) [68,69]. Such
stressed cells might play a role not only in tissue repair
but also give rise to cancer. In this context, it would be
interesting to determine whether PROMININ-1-positive
cells co-express for instance caretaker genes (e.g., p-
class glutathione S-transferase) that are up-regulated in
PIA, and/or undergo an intensive proliferative process
[68]. Finally, it is of note that in contrast to a recent
report using an alternative anti-PROMININ-1 antibody [70]
but in keeping with an earlier study [23] we did not
detect any PROMININ-1 immunoreactivity in the prostatic
stromal compartment.Obviously, further analysis of its
general expression using various anti-PROMININ-1 anti-
bodies as well as a larger pool of samples is needed.
Thus, it appears important to complete an exhaustive
catalog of its expression and regulation (e.g., hyper-
methylation level of CpG islands within PROMININ-1

promoter [71]) in healthy and affected individuals
before initiating a targeting therapeutic intervention
based on it [72].

Lastly, the detection of PROMININ-1 in the glandular
lumen (e.g., Fig. 6D) deserves a particular comment.
Being tightly associated with plasma membrane
protrusions, prominin-1 is nevertheless released in
various body fluids including saliva, urine, and semi-
nal fluid [45,48,51,73]. Therein, PROMININ-1 is associated
with small membrane vesicles that could be recovered
upon high-speed centrifugation [48]. Both primary
cilium andmicrovilli have been demonstrated to be the

membrane donors of these extracellular vesicles
[51,74]. Whether PROMININ-1 is associated with the
cytoplasmic vesicles referred to as prostasomes
[75,76] remains to be determined. The cytoplasmic
detection of PROMININ-1 in the apical part of the prostatic
epithelial cells would be consistent with it. Indeed,
PROMININ-1 has been alreadydemonstrated to be located,
in addition to plasma membrane protrusions, within
the cytoplasmic compartment [77]. In any scenarios, its
detection in the seminal fluid may provide certain
information concerning the progression of prostate
diseases as recently shown for those from central
nervous system [50]. Thus, PROMININ-1-containingmem-
brane vesicles found in the seminal fluidmight become
a potential biomarker, and their full characterization
for instance at the proteomic level is needed in order to
formally establish their cellular and tissue origin.
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Bräuninger M. Midbody and primary cilium of neural progen-
itors release extracellular membrane particles enriched in the
stem cell marker prominin-1. J Cell Biol 2007;176:483–495.

75. Ronquist G, Brody I. The prostasome: Its secretion and function
in man. Biochim Biophys Acta 1985;822:203–218.

76. Nilsson BO, Jin M, Ronquist G. Immunolocalization of prosta-
somes in the human prostate. Ups J Med Sci 1996;101:149–157.

77. Fonseca AV, Bauer N, Corbeil D. The stem cell marker CD133
meets the endosomal compartment—New insights into the cell
division of hematopoietic stem cells. Blood Cells Mol Dis 2008;
41:194–195.

The Prostate

14 Missol-Kolka et al.


