
 1 

Material aging causes centrosome weakening and disassembly 1 
during mitotic exit 2 
 3 
Matthäus Mittasch1,3, Vanna M. Tran2,3, Manolo U. Rios2, Anatol W. Fritsch1, Stephen J. 4 
Enos1, Beatriz Ferreira Gomes1, Alec Bond2, Moritz Kreysing1,4, Jeffrey B. Woodruff2,4  5 
 6 

1. Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 7 
Dresden, Germany 8 

2. Dept. of Cell Biology, Dept. of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, 9 
USA 10 

3. These authors contributed equally 11 
4. For correspondence: kreysing@mpi-cbg.de, jeffrey.woodruff@utsouthwestern.edu 12 

 13 

ABSTRACT 14 

Centrosomes must resist microtubule-mediated forces for mitotic chromosome 15 

segregation.  During mitotic exit, however, centrosomes are deformed and fractured by 16 

those same forces, which is a key step in centrosome disassembly.  How the functional 17 

material properties of centrosomes change throughout the cell cycle, and how they are 18 

molecularly tuned remain unknown. Here, we used optically-induced flow perturbations 19 

to determine the molecular basis of centrosome strength and ductility in C. 20 

elegans embryos.  We found that both properties declined sharply at anaphase onset, 21 

long before natural disassembly.  This mechanical transition required PP2A phosphatase 22 

and correlated with inactivation of PLK-1 (Polo Kinase) and SPD-2 (Cep192). In vitro, 23 

PLK-1 and SPD-2 directly protected centrosome scaffolds from force-induced 24 

disassembly. Our results suggest that, prior to anaphase, PLK-1 and SPD-2 confer 25 

strength and ductility to the centrosome scaffold so that it can resist microtubule-pulling 26 

forces. In anaphase, centrosomes lose PLK-1 and SPD-2 and transition to a weak, brittle 27 

state that enables force-mediated centrosome disassembly.   28 

  29 
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 2 

INTRODUCTION 30 
 31 

Centrosomes nucleate and anchor microtubules that comprise the mitotic spindle, which 32 

segregates chromosomes during somatic cell division. Centrosomes are micron-scale, 33 

membrane-less organelles containing a structured centriole pair surrounded by an 34 

amorphous protein mass called pericentriolar material (PCM).  PCM carries out most of 35 

the functions of a centrosome, including directing cell polarity, cell migration, and 36 

chromosomal segregation (Conduit et al., 2015; Woodruff et al., 2014) 37 

  38 

For chromosome segregation, centrosomes must bear microtubule-dependent loads that 39 

create tensile stresses. Motor proteins anchored at the plasma membrane attach to and 40 

walk along astral microtubules extending from centrosomes.  These spatially-fixed motors 41 

thus generate cortically-directed pulling forces on centrosomes, and the balance of those 42 

forces determines the ultimate position of the mitotic spindle (Colombo et al., 2003; 43 

Gonczy et al., 2001; Grill et al., 2001; McNally, 2013; Nguyen-Ngoc et al., 2007). During 44 

this time, centrosomes maintain a compact, spherical shape. However, once 45 

chromosome segregation is complete and the cell exits mitosis, centrosomes are 46 

deformed and fractured by the same microtubule-mediated forces, which is a pronounced 47 

event during centrosome disassembly (Megraw et al., 2002; Severson and Bowerman, 48 

2003).  How the cell regulates the structural and material integrity of centrosomes is 49 

unclear.  One possibility is that an increase in cortical forces during mitotic exit induces 50 

centrosome disassembly. In C. elegans embryos, the magnitude of microtubule-mediated 51 

pulling forces does increase during the metaphase-anaphase transition. Yet, the same 52 

increase in pulling forces also occurs in metaphase-arrested embryos without leading to 53 

centrosome deformation or fracture (Labbe et al., 2004).  Furthermore, artificially 54 

increasing pulling forces via csnk-1 RNAi does not cause premature centrosome 55 

disassembly (Magescas et al., 2019; Panbianco et al., 2008). These studies suggest that 56 

induction of centrosome deformation and fracture during mitotic exit cannot be sufficiently 57 

explained by increased microtubule-mediated forces.  An alternative hypothesis is that 58 

centrosome mechanical properties significantly change to permit force-driven fracture 59 

and dispersal during mitotic exit.    60 
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PCM provides most of the mass and microtubule nucleation capacity of a centrosome, 61 

and it is widely believed to be responsible for bearing microtubule-mediated forces.  PCM 62 

is dynamic and expands in size and complexity as cells prepare for mitosis.  Self-63 

assembly of coiled-coil proteins, such as Cdk5Rap2 (vertebrates), Centrosomin (D. 64 

melanogaster) and SPD-5 (C. elegans), creates the underlying structural scaffold of PCM 65 

which then recruits “client” proteins that nucleate and regulate microtubules (Conduit et 66 

al., 2010; Conduit et al., 2014a; Fong et al., 2008; Hamill et al., 2002; Woodruff et al., 67 

2017; Woodruff et al., 2015). Formation of such micron-scale scaffolds requires additional 68 

regulatory clients like Polo Kinase, Aurora A Kinase, and SPD-2/Cep192 (Conduit et al., 69 

2014a; Conduit et al., 2014b; Gomez-Ferreria et al., 2007; Hamill et al., 2002; Hannak et 70 

al., 2001; Haren et al., 2009; Lee and Rhee, 2011; Pelletier et al., 2004; Zhu et al., 2008). 71 

PCM disassembles at the end of each cell cycle, but the mechanism is not well 72 

understood. While this process involves microtubule-mediated PCM fracture and reversal 73 

of Polo Kinase phosphorylation (Enos et al., 2018; Magescas et al., 2019; Pimenta-74 

Marques et al., 2016), it remains unclear how PCM fracture is initiated, which key 75 

molecular targets are de-phosphorylated, if these activities are linked, and how dynamic 76 

material changes might contribute to the disassembly process. 77 

 78 

A material’s load-bearing capacity is determined by its ability to resist permanent 79 

deformation and fracture upon stress. In materials science, these properties are 80 

described as “strength” and “ductility”, respectively. Strength is achieved through high 81 

affinity bonding and serves to maintain the material’s shape but can sometimes sacrifice 82 

flexibility. Ductility is achieved through breakage and reformation of sacrificial bonds or 83 

localized neighbor exchange, which dissipates energy over time but sacrifices the 84 

material’s shape. For example, glass requires large forces to deform, but it cannot deform 85 

much before shattering; thus, glass has high strength and low ductility. On the other hand, 86 

chewing gum is easily deformed, and it will stretch to great lengths before breaking; thus, 87 

gum has low strength and high ductility. Materials with the highest load-bearing capacity 88 

are those that combine strength and ductility, such as rubbers, polyampholyte gels, and 89 

high-entropy alloys (George et al., 2019; Sun et al., 2013).  Over time, these properties 90 
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can change via chemical or physical modifications, which is referred to as “material 91 

aging”.   92 

 93 

For the centrosome, it remains unexplored how molecular-level interactions between 94 

PCM proteins generate meso-level mechanical properties like strength and ductility and 95 

how these properties change with time. The non-covalent interactions between PCM 96 

scaffold proteins, as well as cross-linking of scaffold molecules by PCM clients, could all 97 

contribute. In general, characterizing the mechanical properties of living soft matter—such 98 

as cells, organelles, and protein assemblies—has been challenging due to their size (sub-99 

micrometer scale) and low abundance (sub-milligram scale).  Techniques like atomic 100 

force microscopy and optical trapping can be useful in this respect, but they are limited to 101 

easily accessible samples, like the outer membrane of cultured cells and reconstituted 102 

protein complexes. As a complementary method to actively probe mechanical properties 103 

in cells with limited accessibility, we previously used focused light-induced cytoplasmic 104 

streaming (FLUCS)(Mittasch et al., 2018). Specifically, we showed how FLUCS can 105 

reveal robust power-law-rheology signatures within the cell cytoplasm, to distinguish 106 

between fluid and gel-like states. Fluids undergo unconstrained motion proportional to 107 

stimulus time (i.e., they flow), while solids and gels undergo only limited deformations, 108 

which stall after small amounts of time due to their intrinsic elastic constraints. As FLUCS 109 

functions via thermoviscous flows, which develop independent of the absolute viscosity 110 

of the fluid (Weinert et al., 2008), FLUCS is particularly suited to distinguish between 111 

highly viscous phases and elastic phases.  Such a distinction could not be achieved by 112 

passive microrheology, as these two states would exhibit the same fingerprint of reduced 113 

motion.   114 

 115 

The C. elegans embryo is an ideal system to dissect the molecular determinants of PCM 116 

load-bearing capacity. First, C. elegans has a limited core set of proteins needed for rapid 117 

PCM assembly and disassembly, most of which are conserved across eukaryotes: PLK-118 

1 (Polo Kinase homolog), SPD-2 (Cep192 homolog), SPD-5 (functional homolog of 119 

Centrosomin and Cdk5Rap2), and LET-92SUR-6 (PP2AB55a phosphatase homolog) 120 

(Decker et al., 2011; Enos et al., 2018; Hamill et al., 2002; Kemp et al., 2004; Magescas 121 
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et al., 2019; Pelletier et al., 2004; Schlaitz et al., 2007). Second, it is possible to 122 

reconstitute PCM assembly and microtubule nucleation in vitro using purified C. elegans 123 

proteins (Woodruff et al., 2017; Woodruff et al., 2015). These experiments previously 124 

revealed that PCM forms via self-assembly of SPD-5 into spherical, micron-scale 125 

scaffolds that recruit PCM client proteins. SPD-2 and PLK-1 enhance SPD-5 self-126 

assembly, while PP2ASUR-6 removes PLK-1-derived phosphates and promotes PCM 127 

disassembly. However, these experiments did not reveal the mechanical properties of the 128 

SPD-5 scaffold nor how they are tuned in a cell-cycle-dependent manner.  129 

 130 

Here, we ask 1) how centrosomes undergo dynamic structural changes to withstand high 131 

tensile stresses in mitosis but not during mitotic exit, 2) which mechanical properties are 132 

associated with these distinct functional states, and 3) which molecular players and logics 133 

regulate the transient existence of centrosomes. To answer these questions, we 134 

combined genetics and pharmacological intervention with FLUCS to study the mechanical 135 

properties of PCM in C. elegans embryos. Our results revealed that PCM transitions from 136 

a strong, ductile state in metaphase to a weak, brittle state in anaphase. This mechanical 137 

transition is promoted by PP2ASUR-6 and opposed by PLK-1 and SPD-2. Our data suggest 138 

that mitotic PCM is a composite of a stable SPD-5 scaffold and proteins that dynamically 139 

reinforce the scaffold, such as PLK-1 and SPD-2.  During spindle assembly, accumulation 140 

of PLK-1 and SPD-2 render the PCM tough enough to resist microtubule-pulling forces. 141 

During mitotic exit, departure of PLK-1 and SPD-2 weakens the PCM scaffold to allow 142 

microtubule-mediated fracture and disassembly. Thus, PCM undergoes cell-cycle-143 

regulated material aging that functions to promote its disassembly.  144 

 145 
 146 
RESULTS 147 
 148 
FLUCS reveals weakening of the PCM scaffold at anaphase onset in C. elegans 149 

embryos 150 

To study the molecular determinants of PCM load-bearing capacity, we studied C. 151 

elegans 1-cell embryos, where growth and disassembly of the PCM scaffold is easily 152 

visualized using fluorescently-labeled SPD-5 (mMaple::SPD-5)(Figure 1A). During 153 
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spindle assembly, the C. elegans PCM scaffold is subject to microtubule-mediated pulling 154 

forces, but it maintains its spherical shape and structural integrity. However, during 155 

telophase, those same pulling forces deform and fracture the PCM scaffold (Figure 156 

1A)(Enos et al., 2018; Severson and Bowerman, 2003).  We hypothesized that PCM 157 

undergoes an intrinsic mechanical transition from a strong, tough state in metaphase to 158 

a weak state in telophase.   159 

 160 

We probed PCM mechanical properties using FLUCS-generated flows complemented 161 

with fluorescent imaging. Specifically, we equipped a spinning disk confocal microscope 162 

with a laser control unit (wavelength = 1455 nm) that creates precise, sub-millisecond 163 

thermal manipulations (Figure 1B). Unidirectional scans with this laser at 1500 Hz creates 164 

travelling temperature fields that are sufficient to induce flows in a viscous medium, 165 

including embryonic cytoplasm (Mittasch et al., 2018)(see Methods).  A Peltier-cooled 166 

stage insert dissipates excess heat to keep the sample within its physiological 167 

temperature range.  168 

 169 

We applied FLUCS to C. elegans embryos expressing mMaple::SPD-5 and mCherry-170 

labeled histones (mCherry::H2B). For each experiment, we induced flows crossing the 171 

cytoplasm and continuing through the middle of a centrosome, which should apply stress 172 

to the PCM scaffold orthogonal to microtubule-derived tensile stresses (Figure 1C). 173 

Based on previous experiments (Mittasch et al., 2018), we predicted that cytoplasmic 174 

shear flows should weaken the PCM by the relative displacement of scaffold proteins and 175 

create a virtual “notch” in the flow path. We used three different amplitudes for the 176 

scanning infrared laser (25, 32, 40 mW) to generate cytoplasmic flow velocities ranging 177 

from 5-20 µm/min (Figure 1D; Movie S1); these flows scaled quadratically with laser 178 

power (R2= 0.97), as one would expect for a predominantly viscous medium (Figure S1A). 179 

Simultaneously, we cooled embryos to 17°C, such that the embryo cytoplasm never 180 

exceeded 23°C during laser scanning (C. elegans embryos develop properly at any 181 

temperature between 16°C and 25°C)(Begasse et al., 2015).  182 

 183 
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As shown in Figure 1E, FLUCS deformed and fractured mature PCM in anaphase 184 

embryos. We also detected a slight increase in cytoplasmic fluorescence surrounding the 185 

PCM during FLUCS, indicating that flows can dislodge SPD-5 from the PCM, as predicted 186 

(Figure S1B).  FLUCS-induced PCM deformation differed starkly between cell cycle 187 

stages. FLUCS was not able to visibly deform PCM during metaphase or prior, even 188 

though flows were strong enough to detach the centrosome from the spindle and move it 189 

toward the cell cortex or out of the focal plane (Figure 1D and S1C and Movies S2, S3; 190 

see Metaphase and Prometaphase).  On the contrary, FLUCS deformed and eventually 191 

fractured PCM during anaphase and telophase (Figure 1E,F; Movie S4,S5); in these 192 

experiments, the untreated centrosome remained intact.    193 

 194 

We then quantified 1) the deformation rate, defined by the rate of PCM length change 195 

orthogonal to the flow direction, and 2) the fracture probability, defined by the chance that 196 

PCM segments detach completely after FLUCS (Figure 1G; see methods). The PCM 197 

deformation rate and fracture probability increased with increasing flow velocity and 198 

progression through mitosis (Figure 1 H,I). To pinpoint when PCM becomes susceptible 199 

to FLUCS-induced deformation, we continuously applied FLUCS to centrosomes starting 200 

in metaphase continuing into anaphase. PCM remained spherical and intact during 201 

metaphase, but then fractured immediately after anaphase onset, as marked by 202 

chromosome segregation (Figure S1D; Movie S6). Our results suggest that PCM 203 

resistance to deformation and fracture is high during metaphase, then declines at 204 

anaphase onset, ~150s prior to full PCM disassembly in telophase.  We refer to this 205 

change in PCM mechanical properties hereon as the “PCM weakening transition”.  206 

 207 

Since the generation of FLUCS is accompanied by local temperature gradients, we tested 208 

if temperature alone affects PCM structure.  Bidirectional scanning at 10 kHz creates local 209 

temperature gradients without flow, and these conditions did not cause significant PCM 210 

deformation or fracture (Figure 1H,I and S1E). Thus, centrosome perturbation during 211 

FLUCS is primarily due to the flows and not temperature gradients per se.  Furthermore, 212 

embryos developed properly after cessation of FLUCS (Figure S1F)(Mittasch et al., 213 
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2018).  We conclude that this established method can be used to study organelles inside 214 

a living cell.  215 

 216 

PCM weakens in anaphase independent of cortical force generation 217 

We next wondered if our FLUCS results could be explained by cell-cycle-dependent 218 

changes in PCM mechanical properties or changes in cortical force generation. During 219 

the metaphase-anaphase transition in early C. elegans embryos, cortical pulling forces 220 

increase to induce transverse oscillations and posterior positioning of the mitotic spindle 221 

(Pecreaux et al., 2006). Depleting the proteins GPR-1 and GPR-2 (gpr-1/2(RNAi)) 222 

significantly reduces cortical microtubule-pulling forces and prevents spindle 223 

displacement, spindle oscillation, and PCM deformation and fracture (Colombo et al., 224 

2003; Enos et al., 2018; Grill et al., 2003; Magescas et al., 2019; Pecreaux et al., 2006). 225 

Thus, we performed FLUCS in gpr-1/2(RNAi) embryos, where we expect only residual 226 

cortical forces that remain relatively constant throughout mitosis.  227 

 228 

In both wild-type and gpr-1/2(RNAi) embryos, FLUCS deformed PCM in anaphase and 229 

telophase, but not in metaphase.  However, in gpr-1/2(RNAi) embryos, FLUCS-induced 230 

PCM deformation rates were slower (Figure 2 A,B; Figure S2A), and FLUCS caused 231 

fracturing only in telophase (Figure 2C). These results suggest that PCM mechanical 232 

properties change during mitotic exit, but that cortical pulling forces are required to 233 

disperse and fracture the pre-weakened PCM scaffold. To further test this idea, we 234 

applied 10 µg/ml nocodazole to depolymerize microtubules and performed high-flow 235 

FLUCS.  Under these conditions, FLUCS did not visibly affect PCM during metaphase, 236 

but did dislodge SPD-5 protein from the PCM during telophase (Figure 2D); we did not 237 

observe stretching or clean fracture of the PCM during any cell cycle stage. These results 238 

indicate that 1) the interactions between SPD-5 scaffold molecules weaken independent 239 

of microtubule-pulling forces during mitotic exit, and 2) microtubule-pulling forces are 240 

required for stretching and fracture of the PCM during mitotic exit. To test if microtubule-241 

mediated pulling forces could be sufficient to deform PCM already in metaphase, we 242 

depleted a negative regulator of GPR-1/2, casein kinase 1 gamma (csnk-1(RNAi)), which 243 

is reported to increase cortical pulling forces ~1.5-fold (Panbianco et al., 2008).  We did 244 
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not observe premature deformation or fracture of PCM under these conditions, even 245 

though the spindle rocked violently in metaphase (Figure S2B).  We conclude that an 246 

intrinsic mechanical change in the SPD-5 scaffold is the main driver of PCM weakening 247 

during anaphase entry.  248 

 249 

We next examined the viscoelastic properties of PCM during anaphase by measuring the 250 

time-dependent deformation of PCM during FLUCS and relaxation after FLUCS was 251 

turned off. We used gpr-1/2(RNAi) embryos to allow residual pulling forces but prevent 252 

spindle oscillations, which could complicate our analysis. We observed that continuous 253 

application of medium and high-flow FLUCS in gpr-1/2(RNAi) embryos caused time-254 

dependent strain of the PCM scaffold (Figure 2E). Thus, anaphase PCM is ductile and 255 

can experience micron-scale structural rearrangements without complete fracture during 256 

stress.  Such behavior is seen in viscous materials.  When we turned off FLUCS, PCM 257 

remained in its strained, elongated state, indicating the absence of a dominant elastic 258 

element strong enough to return the PCM to its original shape (Figure 2 E,F). 259 

 260 

Overall, our FLUCS experiments suggest that the PCM structurally weakens after 261 

metaphase. This weakening transition would presumably facilitate PCM disassembly by 262 

enabling microtubule-dependent pulling forces to fracture and disperse the PCM scaffold 263 

in telophase. 264 

 265 

PCM undergoes stepwise compositional changes following anaphase onset   266 

We next investigated the molecular mechanism underlying the PCM weakening transition, 267 

in particular, identifying the specific players that determine the dynamic regulation of PCM 268 

strength and ductility. PCM is a heterogeneous assembly of proteins required for its 269 

assembly and function (Figure 3A). In particular, two critical regulatory proteins, PLK-1 270 

(Polo-like Kinase) and SPD-2 (Cep192 homolog), interact with the scaffold protein SPD-271 

5 and enhance its self-assembly into supramolecular structures (Cabral et al., 2019; 272 

Decker et al., 2011; Woodruff et al., 2017; Woodruff et al., 2015). PLK-1 and SPD-2, as 273 

well as other PCM-localized client proteins, might also reinforce the mature SPD-5 274 
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scaffold.  On the other hand, loss or inactivation of these proteins could weaken the PCM 275 

scaffold. 276 

 277 

To analyze PCM composition changes during anaphase, we visualized 9 different GFP-278 

labeled PCM proteins relative to a standard PCM marker, mCherry::g-tubulin. We then 279 

measured the integrated density of PCM-localized mCherry and GFP signals during 280 

mitosis (Figure 3B). The curves in Figure 3D and Figure S3 represent averages for >10 281 

experiments (mean +/- 95% CI).  mCherry::g-tubulin signal peaked ~75-100s after 282 

anaphase onset, then declined, indicating its departure from PCM.  GFP::g-tubulin 283 

behaved similarly, as expected (Figure 3C,D and Figure S3).  PLK-1 signal decreased 284 

immediately after anaphase onset and was no longer detectable ~100s later.  SPD-2 also 285 

departed from the PCM prior to g-tubulin. However, the main scaffold protein SPD-5 286 

departed afterward.   All other proteins departed coincidentally with g-tubulin or soon 287 

afterward.  TPXL-1 and AIR-1 departed in a biphasic manner: an initial loss of signal 288 

occurred prior to g-tubulin departure, then a second phase occurred after g-tubulin 289 

departure. To compare departure kinetics across all experiments, we determined the 290 

halfway point of disassembly for each individual GFP and mCherry curve per experiment, 291 

then calculated the time differential between halfway points (DtEXIT; Figure 3E). The 292 

results for anterior and posterior PCM proteins are summarized in Figure 3F and 3G, 293 

respectively.  A negative DtEXIT value indicates GFP::PCM protein departure before g-294 

tubulin, and a positive value indicates departure after g-tubulin.  Our results reveal that 295 

PCM composition changes in a stepwise manner during anaphase: PLK-1 departs first, 296 

followed by SPD-2, g-tubulin, TAC-1, and finally SPD-5 and proteins that form tight 297 

complexes with SPD-5 (RSA-1, RSA-2).  TPXL-1 and AIR-1 were more variable in their 298 

departure, possibly because they localize both to PCM and microtubules that remain after 299 

disassembly of the PCM scaffold (Hannak et al., 2001; Ozlu et al., 2005).   300 

 301 
Polo Kinase and SPD-2 reinforce the PCM scaffold by increasing its strength and 302 

ductility 303 

PLK-1 and SPD-2 are the first proteins to depart the PCM during anaphase, when the 304 

PCM begins to weaken. Thus, we hypothesized that PLK-1 and SPD-2 normally reinforce 305 
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the PCM to achieve full strength and stability in metaphase. If this idea is correct, then 306 

acute inhibition of PLK-1 phosphorylation or SPD-2 in metaphase might prematurely 307 

weaken the PCM, accelerate its disassembly, or reveal hidden material states not 308 

previously visible.   309 

 310 

For acute inhibition of PLK-1, we treated semi-permeable embryos (via perm-1(RNAi)) 311 

with 10 µM Polo Kinase inhibitor BI-2536 in prometaphase (Carvalho et al., 2011). After 312 

2 minutes in drug solution, we applied low, medium, and high-flow FLUCS to centrosomes 313 

(Figure 4A-C).   Under these conditions, low and medium-flow FLUCS deformed 314 

metaphase PCM in BI-2536-treated embryos, in contrast to wild-type embryos (Figure 315 

4B); in both cases, PCM fracture did not occur. Under high-flow FLUCS, BI2536 treatment 316 

increased PCM deformation rate as much as ~11-fold with fracture occurring only in a 317 

minority of the cases (30%) (Figure 4A,C). The fact that PLK-1 inhibition enabled PCM to 318 

be deformed easily without necessarily fracturing suggests that PLK-1 mostly determines 319 

PCM strength. This experiment also reveals that wild-type PCM is ductile during 320 

metaphase; this could not be observed previously because the deformation resistance of 321 

wild-type PCM was too high. BI-2536 treatment also caused premature disassembly of 322 

the SPD-5 scaffold in metaphase-arrested embryos, consistent with previous findings 323 

(Figure 4D)(Cabral et al., 2019). Our results show that continuous PLK-1 activity is 324 

needed for PCM to achieve full strength and maintain integrity until chromosome are 325 

separated.  326 

 327 

Next, we analyzed embryos expressing a temperature-sensitive version of SPD-2 (spd-328 

2(or188ts))(Kemp et al., 2004). We mounted spd-2(or188ts) gfp::spd-5 embryos in cold 329 

media and maintained the sample at 17°C while imaging until prometaphase, then 330 

upshifted the embryos to 25°C for 1 min to inactivate SPD-2or188ts. We then lowered the 331 

temperature to 17°C to perform FLUCS in metaphase as per usual (Figure 4E)(Note: 332 

because of the local heating caused by FLUCS, the treated centrosome remained at 333 

~23°C throughout the experiments).  The absence of fully functional SPD-2 made PCM 334 

more susceptible to FLUCS-induced fracture and disintegration at all applied flow 335 

velocities (Figure 4E-G). Even in PCM that did not fracture into observable pieces, the 336 
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GFP∷SPD-5 signal decayed after application of FLUCS (Figure 4F). We did not observe 337 

this phenotype in wild-type PCM or spd-2 mutant PCM not treated with FLUCS (Figure 338 

4F). Our interpretation of this data is that SPD-2 is required for PCM ductility and strength. 339 

Without SPD-2, PCM becomes brittle and susceptible to fracture and diffusion-driven 340 

departure of constituents after modest mechanical agitation. In line with this view, 341 

inactivation of SPD-2 caused premature disassembly of the SPD-5 scaffold in early 342 

anaphase, even without FLUCS perturbations (Figure 4H). Deformation rates were 343 

difficult to measure because rapid fracture and vanishing GFP::SPD-5 signal precluded 344 

a flow analysis. We conclude that both Polo Kinase and SPD-2 help PCM achieve 345 

maximal strength and ductility to prevent disassembly.  346 

 347 

We next used a minimal in vitro system to test if PLK-1 and SPD-2 directly affect the 348 

mechanical properties of the SPD-5 scaffold.  When incubated in a crowded environment 349 

(e.g. >4% PEG), purified recombinant SPD-5 assembles into micron-scale condensates 350 

that recruit PLK-1, SPD-2, and other PCM proteins (Woodruff et al., 2017). We could not 351 

assess SPD-5 condensates using FLUCS because the condensates were propelled 352 

quickly away from the flow path (data not shown); thus, our simplified in vitro conditions 353 

do not exactly match those found in native cytoplasm. As another way to assess the 354 

strength of SPD-5 interactions, we induced disassembly of young RFP-labeled SPD-5 355 

condensates (500 nM SPD-5::RFP; 5 min after formation) through application of pipetting 356 

shear forces and dilution, then measured the amount of condensates that survived using 357 

fluorescence microscopy (Figure 5A)(note: dilution is required to prevent SPD-5 re-358 

assembly; thus, this assay tests resistance to disassembly only)(Enos et al., 2018). This 359 

treatment completely disassembled condensates composed solely of SPD-5 (Figure 360 

5B,C). Addition of constitutively active PLK-1 (PLK-1CA; T194D T-loop phospho-mimic) or 361 

SPD-2 prevented SPD-5 condensate disassembly, with the combination of the two 362 

yielding the greatest protection (Figure 5B,C). Kinase-dead PLK-1 (PLK-1KD; K67M 363 

mutant) did not promote SPD-5 condensate survival.  These results suggest that PLK-1 364 

phosphorylation of SPD-5, along with direct binding of SPD-2, reinforce the interactions 365 

between SPD-5 molecules and thus enhance the ability of PCM to resist disassembly. 366 
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Our in vitro and in vivo data together suggest that PLK-1 and SPD-2 tune PCM load-367 

bearing capacity by conferring strength and ductility to the SPD-5 scaffold. 368 

 369 

Phosphatase PP2ASUR-6 promotes PCM disassembly by compromising scaffold 370 

ductility  371 

We next investigated how embryos promote the PCM weakening transition during 372 

anaphase. PP2A phosphatase localizes to the PCM and plays multiple roles in centriole 373 

biogenesis, spindle assembly, and mitotic exit (Wlodarchak and Xing, 2016). The C. 374 

elegans homolog of PP2A (LET-92) complexed with the B55a regulatory subunit SUR-6 375 

(PP2ASUR-6) is required for complete PCM disassembly (Enos et al., 2018; Magescas et 376 

al., 2019).   We thus tested if PP2ASUR-6 drives PCM disassembly by compromising the 377 

mechanical properties of PCM.  378 

 379 

We treated semi-permeable one-cell embryos with 10 µM PP2A inhibitor (LB-100) in 380 

metaphase, then performed high-flow FLUCS in anaphase. Unlike in wild-type embryos, 381 

where PCM fractured quickly after high-flow FLUCS, the PCM in LB-100-treated embryos 382 

stretched orthogonal to the induced flow but resisted fracture (Figure 6A). PCM 383 

deformation velocity was ~2-fold higher (0.26 vs. 0.12 µm/min), initially suggesting that 384 

PCM is easier to deform when PP2A is inhibited (Figure 6B).  However, PP2A inhibition 385 

also elevated the ductility of PCM 1.5-fold (final length divided by the original length) and 386 

lowered the fracture probability >2-fold in all cell cycle stages (Figure 6C-D). In 2/10 387 

anaphase embryos treated with LB-100, PCM stretched as much as 4-fold in length after 388 

FLUCS, reaching up to 10 µm while staying connected.  PCM was also more resistant to 389 

fracture in embryos depleted of the PP2A regulatory subunit SUR-6 (Figure S4A-C). 390 

These results suggest that, when PP2A is inhibited, the ductile nature of PCM is 391 

preserved throughout anaphase, allowing PCM to absorb more energy overall without 392 

fracturing.  This is likely achieved through “self-healing”, or the breakage and reformation 393 

of weak inter-scaffold interactions. The increase in deformation velocity may then result 394 

from ductile PCM becoming easier to stretch as it becomes more extended.  On the other 395 

hand, wild-type PCM is brittle during anaphase and can only be extended short distances 396 

before fracturing.  We conclude that PP2A normally functions to eliminate “self-healing” 397 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/866434doi: bioRxiv preprint 

https://doi.org/10.1101/866434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

PCM scaffold interactions, thus making PCM brittle during anaphase and susceptible to 398 

microtubule-mediated fracture in telophase. Consistent with this conclusion, LB-100 399 

inhibition of PP2A or depletion of its regulatory subunit SUR-6 inhibited SPD-5 scaffold 400 

disassembly in telophase (Figure 6E) (Enos et al., 2018). We speculate that PCM may 401 

be less porous in this mutant ductile state compared to the wild-type brittle state, which 402 

could delay PCM disassembly further by preventing access of additional disassembly 403 

machinery and/or delaying the departure of PLK-1 and SPD-2.  Consistent with the latter 404 

concept, both let-92 RNAi and sur-6 RNAi impaired SPD-2 and PLK-1 departure from 405 

PCM during anaphase (Figure S4D-G) (Magescas et al., 2019).  406 

 407 

To determine when and where PP2A might dephosphorylate PCM proteins, we visualized 408 

embryos expressing GFP::LET-92, the PP2A catalytic subunit in C. elegans (Schlaitz et 409 

al., 2007).  GFP::LET-92 localized to the PCM and persisted there until SPD-5 scaffold 410 

disassembly, approximately 100s after PLK-1 had departed from the PCM (Figure 6F), 411 

consistent with previous observations (Magescas et al., 2019).  Our results suggest that, 412 

during anaphase, Polo Kinase activity at the PCM ceases and PP2A removes Polo-413 

delivered phosphates and contributes to SPD-2 departure.  This shift in the balance of 414 

phosphorylation and dephosphorylation changes the mechanical properties of the PCM, 415 

making it more brittle and susceptible to fracture and dissolution.  416 

 417 

DISCUSSION 418 

Mitotic spindle assembly and positioning require that centrosomes bear tensile 419 

microtubule-dependent forces without structural failure.  As mitosis ends, however, these 420 

same forces are sufficient to deform and fracture centrosomes, facilitating their 421 

disassembly. Disassembly is essential to release centrioles and avoid accumulation of 422 

old centrosomes over successive rounds of cell division.  Here, we combined flow-driven 423 

mechanical perturbations in vivo with biochemical reconstitution in vitro to determine the 424 

molecular mechanisms regulating deformation resistance and fracture resistance of 425 

PCM, the outer and most massive layer of a centrosome. 426 

 427 
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PCM mechanical properties, function, and renewal can be achieved through 428 

transient reinforcement of the PCM scaffold 429 

Using C. elegans embryos as a model system, we found that PCM deformation 430 

resistance, fracture resistance, and composition are tuned in a cell-cycle-dependent 431 

manner (Figure 7A,B). During metaphase, PCM resists both microtubule-mediated forces 432 

and induced flow perturbations without deforming or fracturing. In this state, PCM is 433 

structured as a reinforced composite, comprising a non-dynamic scaffold of SPD-5 434 

molecules filled with a dynamic phase of regulatory molecules like SPD-2 and PLK-1, 435 

which frequently bind and unbind the scaffold (Figure 7B). During anaphase, PCM loses 436 

PLK-1 and SPD-2 and then becomes susceptible to deformation and fracture. During 437 

telophase, PCM is at its weakest and is easily fractured and dispersed by microtubule-438 

mediated forces, a hallmark step in the PCM disassembly process.  439 

 440 

Our implementation of flow perturbations in vivo using FLUCS reveals how PLK-1, SPD-441 

2, and PP2A contribute to the dynamic mechanical properties of the PCM.  We interpret 442 

deformation resistance as an indicator of strength and fracture resistance and strain as 443 

indicators of ductility. Wild-type metaphase PCM is highly resistant to flow perturbations, 444 

but underlying features appear in different mutant states (Figure 7C). When PLK-1 is 445 

inhibited, the PCM scaffold is easily deformed by FLUCS and stretches without fracturing. 446 

Thus, PLK-1 normally maintains PCM strength. On the other hand, when SPD-2 is 447 

inhibited, the PCM scaffold is easily fractured and dissolved by FLUCS but does not 448 

stretch. Thus, SPD-2 normally maintains PCM ductility and strength. Elimination of either 449 

PLK-1 or SPD-2 causes premature PCM disassembly, suggesting that the combination 450 

of strength and ductility is necessary for PCM function and maintenance during spindle 451 

assembly in metaphase. In anaphase, wild-type PCM is more easily deformed and 452 

fractured by FLUCS. Yet, when PP2A is inhibited, PCM is difficult to fracture by FLUCS 453 

and instead stretches up to 4 times its original length, revealing that the high ductility of 454 

the PCM, which was established prior to metaphase, is preserved. Thus, PP2A normally 455 

functions to drive PCM disassembly by reducing PCM ductility.  456 

 457 
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We propose that that the balance of PLK-1, SPD-2, and PP2A activities determine the 458 

mechanical properties and assembly/disassembly state of the PCM (Figure 7D). In 459 

metaphase, PLK-1 phosphorylation of SPD-5 and direct binding of SPD-2 reinforce the 460 

SPD-5 scaffold, conferring strength and ductility.  During anaphase, PLK-1 and SPD-2 461 

depart from the PCM, while PP2A phosphatase remains and removes PLK-1-derived 462 

phosphates. As a result, PCM becomes progressively brittle and weak, allowing 463 

microtubule-dependent forces to deform and fracture it in telophase.  Since PLK-1 and 464 

SPD-2 stabilize the SPD-5 scaffold, but are themselves dynamic, we call this mode of 465 

PCM regulation “transient reinforcement”. 466 

 467 

Transient reinforcement of the PCM scaffold, in theory, could enable cell-cycle regulated 468 

PCM assembly, function, and renewal. In preparation for mitosis, PCM must rapidly 469 

assemble and provide a solid foundation for nucleating and anchoring microtubules. If 470 

PCM assembly fails, then mitotic spindle assembly and chromosome segregation is 471 

severely impaired (Doxsey et al., 1994; Hamill et al., 2002; Sunkel and Glover, 1988). 472 

PLK-1 and SPD-2 thus play dual roles in PCM functionality: 1) catalyzing assembly of the 473 

PCM scaffold and 2) strengthening it to withstand microtubule-dependent pulling forces 474 

(shown here).   While PCM is stable during spindle assembly, PCM disassembles in 475 

telophase only to be rebuilt in the next cell cycle. PCM disassembly is essential for entry 476 

into various post-mitotic states, including the formation of acentriolar oocytes and heart 477 

tissue (Pimenta-Marques et al., 2016; Zebrowski et al., 2015).  How might transient 478 

reinforcement enable PCM disassembly and renewal? Based on in vivo and in vitro FRAP 479 

data, PLK-1 and SPD-2 are mobile within the PCM, suggesting that they frequently bind 480 

and unbind the SPD-5 scaffold (Laos et al., 2015; Woodruff et al., 2017). Either 481 

decreasing their association or increasing their dissociation rates with the SPD-5 scaffold 482 

would reduce SPD-2 and PLK-1 levels at the PCM. One potential mechanism is through 483 

localized ubiquitination and degradation, which controls Polo Kinase levels at 484 

centrosomes in human tissue culture cells during anaphase (Lindon and Pines, 2004). It 485 

is currently unknown how PCM levels of SPD-2 or its homolog Cep192 are tuned.  The 486 

completeness and speed of SPD-2 and PLK-1 removal during anaphase is also 487 

suggestive of feedback. Thus, the system could be set up such that minor changes to 488 
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SPD-2 and PLK-1 affinity elicit large, switch-like changes in PCM structure and 489 

mechanical properties.   Further experiments are needed to define how the other 490 

numerous PCM proteins and centriole tethers contribute to PCM mechanical properties. 491 

One possible control point is linkage of the SPD-5 scaffold to the centriole via PCMD-1; 492 

inactivation of PCMD-1 or laser ablation of centrioles leads to aberrant PCM deformation, 493 

presumably because PCM can no longer fully resist microtubule-pulling forces (Cabral et 494 

al., 2019; Erpf et al., 2019).  495 

 496 

PCM mechanical properties in other eukaryotes 497 

The mechanical properties of PCM in other species have yet to be determined. We 498 

speculate that our transient reinforcement model for tuning PCM load bearing capacity 499 

may be conserved for three reasons. First, diverse eukaryotic species—nematodes, 500 

frogs, flies, and human cells—use both Polo Kinase and SPD-2/Cep192 to enhance 501 

assembly of the PCM scaffold (Conduit et al., 2014b; Decker et al., 2011; Haren et al., 502 

2009; Joukov et al., 2014; Kemp et al., 2004; Pelletier et al., 2004; Woodruff et al., 2015). 503 

Second, PP2A is highly conserved in eukaryotes and is required for mitotic exit in these 504 

species (Wlodarchak and Xing, 2016). Third, in Drosophila embryos, PCM undergoes 505 

cell-cycle-regulated deformation and fracture, termed “flaring”, which appears similar to 506 

disassembling PCM in C. elegans (Megraw et al., 2002).  PCM flares are visible during 507 

interphase, cease during metaphase and anaphase, and then escalate during telophase. 508 

Flares also require dynamic microtubules. Thus, Drosophila PCM flaring may be due to 509 

decreasing PCM strength and ductility during telophase, such that PCM can no longer 510 

resist microtubule-mediated forces.  511 

 512 

Parallels between PCM and common soft materials in engineering 513 

The mechanical properties and structure of mature PCM are analogous to common 514 

composite materials such as flexible plastics and hydrogels. Most modern plastics 515 

comprise cross-linked polymer chains embedded with plasticizers, chemicals that make 516 

the plastic more flexible and ductile.  Over time, these plasticizers exit by diffusion, making 517 

the remaining plastic brittle and weak, which is a form of material aging.  The rubber sole 518 

on a shoe will crack with age; flexibility of the old sole can be restored by impregnating 519 
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the rubber with a plasticizer such as silicone.  For PCM, the SPD-5 scaffold is most similar 520 

to the polymer chains, whereas PLK-1 and SPD-2 could act as plasticizers. Similar to 521 

aging rubber losing its plasticizers, our results show that the PCM scaffold becomes brittle 522 

and weak during anaphase, coincident with both PLK-1 and SPD-2 leaving the PCM.  523 

 524 

PCM is also similar to physical composites like polyampholyte hydrogels, which exhibit a 525 

unique combination of high tensile strength and flexibility. Polyampholyte gels comprise 526 

polymers cross-linked with a combination of high- and low-affinity non-covalent bonds. 527 

Upon stress, the low-affinity bonds break and dissipate energy, while the high-affinity 528 

bonds maintain the overall supramolecular structure.  The low affinity bonds then quickly 529 

reform, resulting in self-healing that prevents structural fatigue from repeated stresses 530 

(Sun et al., 2013). These bonds also make the material more ductile, such that it will 531 

undergo plastic deformation instead of fracturing. For PCM, it is possible that PLK-1, 532 

SPD-2, and other PCM-resident proteins dissipate stress by unbinding from the PCM 533 

scaffold, then re-binding to achieve self-healing. Eliminating these weak interactions 534 

would make the PCM weaker and more brittle. This would naturally occur in anaphase as 535 

PLK-1 and SPD-2 depart from PCM. This concept could also explain why FLUCS induces 536 

PCM fracture and deformation in metaphase when we acutely inhibit PLK-1 and SPD-2. 537 

Alternatively, in PP2A-inhibited embryos, PCM is ductile due to the preservation of low 538 

affinity, self-healing bonds. Although stronger and more ductile than normal, this mutant 539 

PCM still weakens and disassembles in telophase, suggesting that another yet unknown 540 

process disrupts the strong interactions between SPD-5 molecules. 541 

 542 

Conclusion  543 

This work establishes that PCM, the most substantial layer of the centrosome, transitions 544 

from a strong, ductile state in metaphase to a weak, brittle state in telophase. This 545 

transition is driven by PP2A phosphatase and inactivation of Polo Kinase and SPD-2/Cep-546 

192, which are essential for centrosome assembly and reinforce the PCM scaffold during 547 

metaphase. This mode of mechanical regulation, which we term “transient reinforcement”, 548 

is a functional form of material aging that allows PCM to resist microtubule-mediated 549 

tensile stresses during spindle assembly and then to be fractured and disassembled by 550 
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similar forces during mitotic exit.  Implicitly, our work demonstrates how flow perturbations 551 

can reveal functional mechanical states of membrane-less organelles in vivo. 552 

 553 
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FIGURE LEGENDS 579 

Figure 1. FLUCS reveals changes in PCM deformation resistance and fracture 580 

resistance during mitosis in C. elegans embryos. 581 
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A. Diagram of mitotic progression in a one-cell C. elegans embryo (top panels). Force 582 

generation (arrows) by cortically anchored microtubules aid in chromosome 583 

segregation, spindle positioning, and PCM disassembly during telophase.  Live-584 

cell confocal microscopy images of C. elegans embryos expressing a PCM marker 585 

(mMaple::SPD-5) and DNA marker (mCherry::HistoneH2B).  586 

B. Diagram of the FLUCS microscope setup (left) and generation of intracellular flows 587 

after unidirectional scanning of a 1455 nm laser at 1500 Hz. Scan path is 588 

represented by the magenta line. The magnitudes of local flow velocities are 589 

reflected by arrow size.    590 

C. Using FLUCS, flows (red arrows) are generated in the cytoplasm and pass through 591 

the PCM (green ball). Microtubule-derived pulling forces (grey arrows) also exert 592 

tensile stresses on PCM.  593 

D. Tuning the power of the 1455 nm laser (25, 32, and 40 mW) generates three tiers 594 

of flow velocity (LOW, MEDIUM, and HIGH). Individual data points are plotted with 595 

mean +/- 95% CI; n = 5 measurements per condition.  596 

E. Time lapse images of PCM morphology in anaphase after application of no flow 597 

(OFF) or low, medium, and high flow. Orange heading boxes indicate when flow 598 

occurs. Arrows indicate flow path and direction. Blue heading boxes indicate when 599 

flow is turned off.   600 

F. PCM was subjected to high-flow FLUCS during metaphase, anaphase, and 601 

telophase. 602 

G. For each FLUCS experiment, we measured the change in PCM length over time 603 

(Deformation rate) and the frequency of complete separations in PCM (Fracture 604 

probability). 605 

H. PCM deformation rates were measured in metaphase, anaphase, and telophase 606 

using low, medium, and high flow.  Individual data points are plotted with mean +/- 607 

95% CI; n = 7,6,7 (metaphase; LOW, MED, HIGH flow), n = 7,8,7 (anaphase), n = 608 

7,8,9 (telophase) measurements per condition. 10 kHz bidirectional scanning of 609 

the 1455 nm laser using 40 mW power, generates heat without producing flows 610 

(TEMP control; n = 4,5,5 (metaphase, anaphase, telophase)). For high flow, 611 

differences are statistically significant using a one-way ANOVA followed by a 612 
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Tukey’s multiple comparison test (metaphase vs. anaphase, p= 0.04; metaphase 613 

vs. telophase, p = 0.0001).   614 

I. PCM fracture probabilities from experiments in (H). Sample numbers are the same 615 

as in (H). 616 

 617 

Figure 2. PCM undergoes structural weakening during anaphase, independent of 618 

cortical pulling forces.  619 

A. Time-lapse images of gpr-1/2(RNAi) embryos treated with 40 mW FLUCS (high 620 

flow).  621 

B. PCM deformation rates in metaphase (M), anaphase (A), and telophase (T) using 622 

high flow in wild-type and gpr-1/2(RNAi) embryos. Wild-type data are from 623 

experiments in Figure 1. Individual data points are plotted with mean +/- 95% CI; 624 

n = 7,7,9 (wild-type; metaphase, anaphase, telophase) and n = 10,12,14 (gpr-625 

1/2(RNAi)). 626 

C. PCM fracture probabilities from experiments in (B).  627 

D. Permeabilized embryos were treated in metaphase or telophase with 10 µg/ml 628 

nocodazole, then subjected to high-flow FLUCS. Representative images are 629 

shown on the left, line scans (dotted line in the inset) of fluorescence intensity 630 

before and after FLUCS are on the right.  631 

E. Zoomed in time-lapse images of PCM deformation under high-flow FLUCS in a 632 

gpr-1/2(RNAi) embryo. 633 

F. Plots comparing PCM length on the long axis orthogonal to flow direction over time. 634 

Both high flow and medium flow induce PCM deformation. 635 

 636 

Figure 3. Discrete changes in PCM composition correlate with the PCM 637 

weakening transition in anaphase.  638 

A. Diagram of C. elegans centrosome architecture and composition.  639 

B. Worm lines were generated that express mCherry-labeled g-tubulin (as a standard) 640 

and 9 different GFP-labeled PCM proteins (left panels). Fluorescence intensity at 641 

the PCM was measured over time (right panels).  642 
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C. Example images from dual-color, time-lapse recording of PCM disassembly in 9 643 

different embryo lines described in (B). 644 

D. Quantification of the experiments in B-C.  For each strain, the plots represent the 645 

normalized integrated fluorescence density of PCM-localized mCherry-tagged g-646 

tubulin compared to the GFP-tagged protein from anaphase onward. Anaphase 647 

was indicated by spindle rocking. Shown are the analyses for anterior-localized 648 

centrosomes. Data were normalized to the maxima for each individual curve, then 649 

these curves were averaged (mean +/- 95% C.I. n = 13 (g-tubulin), 9 (PLK-1), 10 650 

(SPD-2), 12 (SPD-5), 14, (RSA-1), 12 (RSA-2), 7 (TAC-1), 10 (TPXL-1), 13 (AIR-651 

1)).  652 

E. The order of PCM protein departure was determined by calculating the time lag 653 

between halfway points of PCM protein departure per strain (DtEXIT).  Halfway 654 

points were determined by fitting each curve during the window of linear departure.   655 

F. Departure time lag (DtEXIT) of GFP-labeled PCM proteins relative to mCherry::g-656 

tubulin. A negative value indicates that the GFP-labeled protein departed before g-657 

tubulin. A positive value indicates that the GFP-labeled protein departed after g-658 

tubulin. Results for anterior centrosomes are shown (mean +/- 95% C.I.; sample 659 

number is the same as in (D)). Statistical analyses are shown in Table S3. 660 

G. Departure time lag (DtEXIT) of posterior-localized PCM proteins relative to 661 

mCherry:: g-tubulin. Sample number is the same as in (D). Statistical analyses are 662 

shown in Table S4. 663 

   664 

Figure 4. Acute inhibition of PLK-1 and SPD-2 induces premature weakening and 665 

disassembly of the PCM scaffold.  666 

A. PCM was subjected to high-flow FLUCS during metaphase in wild-type embryos 667 

or permeabilized embryos treated with 10 µM BI-2536 (inhibitor of Polo Kinases). 668 

Permeabilized embryos behaved as wild-type embryos during the first cell division 669 

(see methods; Carvalho 2011).  670 

B. PCM deformation rates in metaphase using low, medium, and high flow in wild-671 

type and BI-2536-treated embryos. Wild-type data are from experiments in Figure 672 

1. Individual data points are plotted showing mean +/- 95% CI; n = 6-7 (wild-type) 673 
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and n = 5-7 (BI-2536-treated). P-values were calculated using a Mann-Whitney 674 

test. 675 

C. PCM fracture probabilities from experiments in (B).  676 

D. Permeabilized embryos were arrested in metaphase using 10 µM MG-132, then 677 

treated with 0.1% ethanol (no drug) or 10 µM BI-2536. Data are plotted as 678 

normalized lines representing mean +/- 95% CI; n = 8 (no drug) and n = 10 (BI-679 

2536-treated). 680 

E. Embryos expressing GFP::SPD-5 and a temperature-sensitive version of SPD-2 681 

(spd-2(or188ts)) were allowed to assemble centrosomes at the permissive 682 

temperature (16°C), upshifted to the non-permissive temperature (25°C) for 1 min 683 

during prometaphase, then subjected to high-flow FLUCS during metaphase.    684 

F. For each experiment in spd-2(or188ts) embryos, one centrosome was subjected 685 

to FLUCS and the other left alone (control).  Integrated fluorescent intensities of 686 

the SPD-5 signal were tracked over time, then normalized to the starting value. 687 

Each curve represents a single experiment.  688 

G. PCM fracture probabilities using low, medium, and high flow. Wild-type data are 689 

reproduced from Figure 1. n = 7,7,8 (wild-type) and 5,6,8 (spd-2(or188ts)). 690 

H. Embryos were upshifted from 16°C to 23°C during metaphase, then imaged during 691 

anaphase.  Data show integrated fluorescence densities of PCM-localized signal, 692 

plotted as normalized lines representing mean +/- 95% CI; n = 24 centrosomes in 693 

both wild-type and spd-2(or188ts) embryos.  694 

 695 

Figure 5. Polo Kinase and SPD-2 protect in vitro reconstituted PCM from induced 696 

disassembly. 697 

A. In vitro SPD-5 condensate disassembly experiment. 500 nM SPD-5::TagRFP was 698 

incubated in 9% PEG to induce spontaneous formation of micron-scale SPD-5 699 

condensates (1. before). After 5 min, the condensates were pipetted harshly and 700 

diluted 1:10 in PEG-free buffer, incubated for 10 min, then imaged (2. after).   701 

B. Quantification of total SPD-5 condensate mass per field of view remaining after 702 

dilution-induced disassembly. Buffer, 240 nM SPD-2, 500 nM constitutively active 703 

PLK-1 (PLK-1CA), and/or 500 nM kinase dead PLK-1 (PLK-1KD) were added at the 704 
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beginning.  The plot shows total integrated fluorescence density for each field of 705 

view (red bars indicate mean +/- 95% C.I.; n >22 images per experiment). 706 

C. Representative images from (B) before and after dilution-induced disassembly. 707 

 708 

Figure 6. PCM becomes fracture-resistant and ductile in anaphase after inhibition 709 

of PP2A phosphatase.  710 

A. PCM was subjected to high-flow FLUCS during anaphase in wild-type embryos 711 

or permeabilized embryos treated with 10 µM LB-100 (inhibitor of PP2A 712 

phosphatase).  713 

B. PCM deformation rates in anaphase using high flow in wild-type and LB-100-714 

treated embryos. Wild-type data are from experiments in Figure 1. Individual data 715 

points are plotted with bars representing mean +/- 95% CI; n = 7 (wild-type) and 716 

10 (LB-100-treated) centrosomes. P-values were calculated using a Mann-717 

Whitney test. 718 

C. Ratio of final PCM length to original length in experiments from (B). Original PCM 719 

length was measured before flow began and final PCM length was measured once 720 

flow was turned off. P-values were calculated using a Mann-Whitney test. 721 

D. PCM fracture probabilities for high-flow FLUCS in metaphase (M), anaphase (A), 722 

and telophase (T). Wild-type data are from experiments in Figure 1; n= 8,11,11 723 

(wild-type) and 7,9,6 (LB-100-treated) centrosomes.  724 

E. Permeabilized embryos were treated with no drug or 10 µM LB-100 in metaphase, 725 

then imaged until 300s after anaphase onset. Data are plotted as normalized lines 726 

representing mean +/- 95% CI; n = 24 (no drug) and n = 21 (LB-100-treated) 727 

centrosomes. 728 

F. Dual-color imaging of embryos expressing GFP-tagged LET-92, the PP2A 729 

catalytic subunit in C. elegans (GFP::PP2Ac), and SPD-5::mCherry. Data are 730 

plotted as normalized lines representing mean +/- 95% CI; n = 10 centrosomes.  731 

 732 

Figure 7. The balance of PLK-1, SPD-2, and PP2A activities tune PCM strength and 733 

ductility. 734 
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A. PCM resistance to microtubule-mediated forces peaks in metaphase during 735 

spindle assembly, then declines in anaphase and telophase, corresponding to 736 

PCM disassembly.  737 

B. PCM-localized levels of 8 different proteins during mitotic progression. In 738 

anaphase, PLK-1 levels decline first, followed by SPD-2. The catalytic subunit of 739 

PP2A phosphatase (PP2Ac), as well as the main scaffold protein SPD-5, remain 740 

at the PCM until late telophase. 741 

C. In metaphase, FLUCS cannot fracture or deform wild-type PCM.  However, FLUCS 742 

can fracture PCM in spd-2 mutant embryos (i.e., PCM is less ductile) and stretch 743 

and deform PCM in PLK-1 inhibited embryos (i.e., PCM is less strong but still 744 

ductile). In anaphase, FLUCS easily deforms and fractures wild-type PCM, while 745 

it deforms and stretches PCM in PP2A-inhibited embryos (i.e., PCM is more 746 

ductile).  747 

D. The combination of PP2A phosphatase activity and the departure of PLK-1 and 748 

SPD-2 transitions PCM from a strong, ductile state in metaphase to a weak, brittle 749 

state in telophase. This transition enables PCM disassembly and dispersal through 750 

microtubule-mediated pulling forces.   751 

 752 

SUPPLEMENTAL FIGURE LEGENDS 753 

Figure S1. FLUCS control experiments. 754 

A. Power law scaling of cytoplasmic flow with increasing FLUCS laser power.  755 

Individual data points represent mean +/- 95% CI; n = 5 embryos per laser 756 

condition. Flow velocities were fit with a second-order polynomial.  757 

B. Application of high-flow FLUCS in an anaphase 1-cell embryo. Images are pseudo-758 

colored to highlight the subtle increase in cytoplasmic mMaple::SPD-5 759 

fluorescence after flow begins. Note: the centrosome goes out of focus in the first 760 

frame when FLUCS begins.  761 

C. Application of high-flow FLUCS in a prometaphase 1-cell embryo. Single plane 762 

images are shown. Flow causes the centrosome to leave the plane of focus at t=0s 763 

and t=20s. Flow then displaces the centrosome toward the cortex. 764 
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D. High-flow FLUCS was applied in metaphase, continuing into anaphase (indicated 765 

by chromosome segregation at t=12s). 766 

E. Example images from the experiment in Figure 1H.  Bidirectional scanning of a 40 767 

mW laser (1455 nm) at 10 kHz creates local temperature gradients without 768 

generating flow. 769 

F. Time-lapse fluorescence and brightfield images of an embryo after cessation of 770 

FLUCS.  Application of high-flow FLUCS does not affect embryonic development.  771 

  772 

Figure S2. Contributions of microtubule pulling forces to PCM deformation.  773 

A. PCM deformation rates in metaphase (M), anaphase (A), and telophase (T) 774 

using high flow in wild-type and gpr-1/2(RNAi) embryos or 40 mW bidirectional 775 

laser scanning (temperature control; no flow). Data are from experiments in 776 

Figures 1 and 2. Individual data points are plotted with mean +/- 95% CI; n = 777 

7,7,9 (wild-type; metaphase, anaphase, telophase), n = 10,12,13 (gpr-778 

1/2(RNAi) and n = 4,5,5 (temperature control). P values were calculated using 779 

Brown-Forsythe and Welch ANOVA tests followed by Dunnett’s T3 multiple 780 

comparisons tests.  781 

B. Time-lapse images of centrosomes in a csnk-1(RNAi) embryo, where 782 

microtubule-mediated pulling forces at the cortex are ~1.5-fold elevated 783 

compared to wild type (Panbianco et al., 2008). PCM deformation does not 784 

occur prematurely in metaphase.  785 

 786 

Figure S3. Localization profiles of PCM proteins in the posterior embryo during 787 

PCM disassembly. 788 

Quantification of PCM localization in the posterior side of 1-cell embryos in Figure 789 

3.  For each strain, the plots represent the normalized integrated fluorescence 790 

density of PCM-localized mCherry-tagged g-tubulin compared to the GFP-tagged 791 

protein from anaphase onward. Anaphase was indicated by spindle rocking. Data 792 

are normalized to maxima for each individual curve, then averaged; mean +/- 95% 793 

C.I. n = 13 (g-tubulin), 9 (PLK-1), 10 (SPD-2), 12 (SPD-5), 14, (RSA-1), 12 (RSA-794 

2), 7 (TAC-1), 10 (TPXL-1), 13 (AIR-1)).  795 
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 796 

Figure S4. FLUCS and localization experiments in sur-6(RNAi) embryos. 797 

A. High-flow FLUCS was applied to a centrosome in an embryo depleted of SUR-6, 798 

a PP2A regulatory subunit involved in PCM disassembly.  799 

B. PCM deformation rates in anaphase during high-flow FLUCS in wild-type and sur-800 

6(RNAi) embryos. Wild-type data are from experiments in Figure 1. Individual data 801 

points are plotted with bars representing mean +/- 95% CI; n = 7 (wild-type) and 802 

10 (sur-6(RNAi)) centrosomes. 803 

C. PCM fracture probabilities in metaphase (M), anaphase (A), and telophase (T) 804 

during high-flow FLUCS experiments.  N= 8-11 (wild-type) and 8-17 (sur-6(RNAi)) 805 

centrosomes. 806 

D. Images of PCM-localized GFP::PLK-1 in wild-type and sur-6(RNAi) embryos.  807 

E. Normalized integrated fluorescence intensity of PCM-localized GFP::SPD-2 808 

during anaphase.  Data are plotted as mean +/- 95% CI; n= 22 (wild-type) and 32 809 

(sur-6(RNAi)) centrosomes.  810 

F. Images of PCM-localized GFP::SPD-2 in wild-type and sur-6(RNAi) embryos.  811 

G. Normalized integrated fluorescence intensity of PCM-localized GFP::SPD-2 812 

during anaphase.  Data are plotted as mean +/- 95% CI; n= 20 (wild-type) and 24 813 

(sur-6(RNAi)) centrosomes.  814 

 815 

SUPPLEMENTAL MOVIES 816 

Movie S1. FLUCS flow control using 25 mW, 32 mW, and 40 mW laser scans at 1.5 817 

kHz. Flows were generated in C. elegans 1-cell embryos using three different 1455 nm 818 

laser powers (25 mW, 32 mW, and 40 mW).    819 

Movie S2. High-flow FLUCS targeting the centrosome in a prometaphase 1-cell 820 

embryo. Prometaphase C. elegans embryos expressing mCherry::histoneH2B 821 

(magenta) and GFP::SPD-5 (green) were subjected to high-flow FLUCS (40 mW). 822 

Images are of a single confocal plane.  823 

Movie S3. High-flow FLUCS targeting the centrosome in a metaphase 1-cell 824 

embryo. Metaphase C. elegans embryos expressing mCherry::histoneH2B (magenta) 825 
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and GFP::SPD-5 (green) were subjected to high-flow FLUCS (40 mW). Images are of a 826 

single confocal plane. 827 

Movie S4. High-flow FLUCS targeting the centrosome in an anaphase 1-cell 828 

embryo. Anaphase C. elegans embryos expressing mCherry::histoneH2B (magenta) 829 

and GFP::SPD-5 (green) were subjected to high-flow FLUCS (40 mW). Images are of a 830 

single confocal plane. 831 

Movie S5. High-flow FLUCS targeting the centrosome in a telophase 1-cell 832 

embryo. Telophase C. elegans embryos expressing mCherry::histoneH2B (magenta) 833 

and GFP::SPD-5 (green) were subjected to high-flow FLUCS (40 mW). Images are of a 834 

single confocal plane. 835 

Movie S6. High-flow FLUCS targeting the centrosome during the metaphase to 836 

anaphase transition in a 1-cell embryo. C. elegans embryos expressing 837 

mCherry::histoneH2B (magenta) and GFP::SPD-5 (green) were subjected to high-flow 838 

FLUCS (40 mW) during the metaphase-anaphase transition. Images are of a single 839 

confocal plane. 840 

 841 

TABLE S1. C. elegans strains used in this study 842 

Strain name genotype Creation 
method 

Origin 

DAM858 vie11[pAD676; gfp::tac-1]II  CRISPR Alexander 
Dammermann 

EU584 spd-2(or188ts) I  mutagenesis Bruce 
Bowerman 

JWW1 utsw2[mMaple::spd-5] I CRISPR This study 
JWW13 spd-2(or188ts) I; unc-119(ed9) III; ltSi202[pVV103/ 

pOD1021; Pspd-2::GFP::SPD-5 RNAiresistant;cb-
unc-119(+)]II 

Cross of 
EU584 and 
OD847 

This study  

JWW35 ltSi202[pVV103/ pOD1021; Pspd-2::GFP::SPD-5 
RNAiresistant;cb-unc-119(+)]II ; unc-119(ed3)III; 
ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)] 

Cross of 
OD847 and 
TH169 

This study 

JWW64 utsw2[mMaple::spd-5] I; ltIs37 [(pAA64) pie-
1p::mCherry::his-58 + unc-119(+)] IV. 

Cross of 
JWW1 and 
OD95 

This study 

JWW65 lt17[plk-1::gfp+loxP]III ; ltIs37 [(pAA64) pie-
1p::mCherry::his-58 + unc-119(+)] IV; unc-119(ed3) 
III 

Cross of 
OD2425 and 
OD95 

This study 

JWW66 ltSi203[pVV60; Pspd-2::GFP::SPD-2 reencoded; 
cb-unc-119(+)]II; ltIs37 [(pAA64) pie-
1p::mCherry::his-58 + unc-119(+)] IV; unc-119(ed3) 
III 

Cross of 
OD824 and 
OD95 

This study 
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JWW67 unc-119(ed9) III; utsw1[pJWB56; Pspd-
2::GFP::SPD-5(530E, 627E, 653E, 658E) re-
encoded; cb-unc-119(+)]II 

MosSCI, into 
EG6699 

This study 

JWW69 unc-119(ed9) III; ltSi202[pVV103/ pOD1021; Pspd-
2::GFP::SPD-5 RNAiresistant;cb-unc-119(+)]II; 
ltIs37 [(pAA64) pie-1p::mCherry::his-58 + unc-
119(+)] IV. 

Cross of 
OD847 and 
OD95 

 This study 

JWW70 unc-119(ed9) III; utsw1[pJWB56; Pspd-
2::GFP::SPD-5(530E, 627E, 653E, 658E) re-
encoded; cb-unc-119(+)]II; ltIs37 [(pAA64) pie-
1p::mCherry::his-58 + unc-119(+)] IV. 

Cross of 
JWW1 and 
OD95 

 This study 

JWW71 lt17[plk-1::gfp+loxP]III; unc-119(ed3)III; 
ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)] 

Cross of 
OD2425 and 
TH169 

This study 

JWW72 vie11[pAD676; gfp::tac-1]II ;  unc-119(ed3)III; 
ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)] 

Cross of 
DAM858 and 
TH169 

This study 

JWW89 spd-2(or188ts) I; ltSi202[pVV103/ pOD1021; Pspd-
2::GFP::SPD-5 RNAiresistant;cb-unc-119(+)]II; 
ltIs37 [(pAA64) pie-1p::mCherry::his-58 + unc-
119(+)] IV. 

Cross of 
JWW13 and 
OD95 

This study 

OD2425 lt17[plk-1::gfp+loxP]III CRISPR Karen Oegema  
OD823 ltSi203[pVV60; Pspd-2::GFP::SPD-2 reencoded; 

cb-unc-119(+)]II;  unc-119(ed3) III 
MosSCI, into 
EG6699 

Karen Oegema 

OD847 unc-119(ed9) III; ltSi202[pVV103/ pOD1021; Pspd-
2::GFP::SPD-5 RNAiresistant;cb-unc-119(+)]II 

MosSCI, into 
EG6699 

(Woodruff et al., 
2015) 

OD95 unc-119(ed3) III; ltIs37 [(pAA64) pie-
1p::mCherry::his-58 + unc-119(+)] IV; ltIs38 [pie-
1p::GFP::PH(PLC1delta1) + unc-119(+)] 

Microparticle 
bombardment 

CGC 

TH169 unc-119(ed3)III; ddIs44[WRM0614cB02 
GLCherry::tbg-1;Cbr-unc-119(+)] 

Microparticle 
bombardment 

Anthony Hyman 

TH447 unc-119(ed9) III; ddIs243[pie-1p::LAP::LET-92; 
unc-119(+)]; ddIs247[pie-1p::SPD-5(synthetic 
introns, CAI 0.65)::mCherry; unc-119(+)] 

Microparticle 
bombardment 

Anthony Hyman 

TH530 rsa-1::LAP; unc-119(ed3)III; 
ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)] 

Microparticle 
bombardment 

Anthony Hyman 

TH531 rsa-2::LAP; unc-119(ed3)III; 
ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)] 

Microparticle 
bombardment 

Anthony Hyman 

TH539 spd-2::GFP; unc-119(ed3)III; 
ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)] 

Microparticle 
bombardment 

Anthony Hyman 

TH571 unc-119(ed3)III; ddIs12[pie-1p::tpxl-1::GFP;unc-
119(+)]; ddIs44[WRM0614cB02 GLCherry::tbg-
1;Cbr-unc-119(+)] 

Microparticle 
bombardment 

Anthony Hyman 

TH630 ddIs44[WRM0614cB02 GLCherry::tbg-1;Cbr-unc-
119(+)]; ddIs62[pie-1p::AIR-1(synthetic introns, CAI 
1.0)::GFP; unc-119(+)]; unc-119(ed3)III 

Microparticle 
bombardment 

Anthony Hyman 

EG6699 ttTi5605 II; unc-119(ed3) III; oxEx1578.  CGC 
 843 

 844 

TABLE S2. Protein expression plasmids used in this study 845 
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Plasmid 
name 

Gene N-term tag C-term tag Origin 

JWV11 plk-1(T194D) 
constitutively active 

 PreScission-6xHis (Woodruff et al., 2015) 

JWV12 plk-1(K67M) 
kinase dead 

 PreScission-6xHis (Woodruff et al., 2015) 

JWV2 spd-5(wt) MBP-
PreScission 

PreScission-6xHis (Woodruff et al., 2015) 

JWV3 spd-5(wt) MBP-
PreScission 

tagRFP-
PreScission-6xHis 

(Woodruff et al., 2015) 

JWV6 spd-2(wt) MBP-TEV TEV-6xHis (Woodruff et al., 2015) 
 846 

TABLE S3. One-way ANOVA and post-hoc tests of anterior PCM disassembly 847 

profiles from Figure 3F 848 

Holm-Sidak's 
multiple 
comparisons test Mean Diff. Significant? Summary 

Adjusted P 
Value 

AIR-1 vs. TPXL-1 -25.55 No ns 0.2725 
AIR-1 vs. RSA-1 -8.310 No ns 0.9615 
AIR-1 vs. RSA-2 -14.38 No ns 0.8174 
AIR-1 vs. SPD-2 38.26 Yes ** 0.0079 
AIR-1 vs. SPD-5 -24.73 No ns 0.2183 
AIR-1 vs. TBG-1 8.728 No ns 0.9598 
AIR-1 vs. TAC-1 0.4412 No ns 0.9963 
AIR-1 vs. PLK-1 92.29 Yes **** <0.0001 
TPXL-1 vs. RSA-1 17.24 No ns 0.8060 
TPXL-1 vs. RSA-2 11.16 No ns 0.9598 
TPXL-1 vs. SPD-2 63.81 Yes **** <0.0001 
TPXL-1 vs. SPD-5 0.8171 No ns 0.9963 
TPXL-1 vs. TBG-1 34.28 Yes * 0.0356 
TPXL-1 vs. TAC-1 25.99 No ns 0.4307 
TPXL-1 vs. PLK-1 117.8 Yes **** <0.0001 
RSA-1 vs. RSA-2 -6.074 No ns 0.9615 
RSA-1 vs. SPD-2 46.57 Yes ** 0.0012 
RSA-1 vs. SPD-5 -16.42 No ns 0.8060 
RSA-1 vs. TBG-1 17.04 No ns 0.7693 
RSA-1 vs. TAC-1 8.751 No ns 0.9615 
RSA-1 vs. PLK-1 100.6 Yes **** <0.0001 
RSA-2 vs. SPD-2 52.64 Yes **** <0.0001 
RSA-2 vs. SPD-5 -10.35 No ns 0.9598 
RSA-2 vs. TBG-1 23.11 No ns 0.2887 
RSA-2 vs. TAC-1 14.83 No ns 0.8971 
RSA-2 vs. PLK-1 106.7 Yes **** <0.0001 
SPD-2 vs. SPD-5 -62.99 Yes **** <0.0001 
SPD-2 vs. TBG-1 -29.53 No ns 0.0940 
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SPD-2 vs. TAC-1 -37.82 Yes * 0.0454 
SPD-2 vs. PLK-1 54.03 Yes *** 0.0002 
SPD-5 vs. TBG-1 33.46 Yes * 0.0207 
SPD-5 vs. TAC-1 25.17 No ns 0.4085 
SPD-5 vs. PLK-1 117.0 Yes **** <0.0001 
TBG-1 vs. TAC-1 -8.286 No ns 0.9615 
TBG-1 vs. PLK-1 83.56 Yes **** <0.0001 
TAC-1 vs. PLK-1 91.85 Yes **** <0.0001 

 849 

TABLE S4. One-way ANOVA and post-hoc tests of posterior PCM disassembly 850 

profiles from Figure 3G 851 

Holm-Sidak's multiple 
comparisons test Mean Diff. Significant? Summary 

Adjusted P 
Value 

AIR-1 vs. TPXL-1 -9.235 No ns 0.9002 
AIR-1 vs. RSA-1 -36.70 Yes *** 0.0003 
AIR-1 vs. RSA-2 -46.04 Yes **** <0.0001 
AIR-1 vs. SPD-2 5.014 No ns 0.9652 
AIR-1 vs. SPD-5 -42.30 Yes **** <0.0001 
AIR-1 vs. TBG-1 -13.68 No ns 0.5679 
AIR-1 vs. TAC-1 -34.04 Yes ** 0.0041 
AIR-1 vs. PLK-1 40.38 Yes **** <0.0001 
TPXL-1 vs. RSA-1 -27.46 Yes * 0.0334 
TPXL-1 vs. RSA-2 -36.81 Yes *** 0.0006 
TPXL-1 vs. SPD-2 14.25 No ns 0.6655 
TPXL-1 vs. SPD-5 -33.07 Yes ** 0.0028 
TPXL-1 vs. TBG-1 -4.446 No ns 0.9652 
TPXL-1 vs. TAC-1 -24.80 No ns 0.1399 
TPXL-1 vs. PLK-1 49.61 Yes **** <0.0001 
RSA-1 vs. RSA-2 -9.346 No ns 0.9002 
RSA-1 vs. SPD-2 41.71 Yes **** <0.0001 
RSA-1 vs. SPD-5 -5.608 No ns 0.9652 
RSA-1 vs. TBG-1 23.02 No ns 0.0790 
RSA-1 vs. TAC-1 2.661 No ns 0.9652 
RSA-1 vs. PLK-1 77.07 Yes **** <0.0001 
RSA-2 vs. SPD-2 51.06 Yes **** <0.0001 
RSA-2 vs. SPD-5 3.739 No ns 0.9652 
RSA-2 vs. TBG-1 32.36 Yes ** 0.0014 
RSA-2 vs. TAC-1 12.01 No ns 0.8399 
RSA-2 vs. PLK-1 86.42 Yes **** <0.0001 
SPD-2 vs. SPD-5 -47.32 Yes **** <0.0001 
SPD-2 vs. TBG-1 -18.70 No ns 0.2609 
SPD-2 vs. TAC-1 -39.05 Yes ** 0.0014 
SPD-2 vs. PLK-1 35.36 Yes ** 0.0020 
SPD-5 vs. TBG-1 28.62 Yes ** 0.0061 
SPD-5 vs. TAC-1 8.269 No ns 0.9307 
SPD-5 vs. PLK-1 82.68 Yes **** <0.0001 
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TBG-1 vs. TAC-1 -20.35 No ns 0.2689 
TBG-1 vs. PLK-1 54.06 Yes **** <0.0001 
TAC-1 vs. PLK-1 74.41 Yes **** <0.0001 

 852 
 853 

METHODS 854 

Contact for reagent and resource sharing 855 

Further requests and information for resources and reagents should be directed to and 856 

will be fulfilled by the Lead Contact, Jeffrey Woodruff  857 

(Jeffrey.woodruff@utsouthwestern.edu).  858 

 859 

Experimental model and subject details 860 

C. elegans worm strains were grown on nematode growth media (NGM) plates at 16-861 

23°C, following standard protocols (www.wormbook.org). Worm strains used in this study 862 

are listed in Table S1 and created using CRISPR (Paix et al., 2015; Paix et al., 2017), 863 

MosSCI (Frokjaer-Jensen et al., 2008), or microparticle bombardment. Cas9 enzyme was 864 

purified by the Protein Expression Facility at MPI-CBG. For expression of recombinant 865 

proteins, we used suspended SF9-ESF S. frugiperda insect cells grown at 27°C in ESF 866 

921 Insect Cell Culture Medium, Protein-Free (Expression Systems), supplemented with 867 

Fetal Bovine Serum (2% final concentration).  868 

 869 

RNAi treatment 870 

RNAi was done by feeding using sur-6, gpr-2, csnk-1, and perm-1 feeding clones from 871 

the Ahringer and Vidal collections (Source BioScience)(Rual et al., 2004). The spd-5 872 

feeding clone targets a region that is reencoded in our MosSCI transgenes (Woodruff et 873 

al., 2015).  Bacteria were seeded onto nematode growth media (NGM) supplemented 874 

with 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) and 100 µg mL-1 ampicillin. 875 

For perm-1 feeding plates, 0.1 mM IPTG was used. L4 hermaphrodites were grown at 876 

23℃ for 24-28 hours for all conditions except for perm-1, which was at 20℃ for 18-19 877 

hours. 878 

 879 

Drug treatment of semi-permeable embryos 880 
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For all drug treatments, C. elegans embryos were permeabilized using perm-1 RNAi 881 

(Carvalho et al., 2011) and dissected into a 62% solution of ESF-921 Media (Expression 882 

Systems).  To arrest the embryos at metaphase, MG-132 (EMD Millipore) was used at 10 883 

µM in 62% ESF, diluted from a 10 mM stock concentration in EtOH. To inhibit PLK-1, 884 

BI-2536 (Advanced ChemBlocks Inc.) was used at 10 µM, diluted from a 10 mM stock 885 

in ethanol. To inhibit PP2A, LB-100 (SelleckChem) was used at 10 µM, diluted from a 886 

10 mM stock in dH2O. Nocodazole (Sigma) was diluted from a 5 mg/ml stock 887 

concentration in DMSO. Samples were flushed with water or M9 after each experiment 888 

to test for permeability (water will cause swelling and M9 will cause shrinking).  889 

 890 

Construction of the FLUCS Microscope 891 

To measure the physical material state of centrosomes inside living C. elegans embryos, 892 

we performed intracellular flow perturbations by employing the previously published 893 

technology FLUCS (Mittasch et al., 2018). The FLUCS setup consisted of three major 894 

modules: (i) an infrared laser scanning unit for thermal manipulations, (ii) a microscope 895 

allowing to simultaneously induce thermal patterns and to perform high-sensitivity 896 

fluorescence imaging, and (iii) a heat management stage. 897 

(i) The infrared laser scanning unit consists of a fiber-based infrared Raman laser (CRFL-898 

20-1455-OM1, 20 Watts, near TEM00 mode profile, Keopsys, France) with a wavelength 899 

of 1455	𝑛𝑚, operated in continuous-wave mode and linearly polarized using a polarizing 900 

beam splitter cube (CCM1-PBS254, Thorlabs, USA). To precisely correct for the 901 

divergence of the laser beam, a telescope was used, composed of two telescope lenses 902 

with focal lengths of f_1=100 mm and f_2=150 mm (AC254-C series, Thorlabs, USA), 903 

respectively. A lambda-half plate (waveplate, 1/2 1550 Edmund optics, USA) was used 904 

to rotate the linearly polarized laser light to match the optical axis of the acoustic-optical 905 

deflector (AOD). A variable optical beam expander (4x expander, 36100, Edmund optics, 906 

USA) allows control of the beam diameter (~1.5 mm beam diameter at back-focal-plane 907 

was used) without changing the size of the scan pattern. Rapid (up to 1 MHz update rate) 908 

and precise (down to 100 nm) infrared laser scanning was achieved by utilizing two-909 

dimensional AOD (AA.DTSXY-A6-145, Pegasus Optik, Germany), electronic oscillators 910 

(AA.DRFAI0Y-B-0-x, Pegasus Optik, Germany), and electronic amplifiers 2.5	𝑊 911 
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(AA.AMPA-B-34-20.4, Pegasus Optik, Germany). The AOD was controlled by generating 912 

analog signals using a custom software in LabVIEW (National instruments, USA) in 913 

combination with a PCI controller card (PCIe 6369, National Instruments, USA). To 914 

precisely translate the AOD-induced beam scanning into the back-focal-plane of the 915 

microscope objective lens a telescope composed of two telescope lenses with focal 916 

lengths of f_3=f_4=300 mm (AC254-C series, Thorlabs, USA) was used. A dichroic mirror 917 

(F73-705, AHF, Germany) was used to couple the infrared laser beam into the light path 918 

of the microscope (IX83, Olympus, Japan), by selectively reflecting the infrared light but 919 

transmitting visible wavelengths which were used for fluorescence imaging.  920 

 921 

(ii) The microscope was equipped with Brightfield (BF) and fluorescent imaging optics. 922 

For simultaneous high-resolution fluorescence imaging and precise infrared laser 923 

scanning, an infrared-coated microscope objective lens (60x UPLSAPO NA=1.2, W-IR 924 

coating, Olympus, Japan) was used, which was operated with heavy water (D2O) as 925 

immersion liquid to reduce undesired infrared laser light absorption in the immersion 926 

layer. For Brightfield illumination a high-power LED (M565L3, Thorlabs, USA) in 927 

combination with dedicated LED driver (LEDD1B, Thorlabs, USA) was used. For confocal 928 

fluorescence imaging, a VisiScope confocal imaging system (Visitron, Germany) coupled 929 

to a Yokogawa CSU-X1- A12 scan head and an iXON Ultra EMCCD camera (Andor, 930 

Ireland) were used. 931 

 932 

(iii) The heat management unit consisted of a thin sample mounting chamber based on a 933 

standard cover slip (18 × 18 × 0.17	𝑚𝑚) (Menzel, Germany) facing the objective lens, and 934 

a high thermal conductive sapphire cover slide (thermal conductivity of 27.1	𝑊 𝑚 ∙ 𝐾⁄ , 935 

SMS-7521, UQG Optics, UK) closing the sandwich-like chamber from the top. To 936 

efficiently remove the induced heat from the samples, e.g. C. elegans embryos, the 937 

sapphire slide was actively cooled from room temperature to 17	˚𝐶. This active cooling 938 

was performed by using Peltier elements (TES1-127021, TEC, Conrad) glued to the 939 

sapphire slides. The cooling power of the Peltier elements was controlled by a PID 940 

hardware controller (TEC-1089-SV, Meerstetter Engineering, Swiss). A custom-built 941 

water-cooling stage was used to dissipate the heat produced by the Peltier elements. The 942 
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height of the buffer-filled chamber was defined using polystyrene beads (Polybead, 943 

Polysciences, Germany) with a diameter of 15	µ𝑚. The height of the resulting chamber 944 

was measured by locating the upper and lower chamber surface using a piezo stage. 945 

 946 

Application of FLUCS within embryos 947 

Late L4 hermaphrodites were grown for 18-19 hours on standard NGM or perm-1 feeding 948 

plates. Worms were then dissected on an 18 mm x 18 mm coverslip (0.17 mm thickness) 949 

in 6 µL of M9 buffer or 62% ESF 921 (for permeabilized embryos) with 15 µm polystyrene 950 

beads. The sample was placed onto a sapphire microscope slide equipped with Peltier 951 

cooling elements, then the coverslip sealed with dental silicone (Picodent twinsil, Picodent, 952 

Germany). The cooling stage and sample were then mounted on the FLUCS microscope 953 

stage. Embryos were identified and staged using a 10x air objective, then imaged with a 954 

60x 1.2 NA Plan Apochromat water immersion objective (Olympus) using 488 nm and 955 

561 nm laser illumination, 1X1 binning, and 2s intervals. 956 

Hydrodynamic flows were generated by scanning the 1455 nm laser through either 1) 957 

center of centrosome or 2) through the cytoplasm for velocity calibration.  Custom-written 958 

LabVIEW software superimposes the scan path of the infrared laser with the high-959 

resolution image of the camera. The sub-pixel alignment of the induced flow field and the 960 

camera image was verified routinely before the embryonic experiments by using 961 

fluorescent tracer particles immersed in a highly viscous sucrose solution. FLUCS 962 

experiments used unidirectional but repeated laser scans with 1.5	𝑘𝐻𝑧 scan frequency, a 963 

scan length of 30	µ𝑚, and three different laser powers (25 mW, 32 mW, and 40 mW).  964 

Centrosomes were targeted for FLUCS at metaphase, anaphase, or telophase. 965 

Centrosomes were affected by FLUCS between 30-60 s. For experiments requiring drug 966 

treatment, worms were dissected in 6 µL of the specific drug solution and quickly placed 967 

on the microscope within 1-2 minutes. To maintain consistency of drug treatment 968 

duration, only embryos found exactly at prometaphase (for metaphase experiments) and 969 

metaphase (for anaphase experiments) were then targeted for FLUCS. Temperature-970 

sensitive worms were dissected in cold 62% ESF-921 media on a cooled dissecting scope 971 

and quickly mounted onto the cooling stage, which was maintained at 17°C. At 972 
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prometaphase, temperature was upshifted to 25°C for 1 minute, then decreased to 17°C. 973 

Centrosomes were then targeted for FLUCS at metaphase. 974 

 975 

Confocal microscopy and live-cell imaging 976 

Adult worms were dissected in M9 before being mounted on a 5% agar pad for imaging. 977 

For live cell imaging with drug treatments, perm-1 adult worms were dissected in 8-10 µL 978 

of 62% ESF 921 with 15 µm polystyrene beads (Sigma-Aldrich) on a 22 x 50 mm 979 

coverslip. Samples were mounted on a 1 mm thick glass slide with 2 x 6 mm laser cut 980 

holes 30 mm apart (Potomac), to produce a flow chamber. In one open chamber, 40 µL 981 

of the drug solution in 62% ESF was added during prometaphase. Liquid was wicked 982 

from the opposite chamber using a Kimwipe to then allow more of the drug solution to be 983 

added to the sample. To arrest embryos in metaphase, perm-1 adult worms were 984 

dissected in 10 µM MG-132 solution. Cell cycle stage was indicated based on 985 

mCherry::HIS-58 fluorescence and cell morphology (metaphase = aligned chromosomes; 986 

anaphase = chromosomes separate; telophase = chromosomes de-condense and 987 

cytokinetic furrow ingresses).  988 

 989 

Time-lapse images were taken using an inverted Nikon Eclipse Ti microscope with a 990 

Yokogawa spinning disk confocal head (CSU-X1), piezo Z stage, and an iXon Ultra 991 

EMCCD camera (Andor), controlled by Metamorph software. On this system, the 60x 1.4 992 

NA Apochromat oil objective was used to acquire 36 x 0.5 µm Z-stacks every 10 seconds 993 

with 100 ms exposures and 2X2 binning. For PCM localization in csnk-1(RNAi) embryos,  994 

and PP2A localization, time-lapse images were acquired with an inverted Nikon Eclipse 995 

Ti2-E microscope with a Yokogawa confocal scanner unit (CSU-W1), piezo Z stage, and 996 

an iXon Ultra 888 EMCCD camera (Andor), controlled by Nikon Elements software. For 997 

most experiments, we used a 60x 1.2 NA Plan Apochromat water immersion objective to 998 

acquire 35 x 0.5 µm Z-stacks every 10 seconds with 100 ms exposures and 2X2 binning. 999 

Simultaneous imaging with the 488 nm and 561 nm lasers was achieved using an 1000 

OptoSplit II beam splitter (Cairn).  For LET-92::GFP imaging, a 100x 1.35 NA Plan 1001 

Apochromat silicone oil objective was used to acquire 11 x 0.5 µm Z-stacks in 20 second 1002 

intervals with 100 ms exposures and 2X2 binning. Images in Figure 3 were taken using 1003 
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an inverted Olympus IX81 microscope with a Yokogawa spinning-disk confocal head 1004 

(CSU-X1), a 60x 1.2 NA Plan Apochromat water objective, and an iXon EM + DU-897 BV 1005 

back illuminated EMCCD (Andor). 1006 

 1007 

spd-2(or188ts) temperature shift assay  1008 

JWW69 (control) and JWW89 (spd-2(or188ts)) strains were used for imaging.  1009 

Sequencing of JWW89 confirmed a single point mutation in spd-2 resulting in a glycine 1010 

to glutamic acid amino acid substitution (G615E) as described in Kemp et. al. Both worm 1011 

strains propagated at 16°C, which is the permissive temperature for spd-2(or188ts). To 1012 

prepare the embryos for imaging, a metal block was buried halfway in wet ice. A 24x60 1013 

mm glass coverslip (thickness of 1) and a flow chamber slide were placed over the cold 1014 

block. To prevent sticking of the glass to the cold block due to water condensation, two 1015 

Kimwipes were placed between the glass and the cold block.  To minimize exposure to 1016 

elevated temperatures during embryo dissection, the glass stage on the dissecting 1017 

microscope stand was placed in a 4°C fridge and left to cool for approximately 10 min. 1018 

Once everything was cold, 10µL of cold M9 plus 15 µm polystyrene (Sigma) beads was 1019 

pipetted to the middle of the 24x60 mm cover slip. 1020 

 1021 

For each worm strain, plates were transported inside the ice bucket directly contacting 1022 

ice to the dissecting microscope area. The microscope glass stage was taken out from 1023 

the fridge and assembled into its place. Three to four adult worms containing a single row 1024 

of eggs were transferred to the M9 plus beads on the cover slip still located on top of the 1025 

cold block. The coverslip was transferred to the dissecting scope and the worms cut open 1026 

using 22G needles. The coverslip was mounted on the flow chamber slide, then the edges 1027 

of the cover slip were sealed using clear nail polish. The sample was moved to the 1028 

imaging room on the cold block.  1029 

 1030 

The Nikon Eclipse Ti2 microscope described above was used for imaging. Embryos were 1031 

staged using a 10X air objective, then imaged with a 60X NA 1.2 water objective. To 1032 

rapidly raise the temperature of the sample (up-shift), 40 µl of 25°C M9 was pipetted into 1033 

the flow chamber well. 30 x 0.5 µm Z stacks were collected every 10 s using simultaneous 1034 
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illumination with 488 nm and 561 nm lasers (14.7% and 17.7% intensity respectively), 1035 

2x2 binning, 100 ms exposures. 1036 

                   1037 

Protein expression and purification 1038 

All expression plasmids are listed in Table S2. SPD-5, SPD-2, and PLK-1 proteins were 1039 

expressed using the FlexiBAC baculovirus system (Lemaitre et al., 2019) and purified as 1040 

previously described (Woodruff and Hyman, 2015; Woodruff et al., 2015), with the 1041 

following exception: SPD-2 was stored in its uncleaved form (MBP-TEV-SPD-2).  1042 

 1043 

In vitro SPD-5 condensate disassembly assay 1044 

SPD-5 condensates were formed by diluting 10 µM SPD-5 (1:10 mixture of SPD-5 and 1045 

SPD-5::TagRFP) in Condensate buffer (25 mM HEPES, pH 7.4, 150 mM KCl) containing 1046 

polyethylene glycol 3350 (Sigma) and fresh 0.5 mM DTT. Before use, the SPD-5 stock 1047 

solution was centrifuged for 5 min at 80,000 rpm to remove residual aggregates.  5 min 1048 

after formation, SPD-5 condensates were placed in glass-bottom 96-well dishes (Corning, 1049 

4850, high content imaging dish) pre-cleaned with 2% Hellmanex and washed in water. 1050 

For each sample, half was placed in the well undisturbed (control), and the other half was 1051 

diluted 10-fold, pipetted 5 times, then placed in a well (induced disassembly). 96-well 1052 

plates were imaged on an inverted Nikon Ti-E microscope using a 60x NA 1.4 Plan 1053 

Apochromat oil objective, a Zyla cMOS camera (Andor), and MicroManager control 1054 

software. For each image, SPD-5 condensates were identified through applying a 1055 

threshold then using the particle analyzer function in FIJI. When analyzing condensate 1056 

formation, we report the sum of the integrated intensities of each condensate per image 1057 

(total condensate mass).  Survival % plotted in Figure 5 assumes a 10-fold loss in total 1058 

condensate mass due to dilution.   1059 

 1060 

Quantification and statistical analysis 1061 

Images were analyzed with FIJI (https://fiji.sc/), R (https://www.r-project.org/), and 1062 

GraphPad Prism (https://www.graphpad.com). For FLUCS experiments, centrosome 1063 

deformation was calculated by measuring the long axis (orthogonal to the flow direction) 1064 

of PCM-localized SPD-5 at the initial and final time points of PCM deformation, prior to 1065 
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fracture (defined below). The deformation rate equaled the difference in PCM lengths 1066 

divided by the time interval. Centrosome fracture was measured using line scans across 1067 

the long axis of PCM-localized SPD-5. Fracture was scored if signal dropped to 1068 

cytoplasmic levels over three consecutive pixels on the long axis across the entire flow 1069 

path, and if this signal gap persisted for the rest of the images.  For all other experiments, 1070 

centrosome tracking and measurement was conducted using max intensity projections, 1071 

correction for photobleaching, followed by thresholding and particle analysis. Thresholds 1072 

were determined using: mean background intensity of the cytoplasm + b*(standard 1073 

deviation of background), where b represents an integer value that is identical for all 1074 

samples within an experiment. The integrated fluorescence density for the centrosome-1075 

localized signals were normalized to either the first intensity value or max intensity value 1076 

(Figure 3) and plotted over time.  1077 

 1078 

All data are expressed as the mean ± 95% confidence intervals as stated in the figure 1079 

legends and results. The value of n and what n represents (e.g., number of images, 1080 

condensates or experimental replicates) is stated in figure legends and results. Normality 1081 

tests were first performed before applying statistical tests.  Statistical tests were 1082 

performed with GraphPad Prism. 1083 

 1084 
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