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Abstract  14 

A prerequisite for the systems biology analysis of tissues is an accurate digital 3D 15 

reconstruction of tissue structure based on images of markers covering multiple scales. 16 

Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative 17 

morphological analysis of tissue architecture from microscopy images. Our pipeline includes 18 

newly developed algorithms that address specific challenges of thick dense tissue 19 

reconstruction. Our implementation allows for a flexible workflow, scalable to high-20 

throughput analysis and applicable to various mammalian tissues. We applied it to the 21 

analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and 22 

cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we 23 

uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and 24 

DNA content, thus revealing new features of liver tissue organization. The pipeline also 25 

proved effective to analyse lung and kidney tissue, demonstrating its generality and 26 

robustness. 27 
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Introduction 28 

A major challenge for the understanding of mammalian tissue structure and function is 29 

the ability to monitor cellular processes across different levels of complexity, from the 30 

subcellular to the tissue scale (Megason and Fraser, 2007). This information can then be 31 

used to develop quantitative functional models that describe and predict the system 32 

behaviour under perturbed conditions (Hunter et al., 2008, Smith et al., 2011, Fonseca et al., 33 

2011, Sbalzarini, 2013). The development of such multi-scale models requires first a 34 

geometrical model of the tissue, i.e. an accurate three-dimensional (3D) digital 35 

representation of the cells in the tissue as well as their critical subcellular components (Peng 36 

et al., 2010, Boehm et al., 2010, Mayer et al., 2012). This can be constructed from high-37 

resolution microscopy images with multiple fluorescent markers, either fusion proteins or 38 

components detected by antibody staining. Since organelles can be as small as ~ 0.1 µm in 39 

size, the geometrical model has also to cover a wide range of scales spanning over 3 orders 40 

of magnitude. However, substantial limitations persist with respect to availability of 41 

markers, volume of tissue to reconstruct, scale of measurements, computational methods 42 

to perform the analysis and sample throughput. Although a few existing platforms provide 43 

standard tools for 3D segmentation and methods to process 2D surface layers of cells 44 

(ImageJ/Fiji (Girish and Vijayalakshmi, 2004, Collins, 2007), ICY (de Chaumont et al., 2012) 45 

and MorphoGraphX (Barbier de Reuille et al., 2015)), the challenges posed by dense and 46 

thick tissue specimens require the development of new algorithms. Therefore, there is a 47 

demand for a platform that can provide the required set of methods for the reconstruction 48 

of multi-scale digital 3D geometrical models of mammalian tissues from confocal 49 

microscopy images.  50 
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The number of fluorescent markers that can be used simultaneously is limited to 4-5, 51 

making the reconstruction of tissue models a challenging problem. For a meaningful model 52 

it is necessary to properly identify the different cell types within the tissue but also to detect 53 

subcellular and extracellular structures, e.g. nuclei, plasma membrane or cell cortex, 54 

extracellular matrix (ECM) and cell polarity. Automated morphological cell recognition is a 55 

possible way to reconstruct dense tissue with limited number of markers.  56 

Geometrical digital models of tissues also require 3D information over large volumes. 57 

Validated fluorescent protein chimeras are not always available, especially in the 58 

appropriate combination of fluorescence emission spectral profiles. On the other hand, in 59 

dense tissues immunostaining is inhomogeneous, due to restricted antibody penetration. 60 

The development of protocols that render tissues optically transparent and permeable to 61 

macromolecules without significantly compromising their general structure enables the 62 

imaging of relatively thick specimens (Chung and Deisseroth, 2013, Ke et al., 2013). 63 

However, in the case of a densely packed tissue, e.g. liver, homogeneous staining is still 64 

limited to a thickness of ~100µm. Therefore, obtaining high-resolution data from large 65 

volumes of tissue (typically from 0.1mm to few centimetres) requires sectioning the sample 66 

into serial 100µm thick slices that are stained and imaged separately. Furthermore, the 67 

cutting process introduces artefacts, such as bending, uneven section surfaces and partial 68 

damage of tissue that require corrections during tissue model reconstruction. 69 

Unfortunately, the publicly available generic image processing software is unable to deal 70 

with such problems.  71 

In this study, we addressed these challenges by developing a set of new algorithms as 72 

well as implementing established ones in an adjustable pipeline implemented in stand-alone 73 
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freely available software (http://motiontracking.mpi-cbg.de). As proof of principle, we 74 

tested the pipeline on the reconstruction of a geometrical model of liver tissue. We chose 75 

this particular tissue due to its utmost importance for basic research, medicine and 76 

pharmacology. In order to test the accuracy of the pipeline, we created a benchmark for the 77 

evaluation of dense tissue reconstruction algorithms comprising a set of realistic 3D images 78 

generated from the digital model of liver tissue. Furthermore, we applied the platform to 79 

the analysis of lung and kidney tissue, demonstrating its generality and robustness.  80 
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Results 81 

Despite its importance and a long history of histological studies, only few geometrical 82 

models of liver tissue have been published (Hardman et al., 2007, Hoehme et al., 2010, 83 

Hammad et al., 2014). The liver is composed of functional units, the lobules. In each lobule, 84 

bile canaliculi and sinusoidal endothelial cells form two 3D networks between the portal 85 

vein (PV) and the central vein (CV).  The bile canalicular (BC) network is formed by 86 

hepatocytes and transports the bile, whereas the sinusoidal endothelial network transports 87 

the blood. The liver tissue has a number of remarkable features. One is the zonation of 88 

metabolic functions, due to the fact that the hepatocytes located in the vicinity of the PV do 89 

not have the same metabolic activities as the hepatocytes located near the CV (Kuntz and 90 

Kuntz, 2006). Second, hepatocytes are remarkably heterogeneous in terms of number of 91 

nuclei (mono- and bi-nucleated) and ploidy (Martin et al., 2002, Guidotti et al., 2003, 92 

Faggioli et al., 2011). Third, the lobules contain two additional important cell types, stellate 93 

and Kupffer cells (Baratta et al., 2009).  94 

To analyse the 3D organization of liver tissue, we established a workflow for confocal 95 

imaging of mouse liver specimens and developed an adjustable pipeline of new and 96 

established image analysis algorithms to process the images and build digital models of the 97 

tissue (Figure 1 and Figure 1—figure supplement 1). First, we established a protocol for the 98 

preparation of tissue specimens for single and double-photon confocal microscopy at 99 

different resolutions. To cover multiple scales from subcellular organelles to tissue spanning 100 

over 3 orders of magnitude, we used a 3D multi-resolution tissue image acquisition 101 

approach (Figure 1A). This consisted of imaging a tissue sample at low resolution 102 

݉ߤ1) × ݉ߤ1 ×  per voxel) and zooming on the parts of interest at high resolution 103 ݉ߤ1
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݉ߤ0.3) × ݉ߤ0.3 ×  per voxel). Second, the multi-scale reconstruction of tissue 104 ݉ߤ0.3

architecture was obtained following the pipeline of Figure 1B and Figure 1—figure 105 

supplement 1. Briefly, 1) images were filtered using a novel Bayesian de-noising algorithm, 106 

2) individual low-resolution images of each physical section were assembled in 3D mosaics, 107 

3) tissue deformations caused by sample preparation were corrected, 4) large vessels were 108 

segmented, 5) the 3D mosaics of sections were combined in a full scale low-resolution 109 

model, 6) high-resolution images were registered into the low-resolution one, 7) sinusoidal 110 

and BC networks as well as nuclei were segmented and, finally, 8) the different cell types 111 

were identified, classified and segmented. We used the geometrical model to provide a 112 

detailed and accurate quantitative description of liver tissue geometry, including the 113 

complexity of the sinusoidal and BC networks, hepatocyte size distribution, stellate and 114 

Kupffer cells distribution in the tissue. Additionally, our platform comprises a set of methods 115 

for the proper statistical analysis of different morphometric parameters of the tissue as well 116 

as their spatial variability (Figure 1C). 117 

 118 

Sample preparation and multi-resolution tissue imaging 119 

Mouse livers were fixed by trans-cardial perfusion instead of the conventional immersion 120 

fixation (Burton et al., 1987) to minimize the time lag between the termination of blood 121 

flow and fixation (Gage et al., 2012). This proved to be absolutely essential to preserve the 122 

tissue architecture and the epitopes for immunostaining. Serial sections of fixed tissues 123 

were prepared at a thickness of 100 µm to maximise antibody penetration and limit laser 124 

light scattering. Liver sections were stained to visualize key subcellular and tissue structures, 125 

namely nuclei (DAPI), the apical surfaces of hepatocytes (CD13), the sinusoidal endothelial 126 
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cells (Flk1) or extracellular matrix (Laminin and Fibronectin) and the cell cortex (F-actin 127 

stained by phalloidin). We tested various reagents and protocols to clear the liver tissue, 128 

such as glycerol and TDE, and found that SeeDB (Ke et al., 2013) yielded the best results. 129 

Stained sections were imaged sequentially (generating Z-stacks) by one- and two-photon 130 

laser scanning confocal microscopy to maximize the number of fluorescent channels 131 

available. The same section was imaged twice, at low and high magnification, using 25x/0.8 132 

and 63x/1.3 objectives, respectively. The first covers a large volume to reconstruct the 133 

whole lobule and the latter focuses on a small area to reconstruct the tissue at high-134 

resolution. The registration of 3D high-resolution images within low-resolution ones 135 

provides tissue scale context information that is essential for the interpretation of the data 136 

at the cellular and subcellular level. 137 

 138 

Bayesian foreground/background discrimination (BFBD) de-noising  139 

A major problem for the image analysis of thick tissue sections is the low signal-to-noise 140 

ratio deep into the tissue, especially for stainings that yield high and diffuse background 141 

(e.g. actin staining with phalloidin throughout the cytoplasm). To address this problem, we 142 

developed a new Bayesian de-noising algorithm that first makes a probabilistic estimation of 143 

the background and separates it from the foreground (See Methods). Subsequently, the 144 

estimated background and foreground signals are independently smoothed and summed to 145 

generate a new de-noised image (Figure 1—figure supplement 2). We applied BFBD de-146 

noising to both low- and high-resolution images. BFBD de-noising provides better results 147 

than the standard ones in the field, such as median filtering, Gauss low-pass filtering and 148 

anisotropic diffusion (Figure 1—figure supplement 4), but also outperforms (by quality and 149 
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computational performance) other algorithms, known to be more elaborate, such as the 150 

‘PureDenoise’ (Luisier et al., 2010) and ‘Edge preserving de-noising and smoothing’ (Beck 151 

and Teboulle, 2009) (see Methods)( Figure 1—figure supplement 5).  152 

 153 

Reconstruction of multi-scale tissue images 154 

The tissue was imaged at low- and high-resolution for the multi-scale reconstruction. The 155 

reconstruction was performed in 3 steps: 1) images of physical sections were assembled as 156 

mosaics of low-resolution images; 2) all mosaics were corrected for physical distortions and 157 

combined in a single 3D image (image stitching); 3) the high-resolution images were 158 

registered into the low-resolution one.  159 

In more detail, the partially overlapping (~10% overlap) low-resolution images of each 160 

physical section were combined in 3D mosaics (Figure 2a and Figure 2—figure supplement 161 

1A) using the normalized cross-correlation (NCC) approach (See Methods). NCC was chosen 162 

because it allows finding accurate shifts given a coarse initial match between 3D images 163 

(Emmenlauer et al., 2009, Peng et al., 2010, Bria and Iannello, 2012). Then, the 3D image 164 

mosaics were combined into a single 3D image. The mechanical distortion and tissue 165 

damage produced by sectioning are such (as illustrated in Figure 2B and Figure 2—figure 166 

supplement 1C) that even advanced and well-established methods for image stitching 167 

(Preibisch et al., 2009, Saalfeld et al., 2012, Hayworth et al., 2015) fail due to the lack of 168 

texture correlations between adjacent sections. To address this problem, we developed a 169 

Bayesian algorithm for stitching images of bended and partially damaged soft tissue 170 

sections. The algorithm first corrects section bending and then uses the empty space at the 171 

interior of large structures (e.g. vessels) within adjacent sections to register and stitch them.   172 
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A prerequisite for the correction of section bending is the detection of its upper and 173 

lower surfaces (Figure 2B). The high degree of image axial blurring in thick samples (Nasse 174 

and Woehl, 2010) and the presence of large vessels pose problems for the detection of 175 

surfaces (see Figure 2—figure supplement 1C). The algorithm reconstructed the probability 176 

distribution of the surface excursion (deviation from the mean position over the 177 

neighbourhood) and then used it to predict the localization of each point at the surface (see 178 

Methods). The surface predicted by the algorithm closely matched the surface detected 179 

manually (Figure 2—figure supplement 1G). Then, the bending correction was performed by 180 

standard β-spline transformation (Figure 2C-D). 181 

Next, the individual sections were combined. Since ~ one cell layer is removed upon 182 

sectioning, direct matching of two adjacent sections is impossible. Therefore, we first 183 

segmented the large vessels and then aligned the sections by matching them (Figure 2D).  184 

The vessels were segmented by using the local maximum entropy approach (Brink, 1996) 185 

(See Methods). Subsequently, the segmented vessels were classified (marked as PV or CV) 186 

revealing the precise arrangement of lobule-level structures. Finally, we interpolated these 187 

vessels within the gaps caused by tissue removal by tri-linear intensity approximation. 188 

Following the assembly of the low-resolution model, we registered the high-resolution 189 

images within it using rigid body transformation. To accelerate the search for registration 190 

parameters, we built a hierarchy of binned images and performed registration sequentially 191 

from the coarsest to the finest one (see Methods). This method was used for the 192 

reconstruction of a liver tissue model from 6 serial sections, each imaged as a 3x3 mosaic 193 

grid with 10% overlap and resolution of 1݉ߤ × ݉ߤ1 ×  per voxel. Then, 2 sections, 194 ݉ߤ1

each imaged as a 2x2 mosaic grid at high-resolution (0.3݉ߤ × ݉ߤ0.3 ×  per voxel) 195 ݉ߤ0.3
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were registered within the low-resolution model. The reconstruction covers about 196 1300݉ߤ × ݉ߤ1300 ×  of the tissue and is presented on Figure 2E and Video 1. 197  ݉ߤ600

 198 

3D image segmentation and active mesh tuning for the accurate reconstruction of 199 

tubular networks (sinusoids and BC) and nuclei 200 

The next step was to reconstruct the tubular structures present in the tissue, i.e. 201 

sinusoidal and BC networks. One of the most popular tools for image segmentation is global 202 

thresholding (Pal and Pal, 1993). In particular, the maximum entropy approach has been 203 

widely applied to image reconstruction problems, including the segmentation of fluorescent 204 

microscopy images (Dima et al., 2011, Pecot et al., 2012). However, since 3D confocal 205 

images are usually heterogeneous in intensity due to staining unevenness and light 206 

scattering in the tissue (Lee and Bajcsy, 2006), global thresholding approaches may produce 207 

segmentation artefacts. In contrast, local thresholding allows adjusting the segmentation 208 

threshold to the spatial variability. We applied the local maximum entropy (LME) method to 209 

find segmentation thresholds in the de-noised images. For this, we split the 3D image into a 210 

set of cubes and calculated the maximum entropy segmentation threshold (Brink, 1996) 211 

within each cube. The threshold values were tri-linearly interpolated to the entire 3D image.  212 

However, this segmentation approach produced two major artefacts. The objects were 213 

moderately swollen and contained holes resulting from local uneven staining. We used 214 

standard approaches to close the holes by morphological operations (opening/closing), 215 

which unfortunately led to even higher overestimation of the diameter of thin structures, 216 

such as sinusoids and BC. To correct this, we extended the segmentation algorithm by 217 

including the following steps. We generated a triangulation mesh of the segmented surfaces 218 
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by the cube marching algorithm (Lorensen and Cline, 1987) (Figure 3A). Then, we tuned the 219 

active mesh so that the triangle mesh vertexes aligned to the maximum gradient of 220 

fluorescence intensity in the original image (Figure 3A). Finally, we generated a 221 

representation of the skeletonized image via a 3D-graph describing the geometrical and 222 

topological features of the BC and sinusoidal networks. The reconstruction of sinusoidal and 223 

BC networks are shown in Figure 3B and Figure 3C, respectively.  224 

Nuclei were reconstructed similar to the tubular structures. However, as shown in Figure 225 

3—figure supplement 1A-B, closely packed nuclei are optically not well-resolved in 3D 226 

confocal images, resulting in artificially merged structures. Since 30 to 60% (depending on 227 

the animal strain and age) of hepatocytes in adult liver are bi-nucleated, artificial nuclei 228 

merging compromises the tissue analysis. To address this problem, we used a probabilistic 229 

algorithm for double- and multi-nuclei splitting (Figure 3—figure supplement 1). Briefly, the 230 

algorithm first discriminated between mono-, double and multi-nuclear structures by 231 

learning the misfit distribution of triangulation mesh and nuclei approximation by single and 232 

double ellipsoids (Figure 3—figure supplement 1A-G). Then, the seed points for the multi-233 

nuclear structures were detected using the Laplacian-of-Gaussian (LoG) scale-space 234 

maximum intensity projection (Stegmaier et al., 2014) and, finally, the real nuclear shapes 235 

were found using an active mesh expansion starting from the nuclei seeds (see Methods for 236 

details). Tested in both synthetic and real 3D images, the algorithm proved capable of 237 

splitting clustered nuclei with different degrees of overlap (Figure 3—figure supplement 1K) 238 

with an accuracy of over 90%. Although this approach is based on active triangulation mesh, 239 

it achieved similar accuracy values to other recently published voxel-based methods for 240 

nuclei segmentation (Amat et al., 2014, Chittajallu et al., 2015).  241 
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 242 

Cell classification and reconstruction 243 

Generating geometrical models of tissues requires the proper recognition of different cell 244 

types. A previous automated classification system discriminated hepatocytes from non-245 

parenchymal cells in 2D human liver images with a 97.8% accuracy (O'Gorman et al., 1985). 246 

However, the automatic classification of non-parenchymal cells in 3D liver tissue is more 247 

challenging. Given their importance in physiology and disease (Bouwens et al., 1992, Kmiec, 248 

2001, Malik et al., 2002) and the limitation on the number of fluorescent markers that can 249 

be simultaneously imaged, we designed an algorithm to automatically classify different cell 250 

types in the tissue, based on nuclear morphological features. We chose two deterministic 251 

supervised classifiers, Linear Discriminant Analysis (LDA) and Bayesian Network Classifier 252 

(BNC).  LDA, also known as Fisher LDA (Fisher, 1936), is a fundamental and widely used 253 

technique to classify data into several mutually exclusive groups (Duda et al., 2001). It has 254 

been successfully applied for nuclei discrimination in microscopy images (Huisman et al., 255 

2007, Lin et al., 2007). On the other hand, BNCs are more recently developed classifiers 256 

which not only show good performance but also allow for probabilistic classification. In 257 

addition, BNCs reveal the hierarchy of parameters used for the classification (Friedman et 258 

al., 1997), which may provide insights into underlying biological processes. 259 

As input for the classifiers, we manually built a training set of 2301 nuclei using specific 260 

cellular markers (Figure 3—figure supplement 2A) and computed for each nucleus a profile 261 

of 74 parameters (Table 1) describing nuclei morphology, texture and localization relative to 262 

sinusoids and cell borders (density of actin in vicinity of nuclei) (see Methods). For the LDA, 263 

the parameters were ranked using Fisher Score (Duda et al., 2001), and the most relevant 264 



13 
 

ones were selected based on the classification accuracy (Figure 3—figure supplement 2B 265 

and Methods). Independently, the most relevant parameters were selected on the basis of 266 

Bayesian Network structure reconstruction (Friedman et al., 1999) (Figure 3—figure 267 

supplement 2C).   268 

The performance of the classifiers was measured using the leave-one-out cross-validation 269 

method on the training set. Both classifiers recognized hepatocytes with ~ 100% accuracy , 270 

thus further improving the previous performance (O'Gorman et al., 1985). The overall cell 271 

type classification yielded 95.4% and 92.6% accuracy for the LDA and BNC, respectively. 272 

Although discriminating non-parenchymal cells is difficult even for a person skilled in the art, 273 

our algorithms achieved accuracy higher than 90%. The predictive performance of the 274 

classifiers is shown in Figure 3—figure supplement 3A-B. As expected, the first largest 275 

population of cells corresponds to hepatocytes (44.6±2.7%, mean±SEM) followed by 276 

sinusoidal endothelial cells (29.8±2.5%). Surprisingly, we found important quantitative 277 

differences for Kupffer and stellate cells. The percentage of Kupffer cells (8.7±0.7%) was 278 

lower than that of stellate cells (11.2±1.0%), against previous estimates on 2D images 279 

(Baratta et al., 2009). The percentage of other cells was 5.7±0.8%. A 3D visualization of the 280 

localization of the nuclei of the different cell types is shown in Figure 3—figure supplement 281 

3C-F.  282 

Finally, cells were segmented by expansion of the active mesh from the nuclei to the cell 283 

surface. The expansion was either limited to the cell cortex (i.e. the maximum density of 284 

actin) or to contacts with neighbouring cells or tubular structures (Figure 3E). The active 285 

mesh expansion was parameterized by inner pressure and mesh rigidity. However, this 286 

algorithm over-segmented bi-nucleated cells into two cells with a single nucleus.  Therefore, 287 
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we used phalloidin intensity and nucleus-to-nucleus distance to recognize over segmented 288 

multinuclear cells and merge them. A manual check of segmentation of 2559 cells revealed 289 

only ~2% error for hepatocyte segmentation that is a further improvement of the state-of-290 

art achievements by voxel-based segmentation methods (Mosaliganti et al., 2012). The 291 

results of the segmentation of all imaged cellular and subcellular structures in the liver 292 

tissue (i.e. cells, nuclei, sinusoidal and BC networks) are presented in Figure 3E, Figure 3—293 

figure supplement 4, and Videos 2 and 3.  294 

 295 

Model validation 296 

To evaluate the performance of the pipeline for the reconstruction of dense tissues, we 297 

generated a benchmark comprising a set of realistic 3D images of liver tissue. Each synthetic 298 

image consisted of four channels for the main structures forming the tissue, i.e., cell nuclei, 299 

cell borders, sinusoids, and BC. We first generated 3D models of liver tissue based on 300 

experimental data (see Methods). The benchmark models had levels of complexity similar to 301 

that of the real tissue (Figure 3—figure supplement 5-6). Second, we imposed uneven 302 

staining to the models in order to resemble the experimental data. Third, the artificial 303 

microscopy images were simulated by convolving the models according to the 3D confocal 304 

microscope point spread function (PSF) (Nasse et al., 2007, Nasse and Woehl, 2010) and 305 

adding z-dependent Poisson noise. The resulting benchmark image statistics were similar to 306 

those from the images acquired in our experimental setup (see Methods) (Figure 3—figure 307 

supplement 5). Given their general usefulness for testing image analysis software, the 308 

benchmark images and models are provided as supplementary material (Supplementary file 309 

1, 2  and 3). Finally, we applied our 3D tissue reconstruction pipeline to the benchmark 310 
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images and quantified the accuracy of the reconstructed models using the precision-311 

sensitivity framework (Powers, 2011). The overall quality was expressed as F-score, the 312 

harmonic mean between precision and sensitivity. The benchmark tests were performed in 313 

three sets of images with different signal-to-noise ratio (10:1, 4:1, 2:1).  For tubular 314 

structures, we achieved average (over the different noise level sets) F-scores of 0.90±0.04 315 

and 0.73±0.06 for sinusoidal and BC networks, respectively. In the case of the nuclei and cell 316 

segmentation, we found average F-scores 0.91±0.03 and 0.92±0.03, respectively. The 317 

detailed quantifications are shown in Figure 3—figure supplement 7A-L. Additionally, we 318 

measured morphometric parameters of the reconstructed structures such as the average 319 

radius of the tubular structures (BC and sinusoidal networks) and cell volumes. We obtained 320 

values of 2.72±0.13µm (ground truth value = 3.0µm) and 0.58±0.05µm (ground truth value = 321 

0.5µm) for sinusoidal and BC networks, respectively (Figure 3—figure supplement 7M-N). 322 

The average error for cell volume estimation was found to be 5.17±1.97% (Figure 3—figure 323 

supplement 7O).  The benchmark experiments showed high accuracy for the reconstruction 324 

of the “ground truth” models of all the morphologically different structures forming the liver 325 

tissue (Figure 3—figure supplement 7). 326 

 327 

New insights into liver tissue organization from the geometrical model 328 

Next, we applied our software to quantitatively analyse the geometric features of liver 329 

tissue from three adult mice. Geometric features have important implications, e.g. for the 330 

development of models of fluid exchange between blood and hepatocytes (Wisse et al., 331 

1985). A critical parameter for blood flux models is the radius of sinusoids. We measured a 332 

radius of 4.0±1.1μm, a value close to quantifications by electron microscopy (EM) analysis 333 
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(Wisse et al., 1985, Oda et al., 2003, McCuskey, 2008). In the sinusoidal networks, we 334 

determined the angles between two branching arms to be 111.6°±12.37° (Figure 4—figure 335 

supplement 1B), against previous estimates (Hammad et al., 2014). Moreover, the values for 336 

the BC network are similar to the sinusoidal network (110.36°±9.85°, Figure 4—figure 337 

supplement 1B). Additionally, we provided new geometric information such as the 338 

cardinality of the branching nodes (Figure 4—figure supplement 1C).  339 

Recent studies on the morphometric parameters of the liver tissue (Hammad et al., 2014, 340 

Friebel et al., 2015) provided either average values or limited data measurements of the 341 

hepatocytes volume, omitting information on their heterogeneity. We could not only 342 

perform accurate measurements of hepatocytes volumes and poly-nucleation, but also 343 

correlate them with polyploidy and spatial localization within the tissue. Interestingly, we 344 

found a multi-modal distribution of hepatocyte volumes (Figure 4A) in line with 345 

measurements on isolated hepatocytes (Martin et al., 2002). A trivial explanation is that it 346 

reflects the presence of mono- and bi-nucleated hepatocytes. However, we found that this 347 

was not the case. The distribution of volumes of both mono- and bi-nucleated hepatocytes 348 

can be independently described by a mixture of two populations with mean volumes 349 

3126±1302µm3 (~ 14% of cells) and 5313±1175µm3 (~ 10% of cells), and 5678±1176µm3 350 

(~45% of cells) and 10606±1532µm3 (~30% of cells), respectively (Figure 4B-C). Hence, 351 

surprisingly, although the bi-nucleated hepatocytes are assumed to be larger than the 352 

mono-nucleated, we found that a population of mono-nucleated hepatocytes can have a 353 

volume that does not differ from that of bi-nucleated hepatocytes (Figure 4A-C).  354 

Having found such a peculiar size distribution of bi-nucleated hepatocytes, we measured 355 

the total content of DNA per nucleus in every cell sub-population as the integral intensity of 356 
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DAPI (Coleman et al., 1981, Xing and Lawrence, 1991, Dmitrieva et al., 2011, Zhao and 357 

Darzynkiewicz, 2013) (see Methods). The resulting distribution (Figure 4D) shows three well-358 

separated peaks. These presumably correspond to the 2n (diploid nuclei), 4n and 8n 359 

(polyploid nuclei) DNA content previously reported (Guidotti et al., 2003, Martin et al., 360 

2002) (note that this analysis does not resolve the aneuploidy of specific chromosomes 361 

(Faggioli et al., 2011)).  362 

Next we asked how the nuclei are distributed between the mono- and bi-nucleated cell 363 

populations. Interestingly, in the small bi-nucleated hepatocytes (volume < 8000 µm3) both 364 

nuclei had 2n DNA content, whereas in the large hepatocytes (volume > 8000 µm3) both had 365 

4n DNA content. Almost no bi-nuclear hepatocytes (< 1.0%) with different amount of DNA 366 

per nucleus (e.g. one nucleus with 2n and one with 4n) were observed (Figure 4—figure 367 

supplement 2C-D). These results suggest that the hepatocyte volume does not depend on 368 

the number of nuclei but rather on their polyploidy, in agreement with previous reports 369 

(Miyaoka and Miyajima, 2013) . Therefore, we classified hepatocytes with respect to 370 

number of nuclei, volume and DNA content using a hierarchical cluster algorithm. We 371 

identified seven populations, namely 2n, 4n, 8n, 16n for mono-nuclear and 2x2n, 2x4n, 2x8n 372 

for bi-nuclear hepatocytes (Figure 4—figure supplement 2E-F). Four populations (mono-373 

nucleated 2n and 4n, and bi-nucleated 2x2n and 2x4n) were major, representing around 374 

97% of all hepatocytes.  375 

The reports on the spatial distribution of polyploid hepatocytes are controversial (Gentric 376 

and Desdouets, 2014). Whereas some suggest that peri-portal hepatocytes show a lower 377 

polyploidy than the peri-venous ones (Gandillet et al., 2003, Asahina et al., 2006), others 378 

suggest that both regions have similar polyploid compositions (Margall-Ducos et al., 2007, 379 
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Pandit et al., 2012). These discrepancies prompted us to analyse the spatial distribution of 380 

mono- and bi-nucleated hepatocytes within the lobule. We particularly analysed the largest 381 

populations of hepatocytes, 2n, 4n, 2x2n and 2x4n. Strikingly, we found a pronounced 382 

zonation in their localization. Whereas the 2n mono-nucleated were enriched in the PC and 383 

PV regions, mono-nucleated 4n showed a homogeneous distribution between PV and PC 384 

regions (Figure 5). The 2x2n bi-nucleated hepatocytes have a similar pattern as the 2n 385 

mono-nucleated (highly enriched in the CV and PV regions), but the density of 2x4n bi-386 

nucleated was lower in those regions and increased in the middle region (Figure 5). As far as 387 

we know, this is the first time that polyploidy and poly-nuclearity are found to be zonated 388 

and follow a specific pattern. These findings have important implications for both the 389 

structural organization of liver tissue and its proliferating and metabolic activities.  390 

 391 

Application of the pipeline to lung and kidney tissue 392 

 To test the general applicability of the pipeline as well as the robustness of our 393 

algorithms, we applied it to two morphologically distinct tissues, lung and kidney. Lung and 394 

kidney sections were stained for nuclei (DAPI) and the cell cortex (F-actin by phalloidin). 395 

Kidney samples were additionally stained for the apical (CD13) and basal (Fibronectin and 396 

Laminin) cell surface. The pipeline allowed us to generate geometrical reconstructions of 397 

the tissues (Figure 6 and Videos 4 and 5, respectively) without fine-tuning of the 398 

parameters. As proof of principle, we extracted some statistics of the most relevant 399 

structures from each tissue. Structural information from both relatively large structures like 400 

alveoli in lung or glomerulus in kidney, and smaller ones like cells and nuclei were extracted 401 

from the geometrical models. Figure 6—figure supplement 1 and 2 show the statistical 402 
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distributions of some interesting tissue features, such as cell volume and elongation, 403 

number of neighbouring cells, etc. Information about the spatial organization of the alveolar 404 

cells (i.e. their localization relative to the alveoli) in the lung was extracted as well.  405 

For example, in the lung, we found that the alveolar cells constitute around 19% of the 406 

volume, consistent with previous measurements (Irvin and Bates, 2003). In the kidney, we 407 

found that proximal tubule cells have larger volumes than distal tubule cells (Figure 6—408 

figure supplement 2), also in agreement with previous studies (Nyengaard et al., 1993, 409 

Rasch and Dorup, 1997). Altogether, the new data show that our pipeline is versatile and 410 

able to reconstruct geometrical models of tissues with fairly different architectures.   411 
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Discussion 412 

We developed a versatile pipeline that combines new algorithms with established ones 413 

aimed to construct geometrical models of dense tissues from confocal microscopy images 414 

acquired at different levels of resolution. Our pipeline is implemented in a freely available 415 

platform designed to address unmet computational needs. Despite many efforts, the 416 

reconstruction of digital geometrical models of tissues suffers from critical bottlenecks such 417 

as lack of automation, limited accuracy and low throughput analysis (Peng et al., 2010). The 418 

platform developed here overcomes such bottlenecks in that it 1) achieves high accuracy of 419 

geometric reconstruction, 2) can process large volumes of imaged tissue, e.g. a full liver 420 

lobule, 3) increases the image analysis performance to such an extent that the model 421 

reconstruction time is shorter than the biological experimental time and compatible with 422 

middle-throughput (this is achieved by combining the computational efficiency of C++ with 423 

the CPU/GPU multi-threating capabilities), 4) can be run on a regular PC, and 5) provides a 424 

flexible tool for constructing image processing pipelines that are tuneable for specific tissue 425 

and imaging conditions. For the automatic recognition of different cell types, we included 426 

morphological classifiers into the software. The user-friendly pipeline assembly mechanism 427 

allows adjusting the platform for specific tissue analysis demands. The newly developed 428 

algorithms both increase the quality of the results (e.g. 3D image de-noising, local maximum 429 

entropy method, active mesh tuning, cell classification) and deal with problems for which 430 

there appears currently to be no real good solutions available (e.g. correction of tissue 431 

deformation and combination of individual sections in the case of partial tissue removal) 432 

(Figure 1—figure supplement 1). Our platform is implemented as stand-alone free to 433 

download software (http://motiontracking.mpi-cbg.de). Furthermore, we created a 434 
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benchmark of realistic images (with the underlying ground truth model) for the evaluation 435 

of 3D segmentation algorithms in biological images (Supplementary file 1, 2  and 3). 436 

To test its efficacy, we applied it towards the generation of a multi-resolution 437 

geometrical model of liver tissue. The resulting model was used to extract quantitative 438 

measurements of various features of liver tissue organization, such as radius, branching 439 

angles and cardinality of the sinusoidal and BC networks, and to recognise different cell 440 

types based on their morphological parameters. Our analysis revealed an unexpected 441 

zonation pattern of hepatocytes with different size, nuclei and DNA content within the liver 442 

lobule.  Furthermore, we extended the analysis to two additional tissues, lung and kidney, 443 

demonstrating the general applicability and robustness of our platform. 444 

In building our pipeline, we spent considerable effort to improve the accuracy of the 445 

measurements of cell and tissue parameters and preserve their contextual information. The 446 

new algorithms allow correcting major defects originating from tissue sectioning, improve 447 

the segmentation of cellular, subcellular and tissue-level structures, and extract 448 

morphological features and distributions in space. A major limiting factor in the 449 

development of a comprehensive geometrical model is the trade-off between imaging large 450 

volumes of samples to gain a view of the overall tissue architecture and imaging at high-451 

resolution to achieve an accurate description of the structures at the limit of resolution of 452 

the light microscope, e.g. the apical surface of hepatocytes forming the BC. We solved this 453 

problem by imaging the tissue at low-resolution and registering within it the parts of tissue 454 

(the PV-PC area in the case of the liver lobule) imaged at high-resolution. In this way, the 455 

measured morphological features (e.g. BC) and parameters (e.g. cell size) are embedded in 456 

their proper context of tissue architecture. For example, the hepatocyte volume is a 457 



22 
 

parameter that has little value as average without considering the distribution of parameter 458 

values in the lobule (Figure 5). In general, the diversity of geometric features of the cells 459 

within the liver lobule could provide new insights into the regulation of metabolic zonation 460 

(see below).  461 

Our nuclei reconstruction approach achieved accuracy higher than 90%. As shown in 462 

Figure 3—figure supplement 1K, the major source of errors is over-segmented nuclei. 463 

Additional steps to improve nuclei reconstruction, such as the region-merging algorithm 464 

(Chittajallu et al., 2015) to correct for over-segmentation, could reduce such errors. Even 465 

though our cell segmentation method proved able to identify and reconstruct cells with high 466 

accuracy, in a few cases (~2 %), binuclear cells were mistaken for two separate cells due to 467 

weak staining of the cell cortex. Therefore, implementation of additional methods for 468 

enhancing the staining of the cell surface, such as the anisotropic plate diffusion filters 469 

(Mosaliganti et al., 2010, Mosaliganti et al., 2012) could help reducing further the over-470 

segmentation of multi-nuclear cells.     471 

The active mesh tuning allowed improving the accuracy of segmentation of the BC and 472 

sinusoidal networks. This is important since the accuracy of a geometrical model is 473 

indispensable for the development of predictive models of tissue function. For example, a 474 

model of blood flow through the sinusoidal network and exchange with hepatocytes via the 475 

space of Disse (Ohtani and Ohtani, 2008, Wisse et al., 1985) critically depends on the 476 

estimation of the sinusoid diameter. An overestimation of the sinusoidal tube radius would 477 

have major consequences for the predictions of blood cells flow through the sinusoidal 478 

network. Our geometrical model yielded a diameter of the sinusoidal-walled tube equal to 479 

the typical size of erythrocytes and lymphocytes. Therefore, it supports the model of active 480 
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exchange of blood serum and lymph in the space of Disse, whereby blood flux propels cells 481 

through the sinusoids causing waves of capillary walls deformation (McCuskey, 2008, Wisse 482 

et al., 1985). The active mesh tuning algorithm yielded a distribution of the radius of 483 

sinusoid capillaries with a mean value that was 20% lower (Figure 4—figure supplement 1A) 484 

than previously estimated by similar approaches (Hammad et al., 2014, Hoehme et al., 485 

2010), but in line with the values reported by EM (Wisse et al., 1985). The reconstruction 486 

also revealed a large difference with the previously reported angles between two arms of 487 

branching sinusoids (112° vs. 32°, Figure 4—figure supplement 1B). Moreover, the 488 

geometrical model provides correct values for other sinusoidal network parameters such as 489 

number of intersection nodes per mm3 (8.3x104±1.9x104) and network length per mm3 490 

(3.1x106±0.3x106 µm), which appear to have been overestimated in a recent report 491 

(Hammad et al., 2014) (see Methods). The discrepancy between our geometrical model and 492 

others (Hoehme et al., 2010, Hammad et al., 2014) could be due to differences in image 493 

processing and/or experimental procedures (tissue fixation, image acquisition, etc.). One 494 

possible explanation for this discrepancy is that our platform applies the active mesh 495 

approach to the segmentation of structures on different scales (from the apical surface of 496 

hepatocytes forming the BC to cells) and this may yield a more precise geometrical 497 

reconstruction in comparison with voxel-based methods (Figure 3A). 498 

For the marker-less cell type recognition we compared two approaches, the classical LDA 499 

and the more recent BNC, applied to nuclei morphology. The accuracy of both approaches 500 

was comparable, reaching higher than 99% efficiency for hepatocyte recognition and about 501 

92-95% for all cell types. The latter value is highly significant since the distinction between 502 

stellate and sinusoid endothelial cells in the absence of specific markers is challenging even 503 

for a skilled person. The analysis of parameters that were mostly informative for cell type 504 
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discrimination yielded some unexpected results. Although nuclear size and roundness were 505 

traditionally considered a priori as the most relevant parameters to discriminate 506 

hepatocytes from non-parenchymal cells (Baratta et al., 2009, O'Gorman et al., 1985), we 507 

found that they are less informative than the parameters related to nuclear texture (e.g. 508 

moments of lacunarity). The analysis of parameters relevant for cell classification can shed 509 

light on the differences in cell morphology that are difficult to grasp by the naked eye. The 510 

accurate active mesh-based cell shape estimation led to well-separated peaks of cell volume 511 

distribution (Figure 4A-C), which failed to be discriminated by approximation through 512 

Voronoi tessellation (Bock et al., 2010) (data not shown).  513 

The analysis of liver tissue using our software platform revealed some unexpected 514 

biological findings. It is well established that hepatocytes are heterogeneous in size, number 515 

of nuclei (mono and bi-nucleated cells) and DNA content (polyploidy). However, we 516 

observed that these features are not randomly distributed but follow a specific zonation 517 

pattern within the liver lobule. Surprisingly, the mono-nucleated 2n and bi-nucleated 2x2n 518 

hepatocytes were enriched in the CV and PV regions, whereas bi-nucleated 2x4n were more 519 

frequent in the middle region. This particular distribution suggests that polyploidy is 520 

spatially regulated and follows a gradient between CV and PV. Zonation of metabolic 521 

activities in the liver is well known, but zonation of mono- and bi-nucleated cells and total 522 

DNA content (polyploidy) remains controversial. The spatial distribution of hepatocytes 523 

according to their ploidy in the CV-PV axes correlates with the metabolic zonation. This 524 

correlation suggests a possible role of polyploidy in regulating hepatocyte functions in the 525 

liver lobule. Interestingly, two unique populations of cells with stem cell-like properties and 526 

the capacity to repopulate the liver have been recently identified (Ray, 2015, Wang et al., 527 

2015, Font-Burgada et al., 2015). One population located close to the CV, which has been 528 
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implicated in homeostatic hepatocyte renewal (Wang et al., 2015), coincides with the 529 

mono-nucleated 2n cells we identified.  The other population of hepatocytes located near 530 

the PV, which was found to repopulate the liver after injury (Font-Burgada et al., 2015), 531 

could correspond to the low ploidy cells (2n and 2x2n) we observed.  These results inspire 532 

future studies aimed at exploring the mechanisms underlying regulation of mono- vs. bi-533 

nuclearity and polyploidy in the context of liver tissue structure, function and regeneration 534 

(Zaret, 2015, Ray, 2015). In this context the accurate digital geometrical model of tissue is a 535 

valuable resource. 536 

Geometrical models provide the means of extracting structural information as a 537 

precondition for the development of functional models of tissues. They can be a tool for 538 

acquiring accurate quantitative measurements of morphological features and, as such, have 539 

the potential of uncovering the fundamental rules underlying tissue organization. In 540 

addition, the measurement of specific parameters, such as BC and sinusoid diameters, 541 

network cardinality, cell volume and shape, etc., can serve as diagnostic markers of early 542 

stages of tissue dysfunction/repairing, thus providing new tools for clinical research and 543 

drug development.   544 
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Methods 545 

1. Mice and ethics statement 546 

6 – 9 weeks old C57BL/6JOlaHsd mice were purchased from Charles River Laboratory. All 547 

animal studies were conducted in accordance with German animal welfare legislation 548 

and in strict pathogen-free conditions in the animal facility of the Max Planck Institute of 549 

Molecular Cell Biology and Genetics, Dresden, Germany. Protocols were approved by the 550 

Institutional Animal Welfare Officer (Tierschutzbeauftragter) and all necessary licenses 551 

were obtained from the regional Ethical Commission for Animal Experimentation of 552 

Dresden, Germany (Tierversuchskommission, Landesdirektion Dresden)(License number: 553 

AZ 24-9168.24-9/2012-1, AZ 24-9168.11-9/2012-3). 554 

 555 

2. BFBD algorithm for de-noising images of fluorescent microscopy 556 

We took advantage of the fact that point-spread-function of confocal microscopes is 557 

strongly elongated in z-axis and developed a new de-noising algorithm based on the linear 558 

approximation of the image background intensity in the z-direction. Since confocal 559 

microscopy images are photon-limited and therefore obey Poisson statistics, we first found 560 

the parameters ߙ and ߚ that convert the photon counts (ܰ) into the intensity (ܫ) units, such 561 

that: 562 

〈I〉 =  α〈N〉 + β 

where the operator 〈∙〉 represents the average, ߙ is the conversion coefficient from number 563 

of photons to intensity values and ߚ is the offset of the microscope digitisation system (dark 564 

current). 565 
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  For this, we calculated the variance of the intensities between sequential optical z-566 

sections for each X-Y pixel and binned them according to the pixel intensities. Then, the 567 

mean variance was calculated within each bin and, as a result, the dependency of mean 568 

variance upon the intensities was found (Figure 1—figure supplement 2G).  This dependency 569 

was found to be linear, as expected for a Poisson noise model: 570 

V(I) =  αଶ〈N〉 = α(〈I〉 − β) 

where V(I) is the variance for each intensity level 〈I〉. 571 

Moreover, when thick 3D tissue samples are imaged, it is required to use different laser 572 

intensity and microscope gain. This results in an increase of the intensity scaling factor 573 ߙ 

with the image depth. Therefore, we calculated the Poisson noise model for different image 574 

depths (z-direction) and then, we used ߙ and ߚ to estimate the variance for every pixel.  575 

After that, we estimated the background intensity of every pixel. Briefly, for each pixel a 576 

set of sequential intensities in z-direction was extracted (Figure 1—figure supplement 2H, 577 

left).  Then, the intensities were fitted by a straight line using the outlier-tolerant algorithm 578 

described in (Sivia, 1996) (Figure 1—figure supplement 2H, right). The prediction of the 579 

straight line was considered as the background intensity, and the difference between the 580 

measured intensity and background was considered as candidate foreground intensity. The 581 

candidate foreground intensities below a defined threshold (expressed in variance units) 582 

were excluded. Finally, the background was added to the foreground to form the de-noised 583 

image.  584 

To evaluate the performance of our algorithm, we applied it to a set of three artificial 585 

images of BC from our benchmark (2:1 Signal-To-Noise Ratio). Additionally, we applied other 586 

methods such as median filtering, Gauss low-pass filtering and anisotropic diffusion, 587 
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‘PureDenoise’ (Luisier et al., 2010) and ‘Edge preserving de-noising and smoothing’ 588 

(EPDS)(Beck and Teboulle, 2009) for comparison. The performance of each method was 589 

quantitatively evaluated using the metrics Mean Square Error (MSE) and Coefficient of 590 

correlation (CoC), defined as follow: 591 

MSE = ∑ (I୧ − I୧∗)ଶ୧∈ஐ |Ω|   
CoC = ∑ (I୧ − 〈I〉) ∙ (I୧∗ − 〈I∗〉)୧∈ஐ(∑ (I୧ − 〈I〉)ଶ୧∈ஐ ∙ ∑ (I୧∗ − 〈I∗〉)ଶ୧∈ஐ )ଵ/ଶ 

where, Ω is the region of interest in the image, I୧ and I୧∗ are the intensities at voxel i of the 592 

de-noised and noise free (ground truth) images respectively, 〈I〉 and 〈I∗〉 are the mean 593 

intensities of the de-noised and noise free images respectively. We calculated the MSE and 594 

CoC over the whole images (global) as well as in the vicinity of the objects (Figure 1—figure 595 

supplement 3A). For ‘PureDenoise’ and EPDS we selected the best parameters for their 596 

performance before the comparison (Figure 1—figure supplement 3B-C).  The results of our 597 

quantifications are shown in Figure 1—figure supplement 4-5. 598 

 599 

3. Methods for the reconstruction of 3D multi-scale images  600 

3.1. Reconstruction of physical sections 601 

To image large and complex tissue structures such as the liver lobule, we generated a 602 

grid of partially overlapping low-resolution 3D images (stacks) for each individual tissue 603 

section. We applied an image mosaicking procedure to merge the stacks into a single 3D 604 

image of the section (Figure 2A and Figure 2—figure supplement 1A). Our merging 605 

procedure adopts a standard approach to maximize the sum of cross-correlations calculated 606 
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for pairs of neighbouring tiles in the grid. The input dataset for the reconstruction of 607 

physical sections was composed of N-by-M grids of partially overlapping 3D images (Z-608 

stacks) (Figure 2—figure supplement 1A). It is assumed that an approximation of their 609 

overlapping area is known and that transitional image registration is sufficient for 610 

reconstruction purposes.  611 

Let ൫ܼ௫,௬, ܼ௫ᇱ,௬ᇱ൯ be a pair of neighbour images located within the grid (0 ≤ ݔ < ܰ, 0 ݕ 612≥ < ,ܯ 0 ≤ ᇱݔ < ܰ, 0 ≤ ᇱݕ < ,ܯ ݔ| − |ᇱݔ = 1 ⋎ ݕ|  − |ᇱݕ = 1), and ܥ௫,௬,௫ᇱ,௬ᇱ(݅, ݆, ݇) the 613 

cross-correlation of their overlapping areas. The quality of their local alignment for a given 614 

shift (݅, ݆, ݇) is measured by the corresponding value of the cross-correlation 615 ܥ௫,௬,௫ᇱ,௬ᇱ(݅, ݆, ݇). The goal of the reconstruction is to find a set of shifts (݅, ݆, ݇)  (one for each 616 

image) that maximizes the global metric: 617 

,݅)ܩ ݆, ݇) =    ,௫,௬,௫ᇱ,௬ᇱ൫݅௫,௬ܥ ݆௫,௬, ݇௫,௬൯(௫ᇲ,௬ᇲ)∈ሼ(௫ାଵ,௬),(௫,௬ାଵ),(௫ାଵ,௬ାଵ)ሽ௫ᇲ∈[,ே[ ⋏௬ᇲ∈[,ெ[
ெ

௬ୀ
ே

௫ୀ  

To solve this maximization problem, we used the optimization technique proposed in 618 

(Griffiths et al., 1999), which allowed finding the appropriate shifts with high accuracy 619 

(Figure 2—figure supplement 1B). All input 3D images were shifted according to the 620 

optimization results and registered using the multi-band blending approach (Burt and 621 

Adelson, 1983, Brown and Lowe, 2003). 622 

 623 

3.2. Bayesian algorithm for the detection of the surface of tissue sections   624 

Most publicly available 3D image stitching methods were developed for EM data, where 625 

the samples are first embedded in resin or deep-frozen, which makes them solid and 626 
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prevents partial removal of tissue by cutting. Therefore, they are based on local correlation 627 

of the images (Saalfeld et al., 2012, Hayworth et al., 2015). In the case of soft tissues, the 628 

removal of tissue upon cutting is much more significant, leading to a lack of texture 629 

correlations between two adjacent sections. The sample preparation process introduces 630 

several mechanical artefacts to the imaged sample, including uneven thickness of the 631 

section and tissue bending. When large vessels are aligned along the section surface it 632 

becomes difficult to determine whether the empty space corresponds to the interior of the 633 

vessel or section damages or bending, which constitutes a major obstacle in their 634 

segmentation (Figure 2—figure supplement 1C). To address this issue, we propose a surface 635 

detection method, which uses prior distributions of expected section shape to find the 636 

border between the volume of the image of the sample (including blood vessels) and the 637 

out-of-field region.  638 

Our approach is based on Bayesian statistics. According to the Bayes theorem: 639 

p(yଵ, yଶ|y୫ଵ, y୫ଶ) = p(y୫ଵ, y୫ଶ|yଵ, yଶ)p(yଵ, yଶ)p(y୫ଵ, y୫ଶ)  

Using the chain rule to obtain the joint probability distribution p(yଵ, yଶ), we got: 640 

p(yଵ, yଶ|y୫ଵ, y୫ଶ) ≈ p(y୫ଵ, y୫ଶ|yଵ, yଶ)p(yଵ|yଶ) p(yଵ) 

The empirical analysis of several tissue sections with manually specified surfaces allowed 641 

us to estimate the probabilities (y୫ଵ, y୫ଶ|yଵ, yଶ), p(yଵ|yଶ) and p(yଵ)  :  642 

p(y୫ଵ, y୫ଶ|yଵ, yଶ) = ෑ ݏߨ1 ൬1 + ቀݕଵ,௫,௬ − ݏଵ,௫,௬ݕ ቁଶ൰ ݏߨ1 ൬1 + ቀݕଶ,௫,௬ − ݏଶ,௫,௬ݕ ቁଶ൰௫,௬  

p(yଵ|yଶ) = ෑ ߪߨ2√1 ݔ݁ ൭൫ݕଶ,௫,௬ − ଶߪଵ,௫,௬൯ଶ2ݕ ൱௫,௬  
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p(yଵ) = ෑ ෑ ෑ ଵ,௫ାఌ௫,௬ାఌ௫ݕหߣ−൫ݔ݁ ߣ − ଵ,௫,௬ห൯ఌ௬∈[ିଵ,ଵ]ఌ௫∈[ିଵ,ଵ]௫,௬ݕ  

Where  ݏ  is a parameter that specifies how close the real surface is to the measured one,  643 ߪ 

describes the variability of the section thickness, ߣ specifies the smoothness of the real 644 

surface and (ݔ,  are the coordinates of the real surface nodes.  645 (ݕ

By analysing our benchmark dataset, we found that the Median Absolute Deviation 646 (ݐெ) of the section thickness |ݕଶ −  ଵ| constituted a good approximation for the 647ݕ

parameters  ݏ  and ߪ. The parameter ߣ was found by the maximum likelihood estimation of 648 

the empirical distribution measured from the maximum entropy segmentation. Then, the 649 

final posterior probability for surface detection has the following form:  650 

p(y୫ଵ, y୫ଶ|yଵ, yଶ)
≈ ෑ 2ߨ1 ெݐ ቌ1 + ൭ݕଵ,௫,௬ − 2ߨଵ,௫,௬ݕ ெݐ ൱ଶቍ 2ߨ1 ெݐ ቌ1 + ൭ݕଶ,௫,௬ − 2ߨଶ,௫,௬ݕ ெݐ ൱ଶቍ௫,௬

× ෑ ߨ2√1 2ߨ ெݐ ݔ݁ ቌ൫ݕଶ,௫,௬ − ଵ,௫,௬൯ଶ2ݕ ቀ2ߨ ெቁଶݐ ቍ௫,௬
× ෑ ෑ ෑ ଵ,௫ାఌ௫,௬ାఌ௫ݕெหߣ−൫ݔ݁ ெߣ − ଵ,௫,௬ห൯ఌ௬∈[ିଵ,ଵ]ఌ௫∈[ିଵ,ଵ]௫,௬ݕ  

To check whether the surface energy model of this equation can be applied to different 651 

images, we created a benchmark dataset composed of 10 section images with manually 652 

segmented surfaces. The model distributions p(y୫ଵ, y୫ଶ|yଵ, yଶ), p(yଵ|yଶ) and p(yଵ) closely 653 

matched with the corresponding empirical distributions calculated from the manual 654 

detection (Figure 2—figure supplement 1D-F).    655 
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The proposed model was used for the automated surface detection by minimizing the 656 

posterior probability p(yଵ, yଶ|y୫ଵ, y୫ଶ). This minimization was performed using Iterative 657 

Conditional Modes. The surfaces calculated by the maximum entropy approach were used 658 

as initial guess. To evaluate the quality of the automatically detected surfaces, we created a 659 

benchmark dataset composed of 30 sections collected from three tissue samples. The 660 

average displacement between the manual and the automatic segmentation was 661 4.53 ± 1.12 voxels (Figure 2—figure supplement 1G-H).  662 

 663 

3.3. Segmentation of tissue-level networks  664 

The goal of the segmentation of tissue-level networks is to identify the volume of a 665 

sample, which is occupied by large vessels such as CV, PV, hepatic artery or bile ducts. These 666 

structures appear in the images as empty volume (Figure 2—figure supplement 2A); 667 

therefore, their segmentation is possible without using a specific staining.  668 

The direct application of thresholding methods like maximum entropy (Kapur et al., 1985) 669 

is troublesome due to several obstacles that arise from sample preparation artefacts. First, 670 

mechanical distortions such as uneven cutting of the section or tissue bending during 671 

imaging are introduced in the imaged sample. Since large vessels are not stained, it is 672 

impossible to distinguish them from out-of-field region using only the voxels intensities. 673 

Second, image intensities vary spatially within the sample due to uneven staining. In 674 

consequence, a global threshold underestimates the size of vessels in the bright regions of 675 

the image and overestimates it in the dark ones. To address these problems we introduced 676 

two pre-processing steps. At first, we used the detected surfaces of the section to 677 

discriminate the parts of the image belonging to the sample from the ones in the out-of-678 
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field region. Subsequently, the 3D images (excluding the out-of-field region) were split into 679 

regular grids of overlapping sub-regions and the maximum entropy threshold was calculated 680 

for each of them. After that, the threshold values were interpolated over the entire image 681 

using trilinear interpolation (Figure 2—figure supplement 2B). Finally, the vessels were 682 

segmented using the calculated threshold values (Figure 2—figure supplement 2C).   683 

 684 

3.4. Multi-resolution image positioning  685 

Multi-resolution image positioning involves the rigid-body registration of a high-686 

resolution 3D Image (moving image) within the reconstructed low-resolution image of a 687 

section (fixed image). Since individual images have sizes up to 500 Mpx, we performed the 688 

image registration in the scaled-space using a stepwise approach.  689 

We built a three-level scale pyramid using the original images and their copies scaled by 690 

factors of 0.50 and 0.25. The last level of the pyramid was used to find an initial 691 

approximation for the rigid-body registration, which was performed by rotating the moving 692 

image with respect to the fixed image. The rotation (r) with the highest value of cross-693 

correlation was used as initial guess for further alignment. 694 

Then, a registration based on polar transformations (Wolberg and Zokai, 2000) was 695 

performed. First, the relative shift between two images was found by the peak of their 696 

normalized cross-correlation, the images were shifted accordingly and its overlapping part 697 

was cropped. Second, the cropped images were transformed to polar coordinates (where a 698 

shift is equivalent to a rotation in the Cartesian coordinate system) and their normalized 699 

cross-correlation was calculated. The updated angle r was extracted from the peak of the 700 

cross-correlation of the transformed image. Note that the initial estimation of r (± 15) 701 
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found in the initial step is required for the convergence of the polar registration.  The polar 702 

registration procedure was repeated subsequently using the images stored in the second 703 

and first level of scale pyramid, which results in the increase of the registration accuracy and 704 

computational time in each iteration of the algorithm. 2-3 iterations were sufficient to 705 

achieve full convergence and register images with subcellular accuracy (Figure 2—figure 706 

supplement 2D-F). 707 

 708 

4. Methods for 3D image segmentation 709 

4.1. Nuclei splitting algorithm 710 

In order to split artificially clustered structures either the volumetric data from the 711 

segmented image or the triangle meshes of the reconstructed objects can be used (Bilgin et 712 

al., 2013).  We used the information of the triangle meshes in a probabilistic algorithm, 713 

which first learns from the error distribution for the nuclei approximation by single and 714 

double ellipsoids. Based on the extracted statistics, the algorithm identifies and splits multi-715 

nuclear structures. Further, we will refer to both the mono- , bi- and multi-nucleated 716 

structures as 3D-objects.  717 

First, all 3D-objects were approximated by single and double overlapping ellipsoids. The 718 

first model corresponds to the minimum volume ellipsoid (MVE) that encloses the vertexes 719 

of the triangle mesh (Figure 3—figure supplement 1D). For the second model, the triangle 720 

mesh was symmetrically split in two subsets and each subset was approximated by a MVE 721 

(Figure 3—figure supplement 1E). Both models were evaluated on the data (vertexes) by 722 

using mean square error (MSE): 723 
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MSE =  1n − 9 ((p୧ − c)E(p୧ − c) − 1)ଶ୬
୧ୀଵ  

Where ݊ is the number of vertexes,  is the coordinates vector of the vertex ݅, ܿ is the 724 

centre of the ellipsoid and ܧ is the matrix describing the orientation and dimensions of the 725 

ellipsoid. The model with the lowest MSE was selected as the best model for the 3D-Object.  726 

Second, the error distribution (from the best models) resulting from the first step was 727 

analysed as follows: The natural logarithm of each MSE value was computed and the 728 

resulting histogram was fitted with a sum of two Gaussian distributions (Figure 3—figure 729 

supplement 1F). The two distributions were split by a threshold value, which was chosen 730 

such that it corresponded to the upper limit of the 95% confidence interval of the first 731 

component (the one with lowest mean value) (Figure 3—figure supplement 1G). The objects 732 

whose ݈݊(ܧܵܯ) is smaller than the threshold corresponds either to one nucleus or two 733 

overlapping nuclei, and the rest corresponds to multi-nuclear structures. The 3D objects 734 

recognized as two overlapping ellipsoids were reconstructed using the models as 735 

boundaries to split the initially segmented images. 736 

The multi-nuclear objects were split following two steps: first the nuclei seeds were 737 

detected as proposed in (Stegmaier et al., 2014) and then the real shape of the nuclei was 738 

found by an active mesh expansion from the seeds. The nuclei seeds were extracted from 739 

the Laplacian of Gaussian scale-space maximum intensity projection (LoGMP) image 740 

(Stegmaier et al., 2014): 741 

LoGMP(x, σ୫୧୬, σ୫ୟ୶) =  maxౣஸஸౣ౮ LoG(x, σ) 

where LoG(x, σ) represents the Laplacian of Gaussian filtered image found using a standard 742 

deviation σ.  Considering that the radius (r) of the objects to be detected is given by 743 
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r =  √2σ (Al-Kofahi et al., 2010),  σ୫୧୬  and σ୫ୟ୶ are determined by a priori knowledge of 744 

the typical size of the nuclei we want to detect.  Each local maximum in the LoGMP image 745 

corresponds to a nuclei seed. Then, we used an active mesh expansion from the seeds to 746 

the real shape of the nuclei. The expansion was either limited to the nuclei border (regions 747 

of maximum intensity at the complement image of the LoGMP) or to the contact with 748 

neighbouring nuclei (Figure 3—figure supplement 1H-J).  749 

 750 

5. Methods for cell classification  751 

5.1. Feature extraction 752 

For each nucleus a profile of 74 parameters was calculated (Table 1). We used the 753 

information of the triangle mesh of the reconstructed nucleus as well as the information of 754 

the DAPI, Flk1 and phalloidin channels. All channel intensities were normalized using 755 

histogram equalization before the parameter extraction. The parameters include: 756 

-  Nuclear geometrical properties: Volume (ܸ), surface area (ܣ), all possible ratios 757 

between the lengths of the semi-principal axis (ܽ, ܾ, ܿ) of the MVE, sphericity (ߝ =758 

గభ/య()మ/య ), mean and variance values of nucleus radius, shape index (Levitt et al., 2004) and 759 

curvature variation measure (Sukumar et al., 2005). 760 

- DAPI and Flk1 intensity-based features: Mean, standard deviation, skewness and 761 

kurtosis values of the intensity inside the nucleus. 762 

- Haralick texture features (Haralick et al., 1973): The intensity of DAPI inside the nucleus 763 

was used. 13 statistical features were extracted from the normalized grey-level co-764 

occurrence matrix, which was calculated from 65 independent co-occurrence matrices 765 
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(considering all possible 13 directions in 3D and 5 different distances from 1 to 5 pixels).  All 766 

co-occurrence matrices were calculated using 256 grey-levels. 767 

- Box-counting (BC) (Lopes and Betrouni, 2009) and Minkowski–Bouligand (MB) (Einstein 768 

et al., 1998) fractal dimensions: In both cases the intensity of DAPI inside the nucleus was 769 

used. Integer values from 1 to 5 pixels were used as box length and radius values for the 770 

respective calculations. For the box-counting, the gliding box method was applied. 771 

 -Mean weighted lacunarity (Einstein et al., 1998): it was calculated for the intensity of 772 

DAPI inside the nucleus using box lengths from 1 to 5 (lacunarity1, lacunarity2, etc.). 773 

Additionally, the values of the normalized lacunarity (NormLac2 = lacunarity2/ lacunarity1, 774 

etc.), and the natural logarithms of lacunarity (LogLac1, LogLac2, etc.), and normalized 775 

lacunarity (LogNormLac2, etc.) were extracted. 776 

- DAPI mean surface intensity gradient: The surface gradient of DAPI signal was calculated 777 

at the centre of each triangle of the mesh. The mean value was calculated using a weighted 778 

average (using the area of the triangles as weights). 779 

- Phalloidin and Flk1 intensity at different distances of the nucleus surface:  the mean 780 

signal intensity (phalloidin or Flk1) at different distance (0 to 10 voxels) from the triangle 781 

mesh was calculated.  782 

 783 

5.2. Feature selection for the Linear Discriminant Analysis (LDA) 784 

In order to get the most relevant parameter for the LDA classifier we used the Fisher 785 

score and one-leave-out cross-validation as measure of the classifier accuracy. Firstly, the 786 

Fisher scores (ܨ) was calculated for each parameter i  as follows: 787 
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F୧ =  ∑ ݊൫u୩୧ − u୧൯ଶ୫୩ୀଵ∑ ݊൫σ୩୧ ൯ଶ୫୩ୀଵ  

where m is the number of classes, ݊ is the size of the k-th class, u୩୧  and σ୩୧  are the mean 788 

values and the standard deviation of the parameter ݅  for the k-th class, u୧ is the mean value 789 

of the parameter ݅ over the whole sample. 790 

The parameters were sorted based on F୧ (Table 1) and systematically added to the 791 

classification while the accuracy of the algorithm was calculated, e.g., the first parameter 792 

from the sorted vector was taken, the classification was performed and the accuracy was 793 

calculated, then the second parameter was added and the process was repeated. Figure 3—794 

figure supplement 2B shows how the classifier accuracy depends on the number of 795 

parameters used in the classification. For further analysis, only the set of parameters that 796 

yielded the highest accuracy was used.  797 

The LDA was performed in three independent steps. Each corresponds to a two-class 798 

classification. First, hepatocytes were classified from other nuclei, then SECs were classified 799 

from the remaining nuclei and finally the rest of nuclei were classified either into Kupffer or 800 

stellate cells.  801 

 802 

5.3. Cell classification by Bayesian Network 803 

The training set was presented as a vector of 75 parameters. The first one corresponded 804 

to the cell type and the following 74 were the measured nucleus features. Each parameter 805 

was discretised into 5 bins with equal population. Then we calculated the mutual 806 

information ܫܯ between every parameter and the cell type parameter as 807 
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,ܺ)ܫܯ ܻ) =   ,ݔ)ܲ ݈݊(ݕ ቆ ,ݔ)ܲ ቇ௫,௬(ݕ)ܲ(ݔ)ܲ(ݕ  

where ܺ and ܻ denote sets of parameters, ݔ and ݕ denote instances of parameters. The 808 

probabilities were calculated from the training set as  809 

(ݔ)ܲ = ݊௫ + 1∑ ݊௫ + ௫ݎ  

where ݊௫ denotes the number of instances in the bin ݔ and ݎ is the number of bins (in our 810 

case ݎ = 5 for all parameters but the first one). Then the parameters were sorted in descent 811 

order according to the mutual information. The structure of Bayesian Network was learned 812 

from the training data by the K2 algorithm (Heckerman et al., 1995) (Figure 3—figure 813 

supplement 2C). For each nucleus, the probability for each cell type was calculated. The type 814 

with the highest probability was taken as classification output. 815 

 816 

6. Validation of the resulting model 817 

6.1. Benchmark for the evaluation of 3D reconstructions of dense tissue 818 

We generated a set of artificial images of liver tissue that can be used for developing and 819 

evaluating methods for the reconstruction of geometrical models of dense tissue. The 820 

benchmark consists of a set of realistic 3D high-resolution images (0.3݉ߤ × ݉ߤ0.3 ×  821 ݉ߤ0.3

per voxel) of normal liver tissue. To generate artificial images that emulate the complexity of 822 

the real tissue images as well as exhibit meaningful biological characteristics, we extracted 823 

data from real images to produce idealized ground truth images of the main structures 824 

forming the tissue, i.e., nuclei, sinusoids, BC and cell borders.  Then distortions coming from 825 

different sources such as uneven staining, optical distortion due to the PSF of the confocal 826 
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microscope and spatially variation of Poisson noise were added to the idealized ground 827 

truth images (Figure 3—figure supplement 5).  828 

The ground truth images were generated as follows: 1) the initial outlines were extracted 829 

from three real 3D images: central lines of the tubular networks (e.g. BC and sinusoids), 830 

position of the nuclei centres and cell borders, 2) idealized structures were built on top of 831 

the outlines: solid tubes with a constant radius of ~0.5µm for the BC networks, hollow tubes 832 

with constant internal (~2.5µm) and external (~3.0µm) radius for the sinusoidal networks, 833 

solid spheres with radius between ~3.5 and ~5.5 µm for the nuclei and solid border of 834 

~0.5µm  width for the cells.  835 

Next, the uneven staining was simulated by applying random intensities at different scale 836 

levels. Briefly, first a 6 × 6 × 6 binning was applied to a black image and an intensity value 837 

extracted from a log-normal distribution with mean 1000 a.u. and standard deviation 0.5 838 

was assigned to each binned voxel. Next, the image was unbinned and the new intensity 839 

values of each pixel were extracted from a log-normal distribution with mean equal to the 840 

original value and standard deviation 0.2. Finally, the uneven stained image was obtained by 841 

applying a mask (ground truth) to the generated one. Additionally a homogeneous 842 

background (10:1, 4:1 and 2:1 Signal-to-Noise Ratios) was added to the images. (Figure 3—843 

figure supplement 5A-B). 844 

In thick samples far from the coverslip, the acquired images are highly distorted by the 845 

illumination PSF, leading to an asymmetric smearing of the image in z-direction (Nasse et al., 846 

2007, Nasse and Woehl, 2010). We convolved the uneven stained images with realist PSFs 847 

(Figure 3—figure supplement 5C-D). The PSFs were generated using different excitations 848 

wavelengths for each structure: 568, 647, 780 and 488 nm for BC, sinusoids, nuclei and cell 849 
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borders, respectively.  Finally, we added Poisson noise with different scaling factors 850 

according to the models extracted from the real data (Figure 3—figure supplement 5E-G). 851 

An example of the resulting images is shown in Figure 3—figure supplement 6. 852 

  853 

6.2. Internal consistency of the data extracted from sinusoidal network 854 

reconstruction 855 

In order to check the internal consistency of the morphometric features that we 856 

extracted from the reconstructed sinusoidal networks, we independently calculated the 857 

fraction of volume of the sinusoids (Vୱ), the length of the sinusoidal network per volume 858 

unit (L௦) and the average radius of the network (rୱ). Then, we estimated the fraction of 859 

volume of sinusoids (Vୡ) using  L௦ and rୱ, and approximating the tubular network by a 860 

cylindrical network. We found that Vୡ Vୱ = 0.99 ± 0.09⁄ , showing the internal consistency 861 

of our data. When applying the same calculation to the data reported in (Hammad et al., 862 

2014), we found Vୡ Vୱ = 2.55⁄ , which suggests an over-estimation of the network 863 

parameters (e.g. number of intersection nodes per mm3, network length per mm3); see 864 

Table 2.  865 

 866 

7. Quantitate analysis of liver tissue architecture 867 

7.1. DAPI integral intensity calculation 868 

For each nucleus, the total content of DNA was calculated as the integral intensity of the 869 

original DAPI image inside the corresponding 3D triangle mesh. Since calculation was 870 

performed for 3 independent samples, the integral intensity per nucleus was normalized to 871 
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the intensity of first one. Briefly, the distribution of DAPI integral intensity per nucleus was 872 

independently calculated for each sample (Figure 4—figure supplement 2). Then, each 873 

distribution was aligned (stretched) to the reference one (the first one in our case) by 874 

minimizing the functional: 875 

d୨ = ∑ ቀf (x୧)ቁଶ୧ − ∑ ቀf (x୧) ∙ f ୨(s ∙ x୧ଵ)ቁ୧∑ ቀf ୨(s ∗ x୧ଵ)ቁଶ୧  

where  ∑୧  is the sum over the bins of the distributions, f (x୧) is the height of the i bin 876 

of the reference curve, f ୨൫x୧୨൯ is the height of the i bin of the ݆ curve to be aligned, and s is 877 

the scaling (stretching) factor.  878 

We found scaling factors 1.19 and 0.93 for the second and third samples respectively. 879 

Finally, the DAPI integral intensity of each nucleus was recalculated using the corresponding 880 

scaling factor.   881 
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Figure titles and legends 1126 

Figure 1: Scheme representation of the proposed pipeline. (A) 3D multi-resolution image 1127 

acquisition:  Example of arrays of 2D images of liver tissue acquired at different resolutions. 1128 

Low-(1݉ߤ × ݉ߤ1 × ݉ߤper voxel) and high-(0.3 ݉ߤ1 × ݉ߤ0.3 ×  per voxel) 1129 ݉ߤ0.3

resolution images on the left and right sides, respectively.  (B) Multi-scale reconstruction of 1130 

tissue architecture: On the left, reconstruction of a liver lobule showing tissue-level 1131 

information, e.g. the localization and relative orientation of key structures such as the PV 1132 

(orange) and CV (light blue). The high-resolution images registered into the low-resolution 1133 

one are shown in white. On the middle, a cellular-level reconstruction of liver showing the 1134 

main components forming the tissue, e.g. BC network (green), sinusoidal network (magenta) 1135 

and cells (random colours). The reconstruction corresponds to one of the high-resolution 1136 

cubes (white) registered on the liver lobule reconstruction (left side).  On the right, 1137 

reconstruction of a single hepatocyte showing subcellular-level information e.g. apical 1138 

(green), basal (magenta) and lateral (grey) contacts.  (C) Quantitative analysis of the tissue 1139 

architecture: Example of the statistical analysis performed over a morphometric tissue 1140 

parameter (hepatocyte volume) using the information extracted from the multi-scale 1141 

reconstruction. On the left, hepatocyte volume distribution over the sample (traditional 1142 

statistics). On the right, spatial variability (spatial statistics) of the same parameter within 1143 

the liver lobule. Our workflow allows not only to perform traditional statistical analysis of 1144 

different morphometric parameters but also to perform spatial characterizations of them.  1145 

The graphs were generated from the analysis of one high-resolution cube of the multi-scale 1146 

reconstruction (the one shown in panel B-middle). Boundary cells were excluded from the 1147 

analysis. 1148 
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Figure 2: Reconstruction of a multi-scale lobule image. (A) Scheme representing a single 1149 

serial section obtained from a grid of MxN partially overlapping 3D images (tiles). The cross-1150 

correlation between two neighbouring tiles in the grid provides a local metric, which 1151 

describes the value of their relative shifts. The reconstruction of each section was 1152 

performed by maximizing the sum correlations of each tile to all adjacent tiles (See Methods 1153 

for details). (B-C) Correction of tissue deformations (introduced during the sample 1154 

preparation process) using a surface detection algorithm and β-spline transformation. (B) 1155 

Output of the surface detection algorithm. The proposed Bayesian approach uses prior 1156 

information about expected bending of the section, its thickness and measurement error 1157 

(See Methods for details) to determine the volume of the image belonging to the tissue and 1158 

to the out-of-field region. (C) The tissue section after correcting its bending by using 1159 

quadratic β-splines. (D) Tissue section before (left) and after (right) the correction of the 1160 

mechanical distortions and the tissue damage. (E) Full lobule-level reconstruction 1161 

established by the alignment of 6 low-resolution sections (1݉ߤ × ݉ߤ1 ×  per voxel) 1162 ݉ߤ1

and the interpolation of blood vessels. 2 high-resolution images (0.3݉ߤ × ݉ߤ0.3 ×  1163 ݉ߤ0.3

per voxel) were registered in the low-resolution reconstruction and are shown in grey (see 1164 

Video1). 1165 

Figure 3: Reconstruction of tubular structures, nuclei and cells. (A) A single 2D image section 1166 

is shown with the contours of the sinusoidal network reconstruction overlaid on the de-1167 

noised image. The contours of the initial mesh are drawn in yellow and the ones of the 1168 

tuned mesh are drawn in cyan.  (B-E) 3D representation of the different structures 1169 

segmented in a sample of liver tissue: sinusoids (B), BC (C), nuclei (D) and cells (E). All the 1170 

reconstructed structures are shown together in (F). The reconstructed triangle meshes are 1171 
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drawn inside the inner box and the raw images are outside. In the case of tubular networks 1172 

(i.e. Sinusoids and BC), the central lines of the structures are shown together with the raw 1173 

images.    1174 

Figure 4: Distribution of hepatocyte volumes and DAPI integral intensity per cell for all 1175 

hepatocytes (A, B) and separated by number of nuclei (B, C and E, F). Whereas experimental 1176 

data are shown by dots, the log-normal components fitted to data are shown by solid lines. 1177 

(A) Cell volume distribution of all hepatocytes. (B-C) Cell volume distribution obtained for 1178 

mono and bi-nucleated hepatocytes, respectively. (D) Distribution of DAPI integral intensity 1179 

(proportional to the content of DNA) of all hepatocytes. (E-F) Distributions of DAPI integral 1180 

intensity obtained for mono and bi-nucleated hepatocytes, respectively. The analysis was 1181 

performed on 2559 hepatocytes (excluding boundary cells) from three adult mice. 1182 

Figure 5: Relative density of different sub-populations of hepatocytes as function of CV-PV 1183 

axis coordinate. (A, C, E, G) Relative density of 2n mono-nucleated, 2x2n bi-nucleated, 4n 1184 

mono-nucleated, 2x4n bi-nucleated hepatocytes, respectively. (B, D, F, H) 3D visualization of 1185 

the corresponding sub-populations of hepatocytes. The colour coding is the same as in 1186 

panels A, C, E and F. The analysis was performed on 2559 hepatocytes (excluding boundary 1187 

cells) from three adult mice. The CV-PV axis is determined by the coordinate χ, which 1188 

describes the position of a point relative to the closest CV and PV. 1189 

߯ = 50 × ቀหିௗೡหି|ିௗೡ| + 1ቁ , where ݀௩ and ݀௩  are the distances to the closest CV and 1190 

PV respectively, and ܦ is the CV-PV distance. ߯ takes values between 0 and 100, where 0 1191 

and 100 represents a localization at the CV and PV surfaces respectively. 1192 
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Figure 6: Reconstruction of geometrical models of lung and kidney tissues. 3D 1193 

representation of the different structures segmented in each tissue: (A, C) nuclei and (B, D) 1194 

cells in the lung and kidney tissues, respectively.  The triangle meshes are drawn inside the 1195 

inner box and the raw images outside.    1196 
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 Tables 1197 

Parameter F-Score Parameter F-Score 
FLK1 Surface Intensity 1 vx 4.802 Mean Radius 0.920 
FLK1 Surface Intensity 0 vx 4.737 FLK1 KURT 0.915 
FLK1 Mean 4.674 MB Frac Dim 0.904 
FLK1 Surface Intensity 2 vx 4.570 Log Lac2 0.885 
FLK1 Surface Intensity 3 vx 4.100 HF2 0.833 
Phallo Surface Intensity 2 vx 3.477 HF13 0.825 
FLK1 Surface Intensity 4 vx 3.453 HF3 0.817 
Phallo Surface Intensity 1 vx 3.430 Phallo Surface Intensity 9 vx 0.787 
FLK1 SKEW 3.351 Surface Area 0.768 
Phallo Surface Intensity 3 vx 3.253 Log Lac 3 0.718 
Phallo Surface Intensity 0 vx 3.236 Radius Variance 0.669 
Norm Lac 3 2.930 Volume 0.668 
Norm Lac 2 2.913 BC Frac Dim 0.649 
FLK1 Surface Intensity 5 vx 2.857 Log Lac 4 0.612 
Norm Lac 4 2.847 Phallo Surface Intensity 10 vx 0.554 
Phallo Surface Intensity 4 vx 2.838 Log Lac 5 0.536 
Norm Lac 5 2.753 Sphericity 0.423 
Phallo Surface Intensity 5 vx 2.347 HF7 0.408 
FLK1 Surface Intensity 6 vx 2.310 Shape Index 0.402 
HF9 2.141 Lacunarity 1 0.381 
FLK1 Surface Intensity 7 vx 1.893 b/c 0.342 
Phallo Surface Intensity 6 vx 1.868 Lacunarity 2 0.333 
HF5 1.575 Lacunarity 3 0.309 
HF8 1.554 Lacunarity 4 0.295 
FLK1 Surface Intensity 8 vx 1.552 HF4 0.287 
HF11 1.471 Lacunarity 5 0.285 
Phallo Surface Intensity 7 vx 1.444 HF12 0.153 
a/c 1.406 DAPI Sd 0.123 
Log Lac 1 1.287 DAPI Gradient Surface 0.094 
FLK1 Surface Intensity 9 vx 1.265 Log Norm Lac 2 0.087 
HF6 1.158 CVM 0.076 
Phallo Surface Intensity 8 vx 1.084 Log Norm Lac 3 0.062 
FLK1 Surface Intensity 10 vx 1.018 Log Norm Lac 4 0.045 
HF1 0.978 DAPI SKEW 0.035 
FLK1 Sd 0.942 Log Norm Lac 5 0.033 
HF10 0.939 DAPI Mean 0.029 
a/b 0.937 DAPI KURT 0.022 
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Table 1:  List of the 74 parameters calculated for the nuclei classification. The parameters 1198 

are sorted based on their Fisher score, which is a measure of the discriminative power of the 1199 

parameter.   1200 

Sample ࢙ࢂ 
~ࢉࢂ ࢙࢘ ࢙ࡸ ࣊ × ࢙࢘ ×  ࡿࡸ

ࢉࢂ ൗൣ࢙ࢂ ⁄ ൧ ൣ × ൧ 

1 0.16 2853.4 4.05 0.15 0.92 

2 0.14 2976.4 3.75 0.13 0.95 

3 0.20 3505.8 4.50 0.22 1.09 

Hammad, S. et al 0.15 5400.0 4.80 0.39 2.55 

 1201 

Table 2: Internal consistency of the sinusoidal network data. The fraction of volume of the 1202 

sinusoids (Vs) , the length of the sinusoidal network per volume unit (Ls) and the average 1203 

radius of the network (rs) were measured independently for each sample. A theoretical 1204 

approximation of the fraction of volume of the sinusoids (Vc), considering it consists of ideal 1205 

cylinders, was calculated ( ܸ~ߨ × ௦ଶݎ ×  ௦ ). Then, the ratio between the measured and the 1206ܮ

calculated fractions of volume ൭ ܸ ௦ܸൗ ൱ was calculated. Values close to 1.0 reflect auto 1207 

consistency on the data. We performed the same calculation with the data reported in 1208 

(Hammad et al., 2014)  1209 
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Figure supplements 1210 

Figure 1—figure supplement 1: Workflow for the multi-scale reconstruction of tissue 1211 

architecture from multi-resolution confocal microscopy images. The necessary methods for 1212 

each step (implemented in our software) are listed. They include newly developed ones (N) 1213 

as well as standard image analysis algorithms (S) and modified versions of them (M). 1214 

Figure 1—figure supplement 2: Probabilistic image de-noising algorithm for 3D images. 1215 

Single 2D plane of a high-resolution image stained with phalloidin for actin (cell borders) and 1216 

Flk1 for sinusoids (A, D) before and (B, E) after applying our probabilistic image de-noising 1217 

algorithm. The outlier-tolerant estimation of the background was done using a 10-pixel 1218 

window. (C, F) Phalloidin/Flk1 intensity values of pixels along the horizontal yellow line for 1219 

both, the original and the de-noised images. Our probabilistic image de-noising algorithm 1220 

efficiently reduces the noise while preserving the edges present in the image even in the 1221 

presence of high diffusive background. (G) Mean variance for each intensity level (I). The 1222 

experimental data is represented by the red dots, the error bar represents SEM and the 1223 

theoretical curve (straight line) is represented by the solid black line. (H) Prediction of the 1224 

background intensity using linear fitting by least squares method (solid black line) and the 1225 

outlier-tolerant algorithm (solid red line) for a set of sequential intensities in z-direction 1226 

(blue dots). The dots represent the intensity values of the voxels along the vertical yellow 1227 

line at the original image on the left (stained with CD13 for BC). 1228 

Figure 1—figure supplement 3: Optimal parameter selection. (A) The mask defining the 1229 

objects vicinity in the case of BC (yellow) is shown in red and was created by applying an 1230 

inflation of 2 voxels (~0.5µm) to the original objects. (B) Selection of the best parameters for 1231 

the ‘Pure Denoise’ method.  We used as fixed parameter the number of cycles (10, the 1232 
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maximum possible). ‘Number of frames’ = 11 (the maximum available in the plugin) shows 1233 

the best results e.g. minimum global MSE as well as MSE in the vicinity of the objects. (C) 1234 

Selection of the best parameters for the ‘Edge preserving de-noising and smoothing’ 1235 

method.  We used as fixed parameter the number of cycles (100). ‘Smoothing level’ = 70 1236 

corresponds the point before the MSE in the vicinity of the objects starts increasing while 1237 

the global MSE remains low.   1238 

Figure 1—figure supplement 4: Comparison of our 3D image de-noising algorithm (BFBD) 1239 

with standard methods in the field. Panel (A) shows single 2D plane projections of an 1240 

artificial high-resolution image of BC (2:1 signal-to-noise ratio) before adding Poisson noise 1241 

(ground truth) and the result of the application of our de-noising algorithm (BFBD) as well as 1242 

a median filter, a Gauss low-pass filter and an anisotropic diffusion. (B) The resulting images 1243 

were analysed in terms of the global Mean Square Error (MSE) and Coefficient of correlation 1244 

(CoC). (C) The same metrics were evaluated only on the vicinity of the BC. Our method 1245 

shows considerably better noise reduction (low global MSE and high global CoC) than the 1246 

other methods, except the Gauss low-pass filter. However, the Gauss low-pass filter shows a 1247 

high MSE and low CoC in the vicinity of the objects (in comparison with our method), 1248 

suggesting a blurring of the object edges. The bars show the average values over three 1249 

samples and the error bars correspond to standard deviations. A median filter (smooth 1250 

window 3x3x3 voxels), a Gauss low-pass filter (s = 1 voxels) and an anisotropic diffusion 1251 

(డூడ௧ = − ଵାఈ|∇ூ|మ  where D = 0.05, α = 2, number iterations= 100, were applied. 1252 ( ܫ∆

Figure 1—figure supplement 5: Comparison of our 3D image de-noising algorithm (BFBD) 1253 

with ‘PureDenoise’ (PD) (Lousier et al., 2010) and ‘Edge preserving de-noising and 1254 

smoothing’ (EPDS) (Beck and Teboulle, 2009). Panel (A) shows single 2D plane projections of 1255 
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an artificial image of BC (2:1 Signal-To-Noise Ratio) after applying our de-noising algorithm 1256 

as well as PureDenoise and EPDS. (B) The resulting images were analysed in terms of the 1257 

global Mean Square Error (MSE) and Coefficient of correlation (CoC). (C) The same metrics 1258 

evaluated only on the vicinity of the BC. Our method shows a better reduction of the noise 1259 

(low global MSE and high global CoC) than the other methods.  Additionally, it shows a 1260 

relatively low MSE and high CoC in the vicinity of the objects. Panel (D) shows that global 1261 

MSE increases with the depth of the sample for PD and EPDS, whereas it is more stable in 1262 

our method. In the graph each curve represents one independent sample. (E) Execution 1263 

time of the algorithms in an Intel(R) Xeon(R) CPU E5-2620 @ 2.00 GHz. EPDS and BFBD are ~ 1264 

20 times faster than PD. The bars show the average values over three samples and the error 1265 

bars correspond to standard deviations. PD and FPDS were performed using the optimal 1266 

parameters shown in Figure1—figure supplement 3. For the BFBD we use a window of 5 1267 

pixels and a threshold = 1.25. 1268 

Figure 2—figure supplement 1: Reconstruction of multi-scale tissue images. Tissue section 1269 

reconstruction: (A) Schematic representation of an M x N grid of partially overlapping 3D 1270 

images. The regions in light blue and light red represent the overlapping areas between 1271 

neighbouring images. The color-coded maps show the cross-correlation matrixes between 1272 

neighbouring images. (B) Reconstructed tissue section from a 4 × 4 grid of low-resolution 1273 

images. The pattern of DAPI staining (nuclei) at the intersection of two neighbouring images 1274 

is shown. Correction mechanical distortion and tissue damage on serial sections: (C) x-z 1275 

section of the image of a tissue section showing the main obstacles for the tissue surface 1276 

detection: unstained volume of blood vessels (C’) and blurring (C’’).  Probabilities (D) 1277 ݕ)ଵ, ,ଵݕ|ଶݕ  calculated from the maximum entropy 1278 (ଵݕ) and (F) (ଵݕ|ଶݕ) ଶ), (E)ݕ
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segmentation (red), model equations (blue) and manual solution (green). All distributions in 1279 

the figure were averaged over all tissue sections in the benchmark. (G) Comparison of 1280 

manual and automated surfaces calculated for two tissue sections from P16 (upper) and 1281 

adult (lower) mice datasets. (H) Accuracy of surface detection. Plot presenting the mean 1282 

absolute deviation calculated between manually and automatically detected surfaces for 33 1283 

different tissue sections in 4 datasets. Since tissue section segmentation is ambiguous, the 1284 

control experiment was conducted by segmenting the same tissue sections manually three 1285 

times.    1286 

Figure 2—figure supplement 2: Reconstruction of multi-scale tissue images. Tissue-level 1287 

network segmentation: (A) Reconstructed image of a tissue section. Large vessels appear as 1288 

empty space in the image. (B) Spatial distribution of the local maximum entropy threshold 1289 

value. (C) Segmentation of large vessel in a single tissue section. Registration of high-1290 

resolution images into low-resolution ones: Representative region of a 2D plane of (D) a low-1291 

resolution (yellow) and (E) a high-resolution (red) image stained with Flk1 for sinusoids. (F) 1292 

Superimposed images after the registration. 1293 

Figure 3—figure supplement 1: Nuclei splitting. (A) 3D visualization of a confocal image of 1294 

closely packed nuclei (DAPI). (B) Objects resulting from the initial segmentation and 1295 

reconstruction: triangle meshes of the artificially merged structures. The approximation of 1296 

different structures(C) by (D) one or (E) two overlapping ellipsoids is shown.  Prediction of 1297 

multi-nuclear structures:  (F) distribution of the ln(ܧܵܯ) values obtained from the nuclei 1298 

approximation by one and double ellipsoids. The distribution was fitted by a sum of two 1299 

Gaussian distributions. The fitting curve is shown in blue (solid line) and the components in 1300 

magenta and red (dash lines). (G) Calculated threshold that discriminates between bi/mono-1301 
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nuclear and multi-nuclear structures. The graphs were obtained from the analysis of a 1302 

sample of liver tissue, which covers the entire CV-PV axis. Multi-nuclei splitting: (H) original 1303 

confocal image where the nuclei seeds were detected (I) and expanded to the real nuclei 1304 

shape (J). (K) The performance of the splitting algorithm was evaluated in both synthetic 1305 

and real 3D images.  The synthetic image consisted of 150 nuclei, which included single 1306 

nuclei, double- and triple-nucleated structures. The individual nuclei had a radius between 5 1307 

and 7 µm. The multi-nucleated structures were generated with different degrees of overlap. 1308 

A global background of 10% of the intensity of the nuclei was added to the whole image, 1309 

then it was blurred using a Gaussian filter and finally salt and paper noise was added. The 1310 

real image corresponds to an adult mouse tissue sample of 2.3x10-3 mm3 volume.  The initial 1311 

segmentation yielded 281 structures, which were analysed (the nuclei touching the borders 1312 

of the sample were excluded from the analysis). The performance was evaluated in terms of 1313 

true positive (TP), false positive (FP), true negative (TN) and false negative (FN) values. TP = 1314 

correctly split, FP = over-splitting, TN = correctly not split, FN = under-splitting. Precision 1315 

(PR) = TP/ (TP+FP), sensitivity (SN) = TP/ (TP+FN), specificity (SP) = TN/ (TN+FP), F-score = 2 x 1316 

(PR x SN)/ (PR+SN) and accuracy (AC) = (TP+TN)/ (TP+TN+FP+FN). 1317 

Figure 3—figure supplement 2: Cell classification. (A) Example of an image used to generate 1318 

the training set for the classifier. The different types of nuclei forming in liver tissue where 1319 

manually classified using the specific markers, i.e. Flk1 (magenta) sinusoidal endothelial cells 1320 

(SECs), the macrophage antibody F/4/80 (yellow) for Kupffer cells and the intermediate 1321 

filament Desmin (green) for Stellate cells. The training set was extracted from three samples 1322 

covering the entire CP-PV axis. (B) Selection of the set of parameters for the LDA. The 74 1323 

calculated parameters were sorted by the Fisher score and the top-five ranked parameters 1324 
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with the largest Fisher scores are shown. The classifier accuracy in dependency of the 1325 

number of parameters used for the classification is plotted. The set of parameters that 1326 

yielded the highest accuracy of the classifier was chosen. (C) Features dependency obtained 1327 

in the Bayesian network classifier. The Bayesian network structure learning from the 1328 

experimental data revealed that 15 parameters were relevant for the nuclei classification. 1329 

The 5 parameters with the highest mutual information to the nuclei type are shown inset. 1330 

Figure 3—figure supplement 3:  Cell Classification accuracy. Confusion matrixes obtained 1331 

with the (A) Linear Discriminant Analysis and (B) the Bayesian network classifier. The 1332 

instances (e.g. nuclei) in each predicted class are represented in the columns of the matrix, 1333 

while the instances in an actual class (manually identified) are represented in the rows. 3D 1334 

representation of the different nuclei types identified in a representative sample of liver 1335 

tissue: (C) hepatocytes, (D) SECs, (E) Stellate and (F) Kupffer cells. 1336 

Figure 3—figure supplement 4: Reconstruction of tubular structures, nuclei and cells. Single 1337 

2D image planes are shown with contours of (A) sinusoidal and (B) and BC networks,  (C) 1338 

nuclei and (D) cells reconstructions overlaid on raw data. Insets show zoomed areas of the 1339 

image. 1340 

Figure 3—figure supplement 5: Generation of realistic 3D images of liver tissue. (A) 1341 

Generation of images with uneven staining. The image of the idealized structure 1342 

(homogeneous tubes) created for the BC network is shown in the top left image. The initial 1343 

coarse grained sampling (6x6x6 binning) of intensities is shown in the top right image. The 1344 

fine sampling (unbinned image) of intensities is shown in the bottom right image and final 1345 

result in the bottom left one. (B) 3D representation and 2D projections of a model image of 1346 

BC with uneven staining. (C) Characteristic PSF of a confocal microscope. (D) 3D 1347 
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representation and 2D projections of a model image of BC convolved with the PSF. (E) Mean 1348 

variance of each intensity level for different depth (z-direction) levels of a confocal image. 1349 

(F) Linear increase of the intensity scaling factor (alpha) with the sample depth for different 1350 

channels. The error bars represent the standard deviation between three samples. (G) 3D 1351 

representation and 2D projections of a final model image of BC after adding spatially 1352 

variable Poisson noise. 1353 

Figure 3—figure supplement 6: Benchmark of images to evaluate 3D reconstructions of 1354 

dense tissue. Example of a realistic 3D image of liver tissue. 3D representation and 2D 1355 

projections (xy and xz) of a high-resolution image created for BC (A) and sinusoidal (B) 1356 

networks as well as nuclei (C) and cell borders (D). The images size is 256x256x256 voxels 1357 

with a resolution of 0.3݉ߤ × ݉ߤ0.3 ×  per voxel. The image shown corresponds to a 1358 ݉ߤ0.3

2:1 signal-to-noise ratio. 1359 

Figure 3—figure supplement 7: Model validation: Evaluation of the accuracy of our pipeline 1360 

for the 3D reconstruction of dense tissue. The reconstructions of the different structures 1361 

forming the tissue were evaluated in terms of true positive (TP), false positive (FP), true 1362 

negative (TN) and false negative (FN) values extracted from the comparison of the 1363 

reconstructed image and the ground truth (image without distortions). The precision (PR) 1364 

and sensitivity (SN) are defined as TP/ (TP+FP) and TP/ (TP+FN), respectively. F-score is given 1365 

2 x (PR x SN)/ (PR+SN). The tests were performed in three sets of images (3 images per set) 1366 

with different signal-to-noise ratio (10:1, 4:1, 2:1). Panels (A-C) and (D-F) show the results 1367 

for the BC and sinusoidal networks respectively. Panels (G-I) and (J-L) show the ones for 1368 

nuclei and cells respectively. Whereas, in the case of BC, sinusoids and nuclei, the error bar 1369 

corresponds to standard deviations of the values between three images, for the cells the 1370 



62 
 

error bar corresponds to the standard deviation of the values over all the cells in the 1371 

samples (32 cells). Only the cells that were not in contact with the boundary of the image 1372 

were analysed. Panels (M-N) show the mean values for the radius of BC and sinusoidal 1373 

networks. Panel (O) shows the mean error in the estimation of the cell volume. The error 1374 

was calculated as 100 × ೞି , where ௦ܸ and ܸ௧ are the volumes of the reconstructed and 1375 

ground truth cells, respectively. 1376 

Figure 4—supplement 1:  Morphometric features of the sinusoidal and BC networks. (A) 1377 

Radius distribution of the sinusoidal capillary network. (B) Distributions of the angles 1378 

between branches of BC and sinusoidal networks. (C) Cardinality of branching nodes of BC 1379 

and sinusoidal networks. The data shown here correspond to a representative sample of 1380 

adult mouse liver. 1381 

Figure 4—figure supplement 2:  (A, B) DAPI integral intensity normalisation. Distribution of 1382 

DAPI integral intensity per nucleus calculated for each sample (A) before and (B) after 1383 

normalization. We found scaling (stretching) factors 1.19 and 0.93 for the second and third 1384 

samples respectively. (C, D) DNA content in bi-nuclear hepatocytes. DAPI integral intensity 1385 

per nucleus was calculated for each nucleus of the cells. Panel (C) shows the distribution of 1386 

the ratio between DAPI integral intensity of the two nuclei in each cell. It follows a normal 1387 

distribution with mean value 1.0 ± 0.21 (mean ± SD). Panel (D) shows the dependency 1388 

between DAPI integral intensity of the two nuclei in bi-nuclear cells. They show a linear 1389 

dependency (R2 = 0.945433) with a slope of 0.995, showing that both nuclei have the same 1390 

DNA content in bi-nuclear hepatocytes. (E, F) Scatter plot of the volume versus DAPI integral 1391 

intensity of (E) mono-nuclear and (F) bi-nuclear hepatocytes. The results of the hierarchical 1392 

clustering of (E) mono-nuclear and (F) bi-nuclear hepatocytes are shown. Four (2n, 4n, 8n, 1393 
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16n) and three (2x2n, 2x4n, 2x8n) populations were found for mono-nuclear and bi-nuclear 1394 

hepatocytes, respectively. The classification was performed using volume and DAPI integral 1395 

intensity per cell. We used an agglomerative hierarchical cluster algorithm and tested 1396 

several distances for the dissimilarity calculation and different methods for the clustering. 1397 

We found that the standardized Euclidean distance with the Ward method yielded the best 1398 

results. 1399 

Figure 6—figure supplement 1:  Morphometric features of lung tissue. Distributions of (A) 1400 

volume, (B) elongation and (C) number of neighbouring cells for the lung cells. (D) 1401 

Distribution of the cell position (centre of the cell) relative to the closest alveoli. 1402 

Figure 6—figure supplement 2:  Morphometric features of kidney tissue. Panels (A) and (B) 1403 

show the size and volume distribution of the two cell types identified in the kidney tissue, 1404 

proximal and distal tubular structures. It was observed that the two cell populations have 1405 

different characteristic sizes, proximal cells were found to be larger than distal ones. Panels 1406 

(C) and (D) show the distribution for the cells elongation and the number of neighbouring 1407 

cells, respectively. 1408 

  1409 
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Video titles and legends 1410 

Video 1:  3D image visualization of a multi-resolution geometrical model of liver tissue.   1411 

A set of 6 low-resolution tissue sections (1.0 1.0 2.0m m mμ μ μ× ×  per voxel) and 4 high-1412 

resolution images (0.3 0.3 0.3m m mμ μ μ× ×  per voxel) were used. Central veins are shown in 1413 

light blue, portal veins in orange and high-resolution cubes in grey. 1414 

Video 2: Reconstruction of all imaged structures in a high-resolution image.  1415 

A 2x2 stitched (~ 400 400 100m m mμ μ μ× × ) high-resolution image (0.3 0.3 0.3m m mμ μ μ× ×1416 

per voxel) was used. First the reconstruction of the large vessels, i.e. CV (cyan), PV (orange) 1417 

and bile duct (green) are shown. Then, raw images and the corresponding reconstructed 1418 

objects of the different structures are shown sequentially: sinusoids (magenta), BC (green), 1419 

nuclei (random colours) and cells (random colours). Additionally, central lines are shown for 1420 

the tubular structures. Finally, all segmented structures are shown. This video provides a 1421 

complete over view of the reconstructed objects in a typical high-resolution image. 1422 

Video 3: Detailed reconstruction of all imaged structures in a high-resolution image.  1423 

In order to highlight the details of the reconstruction of small structures (e.g. nuclei, BC, 1424 

etc.), a video of a small, cropped ( ~ 125 125 75m m mμ μ μ× × ) high-resolution image (1425 

0.3 0.3 0.3m m mμ μ μ× ×  per voxel) was generated. Similarly to video 2, the raw image and 1426 

the corresponding reconstructed structures of sinusoids (magenta), BC (green), nuclei 1427 

(random colours) and cells (random colours) are shown sequentially. 1428 

 1429 

 1430 
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Video 4: 3D reconstruction of lung tissue.  1431 

Nuclei and cells reconstructed from a high-resolution image (~ 220 220 80m m mμ μ μ× × ).  1432 

First, the raw images of the cell cortex (F-actin by phalloidin) and nuclei (DAPI) staining are 1433 

displayed. Then, the reconstruction of the nuclei (random colours) and the cells (random 1434 

colours) are shown.  1435 

Video 5: 3D reconstruction of kidney tissue.  1436 

Nuclei and cells reconstructed from a high-resolution image (~ 220 220 80m m mμ μ μ× × ).  1437 

First, the raw images of the cell cortex (F-actin by phalloidin) and nuclei (DAPI) staining are 1438 

displayed. Then, the reconstruction of the nuclei (random colours) and the cells (random 1439 

colours) are shown. 1440 

  1441 
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Supplementary material 1442 

Supplementary file 1. 3D ‘ground truth’ voxelated model of liver tissue (1443 

0.3 0.3 0.3m m mμ μ μ× ×  per voxel) 1444 

Supplementary file 2. 3D simulated microscopy images of liver tissue models with 10:1, 4:1 1445 

and 2:1 signal-to-noise ratios. 1446 

Supplementary file 3. Scripts to generate 3D ‘ground truth’ voxelated models and simulated 1447 

microscopy images of liver tissue in our platform. It includes a test example.  1448 














