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Rhythmic and sequential subdivision of the elongating vertebrate embryonic
body axis into morphological somites is controlled by an oscillating multicellular
genetic network termed the segmentation clock. This clock operates in the
presomitic mesoderm „PSM…, generating dynamic stripe patterns of oscillatory
gene-expression across the field of PSM cells. How these spatial patterns, the
clock’s collective period, and the underlying cellular-level interactions are related
is not understood. A theory encompassing temporal and spatial domains of local
and collective aspects of the system is essential to tackle these questions. Our
delayed coupling theory achieves this by representing the PSM as an array of
phase oscillators, combining four key elements: a frequency profile of oscillators
slowing across the PSM; coupling between neighboring oscillators; delay in
coupling; and a moving boundary describing embryonic axis elongation. This
theory predicts that the segmentation clock’s collective period depends on
delayed coupling. We derive an expression for pattern wavelength across the
PSM and show how this can be used to fit dynamic wildtype gene-expression
patterns, revealing the quantitative values of parameters controlling spatial and
temporal organization of the oscillators in the system. Our theory can be used to
analyze experimental perturbations, thereby identifying roles of genes involved
in segmentation. [DOI: 10.2976/1.3027088]
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During vertebrate development, segmenta-
tion of the continually elongating embryonic
body axis occurs rhythmically and sequentially
from head to tail in a process termed somito-
genesis (Wolpert et al., 2006). Somites are
regularly sized cell clusters that bud off peri-
odically from the anterior end of the posterior-
most unsegmented tissue, the pre-somitic
mesoderm (PSM), with a species-specific fre-
quency. These transient, left-right symmetric
structures are the embryonic precursors of
adult bone and muscle segments, and defects
in their formation lead to congenital birth
defects (Bulman et al., 2000). Underlying the
morphogenetic rhythm of somitogenesis, re-
peated waves of oscillating gene expression

sweep through the cells of the PSM from the
posterior to the anterior (Palmeirim et al.,
1997), see Fig. 1(a) and Supplementary Movie
1. These genetic oscillations are thought to
slow down and arrest at different phases of
their cycles at an anteriorly positioned arrest
front that moves in concert with embryonic
elongation (Dubrulle et al., 2001) [Fig. 1(b)],
translating the temporal periodicity into a
striped spatial pattern of gene expression.

Given the existence of genetic oscillators in
the cells of the PSM (Hirata et al., 2002;
Masamizu et al., 2006), several questions still
remain unanswered: how does a collective seg-
mentation period arise from the population of
individual oscillators, and what is the relation
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between the overall pattern of gene expression observed in
the PSM and the oscillating expression at the cellular level.
To investigate this, we develop a theoretical description
based on phase oscillators and four key ingredients moti-
vated by the biology: (i) a frequency profile along the PSM,
slowing down the oscillations; (ii) coupling of oscillators;
(iii) a time delay in the information transfer between neigh-
boring oscillators; and (iv) the existence of a moving front
that arrests the oscillations at the anterior end of the PSM,
while the posterior end moves due to embryonic outgrowth.
This delayed coupling theory provides an excellent fit to the
existing biological data, allows perturbations to the system to
be analyzed in terms of underlying processes, and predicts
how intercellular communication affects the collective pe-
riod of the segmentation clock. Below, we introduce the ele-
ments of the delayed coupling theory.

Phase oscillators
To provide a simple picture of the segmentation process,
Cooke and Zeeman proposed a clock and wavefront model
more than 30 years ago (Cooke and Zeeman, 1976). How-

ever, to understand the role of collective processes in the
emergence of dynamic gene expression patterns in the PSM
a more detailed analysis is needed, for which methods from
other pattern forming systems can be borrowed (Cross and
Hohenberg, 1993). In particular, the periodic expression of
genes in the oscillating PSM cells can be described at tissue
level using a set of phase oscillators, disregarding at this
stage the underlying biochemical and genetic mechanisms
that generate the oscillations and their pattern. In this phase
description, each cell, or group of synchronous cells, is rep-
resented by an oscillator, and the state of each oscillator is
characterized only by its phase in the cycle of periodic gene
expression. Oscillators with the same phase represent cells
with equivalent expression level of cyclic genes. Previous
models described the PSM as a continuous oscillatory me-
dium with a phase defined at each point of the PSM, see
Supplementary data of Palmeirim et al. (1997) and Kaern
et al. (2000), Jaeger and Goodwin (2001), Giudicelli et al.
(2007), Gomez et al. (2008). In this work we show that a
phase description is sufficient to compute the overall spa-
tiotemporal patterns of gene expression and the collective
period of the oscillations.

Frequency profile
It has been suggested that the arrest of the oscillations and
the observed oscillating gene expression patterns are shaped
by a spatial dependence of the frequency of the individual
oscillators (Palmeirim et al.; 1997, Kaern et al., 2000; Jaeger
and Goodwin, 2001; Giudicelli et al., 2007; Gomez et al.,
2008). A frequency profile could be controlled by the mo-
lecular gradients observed in the PSM, see Fig. 1(c), e.g., the
gradients of the growth factor FGF (Dubrulle et al., 2001;
Sawada et al., 2001; Dubrulle and Pourquié, 2004; Wahl
et al., 2007) or of Wnt signaling (Aulehla et al., 2003; 2008).
Several models have recently proposed regulatory mecha-
nisms by which the genetic oscillations are affected by the
gradients of signaling molecules along the PSM (Cinquin,
2007; Tiedemann et al., 2007; Santillán and Mackey, 2008;
Mazzitello et al., 2008). Motivated by the changing width of
the stripes of gene expression in the PSM and the necessity
that the oscillations slow down and finally stop at the arrest
front, we include such a frequency profile in our theory. As
with the assumption of cellular oscillators, our theory does
not rely on the molecular origin of this frequency profile, and
hence, its inclusion is purely phenomenological.

Coupling of oscillators
Recent theoretical works seeking to describe spatiotemporal
patterns in somitogenesis using phase oscillators have not
included coupling between oscillators (Kaern et al., 2000;
Jaeger and Goodwin, 2001; Giudicelli et al., 2007; Gomez
et al., 2008), although intercellular coupling has been con-
sidered in reduced models of regulatory circuits (Lewis,
2003; Cinquin, 2003; Horikawa et al., 2006). Here, coupling
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Figure 1. Representation of the PSM. Anterior is to the left and
posterior to the right. �a� In situ hybridization �Oates and Ho,
2002� showing the expression of deltaC mRNA in the zebrafish PSM
�dorsal view�. �b� Schematic PSM together with the already deter-
mined segments—arrested—and the most recently formed pair of
somites. The studied region lies between the arrest front and the
posterior end of the notochord. �c� Schematic representation of the
signal gradient spanning the PSM �broken line�. The frequency pro-
file � related to this gradient is depicted as solid purple line, using
Eq. �2� with the width � given in Table I. The length of the studied
region is denoted by L. A linear array of N coupled oscillators is
indicated.
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means that oscillators can influence the phase of their neigh-
bors. Coupling is essential to stabilize tissue-scale patterns
against the unavoidable noise present in biological systems
(Jiang et al., 2000; Horikawa et al., 2006; Riedel-Kurse
et al., 2007; Özbudak and Lewis, 2008), and also to explain
the resynchronization of surgically inverted pieces of the
PSM (Dubrulle et al., 2001). Thus, in this work we propose a
description based on coupled phase oscillators.

Time delay
Coupling between cells via signaling macromolecules, e.g.,
through the Notch pathway (Jiang et al., 2000; Horikawa
et al., 2006; Riedel-Kruse et al., 2007; Özbudak and Lewis,
2008), involves synthesis and trafficking of such molecules
within cells. These dynamics imply the existence of time de-
lays, which have been recently estimated to be in the range of
tens of minutes in cell culture (Heuss et al., 2008). Time de-
lays in the coupling can have an impact on the self-
organization of coupled oscillators (Schuster and Wagner,
1989; Niebur et al., 1991; Yeung and Strogatz, 1999; Earl
and Strogatz, 2003; Lewis, 2003), making their inclusion in
our theory important. For simplicity, we will use here a de-
terministic time delay; a more realistic description would in-
clude a distribution of delays (MacDonald, 1989).

Moving borders due to embryonic elongation
The embryo is a rapidly growing system, elongating about
one somite length per oscillation cycle, which takes around
25 min in zebrafish, 90 min in chick, and 120 min in mouse.
Cells are continuously in transit from the tailbud through the
PSM, exiting it anteriorly as somites form. Additionally, cell
proliferation plays a role during elongation, but since in the
PSM it has a stochastic character it can be considered as a
potential noise source (Horikawa et al., 2006) not otherwise
significantly affecting the oscillatory dynamics (Zhang et al.,
2008), and we do not consider it further here. To correctly
understand the formation of patterns of gene expression and
how the frequency is regulated, it is necessary to consider the
geometry and boundaries of the arena in which the process
occurs. Here, we neglect changes in the antero-posterior
length of the PSM or the rate of axial growth, which occur
during development at time scales larger than the somitoge-
nesis period (Tam, 1981; Schröter et al., 2008; Gomez et al.,
2008). Consequently, both the arrest front and the posterior
boundary move at the same velocity v, see Fig. 1(b).

RESULTS
This section contains technical details of our theory. Readers
who are more interested in the basic ideas and the biological
justifications should note that a careful understanding of
the equations is not a requisite to follow the arguments we
introduce in this section.

Formulation of the delayed coupling theory
Our model equations in the lab reference frame, Fig. 2(a),
consist of a lattice of discrete phase oscillators. This lattice
comprises N oscillators in the antero-posterior direction,
labeled by an index i. Each oscillator occupies a position
xi= ia along the PSM axis in the lab reference frame, where
a is the characteristic distance between oscillators, i.e.,
the average cell diameter. Hence, the total physical length
of the considered system in the antero-posterior direction is
L�Na.

As the embryo elongates with velocity v, the arrest front
is positioned at vt, where t is time. Oscillators anterior to the
arrest front, xi�vt, are arrested. New oscillators are added at
the posterior boundary, situated at vt+L, as elongation pro-
ceeds. The oscillators in the studied region, with indices
vt /a� i� �N+vt /a� are weakly coupled to their n nearest
neighbors, denoted by the index k. In one dimension n=2,
while in a two-dimensional square lattice n=4. The phase
dynamics of the coupled oscillators can be described by

�̇i�t� = �i�t� +
�i�t�
na2 �

k

sin��k�t − �i�t�� − �i�t�� + �i�t� ,

�1�

where the dot denotes time derivative, �i is the phase of os-
cillator i, �i is its intrinsic frequency, �i is the coupling
strength, �i is the time delay in the coupling, and �i is a ran-
dom variable with zero average representing different noise
sources. Our objective in this work is to characterize the ba-
sic model in the synchronized state, and if not otherwise
stated, we ignore the effects of noise. According to experi-
mental evidence (Riedel-Kruse et al., 2007), coupling
strength is weak compared to other time scales in the system.
This justifies the use of the sine function in the coupling, as it
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Figure 2. Two different coordinate systems to describe genetic
oscillations in the PSM. �a� Lab reference frame: oscillators la-
beled by index i hold fixed positions xi= ia, where a is the distance
between oscillators. The PSM boundary moves posteriorly with ve-
locity v as the embryo extends. �b� PSM reference frame: the PSM
boundaries do not move but oscillators move through the PSM from
posterior to anterior with velocity v. Oscillators are constantly rela-
beled using symbols j to denote discrete positions relative to the
arrest front. Dashed lines indicate the state of the system at slightly
earlier times.
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is the dominant term of any more general periodic coupling
function (Kuramoto, 1984).

To specify the shape of the frequency profile we choose,
for vt /a� i� �N+vt /a�,

�i�t� = �	�1 − e−�ia−vt�/�� , �2�

where �	 is a characteristic frequency scale of individual os-
cillators, and � is a measure of the characteristic distance
over which the frequency profile decreases from high to low
values [see Fig. 1(c)]. Below we will show that our choice of
Eq. (2) is consistent with experimental observations, and we
will determine � from the width of the stripes of gene ex-
pression in the PSM. Qualitatively similar choices for the
frequency profile have been used before (Kaern et al., 2000;
Jaeger and Goodwin, 2001). For simplicity, we have chosen
the frequency to be strictly zero at the arrest front. Note,
however, that this is not biologically necessary: a very low
value of the frequency at the arrest front means a very large
period of oscillation. If this period is much larger than any
other time scale involved in the process, it determines in
practice an arrested oscillation, which can specify the down-
stream fixed pattern that eventually sets the position of
somite boundaries. Furthermore, since the oscillations can
be coupled to a bistable system arising from opposing signal-
ing gradients in the PSM, long period oscillations at the ar-
rest front could be stopped by a bistable transition (Goldbeter
et al., 2007; Santillán and Mackey, 2008).

For convenience we introduce the parameter �L

��	�1−e−L/��, that represents the intrinsic frequency of the
oscillators at the posterior boundary of the system. Based
on in situ experiments that show a largely uniform spatial
expression of cyclic genes in the tailbud at any given stage of
the cycle [Fig. 1(a)], we define a uniform phase [Fig. 1(b)]
and homogeneous frequency �L [Fig. 1(c)] in the tailbud,
posterior to the notochord and the region we study here. This
homogeneity would be favored by the strong cell mixing
(Mara et al., 2007), and high, potentially saturating uni-
form levels of the signaling molecules that establish the
gradient anterior to this region (Sawada et al., 2001;
Dubrulle et al., 2001; Dubrulle and Pourquié, 2004; Wahl
et al., 2007; Aulehla et al., 2003, 2008). Furthermore, the
shape of �i described by Eq. (2) resembles the posterior
branch of FGF receptor saturation proposed in Goldbeter
et al. (2007).

The coupling could also be position dependent. In par-
ticular, since the oscillators anterior to the arrest front stop
cycling, they can not influence the active oscillators in
the interval vt /a� i� �N+vt /a�. We take this into account
imposing �i=�0=0 for i�vt /a. For simplicity, in this work
we consider the coupling strength �i�� and the time delay
�i�� to be constant posterior to the arrest front.

Numerical simulations in two dimensions
To gain insight into the role of delayed coupling in setting the
period and the pattern of the genetic oscillations, as well as to
illustrate the formation of realistic wave patterns within
our theory, we performed computer simulations of Eq. (1) in
a two-dimensional geometry using different values of the
time delay (Fig. 3 and Supplementary Movies 2, 3, and 4).
Although the theory represents generic vertebrate segmen-
tation, here we use parameters from the zebrafish embryo,
Table I. For the intrinsic frequency at the posterior we chose
�L=0.224 min−1, corresponding to an intrinsic period of
TL=2
 /�L=28 min. We show simulations with no time de-
lay ��=0 min�, a short delay compared to the intrinsic period
��=TL /4=7 min�, and a long delay close to the intrinsic pe-
riod ��=3TL /4=21 min�. The latter is consistent with the ex-
perimental observation of tens of minutes for intercellular
communication times (Heuss et al., 2008).

Figure 3(a) shows a snapshot of the simulation with
no time delay. Not surprisingly, the collective period—the
time needed to form one new arrested segment, and also
the time after which the oscillating pattern in the PSM
repeats itself—is unchanged with respect to the intrinsic
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Figure 3. Numerical simulation of segmentation using Eq. „1… in
a growing two-dimensional geometry. Color intensity indicates
the value of sin � of the phase �: white is sin �=1 and dark �red or
blue� is sin �=−1. Vertical line indicates the position of the arrest
front, with the oscillating PSM to its right �blue� and the arrested
pattern to the left �red�. Intrinsic frequency is a decaying function of
the distance to the black dot at the posterior boundary, causing the
curvature of the stripes. Open boundary conditions are used in the
lateral borders: no coupling is considered to cells outside the simu-
lated geometry. We have used parameters determined for zebrafish
at 28 °C, see Table I, and �L=0.224 min−1, see main text for details.
We have chosen to display three illustrative values of the time delay
�a� �=0 min, �b� �=TL /4�7 min, and �c� �=3TL /4�21 min. De-
layed coupling affects the collective frequency of oscillations accord-
ing to Eq. �5�. The stripes of the oscillating PSM pattern and the
segment length of the frozen pattern change accordingly. Movies
available as Supplementary Material.
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period at the posterior. The arrested segments have a length
of S�7 cell diameters. The case of short delay with respect
to the period, �=TL /4, qualitatively represents the situation
in species with a relatively long segmentation period, such
as mouse. Figure 3(b) shows that in this case, the effect
of the delay in coupling is to slow down the collective pe-
riod �T=39.1 min� with respect to the intrinsic period
�TL=28 min�. Further, the arrested segments are longer
(S�10 cell diameters) than in the case without delay,
and there is a smaller number of gene expression stripes
in the PSM, with increased size. Surprisingly, when the delay
is made longer, the trends observed with the short delay
are inverted. Figure 3(c) shows that for the time delay of
�=3TL /4, the collective period �T=23.5 min� is shorter than
the intrinsic period. Moreover, the arrested segments are also
shorter (S�6 cell diameters) than in both previous cases, as
are the stripes of oscillating gene expression in the PSM.

This puzzling results show that delayed coupling intro-
duces nontrivial effects to the system, large enough to be ob-
servable in real experiments. In order to understand these ef-
fects, in the following we perform an analysis of Eq. (1),
studying first the emergence of the collective period from the
parameters of the theory and then turning our attention to the
spatial pattern. For this purpose, we will write Eq. (1) in a
more convenient manner.

PSM reference frame
It is useful to consider the dynamics in the PSM reference
frame, Fig. 2(b), where the oscillations can be characterized
by a stationary phase profile and a collective frequency.
For simplicity from here on we use a one dimensional de-
scription of the system, with n=2. In the lab reference frame

[Fig. 2(a)] the symbol i represents a fixed oscillator. In the
PSM reference frame [Fig. 2(b)] we introduce the symbol j to
label fixed discrete positions relative to the arrest front. The
label j runs from j=0 at the arrest front to j=N at the poste-
rior boundary of the PSM. Discrete position j is occupied by
different oscillators as the system evolves in time. For conve-
nience we have included in the description the last arrested
oscillator, j=0.

In the PSM reference frame, the frequency profile is sta-
tionary, �j=�	�1−e−ja/��. Reexpressing Eq. (1) in this PSM
reference frame, an extra term describes the drift of the phase
due to the movement of the cells relative to the PSM bound-
aries. The resulting phase dynamics are given by

�̇j�t� = �j + v��j+1�t� − �j�t��

+
�

2a2 �
k=j+p±1

sin��k�t − �� − �j�t�� . �3�

Here �j is the phase at position j relative to the arrest front
and p= �v� /a� is the nearest integer to v� /a, representing
the distance a cell moves during the time it takes for a signal
from a neighbor to arrive. Note that now the coupling is
nonlocal: due to the time delay and cell movement,
the neighbors of an oscillator with position j had positions
j+p+1 and j+p−1 at the time the signal was sent.

Steady state ansatz and collective frequency
The oscillating gene expression pattern in the PSM repeats
after a full period T=2
 /� of oscillation (Palmeirim et al.,
1997; Masamizu et al., 2006), where � is the collective fre-
quency of the oscillation. This leads to the steady state ansatz
�j�t�=�t+
j, where 
j is the stationary phase profile de-
scribing the pattern in the PSM. With this ansatz we obtain
from Eq. (3),

� = �j + v�
j+1 − 
j� +
�

2a2 �
k=j+p±1

sin�
k − 
j − ��� .

�4�

The collective frequency of oscillations � is equivalent to
the rate of somite formation. Note that the instantaneous fre-

quencies �̇i of individual oscillators depend on position and
are in general different from �.

Anterior boundary condition sets the segment length
To determine the collective frequency � we need to specify
the boundary conditions, namely the conditions that 
j

fulfills at the borders of the studied region [j=0 and j=N,
Fig. 1(b)]. This boundary should not be confused with somite
boundaries, which we do not discuss in this paper.

At the arrest front �j=0�, the fact that �0=0 and �0=0
implies with Eq. (4) that �
1−
0�=� /v=2
 /vT. Thus,
the anterior boundary condition determines the wavelength
of the arrested pattern, which is the segment length

Table I. Parameters of the delayed coupling theory and their values in
zebrafish embryo at 28 °C near the ten somite stage. The first five pa-
rameters have been determined before or come from our observations.
PSM length L and decay length of the frequency profile � come from
fits of our theory to experimental data in Giudicelli et al. (2007). The
parameters �L and � could not be determined independently in this
work, but they are related by Eq. (5). Note that parameters change with
temperature and throughout development (Schröter et al., 2008). We
choose as length unit one cell diameter (cd), in terms of which the
distance between neighbor oscillators is a=1 cd.

T Period of somite formationa 23.5 min
� Collective frequency, 2
 /T 0.267 min−1

S Somite size (our own experimental estimation) 6 cd
v Velocity of the arrest front, v=S /T 0.255 cd min−1

� Coupling strengthb 0.07 cd2 min−1

L PSM length 39 cd
� Decay length of the frequency profile 36 cd
� Time delay Not determined

�L Intrinsic frequency in the posterior PSM

aSchröter et al. (2008).
bRiedel-Kruse et al. (2007).
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S=2
 / �
1−
0�=vT: the segment length is the distance
advanced by the arrest front during one oscillation period
(Cooke and Zeeman, 1976).

Coupling and delay affect the collective period
At the posterior boundary of the PSM, we assume that new
cells are added into the system with phase 
N. To implement
this we impose in Eq. (4) p boundary conditions, 
j=
N for
j=N+1, . . . , �N+p�, accounting in this way for the effective
nonlocality of the coupling. We base this choice on the ex-
perimental observation of cyclic gene mRNA patterns,
which maintain a smooth expression profile, and hence, ap-
proximately homogeneous phase, across the interface be-
tween tailbud and posterior PSM [e.g., Fig. 1(a)].

Substituting the posterior boundary condition 
N+1=
N

in Eq. (4) we obtain a relation for the collective frequency
of oscillations [see also (Schuster and Wagner, 1989; Niebur
et al., 1991; Yeung and Strogatz, 1999; Earl and Strogatz,
2003)],

� = �L − � sin���� . �5�

The solutions to this equation are shown in Figs. 4(a) and
4(b). Results from numerical simulations of Eq. (1) in two
spatial dimensions show that the collective frequency indeed
fulfills Eq. (5), see blue dots in Fig. 4(a).

For a given set of parameters �L, �, and �, Eq. (5) allows
for multiple solutions for the collective frequency �. Inde-
pendent measurement of coupling strength �, collective fre-
quency �L, and collective frequency � would allow the de-
termination of possible values of the delay � consistent with
Eq. (5). Experimentally, this can be done studying situations
where the intrinsic cellular oscillations are altered (modified
�L) or where the coupling strength is altered (modified �)
and using the observed values of � to fit �.

A linear stability analysis following (Yeung and Strogatz,
1999; Earl and Strogatz, 2003) reveals that when cos����
�0 the solution to Eq. (5) is stable, and unstable otherwise,
see continuous and dashed lines in Fig. 4. Consequently,
multistability occurs for large values of � and �. As seen
in Fig. 4(a), for the biologically plausible parameters that
we use in the figure, there is a small gap of time delay values
between the first and the second stable branches of the solu-
tion. This happens around ��L=
, which means that the
delay is close to half the intrinsic period of the cellular oscil-
lators in the posterior PSM, ��TL /2�
 /�L. For the param-
eters in Fig. 4(a), larger values of the delay always involve at
least one stable solution. Note that values of the collective
frequency equal to the intrinsic frequency, �=�L, are only
possible for delays equal to integer and semi-integer mul-
tiples of the intrinsic period TL: these solutions are stable in
the case of integer multiples ��=integer�TL� and unstable
in the case of semi-integer multiples ��= �integer+1/2�

�TL). However, stable solutions are possible for these latter
delays, albeit with the collective frequency � different than
the intrinsic frequency �L.

Equation (5) provides an explanation for the non-
monotonic behavior of the collective period observed in
Fig. 3. Moreover, the simulation results coincide quantita-
tively with the prediction of Eq. (5), as shown by the three
dots in Fig. 4(a). Equation (5) is biologically relevant: the
collective frequency or period of somitogenesis emerges
as a self-organized property and depends not only on the
intrinsic frequency of individual cells, but also on the cou-
pling strength and the time delay (Fig. 4). Note that � does
not depend on the specific shape of the frequency profile,
and the period is set by the uniform phase cell population
in the tail, which is the pacemaker of the whole oscillatory
process.

Delayed coupling keeps the oscillations
synchronized
We have seen how the presence of time delay in the coupling
can have an important effect in the spatiotemporal patterns of
gene expression. A critical biological function of intercellu-
lar coupling is to keep neighboring cells oscillating in syn-
chrony (Jiang et al., 2000; Horikawa et al., 2006; Riedel-
Kruse et al., 2007; Özbudak and Lewis, 2008). To
demonstrate that delays in the coupling allow this function,
and to showcase the role of noise in our theory, we simulate
the phenotype of a class of mutant embryos in which cou-
pling is strongly reduced (Jiang et al., 2000; Riedel-Kruse
et al., 2007). To do this we include an additive white Gauss-

�
��

L

0.6

0.8

1.0

1.2

1.4

2� 4� 6�0 ��L

�
��

L

0.6

0.8

1.0

1.2

1.4

2� 4� 6�0 ��L

(a) (b)

Figure 4. Collective frequency � of somitogenesis as a func-
tion of time delay and coupling strength. �a� Dimension-
less collective frequency Ω /�L and time delay ��L are displayed
for constant coupling �=0.07 �cell diameter�2 min−1, and intrinsic
frequency �L=0.224 min−1. Analytical solutions of Eq. �5� shown
as blue lines: solid lines stable solutions of Eq. �5�, dashed lines
unstable solutions of Eq. �5�. Blue dots correspond to numerical
integration of the discrete model in two dimensions as given
by Eq. �1�, for the three cases illustrated in Fig. 3. Red lines:
collective frequency as a function of delay in the continuum limit,
showing its ranges of validity. �b� Collective frequency Ω as a
function of time delay for different coupling strengths obtained
from the solution of Eq. �5� with �=0.11 �cell diameter�2 min−1

�green�, �=0.07 �cell diameter�2 min−1 �blue�, and �=0.03 �cell
diameter�2 min−1 �red�. Solid lines are stable solutions, dashed lines
are unstable solutions. Dotted line at Ω /�L=1 corresponds to van-
ishing coupling, �=0 �cell diameter�2 min−1.
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ian noise in the simulations, with zero mean and correlations
��i�t��k�t��	=2Q��t− t���ik, and choose 
2Q=0.036 min−1

for illustrative purposes. With coupling as in Table I, the pro-
cess is not disrupted by noise, Fig. 5(a) and Supplementary
Movie 5. When coupling is disrupted, the simulation exhibits
posterior segmentation defects, Fig. 5(b) and Supplementary
Movie 6, resembling Delta–Notch mutant phenotypes in
zebrafish (Holley et al., 2000, 2002; Itoh et al., 2003; Jülich
et al., 2005; Oates et al., 2005). A more subtle feature of
Fig. 5(b) is the change in segment length after coupling has
been disengaged. As soon as the coupling is removed, the
effects of time delays are no longer present, and cells can
oscillate at their intrinsic frequencies. Because at the time the
coupling is turned off there is an established pattern in the
oscillating PSM, it takes a few cycles for this information to
be wiped out and to reach the new steady state value of the
segment length.

Although out of the scope of this work, our model pro-
vides a simple framework to study the effects of different
kinds of noise on segmentation. This interesting possibility
remains open for future work.

Spatial patterns of gene expression
While the collective frequency � describes the temporal
regularity of somitogenesis, the spatial pattern of gene ex-
pression in the PSM is characterized by the phase profile 
j.
To evaluate the phase profile it is convenient to introduce a
continuum limit where the spatial coordinate takes continu-
ous values, denoted by x, replacing the discrete index j, see
the Methods section. The stationary phase profile 
�x�, see
Fig. 6(a), can be compared to quantitative experimental mea-
surements of the pattern, such as the width of the stripes of

gene expression reported in Giudicelli et al. (2007). We de-
fine the wavelength � as the distance of two points in the
PSM with a phase difference of 2
, see Fig. 7(a). The wave-
length is large close to the tail and becomes smaller close to
the arrest front where it matches the segment length. Using
the continuum formalism we find an expression for the de-
pendence of � with the position x of the stripe’s center rela-
tive to the arrest front

x � � log� sinh��/2��

�−1�1 + ��−1 + ��/2��e−L/�� . �6�

Here, � and � are dimensionless parameters relating intrinsic
frequency, coupling, time delay, elongation speed, and
the frequency profile, as defined in the Methods section. In
Fig. 7(b) we show the fit of Eq. (6) to the wavelengths ob-
tained from the raw data in Giudicelli et al. (2007): distances
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Figure 5. Effects of noise in the delayed coupling theory. We
include a white Gaussian noise as discussed in the text. Open
boundary conditions for the lateral borders as in Fig. 3. �a� Delayed
coupling is robust against the influence of noise. Parameters as
in Fig. 3�b�. �b� Impaired coupling results in segmentations defects.
After initial synchronization with resulting segments not shown,
coupling is turned off ��=0 �cell diameter�2 min−1�. The first seg-
ments have recognizable boundaries, but posterior segments are
increasingly disrupted due to the effect of noise. Parameters as in
�a�. Movies available as Supplementary Material.
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Figure 6. Phase profile in the PSM in the continuum limit. �a�
Phase profile as a function of relative position, given by Eq. �11�.
Left axis: phase relative to the arrest front. Right axis: corresponding
number of gene expression stripes. The green solid line corre-
sponds to the set of parameters obtained from zebrafish data, see
Table I, using TL=28 min and �=21 min for illustration. Orange
dotted line corresponds to �=6 cell diameters. �b�,�c� Wave form
of the expression pattern represented as sin 
. �d� Number of
stripes in the PSM as a function of � from Eq. �7�, where � is
the parameter describing the decay length of the frequency profile.
Black solid line corresponds to parameters in Table I, with � vari-
able. Green square dot: � obtained from zebrafish data, see Table I.
Orange circular dot: mouse mode, see orange dotted curve in
�a�,�c�. Dotted and dashed curves correspond to higher and lower
values of collective frequency, which can potentially be affected
by the intrinsic frequency, the coupling strength, or the time delay,
see Eq. �5�. �e�,�f� Numerical simulations using the methods of
Fig. 3. �e� Zebrafish mode, reproducing panel �c� of Fig. 3 for com-
parison with panel �f�. �f� Mouse/chick mode: zebrafish parameters
as in �e�, but with a sharper frequency profile, �=6 cell diameters.
Only one wave of expression appears in the PSM, in contrast to the
almost three waves in �e�. Movies available as Supplementary
Material.
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between consecutive points with equal level of her1 expres-
sion in zebrafish embryos around the ten somite stage and-
raised at 28 °C. The equation fits very well to the data, show-
ing that our choice of Eq. (2) for the frequency profile is
consistent with observations.

Parameter values
From the fit to data obtained from wildtype zebrafish shown
in Fig. 7(b) we determine L /�=1.08 and ��1+��=57.8. We
estimate the parameters L and � using the definitions of
� and � and the measured values of T and S, see Table I.
Time delay affects both the collective frequency and the
wavelength of the gene expression patterns. As we show in
the Methods section, delayed coupling introduces a renor-
malization of both frequency and coupling strength. The ef-
fects of the time delay are thus included in the dimensionless
renormalized parameters of Eq. (6), but the fit of spatial gene
expression patterns does not allow the separation of the con-
tribution of the time delay from that of the intrinsic fre-
quency, and hence, these two parameters remain undeter-
mined from this fit. The intrinsic frequency at the posterior
�L, and the time delay �, are related through Eq. (5). Thus,
experimental determination of one would suffice to calculate
the other if the coupling strength and collective frequency
are known.

From our estimated parameters in Table I the value of
the frequency �L can be up to 30% higher or lower than
the collective frequency �, see Fig. 4(a). For an intrinsic
period TL=2
 /�L around 28 min, this implies that changing
delay time could situate the collective period in a range be-
tween 21 and 40 min, in qualitative agreement with the
magnitude of period change from simulations of the genetic
regulatory network model in Lewis (2003) for two coupled
cells (Leier et al., 2008). Note that this period change is only
possible due to the presence of delays in the coupling, both in
our theory [see Eq. (5)] and in the model in Leier et al.
(2008). This difference in period is large and should be ac-

cessible to experimental observation, allowing at the same
time for numerical determination of the values of the time
delay � and the intrinsic frequency �L.

DISCUSSION
We have constructed a phenomenological theory describing
the tissue-level dynamics of the vertebrate segmentation
clock employing phase oscillators to represent cyclic gene
expression in the cells of the PSM. As key ingredients of the
theory, we considered: (i) the existence of a frequency pro-
file; (ii) coupling between oscillators; (iii) time delay in this
coupling; and (iv) moving boundaries corresponding to em-
bryonic elongation and the moving arrest front. Although
these four elements have been considered before, here we
combine them in a unified framework. In this theory, tissue-
level phenomena are generated by the interaction of cellular
properties. For example, the collective frequency of oscilla-
tion of the PSM, related to the segmentation rate, depends on
the intrinsic frequency at the posterior, the coupling strength
and the time delay in the coupling, Eq. (5); the spatial wave-
length of gene expression stripes in addition depends on the
shape of the frequency profile. Knowledge of the molecular
underpinnings is not necessary for this mesoscopic descrip-
tion. By fitting the phase profiles obtained in our continuum
limit to the existing data from a vertebrate embryo, we ob-
tained a description of the tissue- and cellular-level processes
controlling period and pattern in the system that is both
quantitative and predictive. This framework can now be used
to analyze experimental and evolutionary variants of embry-
onic segmentation or other permutations of growing, oscil-
lating systems.

Note that the basic relationship of a clock and wavefront
type model for embryonic segmentation, as initially pro-
posed by Cooke and Zeeman (1976), is that the length of a
segment is the product of the arrest wavefront velocity
and the period of the clock. In our description the population
of oscillators create a pattern with a collective frequency,
that together with the movement of the arrest front gives rise
to a segment length consistent with the clock and wavefront
picture.

Variation of stripe patterns for different animal species
We have compared our theory to zebrafish data, but it applies
equally well to other vertebrate species, since it does not
involve species-specific details. The difference between
what is termed a zebrafish mode of oscillation in somito-
genesis and a mouse/chick mode, observed also in medaka
(Gajewski et al., 2006), can be characterized as follows: in
the zebrafish mode, several waves of gene expression sweep
simultaneously through the PSM, i.e., multiple stripes of ex-
pression are detected in in situ experiments; in mouse/chick
mode, only one wave is observed. The zebrafish mode ap-
plies also to snakes, where up to nine waves of gene expres-
sion have been observed (Gomez et al., 2008). Within our
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Figure 7. Wavelength of the pattern as a function of the
position x in the PSM. L is the length of the part of the PSM
considered. �a� Schematic representation of the wavelength �. �b�
Fit of Eq. �6� to the experimental data obtained from wildtype
zebrafish in Giudicelli et al. �2007�. Best fit parameters are �=1.08
and ��1+��=57.8. ��, �, and � are dimensionless quantities defined
in the Methods section.�

HFSP Journal

62 Delayed coupling theory of vertebrate . . . | Morelli et al.



theory these different modes are characterized by the phase
difference between the arrest front and the posterior border:
the number of stripes of gene expression in the PSM is
�
�L�−
�0�� /2
, see Figs. 6(a)–6(c). From Eq. (11) in the
Methods section we find

Number of stripes �
�

vT
−

L

�eL/� − 1�vT

=
1

µs
−

1

�eµ − 1�s
. �7�

This expression can be written as a function of only two di-
mensionless parameters: the ratio µ=L /� between the sys-
tem length and the decay length of the frequency profile and
the ratio s=S /L=vT /L between the segment length and the
system length. The number of stripes is a decreasing function
of both these ratios: smooth frequency profiles with long de-
cay lengths, as well as small segment lengths, favor a large
number of stripes of gene expression, as in the zebrafish
mode, see Fig. 6(d). The coupling strength and time delay do
not appear in Eq. (7) because we have neglected for simplic-
ity higher order terms in � where they show up explicitly.
Note, however, that the collective period T=2
 /� in Eq. (7)
does depend on both the coupling strength and the time delay
through Eq. (5), see Fig. 6(d). Thus, in the same way that
it may modify the collective period (as discussed in the pa-
rameter values section), the effect of delayed coupling can
vary up to 30% the number of stripes of gene expression ob-
served in the PSM compared to a system without coupling,
see Fig. 3.

A similar formalism for calculating the number of stripes
has recently been published as Supplementary Material in
Gomez et al. (2000). The underlying theory was previously
proposed in Kaern et al. (2000) and Jaeger and Goodwin
(2001), and is the same as our continuum theory (see
Methods), but without coupling, and hence, without the ef-
fects caused by the delay in the coupling. However, in Gomez
et al. (2008) no explicit choice for the shape of the frequency
profile is made, hence, the resulting formula for the number
of stripes is a function of an unknown integral, rather than a
closed formula. Our Eq. (7) allows for direct quantitative
comparison with data. The choice of Eq. (2) for the fre-
quency profile comes from phenomenological observations
and it is not derived from the underlying molecular interac-
tions of the signalling gradients with PSM cells. Neverthe-
less, our function for the frequency profile is well supported
by experimental data, see Fig. 7.

It is important to note that a switch between modes can be
achieved while preserving the timing of somitogenesis by
changing the shape of the frequency profile: in Fig. 6(f) we
show results of simulations of a mouse mode in zebrafish
with all parameters given as in Table I except for �, which
is 6 cell diameters instead of 36 cell diameters, see also
Supplementary Movie 7. This implies that the number of

stripes can change by changing the shape of the frequency
profile while leaving the collective period and segment
length unaffected. Previous hypotheses for the different
modes include changes in period, loss of stripe specific cy-
clic gene enhancers, changes to the stability of cyclic mRNA
or different elongation velocities (Gajewski et al., 2006; Hol-
ley, 2007; Elmasri et al., 2004; Gomez et al., 2008). The de-
layed coupling theory indicates that changes to the frequency
profile, potentially through changes to FGF or Wnt signaling
gradients in the PSM, and different sizes of the PSM must be
considered as well. This is consistent with recent experi-
ments reported in Aulehla et al. (2008), where extra stripes
of gene expression appear in a mutant with an expanded
PSM.

Relation to regulatory network models
Current regulatory network models for the genetic oscilla-
tions in somitogenesis (Jensen et al., 2003; Lewis, 2003;
Monk, 2003; Cinquin, 2007; Rodríguez-González et al.,
2007; Goldbeter and Pourquié, 2008), undergo a Hopf
bifurcation—a generic mechanism by which oscillations can
appear in a dynamical system—when varying some param-
eters of the models, as for instance the transcriptional delays
(Bernard et al., 2006; Tiana et al., 2007; Feng and Navaratna,
2007; Verdugo and Rand, 2008; Momiji and Monk, 2008).
Although it is also valid in more general settings, our Eq. (1)
can be obtained as the phase equation associated to the nor-
mal form of a Hopf bifurcation when variations in the ampli-
tude of the oscillations can be neglected, and as such it can in
principle be derived from any of the dynamical systems as-
sociated with these regulatory networks following standard
procedures (Hassard and Wan, 1978; Kuramoto, 1984;
Nishii et al., 1994). Hence, our formulation represents a
simplification that captures general features and properties
of more detailed models.

The mechanism arresting the oscillations at the arrest
front is a different problem not addressed in our present
work. While the above mentioned models undergo a Hopf
bifurcation when varying one of their parameters, something
completely different (another kind of bifurcation triggered
by the variation of a different parameter of the models, for
instance) may be happening at the arrest front. The possibil-
ity that the oscillations are coupled to a bistable switch re-
lated to the signaling gradients in the PSM has been pro-
posed (Goldbeter et al., 2007; Santillán and Mackey, 2008).
In this scenario the arrest of the oscillators would not be a
result of the intrinsic mechanism of the oscillations, but
would result from an external signal.

Implications of multistability
Only stable solutions of our theory can be biologically rel-
evant. In addition, we hypothesize that unique solutions are
required to guarantee a robust behavior in the developing
embryo. In the presence of multiple stable solutions for the

A RT I C L E

HFSP Journal Vol. 3, February 2009 63



collective frequency, fluctuations could drive the system to
switch between these different states, with dramatic conse-
quences for healthy development. For this reason, we conjec-
ture that if several time delays are consistent with a fit to ex-
perimental data, those yielding a unique value of the
collective frequency should be favored. Biochemical evi-
dence indicates that coupling time delays should be rela-
tively short compared to other signaling processes in the ver-
tebrate segmentation clock (Heuss et al., 2008), thus likely
precluding the observation of multistability in such an em-
bryonic system. Multistability has been observed in other
systems where coupling delays can be large, with applica-
tions in biochemistry (Casagrande et al., 2007), chemistry
(Kim et al., 2001; Manrubia et al., 2004), control theory
(Beta and Mikhailov, 2004), or laser physics (Wünsche et al.,
2005; Franz et al., 2008), for example.

Applications in somitogenesis and comparison
to experiments
Key quantitative experiments in vertebrate segmentation in-
clude determination of segmentation rates (Schröter et al.,
2008), and the analysis of expression patterns from in situ
experiments (Giudicelli et al., 2007) and fluorescent reporter
genes (Masamizu et al., 2006). Our theoretical description
allows for quantitative analysis of these experiments.

The comparison to experimentally observed dynamic
patterns of gene expression permits the determination of the
model parameters, which are provided for wildtype zebrafish
in Table I. Future studies in mutant embryos or embryos
treated with different inhibitors will reveal which parameters
are affected. The parameters in our model can be related to
different cellular functions such as molecular synthesis and
trafficking of intercellular signals (coupling delay �); the
strength of intercellular signaling (coupling strength �); the
speed of a cell autonomous oscillator (intrinsic frequency
�L); changes in the signaling gradients responsible for the
frequency profile (decay length �); and changes in the posi-
tion of the arrest front (reflected by the system length L).
Thus, analysis of experimental results using our theory can
provide a deeper understanding of how molecular changes
lead to new phenotypes from the altered collective dynamics
of tissues.

Our framework can be extended to other developmental
processes that combine growth with a molecular clock.
These are for instance fore-limb autopod outgrowth and pat-
terning (Pascoal et al., 2007), or segmentation in short germ
band insects, spiders, centipedes, and other invertebrates that
might form segments by a mechanism similar to the one we
described (Damens, 2007; Chipman and Akam, 2008).

Summary
The delayed coupling theory describes spatiotemporal pat-
terns of gene expression during morphogenesis in agreement
with experimental observations. Most importantly, our phe-

nomenological theory provides a unified quantitative frame-
work relating the segmentation period and cyclic patterns of
gene expression to underlying properties, such as the charac-
teristics of intercellular communication, cell autonomous os-
cillations, the spatial profile of the slowing of the oscillators
in the PSM, the rate of axial growth, and the size of the PSM.
Our results indicate that the specific spatial pattern of cyclic
gene expression in the PSM does not affect the overall timing
of somitogenesis, but intercellular communication should be
considered as a fundamental mechanism in regulating the
collective frequency of the segmentation clock.

METHODS

Continuum limit
Starting from Eq. (3) a continuum limit describing the evo-
lution of the phase can systematically be derived for any
value of the time delay. This continuum limit is valid when
the typical length scale of the modulations of the pattern is
much larger than the distance between oscillators, a. The
limit is obtained by letting the distance a tend to zero, while
the total number of oscillators N tends to infinite, in such a
way that the length of the PSM, L=Na, remains finite and
constant. In the continuum limit, we require a finite coupling
strength �c� lima→0� /a2 to exist, which implies that � scales
as a2.

The description based on discrete oscillators with phase
�j�t� at a distance aj from the arrest front (where j is a dis-
crete label) is substituted by a description defined in a con-
tinuous field spanning from x=0 to x=L, where x is a real
positive value giving the distance to the arrest front of a point
of the field with phase ��x , t�. The resulting continuum equa-
tion reads

�̇�x,t� = �̄�x� + v � ��x,t� +
�̄c

2
�2��x,t� , �8�

where v is the velocity of the arrest front, � denotes spatial
derivatives (�= �� /�x� in one dimension, �= �� /�x ,� /�y� in
two dimensions, and so on), �̄�x� is a position dependent ef-
fective frequency given by

�̄�x� = ��x�
1 + 2
m�c/�L

1 + �c�
, �9�

and �̄c=�c�1+2
m�c /�L� / �1+�c�� is the effective coupling
strength. The effect of the time delay appears through � and
m= ���L /2
�, the nearest integer to ��L /2
. In analogy
with �j in the discrete case, the intrinsic frequency is defined
as ��x�=�	�1−e−x/��. Note that for simplicity we have as-
sumed that the intrinsic coupling �c is constant throughout
the PSM (as we did with �); it is straightforward to include a
positional dependence by substituting �c by �c�x� in all the
previous expressions.

We can simplify Eq. (8) using the steady state ansatz
��x , t�=�t+
�x� as we did in the discrete case
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� = �̄�x� + v � 
�x� +
�̄c

2
�2
�x� . �10�

The boundary conditions for Eq. (10) are 
�2
�x�
x=0=0 and

�
�x�
x=L=0. As in the discrete case, we assume that the
phase is defined and uniform in the tailbud, 
�x�L�=
�L�.
This implies that at x=L all the derivatives in Eq. (10) vanish
and �= �̄�L�. In fact the right-hand side of Eq. (9) coincides
with the expression for � obtained from solving Eq. (5) after
linearization around values of the delay �=2
m /�L. In
Fig. 4(a) we show in red the dependence of �= �̄�L� with �
given by Eq. (9) for several values of m; note that almost the
whole range of stable solutions of Eq. (5) (solid blue) can be
well approximated by the continuum limit (red).

Equation (8) with �̄�x� given by Eq. (9) is valid when
��2
m /�L for an integer m. A different equation can be
obtained in the cases where ��2
�m+1/2� /�L: it corre-
sponds to the continuum approximation of the unstable solu-
tions of Eq. (5) shown by the broken blue lines in Fig. 4(a).

Equation (10) can be solved and the corresponding phase
profile reads


��� = ��1 − ��−1��1 − �2�

− µ��e−µ − �e−µ/�� + �2e−µ�/� − e−µ�� , �11�

where we have defined the dimensionless coordinate �=x /L
and parameters µ=L /�, �= �̄	� /v, and �= �̄c /2�v; 
�0� has
been set to 
�0�=0 to fix an arbitrary constant. Figure 6(a)
shows the shape of this phase profile.

The wavelength of the patterns of gene expression can
be measured as a function of the relative position �. In
Giudicelli et al. (2007) this is done experimentally, using a
definition of the wavelength � that in our notation can be ex-
pressed as the condition 
��+� /2�−
��−� /2�=2
. In the
limit of small coupling strength ��1, we obtain a simple
relation between the local wavelength of the pattern � and
the position � along the PSM given by Eq. (6) of the main
text.
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