
Diplomarbeit
zur Erlangung des wissenschaftlichen Grades

Diplom-Physiker

Calculation of the Electric Potential for
a Neuronal Activity Model in the Brain

vorgelegt von

Fabian Multrus
geboren am 17.02.1989 in Fürth

Technische Universität Dresden
Institut für theoretische Physik

Fachrichtung Physik
Fakultät für Mathematik und Naturwissenschaften

2014



1. Gutachter: Prof. Dr. Frank Jülicher

2. Gutachter: Prof. Dr. Ivo F. Sbalzarini

Abgabedatum: 31.12.2014

i



Abstract

In neuroscience the computational simulation of the electromagnetic field in
the brain is used for further understanding and analysing of measured neuronal
activity. However, with increasing requirements on higher accuracy of realistic head
models, the established meshbased methods get more and more computationally
expensive. Therefore the aim of this thesis is to use the quasistatic approximation
of Maxwell’s equations for the formulation of a framework to calculate the electric
potential in multiple domains of differing conductivity, while applying a meshfree,
particle method, which is known to perform with far superior efficiency in complex
geometries compared to their meshbased counterparts. The presented results of
this work are the first steps towards a particle based framework, which will not only
allow future research upon computational performance, but also the investigation
of different model parameters influencing the simulation.

Kurzfassung

In den Neurowissenschaften werden rechnergestützte Simulationen eingesetzt
um das Verständnis und die Analyse aufgenommener Daten neuronaler Aktivität zu
erweitern. Die wachsenden Anforderungen an die Genauigkeit realistischer Modelle
des menschlichen Kopfes führen jedoch zu einem steigenden Rechenaufwand
der weit verbreiteten, auf Netzen basierten Ansätze. Daher ist das Ziel dieser
Arbeit mithilfe der quasistationären Näherung der Maxwell’schen Gleichungen ein
Modell zur Berechnung des elektrischen Potentials in Regionen unterschiedlicher
Leitfähigkeit zu erstellen und des weiteren hierfür eine gitterfreie Partikelmethode
zu verwenden, von welcher eine effiziente Rechenleistung in komplexen Geometrien
bekannt ist. Die präsentierten Ergebnisse stellen die ersten Schritte auf dem Weg
zu einem Framework dar, dass auf einer Partikelmethode basiert und welches
in Zukunft nicht nur die Untersuchung der Rechenleistung, sondern auch der
Einflüsse von verschiedenen Modellparametern auf die Simulation ermöglicht.
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CHAPTER 1. MONITORING THE BRAIN

Chapter 1

Monitoring the Brain

How we think and what drives our thoughts has attracted our attentions all
along. And for the longest time its exploration was a privilege of thinkers and
philosophers. There just seemed to be no tool, no approach for natural science to
observe the activity of our brains. This however started to change in the 1920s,
when the discovery and actual measurement of brain electric activity was made
by the German physician Hans Berger [1]. At first the progress made was slow,
because no one would believe in the results, but in the second half of 20th century
this rapidly changed. Especially newly developed investigation methods for such
complex organs like the human brain made the difference and helped to create a
whole new discipline in neuroscience. Whereas it is a fascinating topic and the
interest is growing fast, our knowledge about neuronal processes remains limited
until today. A key factor persists, that the capabilities of in vitro brain research
are very limited. Thus the need for diagnostic methods arises, which provide in
vivo studies as well as being non invasive.

Several such methods for observing were and still are developed today. Among
them are imaging techniques like Magnet Resonance Imaging (MRI) and elec-
tromagnetic monitoring of neuronal activities in Electroencephalography (EEG)
and Magnetoencephalography (MEG). Whereas MRI gives information about the
tissue type and distribution in the human body, EEG and MEG aim to measure
the electric potential or magnetic field of biophysical processes. Additionally, these
observation methods can benefit from each other. An area of interest, where the
combination of MRI and EEG/MEG has been successfully deployed, is in the field
commonly denoted as source localization. It deals with the problem of locating
the origin of the electromagnetic sources and therefore aims to determine the
origin of the associated neuronal process to a measurement in EEG or MEG data.
This task, however, remains a challenging process and it is of high interest for
the neuroscientific community to steadily improve the tools applied to solve this
problem.
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CHAPTER 1. MONITORING THE BRAIN

For source localization two approaches are distinguished. On the one hand
there is the inverse problem, where one directly tries to approximate the source
configuration of a given EEG/MEG-dataset and on the other hand the forward
problem, in which the arising electromagnetic fields are calculated from a known
source. Whereas the first one seems to be the intuitive choice to solve this problem,
it possesses a key issue. Since the electric potential in EEG is only known on the
scalp, any potential distributions on the surface have inherently an infinitely large
number of possible source configurations. This leads to the inverse problem being
generally ill-posed. In comparison the forward problem is well-posed and can also
be used for source localization inside a Bayesian solver [2]. In addition a forward
model has the advantage of allowing to investigate the sensitivity of the problem
to different parameters and model assumptions. For example the conductivity
values of the brain tissues are not known precisely from experiments and also
are not very reliable. Here, the impact of uncertainties on the solution could be
demonstrated with help of a forward model. Therefore such a model provides one
more powerful tool to improve our knowledge about assumptions of the physical
description.

Since an important part of the forward problem is the underlying head model,
recent research focuses increasingly on the utilization of MRI data to construct
realistic shaped head models. This, however, leaves the mainly used mesh-based
frameworks as a computationally very inefficient choice. At this point meshless
methods can step in and try to satisfy the high requirements put on the accuracy
of the simulation, while simultaneously keeping the level of the computational
cost reasonable. Particle methods are mesh-free approaches and it is well known
from smoothed particle hydrodynamics and vortex methods, that they perform
with far superior efficiency in complex geometries compared to their mesh-based
counterparts.

In this work the Discretization Corrected Particle Strength Exchange (DCPSE)
framework, which bases on a particle discretization scheme, is used to develop
a simulation for the electric potential, modeling electric brain activity. Special
attention has been paid to an easy and efficient extension to realistic head geome-
tries. In addition, realistic head geometries have been constructed from MRI data
for a future possible validation of the simulation.
The first section provides theoretical as well as experimental background of the
neurophysiological phenomena and in the second section the concepts of the
implemented forward model are presented as well. The concluding section contains
a critical analysis of the results and ends up with a summary as well as an outlook
on topics worth studying further.
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Chapter 2

Neurophysical Background, its
Physical Description and a
Particle Discretization Scheme

2.1 The Physical Description of Electric Brain
Activity

The source localization from EEG signals became a growing and important part
of nowadays neurological research. However, reconstructing the electric source of
neuronal activity remains a challenging task, due to the inverse problem being ill-
posed. Therefore the well-posed forward problem provides an interesting additional
approach to study. It can not only be used to localize the sources in EEG, it
can also be applied to construct a forward model, which can provide a further
investigation tool in form of a computer simulation. This section contains an
overview of the underlying neurophysiological phenomena of the forward problem,
followed by the description in terms of the governing electromagnetic equations
and concludes with a partial differential equation (PDE) to solve the forward
problem.

2.1.1 Phenomenology of Electromagnetic Activity in the
Brain

The electromagneticly active regions of the brain relevant for EEG are thought to
be mostly located in the cerebral cortex. This outermost layer is giving the brain
its characteristic shape due to the folded structure, see Figure 2.1, with its main
tissue component being grey matter. Inside this layer far more than 1010 neurons
exist and most of them are pyramidal cells [3]. This type of cells is perpendicularly

3
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Figure 2.1: Cross section of the Brain [4]

orientated to the cortical surface and their activity is believed to be the origin of
the main EEG and MEG signal.

Such a neuronal cell is organized in three parts, the cell body (the soma)
including the nucleus, the dendrites and the axon. The dendrites are branching
tree-like cell extensions, which are connected to neighbouring neurons, i.e. a
synapse, and in general function as receiver for input stimuli. Whereas axons,
long fibre-type elements of neuronal cells, can transfer these impulses without
any signal losses along their direction. The electrophysiology of this cell level
signalling process is highly complex and here only the most important aspects
will be outlined. For a more detailed biochemical description see Hämäläinen et al.
[3] or Zschocke et al. [5]. A more general overview is provided in Baillet et al. [2].

However, it is useful to imagine the process in a single neuronal cell only in
terms of changes in the resting potential of cell membranes [5]. Then an incoming
signal at the apical dendrites will lead to an electro-negative excitement of the
potential, the so called excitatory postsynaptic potential (EPSP), with respect
to the cell body and the basal dendrites. And this potential difference between
both ends of the cell, gives rise to a current, flowing from the apical to the basal
dendrites (cf. [2]). The two parts of the total current are conveniently denoted as
the primary current, directly located between source and sink, and the volume
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Figure 2.2: Schematic description of an active pyramidal cell with a primary
current flow (big arrow), existing between a source (apical dendrites) and a sink
(basal dendrites). The solid lines with arrows symbolize the volumetric current,
the dotted lines show the induced magnetic field. [6]

current, summing up all the remaining currents flowing in the whole head. It is
important to state, that the source and the sink are of the same magnitude, so
that no additional currents are created or destroyed. Finally the total current
causes an electric as well as a magnetic field throughout the head, see Figure 2.2.

Since the signal produced from a single pyramidal cell is far to small for
the finally measurable output of MEG or EEG [3], not single neuronal cells are
thought to be the origin of the source, but rather the simultaneous activation of
several hundreds to thousands of these. These cell assemblies are called cortical
columns and the current flowing inside an active column is believed to be the
main contributor to MEG and EEG signals.

2.1.2 Formulation of the forward problem

From the physical point of view, the EEG forward problem deals with the macro-
scopic formulation of Maxwell’s equations

∇ ·D(x, t) = ρ(x, t),

∇× E(x, t) = −Ḃ(x, t),

∇ ·B(x, t) = 0,

∇×H(x, t) = J(x, t) + Ḋ(x, t).

In this four fundamental equations E is the electric field and H is the magnetic
field, while the magnetic induction or field density is described with B and D is
the displacement field. Moreover, the charge density is denoted with ρ and the
total current density with J. The dot upon a vector field symbolizes the partial
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derivative in time.
Two major assumptions are made to solve the forward problem. On the one

hand that Maxwell’s equations satisfy the quasistatic approximation and on the
other hand that the values of conductivity in each tissue segment are constant
and therefore the conductivity field in the head is piecewise constant.

Quasistatic Approximation of Maxwell’s Equations A sufficient assump-
tion for the forward problem is that the finite velocity of the electromagnetic
waves can be neglected. In other words the considered system, here the head, is
small in comparison to the wavelength and therefore the fields inside the head can
be treated like they would spread out instantaneously [7]. In this case the time
derivative dependent terms in Maxwell’s equations are small with respect to the
remaining ones and can be left out from the further considerations. A detailed
evaluation of the quasistatic approximation of the forward problem due to the low
frequencies and the problem specific conductivity values of the brain tissue are
provided in Hämäläinen et al. [3].
The Maxwell equations without time derivative terms are

∇ ·D(x) = ρ(x),

∇ ·B(x) = 0,

∇× E(x) = 0, (2.1)

∇×H(x) = J(x). (2.2)

From this equations one important conclusion can be made. Since the curl of E(x)
vanishes in Eq. 2.1, the electric field can be written in terms of a scalar potential
φ(x)

E = −∇φ.

Current Source Dipole Further J(x) names in general the total current
density, and is assumed to be in a stationary state for the considered neuronal
activity. This is appropriate, because the change of the flowing currents relevant
for EEG is slow [5]. In the volume of interest V the current density has to be
conserved. Since the physical model consists of a current source and a current sink,
it is useful to introduce a source density s(x). It is defined with an integral over a
volume V and this has to be equal to the size of the fluxes through its interface.
In this case, because the sink and the source are of the same magnitude, it is zero

∫
∂V

JdA =
∫
V

sdV = 0.

6
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From this equation it follows with the aid of the divergence theorem that

∇J(x) = s(x). (2.3)

Furthermore one can use Ohm’s law to express J(x) in terms of the electric field
E(x), therefore the electric potential φ(x), and the conductivity tensor σ(x) for
anisotropic media

J(x) = σ(x)E(x) = −σ(x)∇φ(x). (2.4)

Applying Eq. 2.3 in Eq. 2.4 and assuming isotropic conductivity, i.e. the anisotropic
conductivity tensor field reduces to a scalar field σ(x) → σ(x), this yields the
equation to solve the EEG forward problem

∇ · (σ(x)∇φ(x)) = −s(x). (2.5)

Although the tissues in the head are certainly not isotropically conductive, it is a
sufficient assumption for first considerations.

In medical literature the derivation of formula 2.5 often contains the split of
the total current into two parts of distinct physiological meaning. The primary
current flow Jp(x) relates to the immediate neuronal activity and the secondary
or volumetric current flow Jv(x) reflects the effect of the electric field on the
cell-surrounding charge carriers

Jtot(x) = Jp(x) + Jv(x). (2.6)

Then it is assumed, that the total current density is divergence free ∇Jtot(x) = 0
without constricting the conservation of the total current density to a control
volume V . There Ohm’s law (2.4) is only applied for Jv(x) and one obtains an
equation, quite similar to Eq. 2.5, it is

∇ · (σ(x)∇φ(x)) = ∇Jp(x).

Then ∇Jp(x) represents a current source term, but what can get lost in this
picture, that the total current Jtot(x) as a whole is contributing to the electric
potential and not just the volumetric part Jv(x).

Ideal Current Source Dipole A commonly used concept to approximate the
source density is, with the aid of an ideal or mathematical current dipole

sd(x) = −Id ∇δ(x− xd). (2.7)

7
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Here Id is the current source dipole moment, which relates to the term from the
current multipole expansion, see [8], and δ(x−xd) is the delta distribution, which
states the position of the current dipole at xd. That an ideal current dipole is
an appropriate model for neuronal activity was also demonstrated by Munck et
al. [9] and is not to be confused with a charge dipole. The confusion is increased
by some literature on this topic, because it does not distinguish consistently the
analogy between electric and current source dipoles.

2.2 MRI - EEG: Non-invasive Investigation Meth-
ods for the Brain

An important and technologically demanding aspect is to study biological systems
in vivo. It becomes even more challenging, if the object of interest is a complex
organ like the brain. Especially if one is interested in studying the functionality of
brain processes, there is the need for non-invasive diagnostic methods, caused by
both experimental and ethical reasons. This led to the development of several new
techniques over the last century, like MRI, EEG, Positron Emission Tomography
or X-Ray Computed Tomography, to name only a few. Since its introduction in
the 1980s, MRI emerged as an important imaging method for modern medicine.
EEG on the other hand is a long time diagnosis method and a clinical standard
with extensive use, e.g. in the study of epilepsy. In the following sections MRI
and EEG will be introduced, starting with a conceptual and physical overview on
MRI as well as EEG and ending by taking a look at the synergy of both methods
in correlation experiments.

2.2.1 Magnetic Resonance Imaging

In contrast to most medical imaging applications, the MRI working principle
is based on nuclear magnetic resonance of hydrogen atoms and so no ionizing
radiation is used. This underlying physical phenomenon is of quantum mechanical
nature and applies to more than just hydrogen atoms, but its high concentration
in the human body makes it the chemical element of choice in modern medical
MRI. Here only the physics will be briefly summed up. For more technical details
the following books are emphasised [10], [11], [12].

If an external magnetic field B0 is applied, in MRI they are usually up to 3
Tesla [10], it will have two impacts on the nuclear spins. First, whenever a spin
is not in the direction of B0, e.g. the z-direction, it will undergo precession with
a characteristic frequency called Lamor frequency, which only depends on the

8
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(a) (b)

Figure 2.3: a) Spin precession inside an external applied magnetic field B0. More
spins will be aligned parallel with respect to B0. [13]
b) Mxy and Mz portions of the magnetic moment, Mxy will precess around the
z-axis, the direction of the applied magnetic field B0. [14]

magnitude of B0 and the gyromagnetic ratio γ

ω = −γ · |B0|.

Thus it is possible to distinguish different kinds of atoms, due to their characteristic
gyromagnetic ratios, e.g. for protons γ is 42.58 MHz

T and the resulting Lamor
frequency ω is to 63.9 MHz.
And second, over time all spins will align in direction of the magnetic field, whereas
the alignment in the same orientation, in this case +z, is energetically slightly
favoured, see Figure 2.3a. This small difference represents the actually measurable
quantity, the net magnetization Mz, which, in MRI literature, is often referred
to as net magnetization vector (NVM). To produce the MRI-signal, in addition
to the static magnetic field a radio frequency (RF) pulse excites the atoms in a
way that the NVM will be located perpendicularly to B0 in the xy-plane. The
transverse magnetization Mxy will start to precess about the z-axis, which is
shown in Figure 2.3b and therefore induce an alternating voltage in a receiver coil.
This is the MRI signal. After the system receiving the RF pulse, the MRI-signal
will fade out in characteristic time spans. This is due to the realignment of the
excited spins to the z-axis. There are two relaxation times to be distinguished,
longitudinal relaxation or T1 recovery and transverse relaxation or T2 recovery.
Both of them describe the decay of Mxy, however for different reasons. Whereas
the T1 decay is caused by spin-lattice interactions, the T2 decay is attributed to

9
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Tissue T1 Recovery [ms] T2 Recovery [ms]
Fat 192 108
White Matter 687 107
Grey Matter 825 110

Table 2.1: Relaxation times T1, T2, at 40◦C and B0 = 0.5 T and ωL = 20 MHz

Figure 2.4: MRI scan cross sections of a human head, from left to right in z, y
and x direction. The grayscale show the different tissue types. Well visible the
cortex, consisting of grey matter, surrounding the white matter. The data set was
provided by the Neuroimaging Center Dresden.

spin-spin interactions. Now to distinguish tissues the relaxation times T1 or T2
are taken, because the different time spans correspond to a specific type of tissue.
Table 2.1 shows three relevant relaxation times for tissue in the brain. Depending
on which time is measured in a MRI scan, the data are called T1 or T2 weighted.
The T1 weighted data is well suited for brain analysis. Figure 2.4 shows the final
output of a T1 weighted image set, where the structure of the brain tissue and
the surrounding skull is already identifiable. Used for the data acquisition was
a 3T-MRI-system from Siemens located at Neuroimaging Center Dresden, the
performed scan was T1 weighted.

2.2.2 EEG: Electric Brain Activity Measurement

EEG is one of the most used and well known clinical diagnostic methods. It
measures the electric potential which is produced by electrophysiological processes
in the human body, e.g. in the heart or the brain, by attaching electrodes onto
the skin.
The electrodes’ positions are ordered relative to anatomical fix points. These are
the nasion, which denotes the junction from nose and forehead, and the inion,
which corresponds to the peak at the back of the head, see Figure 2.5. At these
positions a voltage is received and registered over time.

10
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Figure 2.5: Schematic view on the electrode positions in an EEG experiment.
Inion, Nasion and Vertex are reference points to describe the orientation of the
head. [15]

An advantage of EEG is the high time resolution of the data, because the EEG
pattern reacts very quickly to activity changes inside the body. The downside,
however, exists in terms of the unknown origin of the source and therefore the
necessary source localization, a task which remains challenging to deliver accurate
results. In comparison MRI can also be used to measure brain activity, this method
is then called functional MRI (fMRI). While this approach directly provides the
location information of the active regions, it lacks a high time resolution. This
is due to the underlying physiological process used in fMRI to determine active
regions in the brain, the change of oxygen concentration. Its time delay is much
higher than the electromagnetic processes at synapses, measured in EEG.

Advantage of MRI-EEG Correlation Experiments For this reason scien-
tists tried to combine the advantages of MRI and EEG to overcome their individual
limitations. A MRI-EEG correlation experiment provides both, a MRI scan, where
the exact positions of the electrodes are included and from which a realistic head
model can be constructed, and an EEG data set of the same proband. If an already
known stimulus, whose source position is already established, is measured in the
EEG, this data can function as reference values at the electrode positions for
any computer simulation. This offers a huge opportunity for verification of the
forward model in realistic head geometries, since there are no analytic solutions
for complex geometries.

11
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2.3 Discretization and Operator Approximation
by Particles

The widely used concepts for implementing a simulation of the forward problem are
meshbased methods, like Finite Element Methods (FEM) or Boundary Element
Methods (BEM). Also in recent research more attention has been paid to the
utilization of realistic head models instead of standardized or even spherical
head models. This, however, leaves the usually used meshbased approaches as a
very computationally expensive tool. Therefore recent work tries to use meshless
methods, for their advantageous performance in complex geometries. Here the
work of Ellenrieder et al. [16] and Ala et al. [17] should be given for an example.

In particle methods the computational elements are called particles and carry
three properties, the position xp, their respective volumes Vp and one called
weights (or strengths) ωp. They don’t have to relate to physical equivalents like
molecules or atoms, but nevertheless they can also be used as data abstraction.
Particle methods are well known from smoothed particle hydrodynamics and
vortex methods.

2.3.1 Continuum Particle Methods

In continuum particle methods the approximation of smooth functions f(x) :
Rn → R is done by discretizing integrals over a set of scattered particles. This
can be outlined in three steps.

Convolution with δ In the first step the convolution with the delta distribution
is used to represent f as an integral for any x

f(x) = (f ∗ δ)(x) =
∫
f(y)δ(y− x)dy.

Although an elegant way, the delta distribution possesses a problem—it is irregular
and hence the discretization of the integral needs further considerations. It can,
however, be solved with the aid of regularization.

Regularization of δ The main idea therefore is to replace the irregular delta
distribution δ with a kernel function ξε, with characteristic kernel width ε, such
that ξε converges to δ for ε tending to zero lim

ε→0
ξε. ξε is often referred to as kernel,

smoothing kernel or weight function. Here, it will be consistently called kernel.

f(x) =
∫
f(y)ξε(y− x)dy

12
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Figure 2.6: Three particles with a Gaussian mollification kernel possessing different
weights wpi . [19]

Also it has to fulfill the same restrictions as the delta distribution, i.e. its support
needs to be compact1 and it has to be normalized.

∫
ξε(x)dx = 1. (2.8)

Usually, because of Eq. 2.8, additionally a scaling condition is required for
ξε(z) = ε−nξ(z/ε). This constraint has the benefit of allowing epsilon to change
without violating 2.8. Since ξε is an approximation of δ, it is containing an error,
the mollification error. To ensure an accuracy of order r, the first r − 1 moment
conditions of δ have to be conserved. The r-th moment is defined as

∫
xrξε(x)dx (2.9)

and thus for the conversion to remain valid
∫

xrξε(x)dx =
∫
xrδ(x)dx (2.10)

For a kernel of order r the mollification error is of order

fε = f +O(εr). (2.11)

Discretization over particles Finally the integral can be discretized by mid-
point quadrature over scattered particle positions. Therefore the integral

∫
dy is

1The compact support for the kernel is reasoned by Degond et al.[18].
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replaced with a sum over the particles at position xp

f(xq) =
∑
p

vp · f(xp). (2.12)

Here the second error occurs due to this discretization and is of order (h
ε
), with h

denoting the interparticle spacing. The total error made is thus

fhε = f +O(εr) +O

(
h

ε

)
. (2.13)

2.3.2 Operator Approximation: the Method of Particle
Strength Exchange

From here on out, to retain clarity of the formulas, a multi-index notation is used
and defined as followed.

Multi-index Notation A multi-index α = (α1, ..., αn) ∈ Nn is a n-tuple of
natural non-negative numbers and will be denoted by the Greece letters α, β or
γ. The absolute and factorial are

|α| =
n∑
i=1

αi, α! =
n∏
i=1

αi.

Furthermore the potency definition with a vector x = (x1, ..., xn)T ∈ Rn is

xα =
n∏
i=1

xαi
i .

Derivatives of functions with several variables f(x) : Rn → R are written as

Dβf(x) = ∂|β|f(x)
∂xβ1

1 ∂x
β2
2 ...∂x

βn
n

.

An important aspect to line out is how to read expressions of the form |α| = k,
k ∈ N0. Here the set of α contains not only all the possible tuples of α to construct
the sum with, they also consider their permutations, e.g. if α ∈ N2 and k = 3, the
resulting tuples are α1 = (3, 0), α2 = (2, 1) and their permutations α3 = (0, 3),
α4 = (1, 2).

General PSE Operators The method of Particle Strength Exchange (PSE)
follows the idea of using kernels to consistently approximate differential operators
and moreover guarantees the conservation of particle strength in particle-particle
interactions. It was first introduced in 1989 by Degond and Mas-Gallic ([18]) for
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diffusion and convection-diffusion problems and upon this groundwork Eldredge et
al. [20] developed a framework for arbitrary derivatives. In general a PSE-operator
for approximating the action of Dβf(x) = Qf(x) = has the form

Qβf(x) = 1
ε|β|

∫
(f(y)∓ f(x))ηβ

ε (x− y)dy, (2.14)

where the minus is chosen when |β| is even and positive when |β| is odd. The
difficulty in this integral representation is however to find a kernel ηβ

ε (x), which
approximates Dβ. Although ηβ

ε (x) has not necessarily to be the same as ξε(x), its
characteristic ηβ

ε (z) = ε−nηβ(z
ε
) is demanded, too.

Integral Approximation Now to determine kernels for arbitrary derivatives,
the idea from [20] is followed, starting with the Taylor series of a function f at y

f(y) = f(x) +
∞∑
|α|=1

(y− x)αDαf(x). (2.15)

The next step is to subtract or add f(x), depending on |β| being odd or even, on
both sides and convolute the equation with the unknown kernel ηβ

ε (x). This leads
with consideration of Eq. 2.14 to

Qβf(x) = 1
εβ

∞∑
|α|=1

Dαf(x)
∫

(y− x)αηβ
ε (x− y)dy + f0, (2.16)

with

f0 =


0, |β| even,

2 ε−β
∫
f(x) ηβ

ε (x− y)dy, |β| odd .

At this point the continuous α-moments

Mα =
∫

(x− y)α ηβ(x− y)dy =
∫ (z

ε

)α

ηβ
ε (z)dy (2.17)

are introduced. Note that here the characteristic of the kernel ηβ
ε (z) = ε−nηβ(z

ε
)

is already exploited. Then isolation of the derivative(s)2 Dβ on the right hand
side results in

Qβf(x) = (−1)|β|
β!

MβD
βf(x) +

∞∑
|α|=1
α 6=β

(−1)|α|
α!

ε|α|−|β|MαD
αf(x) (2.18)

2Also linear combinations of derivatives can be approximated.
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Finally, to approximate Qβf(x) with order of accuracy r, the set of conditions

Mα =

(−1)|β|β!, α = β,

0, α 6= β, 1 ≤ |α| ≤ |β|+ r − 1,
(2.19)

for the moments Mα are imposed and in addition
∫ ∣∣∣∣(z

ε

)α

ηβ
ε (z)

∣∣∣∣ dz <∞, |α| = |β|+ r

is demanded. Under these terms the mollification error εε(x) = Qf(x)−Qβf(x)
can be bounded as

|εε(x)| ≤ Cεr,

with some constant3 C . Considering a template for ηβε (x) and the set of moment
conditions 2.19, it is now possible to construct a kernel which satisfies them and,
hence approximates Qβ. For examples on how to do this, see [20].

Discretization Once a kernel is determined the last step is to discretize the
operator, defined in Eq. 2.14, by midpoint quadrature over particles

Qβ
hf(x) = 1

ε|β|
∑

p∈N(x)
vp(f(xp)∓ f(x))ηβ

ε (x− xp).

Here N(x) is the amount of all particles in a neighbourhood around x and usually
defined by a cutoff radius rc. In turn, the cutoff radius is mostly chosen such
that N(x) coincides on a certain level of accuracy with the kernel support. The
discretization error εh(x) = Qf(x)−Qβ

hf(x) is bounded as

|εh(x)| ≤ C
hm

εm+1 . (2.20)

2.3.3 The Discretization Corrected PSE Operators

The Discretization Corrected PSE (DCPSE) Operator, introduced by Schrader et.
al [21], focuses on removing the discretization error 2.20 from the PSE operator
approximation. Instead of deriving the Taylor series with the integral approxima-
tion, it considers the already discretized approximation and thus the overall error
ε(x) = εh(x) + εε(x). Therefore Eq. 2.18 writes

Qβ
hf(x) = (−1)|β|

β!
Zβ
hD

βf(x) +
∞∑
|α|=1
α 6=β

(−1)|α|
α!

ε|α|−|β|Zα
hD

αf(x) (2.21)

3For further details on C, see [18].
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with

f0 =

0, |β| even,

2 ε−|β|Z0
hf(x), |β| odd .

and the corresponding discrete moments Zα
h in n dimensions

Zα
h = 1

εn
∑

p∈N(x)
vp

(x− xp
ε

)α

ηβ
ε

(x− xp
ε

)
.

Also the set of moment conditions has to be adjusted and now looks for all |β| 6= 0

Zα
h =


(−1)|β|β!, α = β,

0, α 6= β, αmin ≤ |α| ≤ |β|+ r − 1,

<∞, |α| = |β|,

(2.22)

for |β| = 0, however, it is

Zα
h =



1
2 , α = 0,

0, α 6= 0, 1 ≤ |α| ≤ r − 1,

<∞, |α| = 0.

(2.23)

For the kernel ηβε the template

ηβε (x, z) =
 |β|+r−1∑
|γ|=αmin

aγ(x)zγ

 e−|z|2 = C(x, z)Θ(z), z = x− xp
ε

, (2.24)

is chosen. It consists of a polynomial correction function C(x, z) and the so called
window function Θ(z). For further details on what possible choices there are, see
[22]. To determine the unknown coefficients aγ(x), Eq. 2.24 is put into Eq. 2.25
and the following linear system of equations is obtained

|β|+r−1∑
|γ|=αmin

aγ(x)wγ
α(x) =

(−1)|β|β!, α = β,

0, α 6= β,
∀αmin ≤ |α| ≤ |β|+ r − 1,

(2.25)
with weights

wγ
α(x) = 1

ε|α+γ|+n

∑
p∈N(x)

vp(x− xp)α+γe−|
x−xp

ε |.

In this linear system of equations the multi-index γ indicates the columns and
therefore the unknown coefficients aγ , whereas α indexes the rows or the number
of equations. The count of columns and rows is equal and can be expressed with
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m

m =
|β|+ r − 1 + n

n

− αmin. (2.26)

In the end the DCPSE Operator is

Qβ
hf(x) = 1

ε|β|
∑

p∈N(x)
vp(f(xp)∓ f(x))ηβ

ε (x− xp),

and in the strong formulation, i.e. setting the particle volumes to one, it is

Qβ
hf(x) = 1

ε|β|
∑

p∈N(x)
(f(xp)∓ f(x))ηβ

ε (x− xp). (2.27)

From here on out the DCPSE operator is considered in its strong form.

18



CHAPTER 3. DEVELOPMENT OF THE FORWARD MODEL
FRAMEWORK

Chapter 3

Development of the Forward
Model Framework

3.1 DCPSE Operator: Construction and Char-
acteristics

A closer look is now paid to the construction of a DCPSE Operator. While the
one dimensional case is straight forward, the two dimensional case gets more
complicated, but the transition to any more dimensions will then be trivial. To
cover the complexity of the multi-index notation, while keeping the clarity of the
construction, a two-dimensional DCPSE Operator with order of accuracy r = 2 is
chosen for a design study. Afterwards the influence of parameters of choice upon
the operator performance and accuracy will be discussed.

3.1.1 Exemplary Construction of a DCPSE Operator

Consider the second partial differential operator for the function f : R2 → R with
respect to the variable x

D(2,0)f(x, y) = ∂2f(x, y)
∂2x

.

In two dimensions β is a pair of non-negative integers, here β = (2, 0). To construct
the polynomial correction function up to the order of r, its monomial base has to
be determined, i.e. xγ in Eq. 2.24, with the coefficients aγ .

Monomial Base It is defined by the order of accuracy r, the dimension n = 2
and finally the structure of the differential operator D(2,0) itself. Since |β| = 2,
αmin equals 1 and the number of monomials m is 9. The sum in Eq. 2.24 goes
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from |γ| = 1 to |γ| = 3 and all possible γ, nine in number, are

(1, 0), (0, 1),

(2, 0), (1, 1), (0, 2),

(3, 0), (2, 1), (1, 2), (0, 3).

The weights wγ
α are obtained in the same way. Because there are nine monomials,

the number of weights is 81 or let W be the matrix of weights, it is a 9× 9 matrix,

W =



w
(1,0)
(1,0) w

(0,1)
(1,0) · · · w

(0,3)
(1,0)

w
(1,0)
(0,1) w

(0,1)
(0,1) · · · w

(0,3)
(0,1)

... ... . . . ...

w
(1,0)
(0,3) w

(0,1)
(0,3) · · · w

(0,3)
(0,3)


.

From here the linear system of equations 2.25 has to be solved and the calculated
coefficients aγ are inserted in the DCPSE-template 2.24. Also in Eq. 2.27 the
minus sign is chosen.

In MATLAB the values are stored as a sparse matrix in such a way that in
each row the values for one particle are saved and matrix multiplication yields the
sum in Eq. 2.27. Since only the neighbouring particles are considered, the entries
for all non-neighbouring particles are set to zero. This enables the full utilization
of MATLAB’s fast matrix operations, while limiting excessive need of memory,
because for a sparse matrix only the non-zero elements and their matrix indices
are physically saved.

3.1.2 Parameters of Choice and Operator Convergence

The parameters of choice for the DCPSE operator are the kernel width ε, the cutoff
radius rc and the order of accuracy r. They have a high impact on the operator
performance and accuracy. A brief summary of the most important characteristics
is given now. For a very detailed discussion from a mathematical as well as from
a numerical point of view see Schrader [22].

Cutoff Radius rc The cutoff radius rc has an influence on both the accuracy
and the performance. Recall formula 2.25 for the system of equations and Eq. 2.26
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Figure 3.1: L∞ norm for the one-dimensional first and second derivative of a
trigonometric test function for a first derivative (a) and second derivative (b)
DCPSE approximation with r = 1, c = 1, and np neighbouring particles inside
the cutoff range rc

for the number of both rows and columns. To guarantee that the system does not
break down, the number of neighbouring particles may not be less than m, the
number of unknowns.
Any additional particle will not only increase the computational cost, moreover it
will influence the accuracy negatively [22].

Kernel Width ε A key parameter for the operator stability is ε. It has to
be coupled to the average interparticle spacing h via the ratio c = h

ε
. However

for smaller c the accuracy of the operator is expected to be decreased [22]. An
explanation is the less peaked window function, which results in more smoothing
overall.

Order of Accuracy r The parameter r, which defines the order of the correction
polynomial, will improve the accuracy when increased, while also scaling up the
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Figure 3.2: L∞ norm for the one-dimensional first (a) and second derivative of
a trigonometric test function for a DCPSE operator with r = 2, c = 1, and np
neighbouring particles inside the cutoff range rc

computational cost. This is due to the additional number of unknown parameters
aγ and the enlarged linear system of equations to solve.

Error Measures For the error measure the L2-norm

L2 = 1
Np

(Np∑
p=1

(Dβf(xp)−Qβ
hf(xp))2

) 1
2

and the L∞-norm
L∞ = sup

p∈Np

|Dβf(xp)−Qβ
hf(xp)|

are used. Here Np denotes the total number of particles with respective position xp,
while the term Dβf(xp)−Qβ

hf(xp) expresses the error between the analytical and
the numerical value. in Figure 3.1 and Figure 3.2 convergence plots for a fixed ratio
c = 1 are shown, but different cutoff radii rc. Notice that for an increasing number
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of neighbouring particles the accuracy of the approximation decreases slightly.
Also for a higher order of accuracy r the obtained accuracy is increased. Since the
L2 norm and the L∞ norm delivered the same convergence characteristics, only
the L∞ is represented.

3.2 Utilization of the DCPSE Operator for Solv-
ing Linear Partial Differential Equations

The DCPSE Operator can also be used to solve linear inhomogeneous PDEs, e.g
of the form

σ(x)Dβf(x) = g(x),

with Neuman or Dirichlet boundary conditions. Here σ(x) is not necessarily a
constant coefficient, but a scalar field depending on x = (x1, x2, ..., xn) and g(x),
also a scalar field, is a given inhomogeneity. Of course linear combinations of
differential operators Dβ are possible. Therefore the operator was put inside a
framework which is able to provide a solution of the PDE with respect to the
boundary conditions. How the DCPSE Operator fits into this framework and how
the boundary conditions are inserted will be discussed now.

3.2.1 Associated Shape Functions

Since the DCPSE Operator Qβ is based on the difference or sum of functions at
point x, it can be formulated in a way that matrix multiplication with the function
values at the particle positions gives directly the result Qβf(xq) = (Aβf)(xq) that
is approximated. This matrix Aβ will be called the associated shape function from
here on out. For the construction, recall the DCPSE formula for particle q

Qβ
hf(xp) =

∑
p∈N(xq)

(f(xp)∓ f(xq))ηβ
qp.

With rearrangement one obtains

Qβ
hf(xp) = 1

ε|β|
∑

p∈N(xq)
f(xp)ηβ

qp ∓
∑

p∈N(xq)
f(xq))ηβ

qp,
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which can be written in matrix notation as Aβ · f , where

Aβ =


∓(ηβ

11 + ηβ
12 + . . .) ηβ

12 · · · 0
ηβ

21 ∓(ηβ
21 + ηβ

22 + . . .) · · · 0
... ... . . . ...
0 0 · · · ∓(ηβ

Np1 + ηβ
Np2 + . . .)


and

f =


f(x1)
f(x2)

...
f(xNp)

 .

Note that for reasons of clarity, the matrix notation of Aβ is simplified since a
diagonal sparse matrix is assumed. In general the matrix Aβ does not possess this
characteristic, but in that case nothing changes except the position of the non-
zero elements. In matrix notation the expression for an approximated differential
operator Qβ at all particle positions xq is then


Qβf(x1)
Qβf(x2)

...
Qβf(xNp)

 =


Aβ

11 Aβ
12 · · · 0

Aβ
21 Aβ

22 · · · 0
... ... . . . ...
0 0 · · · Aβ

NpNp

 ·

f(x1)
f(x2)

...
f(xNp)

 .

3.2.2 Formulation of Partial Differential Equations with
Associated Shape Functions

To solve a PDE, an approach based on creating and solving a linear system of
equations of the form Af = b was used. Here A denotes the coefficient matrix,
f is the vector of unknowns and b the solution vector. This method contains
two major steps, first creating the linear system of equations, for which then a
numerical solver can be used, and then inserting the boundary conditions in this
LSE. Consider a linear PDE for the unknown scalar function f(x) : Rn → R in a
n-dimensional domain Ω, with a boundary ∂Ω,

(
σ1(x)Dβ1 + σ2(x)Dβ2

)
f(x) = g(x)

and homogeneous Neuman,

∂f(x)
∂n

= ∇f(x) · n(x) = 0 x ∈ ∂Ω, (3.1)
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or homogeneous Dirichlet boundary conditions,

f(x) = 0 x ∈ ∂Ω. (3.2)

Here n is the outer-pointing normal of ∂Ω and the count of differential operators
Dβi is restricted to two, generalization to an arbitrary number, however, is easily
possible.

Construction of the LSE For each Dβi the associated shape function of the
DCPSE approximation Qβi is Aβi , a Np ×Np matrix. There every row q, repre-
senting the q-th particle, has to be multiplied with the corresponding coefficient
σi(xq). In MATLAB it is desirable for performance reasons to formulate this in
matrix notation.
It is possible to represent the coefficients σi(x) with diagonal matrices. The vector
elements of the coefficient values at each particle position, σi = (σi(x1), ..., σi(xNp))T,
are the diagonal entries and matrix multiplication with Aβi yields the desired
result. This is due to the characteristic result of the multiplication of a diagonal
k × k matrix d with an arbitrary k × k matrix M , which is

d1 0 · · · 0
0 d2

. . . ...
... . . . . . . 0
0 · · · 0 dk

·

M11 M12 · · · M1k

M21 M22 · · · M2k
... ... . . . ...

Mk1 Mk2 · · · Mkk

 =


d1M11 d1M12 · · · d1M1k

d2M21 d2M22 · · · d2M2k
... ... . . . ...

dkMk1 dkMk2 · · · dkMkk

 .

In the end this leads to the following expression for the PDE

(
diag(σ1) · Aβ1 + diag(σ2) · Aβ2

)
f = g, (3.3)

with σi = (σi(x1), ..., σi(xNp))T and f = (f(x1), ..., f(xNp))T. Now Eq. 3.3 is of
the form Af = g, because every matrix on the left hand side (LHS) is known, and
can be numerically solved. Note, that the same letter f symbolizes the vector f
and the function f to show the relationship between both.

Implementation of Boundary Conditions Starting from Eq. 3.3, assume
that the LSE is of the form Af = b and that the position of the boundaries
is well known, so particles can easily be placed there. Inserting the boundary
conditions is then done by updating the boundary particles in the LSE for the
PDE. This means that each updated row, corresponding to a boundary particle,
has to express Eq. 3.1 or Eq. 3.2 with respect to the boundary condition. The
case of Dirichlet boundary conditions is rather simple, one has to update the q-th
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row, which represents particle q on a boundary with Dirichlet boundary condition,
only with zeros, except at the column index q to 1. In other terms the updated
row is the q-th row of a Np × Np identity matrix. Also the q-th element of the
solution vector has to be changed accordingly, to g(xq).

...
Aq1 · · · AqNp

...

→


...
0 · · · 0 1qq 0 · · · 0

...


For Neuman boundary conditions, the replacement is more complex but the
concept remains the same. The goal is again to change the corresponding row
of the boundary particle entries which express the condition equation. Therefore
recall Eq. 3.1 with the summation over the dimensions not the particles

∇f(x) · n(x) =
n∑
i=1

∂f(xi)
∂xi

nxi
= 0, x ∈ ∂Ω.

Exemplary, the concept to change the q-th row for one summand will be shown in
two dimensions. If one considers the DCPSE approximation for ∂

∂x
to be Q(1,0)

and ∂
∂y

to be Q(0,1), the associated shape functions will be A(1,0) and A(0,1). For
the construction of the new row, the q-th rows of A(1,0) and A(0,1) are multiplied
with nx and ny respectively. The q-th row of the coefficient matrix changes to


...

Aq1 · · · AqNp

...

→


...
nxA

(1,0)
q + nyA

(0,1)
q · · · nxA

(1,0)
qNp

+ nyA
(0,1)
qNp

...

 .

3.3 Forward Model Framework

3.3.1 Single Region and Multi Region Approach for the
Forward Problem

A realistic model of the domain in the electric forward problem is often taken to
be a domain with distinguished subdomains, where the value of conductivity σ is
assumed to be constant. The PDE for the electric potential φ can then be written
as

∇ · (σ(x)
(
∇φ(x)

)
= −s(x), σ(x) =

σi, x ∈ Ωi,

0, x /∈ Ω,
(3.4)
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additionally considering any existing boundary conditions, Figure 3.3 shows such
a domain with three subdomains.

Figure 3.3: Domain Ω with subdomains Ωi of constant coefficients σi. Outside Ω,
σ = 0. The interfaces are denoted with Si [16]

Single Region For the single region approach the domain is considered as a
whole and σ has to be regarded as a discontinuous scalar field and attention has
to be paid to the impact of the nabla operator. With the product rule eq. 3.4
becomes (

∇σ(x)
)(
∇φ(x)

)
+ σ(x)

(
∆φ(x)

)
= −s(x)

The difficulty in this approach is to approximate the derivative of the discontinuous
scalar field σ, because at the interfaces the derivative will become infinite, a
singularity occurs. It should be pointed out that any approximation attempt
without smoothing the discontinuities will be a very poor one by default.

Multi Region The multi region approach aims to avoid this problem and
therefore splits Ω in the subdomains Ωi, where the conductivity value is constant.
In that case one ends up with a different PDE for each subdomain and moreover
has to require two additional conditions at each interface Si, the continuity of the
electric potential φ and the continuity of it’s gradient ∇φ.

σi∆φi(x) = −s(x), x ∈ Ωi

φi(x)|x∈Si
= φi+1(x)|x∈Si

σi∇φ(x)|x∈Si
= σi+1∇φ(x)|x∈Si

The second one is often referred to as the continuity of fluxes.
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3.3.2 Insertion of a Current Source Dipole

The current source dipole was only considered in the multi region case, it is
however equally possible for the single region case. For the multi region approach
that leads to the following PDE with interface conditions

σi∆φi(x) = −Id∇δ(x− xd), x ∈ Ωi (3.5)

φi(x)|x∈Si
= φi+1(x)|x∈Si

σi∇φ(x)|x∈Si
= σi+1∇φ(x)|x∈Si

Direct Approach In this approach the source and sink terms are inserted
directly at the respective particle positions. This will be called a physical current
source dipole. If a sink Isi and a source Iso, with Iso = −Isi, are inserted at the
particle positions qso and qsi the qso-th and qsi-th entry of the RHS have to be
changed to Isi and Iso.

Subtraction Approach The ideal current source dipole from Eq. 2.7, will be
inserted with the subtraction approach as done by [23] and [16]. It considers
the solution as superposition of the solutions for an ideal dipole in an infinite
homogeneous medium φ∞ and a correction potential φcor,

φ = φ∞ + φcor.

For φ∞ the solution to the PDE

σ0∆φ∞(x) = −Id∇δ(x− xd) (3.6)

is well known, see [24], it is

φ∞(x) = 1
4πσ0

Id · (x− xd)
|x− xd|3

.

And the PDE for the homogeneous medium 3.6 will be subtracted from the actual
PDE 3.5 and one obtains the following PDE for φcor,

(σi − σ0)∆φ∞(x) + σi∆φcor(x) = 0 x ∈ Ωi.

The first term (σi − σ0)∆φ∞(x) is zero at the dipole position, because σi = σ0.
For x 6= xd, Eq. 3.6 states that ∆φ∞(x) vanishes everywhere except at the dipole
position. Thus, the PDE to solve for φcor is

σi∆φcori (x) = 0, x ∈ Ωi,
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which can be solved numerically. This also leads, with continuity of φ∞, to changing
interface conditions of the form

φcori (x)|x∈Si
= φcori+1(x)

∣∣∣
x∈Si

,

σi∇φcor(x)|x∈Si
− σi+1∇φcor(x)|x∈Si

= (σi+1 − σi)∇φ∞(x)|x∈Si
.

3.4 Calculating the Electric Potential in Differ-
ent Geometries

To test and understand the different approaches, the electric potential is calculated
in several test geometries. At the start a simple one-dimensional region, where
the analytical solution can be calculated, is considered. Then this is followed with
a two dimensional test case, where difference between the single and the multi
region approach is visualized, and concluded with the implementation of current
source dipoles in spherical geometries.

3.4.1 Single Region and Multi Region Approach in Com-
parison

To compare the single and the multi region approach, a one-dimensional domain
and a two-dimensional rectangular domain are tested. The analytical solution to
the one-dimensional problem is given in the appendix. Each test geometry exists
of two subdomains Ω1, Ω2 with differing, but constant conductivity

σ(x) =

σ1, x ∈ Ω1,

σ2, x ∈ Ω2.

One-Dimensional Region with Two Domains of Constant Conductivity
The test domain Ω ranges from x = 0 to 1, whereas subdomain Ω1 is within the
limits [0.3, 0.7] and the second subdomain is determined by Ω2 = Ω \ Ω1. Within
this test, two different ratios of conductivity, σ1

σ2
= 2

1 and σ1
σ2

= 10
1 , were tested.

These ratios are motivated by the average conductivity ratios of white and grey
matter, i.e. 2, as well as skull and cortex, i.e. 10.
The results for the single region approach, Figure 3.5, show declining accuracy
for higher ratios of conductivity. This, however, is caused by the approximation
of the derivative of the unsmoothed conductivity field at the discontinuities. In
contrast the multi region approach delivers the expected results, see Figure 3.4.
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Figure 3.4: Multi region approach with conductivity ratios: σ1
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(a) (b)

Figure 3.6: Subdomains Ω1 and Ω2 with constant conductivity values σ1 and
σ2, respectively. (a) shows the subdomains in Cartesian coordinates and (b) the
boundary conditions

Two Rectangular Domains with Constant Conductivity in Two Dimen-
sions Now consider a region Ω, also ranging from 0 to 1 in x and y direction,
with two rectangular domains Ω1 and Ω2. Here Ω1 reaches from 0.3 to 0.7 in both
directions and, again, Ω2 = Ω\Ω2, see Figure 3.6a. Both domains possess differing
values of conductivity σ1, σ2 and the boundary conditions, see Figure 3.6b, are

φ(0, y) = 0, φ(1, y) = 1, ∂φ(x, 0)
∂y

= 0, ∂φ(x, 1)
∂y

= 0.

The results are shown in Figure 3.7 in terms of equipotential lines of the electrical
potential φ. What can be noticed, is that for a higher ratio of conductivity the
inner subdomain Ω1 gets more and more visible. However for the single region
approach and a conductivity ratio σ1

σ2
= 10 closed equipotential lines occur. This

would point towards sources and sinks inside the domain, which must not exist,
since the source term s(x) = 0.
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Figure 3.7: Equipotential lines of the electric potential for the single as well as
the multi region approach and two ratios of conductivity σ1

σ2
= 2, σ1

σ2
= 10.

3.4.2 Multi Region in 3D Spherical Geometries

A single sphere, centred at (0, 0, 0) with radius R = 0.7, was implemented inside
a cubical region Ω ranging from -1 to 1 in every direction. Following the notation
of the two-dimensional rectangular domain, the whole domain is split into two
subdomains with constant values of conductivity

Ω =

Ω1 ∀ |x| ≤ R,

Ω2 ∀ |x| ≥ R.

The ratio σ1
σ2

is always kept to 10. Three models were deployed, one without any
source term, another one with an inserted ideal current source dipole, see section
3.3.2, and the last one with a physical current source dipole as described in section
3.3.2.
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Sphere with Vanishing Source Term Dirichlet boundary conditions are
imposed at the yz-plane at x = 1 and x = −1

φ(−1, y, z) = 1, φ(1, y, z) = 0,

Neuman boundary conditions at every remaining boundary.
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Figure 3.8: Domain Ω with subdomains Ωi of constant coefficients σi. Outside Ω,
σ = 0

The results are as expected, they deliver a linear potential gradient in x-
direction, very similar to the result in one dimension.

Sphere Including an Ideal Current Source Dipole For an ideal current
source dipole, Neuman boundary conditions are imposed at all boundaries, since
the flux through the skin of the head has to be zero [23]. The current source dipole
moment is Iideald = (−1,−1, 1)T at the position rd = (−0.1,−0.1, 0.1)T. The result
is shown in Figure 3.9 and is consistent with the expected result, cf. [17].
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Figure 3.9: Domain Ω with subdomains Ωi of constant coefficients σi. Outside Ω,
σ = 0

Sphere Including an Physical Current Source Dipole The physical cur-
rent source dipole is also implemented with Neuman boundary conditions at
each boundary. The location of the source is chosen to be at rso = (0, 0, 0)T

and the sink is at rsi = (−0.2,−0.2, 0.2)T. Therefore the distance vector is
d = (−0.2,−0.2, 0.2)T. Moreover the magnitude of the inserted source and the
sink is set to |Iso| = |Isi| = Ip = 5 A. This leads to an analogous current source
dipole model, since the physical and the ideal current source dipole moment are
similar Iphysicald = d ∗ Ip = (−1,−1, 1)T. Figure 3.10 shows the obtained result,
which differs only slightly compared to Figure 3.9.
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Figure 3.10: Domain Ω with subdomains Ωi of constant coefficients σi. Outside Ω,
σ = 0

3.5 MRI Data Segmentation with Freesurfer

The MRI raw data, shown in Figure 2.4, have to be segmented. Therefore the
open source image analysis suite Freesurfer has been used [25],[26],[27]. It is
documented and freely available for download online at http://surfer.nmr.
mgh.harvard.edu/. The segmentation was done with two different routines, the
recon-all routine and the mri-watershed routine. Whereas the recon-all routine
provides segmentation up to subcranial regions, the mri-watershed routine delivers
a rougher but much more suitable one, because it distinguishes mainly cortex,
the cerebrospinal fluid, skull and skin. Several geometries were obtained. For
exemplary purpose a geometry of the cortex is shown in Figure 3.12 and of the
skull in Figure. 3.11

First tests of the forward model framework, however, did not deliver the
expected results. Further steps will have to be taken into account to tune the
algorithms for the increased complexity of the geometry. Also, generalizing the
developed method to complex geometries does not constitute any conceptual
problems.
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Figure 3.11: Complex geometry of the skull surface
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Figure 3.12: Complex geometry of the brain surface
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Chapter 4

Conclusion and Outlook

In this thesis the DCPSE Operator has been utilized to solve the PDE for the
electric potential in domains consisting of subdomains with different, nevertheless
constant conductivities. Two methods, the single and the multi region approach,
have been tested, whereas the multi region technique performed with far superior
accuracy. This is strongly related to the unsmoothed conductivity field in the
single region approach, which should be included in next tests, because it is far
more computationally efficient than its multi region counterpart.
The implementation of the current source dipole was successful. Albeit this ac-
complishment, it would be beneficial to continue with further studies, especially
on validating the results with analytic solutions of such models. Such solutions
exist, but they are very complex. In conclusion, the results are very promising,
although more effort has to be put in the development of the framework on to
realistic head models.

This marks the first steps towards a meshfree particle simulation of the forward
model and future work can involve a more sophisticated physical model, containing
the anisotropic conductivity of the brain tissue and more realistic dipole models
like a weighted current source distribution. It also can focus on parallelization
of the framework, e.g. with the use of pseudo-time step schemes, since in this
approach a global LSE has to be solved. The biggest goal, however, should be to
use the MRI-EEG correlation data set to validate the forward model.
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Appendix A

Analytic Solution for a Region
with Three Subdomains of
Constant Conductivity

Consider the PDE
∇σ(x) (∇φ(x)) = 0

in a 1-dimensional domain Ω consisting of three subdomains, Ω1 ranging from x0

to x1, Ω2 from x1 to x2 and Ω3 from x2 to x3. For each of these subdomains the
value of conductivity, σ1, σ2, σ3, can be different, but has to be constant over the
whole subdomain. Furthermore the boundary conditions,

φ(x0) = C, φ(x3) = K,

exist. Therefore the assumption to split the potential into three solutions, one for
each subdomain,

φ(x) =


φ1(x), x ∈ Ω1,

φ2(x), x ∈ Ω2,

φ3(x), x ∈ Ω3,

can be made, cf. [7], and leads to three PDEs

σi∆φi(x) = 0, x ∈ Ωi. (A.1)
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Since φ has to be continuous and the flux through each interface may not change,
one has to consider following interface conditions

φi(xi) = φi+1(xi),

σi
dφi(x)

dx

∣∣∣∣∣
x=xi

= σi+1
dφi+1(x)

dx

∣∣∣∣∣
x=xi

.

Also, regarding Eq. A.1, the form of the φi is supposed to be

φi(x) = aix+ bi, x ∈ Ωi.

The six equations to determine the six unknowns are the two boundary conditions
and the four interface conditions, two for each interface. Solving the arising LSE,
the coefficients are set by these equations

a1 =
K − C

(x1 − x0)−
σ1

σ2
(x1 − x2)−

σ1

σ3
(x2 − x3)

a2 = σ1

σ2
a1

a3 = σ2

σ3
a2

b1 = C − x0 a1

b2 = K − x2 a2 − (x2 − x3) a3

b3 = K − x3 a3

For the parameters C = 1, K = 0, x0 = 0, x1 = 0.3, x2 = 0.7, x3 = 1 and moreover
σ1 = σ3, this directly yields for any ratio σ1/σ2

a1 =
− 1

0.4
σ1

σ2
+ 0.6

a2 = σ1

σ2
a1

a3 = a1

b1 = 1

b2 = (x1 − x0) a1 − x1 a2 + C

b3 = −a3
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