
Information Processing Letters 17 (1983) 241-248

North-Holland
15 December 1983

AN APPLICATIVE RANDOM-ACCESS STACK *

Eugene W. MYERS

Deparrment of Computer Science, Uniuersi& of Arkmu, Tucson. AZ 85721, U.S.A.

Communicated by G.R. Andrew

Received 1 June 1983

Revised 22 July 1983

Kqwords: Applicative programming, linked list, number system. random-access stack

1. Introduction 2. The skew-binary number system

Applicative (functional) programming has long
been advocated on theoretical grounds as the for-
mal properties of such programs are simple and
elegant. Recently, there has been a trend to bring
the applicative approach into the practical arena
as a software development tool [2] and even as a
programming vehicle [1,6]. Unfortunately, the re-
quirement that operations be side-effect free makes
efficient implementations difficult to achieve [6].
However, some researchers have begun to develop
effective applicative implementations for classic
data abstractions such as stacks, queues, tablets,
lists, etc. [4,7].

In this article, applicative algorithms for a ran-

dom-access stuck @A-stack) are presented. An
RA-stack is a stack data abstraction in which one
is further permitted to access the kth element of a
stack. The approach uses a singly-linked list repre-
sentation which is augmented with auxiliary
pointers that permit the access of arbitrary stack
elements in O(lg N) time were N is the size of the
stack. The auxiliary linking structure is based on a
number representation scheme for which subtrac-
tion by one involves at most one carry operation.
Another scheme with this property appears in [3].

* This research was supported in part by the National Science
Foundation under Grant MCS-8210096.

A skew-binary number is a string consisting of
the digits 0, 1 and 2. Each digit position represents
a successive power of 2 minus one. That is the
skew-binary number cx = a,,a,_, . . . a, denotes the

integer value, [cx] = C:= ,a,(2’ - 1). For example,
the skew-binary numbers 1000, 201 and 122 all
denote the integer value 15(,,,. Unlike common
radix number systems, a given integer value can
have more than one skew-binary representation.

A skew-binary number is canonical if all digits
are 0 or 1 save for the lowest order non-zero digit,
which may be 2. More formally, a string is a
canonical skew-binary number if it is a member of
the regular language

CSB = (l(0 + l)* + A)(1 + 2)0* + 0.

Lemma 1 demonstrates that the length of a CSB
number is of the order of the base 2 logarithm of
its value.

Lemma 1. Suppose (Y E CSB, [a[= n and [cx] = A.
Then 2” - 1 < A < 2”+’ - 2 or equivalently n =

[lg(A + 111.

Proof. The CSB number of length n whose value is
smallest is easily seen to be lo”-’ and its value is
2” - 1. The CSB number of largest value and
length n must be of the form 1 J 20 k where j + k + 1
= n as decrementing any digit in such a number

0020-0190/83/$3.00 0 1983, Elsevier Science Publishers B.V. (North-Holland) 241

Volume 17, Number 5 INFORMATION PROCESSING LETTERS IS December lYX3

decreases its value. But

[l-120!+= 5 (2’-1)+2(21“‘_1)
I=k+2

2 II + 1 = - 1 -(n-k)

< 2”” -2 ask<n-1.

This further implies that the number 20”- ’ has the
largest value. 0

This critical feature of the CSB number system

is that every integer value has a unique CSB
representation. This is proved in Lemma 2.

Lemma 2. Euch integer due bus u unique CSB
representution.

Proof. It is first shown that each integer value is
represented by some CSB number. To do so it

suffices to show by induction on n > 0 that if
A < 2”+’ - 2, then there exists an (Y such that
[a] = A. The basis of the induction is easy:

n=l * A ~2 * A E {[0],[1],[2]}.

Suppose the induction hypothesis is true for n = k
andthatA<2k+‘-2.1fA<2k+‘-2,thenancu
such that [LX] = A exists by the induction hypothe-
sis. If A = 2k+2 - 2, then A = [20k]. The case where
2k+l

- 1 < A < 2k+Z - 3 remains. The induction

hypothesis assures that there exists a l3 such that
[13]=A-2kt’+1<2k+‘-2 and Lemma 1 as-
serts that IpI < k. Thus [lOk-lalp] = 2k+’ - 1 + [p]
= A.

It remains to demonstrate that each integer

value is represented by a unique CSB number. It
suffices to show that if (Y f p, then [CX] + [PI. If
cy # l3, then without loss of generality either]LX[>
1 f3 + 1 or there exists a p such that

(Y = pa7. P=pbn, l~l=lnl and aab+l.

If Ial > IpI+ 1, then, by Lemma 1,

[LX] >2’“‘- I >2’s1+‘- I > 21”1” -2> [PI.

In the other case assume n = IT~(= 171). By Lemma

1,

[cxO”] >, [(b + l)O”] = [bO”] + (2”+’ - 1)

>[bO”]+[n]=[bn]

242

and thus

[~~]=[pa7]>, [PO”+‘] +[(YO”]

Suppose cy > 2 is a CSB number and that cy =
pa0” where a is the lowest order non-zero digit
and k > 0. Then p = P(a - 1)20r ’ is the predeces-

sorofcuasa ~(1.2) impliesPECSBand

[paOh] - 1 = [n(a - l)O”] +(21” ~ 1) - 1

= [p(a - l)OL] + 2[2” - l]

= [p(a- 1)20h ‘1.

Thus a CSB number and its predecessor differ
only in the lowest order non-zero digit and the
position to its immediate right (if it exists). Alter-
nately, in the CSB number system subtraction by
one involves at most one carry operation.

3. An applicative random-access stack

In many applications it is desirable to view a
stack data structure as but one instance of an
object from a ‘stack’ data abstraction. For exam-
ple, programming languages can be viewed as lin-
guistic vehicles for manipulating data abstractions
such as ‘integer’, ‘array’, ‘string’, etc. Formally. we
will assume that a uulue-semantic. stuck dutu uh-

struction consists of the following:
(a) An arbitrary and time varying number of

objects of type stack with homogeneous domain X.
(Homogeneity is not necessary but is assumed for
simplicity.)

(b) A fixed finite collection of operutors that

access and manipulate objects.
(c) A time varying set of vuriubles. each of

which refers to an object. Variables can be created
and destroyed, and their reference relation can be
modified by assignment. A variable denotes the
due of the object to which it refers. Only assign-
ment can change the value of a variable.

The state of the data abstraction is the collec-
tion of objects referred to by the current set of
variables. A generally accepted stack operation
repertoire [5] consists of the following four primi-
tives:

Volume 17. Number 5 INFORMATION PROCESSING LETTERS

(1) EMPTY(S) : Boolean

(2) TOP(S) : x

(3) POP(S): Stack-of-X

(4) PUSH(S, x): Stack-of-X

Determine if stack S
contains any ele-
ments.
Return the top (last)
element of stack S.
Delete the top ele-
ment of stack S.
Append x as the top
element of stack S.

POP6,) PUSH&G)

EMPTY(S,)=False ,
TOP(S,)=E G

,,,\&H ~*-==- =s,

,s__= N,L $-e-s,

Fig. 1. Sample state of an applicative stack data type.

15 December 1983

Observe that the primitives have been formulated
as functions. The value-semantic constraint that
only an assignment can change the value of a
variable forces an implementation in which an
operator may not modify the value(s) contained in
its operand object(s), i.e., it must operate upplica-
tioely. We call such implementations applicative

data types.
The elementary singly-linked list model of a

stack [5] is naturally suited to the formulation of
an applicative data type. Each variable is modeled
as a pointer to the head of a list. PUSH operations
are immediately applicative as the process of ad-
ding a cell to the end of a list has no side-effect
upon the list. POP operations are made applicative
by returning a pointer to the element following the
head of the list without deleting the head of the
list. (However, this cell is presumably garbage
collected if it is no longer a relevant part of the
current state of the abstraction; i.e., no variable
references an object (list) of which the cell is a
component.) ’ All operations require O(1) time
and PUSH operations require O(1) space. Fig. 1
depicts a snapshot of the state of a stack data
abstraction and illustrates the effect of the opera-
tions. Observe that each list is terminated by a
unique ‘Nil’ cell.

We momentarily digress to convince the reader
of the difficulty in extending alternative stack
models to an applicative context. For example,
another elementary model consists of an array for
storing the stack elements in sequence and an

The issue of how the list space of the abstraction is garbage

collected is not treated here. A reference counter scheme

attributable to Weizenbaum [8] suffices and proves O(1)

on-line allocation and collection primitives.

integer variable giving the index of the top element
[5]. In order to be applicative, the PUSH operation
must not have a side-effect upon the array. This
can be done by taking linear time and space to
make a copy of the entire array. This prohibitive
cost can be reduced to logarithmic time and space
using the method in [7]. While an O(1) time and
space method cannot be ruled out, it is certain that
it would not be as simple and natural as the
linked-list approach.

A random-access stack (RA-stack) abstraction is
an extension of the stack abstraction in which the
EMPTY and TOP operators are superceded by the
following operators:

(1’) LENGTH(S) : Integer

(2’) FIND@, k) : X

Return the number of
elements in stack S.
Return the kth (from the
bottom) element of stack
S.

In this abstraction one may query the length of an
RA-stack and access an arbitrary element by in-
dex. By additionally retaining in each cell its dis-
tance from the terminating ‘Nil’ cell, the linked
list model sketched above suffices to realize an
applicative RA-stack data type. The shortcoming
of this solution is in the complexity of the FIND

operation which requires a linear sequential search
for the kth element.

The complexity of FIND can be reduced to
O(lg N) time (N is the length of the stack in
question) without increasing the complexity of the
other operators by augmenting each cell in the
linked list model with an auxiliary pointer based
on the skew-binary number system. Suppose each
cell has the following record structure:

243

Volume 17. Number 5 INFORMATION PROC‘ESSING LE’ITERS I5 I>ecemher 19x3

F1.g. 2. The structure of an RA-stack.

Type cell =Record

NXT. JMP: Tcell

LEN : integer

VAL:X

End

Type Stack = t cell

The NXT-field contains the standard list pointer,

the LEN-field contains the distance of the cell

from its list’s origin. and the VAL-field contains

an element of type X. The JMP-field contains the

auxiliary pointer needed to reduce search times

and its value is formulated as follows. Let J be the

function that maps a positive integer A into the

value of the CSB number obtained by subtracting

one from the lowest non-Lero digit in the CSB

representation of A. Formally, J(A) = [P(a - 1)O”]

if there exist p. a > 0, and n such that A = [paO”]

and p # E or a = 2; J(A) = 0 otherwise. Note that

the convention J(0) = 0 is adopted. For a cell S

(including the ‘Nil’ cell), S.JMP contains a pointer

to the cell T for which T.LEN = J(S.LEN). ’ Fig. 2

illustrates the RA-stack list model: the JMP-

pointers are indicated by dashed arrows.

The algorithms for the RA-stack operations are

now presented. The functions for LENGTH and POP

are straightforward:

Function LENGTH(S : Stack) : Integer

1. LENGTH + s f .LEN

Function POP(S : Stack) : Stack

(* Assume the precondition: LENG l’H(s) f 0 *)

1. POP + sT.NXT.

’ 0~ may Immediately question why a JMP-pointer schernt:
based on a conventional radix number system is not used.
The ansuer is that tht: analogous algorithms would not bt: ;LS
efficlrnt. PUSH would require O(lg N) timr and E.IND would

require O(lg ‘N) time. Intuitively, the diffcrrnct: is that auh-
tractIon by one requires O(lg N) carrws in a radix-numb
system as opposed O(1) carries in the CSB number system.
The difference can bc morr formally perceived through the
careful study of Lemmas 3 and 4.

The FIND algorithm searches for the krh clement

by using a JMP-pointer whenever its use does not

take one past the krh element. Otherwise. the

NXT-pointer is followed.

Function FIN@5 : Stack: k : Integer) : X

(*Assume the pre-condition:

k cz [I, I.l:NWH(S)]*)

1. While sT.LEN f k Do

2. If st.JMPt.LEN < k Then
3 _ s+sT.NXT

4. Else

5. SC sT.JMP

6. IINIII + s T .VAL

The PLJSH algorithm appends a cell to the linked

list in lines 6. through 9. The determination of the

JMP-pointer for this new cell is embodied in lines

1. through 5. The validity of this code fragment is

deferred to Lemma 3 below.

Function PUSH(S : Stack; x : X) : Stack;

Var p. t : T cell;

1. t +st.JMP

2. If sT.LEN - tT.LEN = tt.LEN

- tr.JMPT.LEN Then

3. t + tT..JMP

4. Else

5. t+s
6. New(p)

7. pt.NXT+a

8. pT.JMP+ t
9. pT.VAL+ x

10. pT.LEN+st.LEN+ 1

11. PUSH&p

The correctness of the algorithms for IXNGTH

and POP is immediate. The (partial) correctness of

I*IND with respect to the precondition 1 < k G

LENGTH(S) follows from the invariant s t .LEN > k

for the search loop in lines 1. through 5. FIND must

terminate as each loop iteration strictly reduces

the value of s t .LEN. The only difficulty in show-

ing PUSH is correct is in verifying that the JMP-

pointer is correctly determined in lines 1. through

5. This follows from the property of the function J

stated and proved in Lemma 3.

244

Volume 17. Number 5 INFORMATION PROCESSING LETTERS 15 December 1983

Lemma 3. Let EQJ be the predicate

A - J(A) = J(A) - J(J(A)).

Zf EQJ is true, then J(A + 1) = J(J(A)); otherwise

J(A + 1) = A.

Proof. Suppose A = [a] where (Y E CSB and let
ONES = l(0 + l)*. In the next paragraph it is shown
that if a E ONES, then J(A + 1) = A and EQJ does
not hold. In the last paragraph it is shown that if
(Y G ONES, then J(A + 1) = J(J(A)) and EQJ does
hold. The lemma then follows as, from these facts,
one can infer that

EQJ * aEONEs =+ J(A + l)= J(J(A))

and not

EQJ ==z. ~EONES - J(A+ l)=A.

If (Y E ONES, then either cx contains one ‘1’ or (Y
contains two or more ‘l’s, i.e., (Y = 10k for k 2 0 or

CY = plOJIOk for j, k > 0. But

A = [lOk] =) J(A) =0

and

J(J(A))=O d A-J(A)=2k+‘-1+0

= J(A) -(J(A)).

Also

A = [pl()JIOk] =+ J(A) = [plOJ+(k+“]

and

J(J(A))= [p()O+')+ck+')] ==B

*A_ J(A)&k+"-1 +2ti+')+(k+')-l

= J(A) - J(J(A)).

Thus in either case EQJ does not hold. If (Y E ONES,

then either OL = plOk for k > 0 or (Y = pl. But

A=[plOk] * A+l=[plOk-‘11

d J(A + 1) = [plOk] = A

and

A=[pl] * A+l=[p2]

==. J(A+l)=[pl]=A.

Thus in either case J(A + 1) = A.
If (Y 4 ONES. then either (Y’S non-zero digit of

lowest order is 2 or (Y is 0, i.e., cx = p20k for k > 0

or (Y = 0. But

A= [p20k] =+ J(A)= [plOk]

and

J(J(A))=[pOk+‘] * A-J(A)=2k+‘-1

= J(A) - J(J(A)).

Also,

A = 0 * J(A) = J(J(A)) = 0

* A - J(A) = 0 = J(A) - J(J(A)).

Thus in either case EQJ does hold. Moreover,

A= [pa20k] d A+1 = [P(a+l)Ok+‘]

* J(A + 1) = [paOk+‘]

= J(J(A));

A = [20k] d A + 1 = [lOk+‘]

==, J(A + 1) = 0 = J(J(A))

and

A=0 * A+l=l ==, J(A + 1) = 0 = J(J(A)).

In all cases, J(A + 1) = J(J(A)). 0

4. Performance analysis

Each of the operations-PUSH, POP and
LENGTH-require O(1) time as each is a straight-
line algorithm. 3 PUSH is the only operation requir-
ing space. In consumes O(1) space as one cell is
allocated per call. It is claimed that FIND requires
O(lg N) time where N is the size of the stack in
question. This comparatively coarse claim will fol-
low from the detailed analysis of FIND given in the
remainder of this section.

Lemma 4 gives an exact formula for the num-
ber of times the search loop of FIND(S, k) is re-

3 A complete analysis requires that the cost of managing
storage be examined. The scheme of Weizenbaum [8] men-

tioned in Footnote 1 permits the inclusion of these costs in

the O(1) complexity claims.

245

Volume 17. Number 5 INFORMATION PROCESSING LETTEIiS 15 Ilccember 19x3

peated in terms of the digits of the CSB represen-
tations of the length of S and the integer k. From
an intuitive point of view, the lemma gives the
number of applications of the function J and
‘subtraction-by-one’ needed to transform a CSB
string cy into a smaller non-zero CSB string p.

Lemma 4. Suppose I.ENGTH(S)=[II]. k =[p] und

0 < k -c I.ENGTH(S). Further suppose that a =

a,,a,_, . . a, und 0”-““B = b,,b,,_ , . . b,. The

.seurch loop of FIND(S, k) is repeated e.xact()

L -1

c a,+(a,,-b,~,)+‘C’(?-b,) (1)
1-I I = I_

times. k,here

U=max{a,+b,} und L = min {b, # 0).
I I

Proof. First note that [B] f: 0 implies L exists and
[a] # [f3] implies U exists. In what follows lines 1.
through 5. of FIND are referred to as the search

loop. line 3. is referred to as a next step, and line
5. is referred to as a jump step. In addition.
notation s, denotes the value of the variable s after
i iterations of the search loop and notation J’
denotes the ith power of function J. A statement
of the form s, 7 .LEN = [T] is assumed to assert
not only that the equality holds, but also that the
search loop of FIND is repeated at least i times. It
is further assumed that p is the common prefix of

(Y and B, i.e.. p = a,, . . a,,, , = b,, t.. b, +,.
Let A(m)= Cy_,a,. It is shown by induction on

m that, for all m < U,

S ,4cmj T.LEN = [pa,, . . . a,,,+,O"'].

The basis follows as at the start of the algorithm:

s,,,,,t.LEN=s,,t.LEN=[a]=[pa,!...a,].

Now assume k < U and the induction hypothesis
for m=k- 1. Then,

JcLL(s i\,~~,)~.LEN)=Ji’i((pa, . ..akOkm’])

Z p[pa,, . . a k tlOkl > [PI
as the converse would imply [cx] < [p] (see Lemma
2). Thus after A(k ~ 1) iterations, the search loop
will continue with ak jump steps and s*(k) t .LEN

246

= [pa, ak, ,O’].
Let

B(m)=A(U-])+(a,,-b,)+ c (2-h,).

It is shown by induction on decreasing values of m
that if U > m > L, then

s13,“,) T .LEN = [pb,, . b,,,20”’ ‘1.

For the basis m = U. observe that B(U) = A(U ~

l)+(al - b,,) and. from the paragraph above,

SR([! ,) T.LEN = [pa,,O’ ‘I. Then

J (~1, hl ’ ‘([pa,,O’ ‘I)-1 = [pb, 20” ‘1 2 [fi]

as 20 ” ’ is the largest CSB number of U - 1
digits. Moreover,

J”’ h, ([pa,,O’ ‘1) = [pb,,O” ‘1 < [131

as L < U implies [b,, , b,] > 0. Thus after
A(U - 1) iterations. the search loop will continue
with (a,, - b,) - 1 jump steps followed by a single
next step and s,%(t) t.LEN = [pb,,20’ -‘I_ Nom
assume k > L and the induction hypothesis for
m = k + 1. i.e.,

sI%L. + I) T.LEN= [pb,, ... b,+,20k~~‘].

(Note that k > L implies b, < 2.) Then.

Jlmh”([pb,, ... bk+,20hm’I)-1 =

= [pb,, b,20” ‘1 z [p]

as 20’ ~’ is the largest CSB number of k - 1 digits.
Moreover,

JZmhh([pb,, ... b,,,20’-‘I)=

= [pb,, ... b,O’-‘1 < [PI

as L < k implies [b,_, . . b,] > 0. Thus, after B(k
+ 1) iterations, the search loop will continue with
1 - b, jump steps followed by a single next step

and s B,L, T.LEN = [pb, . . b,20km’].
Finally, it is shown that s~,~.) t .LEN = [p]. First

consider the case in which L >, U. Then, B(L) =
B(U) and. from the last paragraph,

J”I’ h”(~,,,,i_,) T .LEN) = [pb,,OL -‘]

Volume 17. Number 5 INFORMATION PROCESSING LETTERS

201
Bound

Maximum

Average

0 c
0 50 100 150 200 250

STACK SIZE

Fig. 3. The worst and average performance of FIND.

which equals [81 as L > U implies [b,_, . . . b,] =
0. Thus, after A(U - 1) iterations, the search loop
takes a, - b, final jump steps and sacL) t .LEN =
[f3]. When L < U, it follows from the last para-
graph that

JZphl &_+1) t .LEN) = [pb, . . . b,OL-‘1

which equals [fi] as [b,_, . . . b,] = 0 by the defi-
nition of L. Thus, after B(L + 1) iterations, the
search loop takes 2 - b, final jump steps and
S B(L) t .LEN = 181.

The proof concludes with the observation that
B(L) is given by (1) and thus st,) t .LEN = [01. 0

The next result uses Lemma 4 to place an upper
bound on the number of iterations of the search
loop in terms of the size of stack S.

Corollary 5. Suppose N = LENGTH(S). Then, for all
k, the search loop of FIND(S, k) is repeated at most

3 [lg(N + 1)) - 2 times.

15 December 1983

Proof. Suppose k = [p] and LENGTH(S) = [IX] where
the length of (Y is n. Consider formula (1) given in
Lemma 4. For a given n, the sub-expression I:=-,’

ai + (au - b,) attains a maximum value of n + 1
when U = n, b, = 0 and (Y = 1”-‘2 (the CSB num-
ber of length n whose digit sum is maximal). The

sub-expression Cy=PL’(2 - b,) attains a maximum
value of 2n-3 when U=n, L=l and B=l.
Both maximums can be met simultaneously when
(Y = l”-‘2 and p = 1 in which case (1) evaluates to
3n - 2. The result then follows as Lemma 1 im-
plies n = [lg(N + l)]. q

Observe from the proof that the bound of
Corollary 5 is tight in that it is exactly met by
FIND(S,~) whenever LENGTH(S)= 2k - k for some
k > 1. The plot of Fig. 3 shows the upper bound,
worst-case number of iterations and average-case
number of iterations of FIND as a function of stack
size. -4 uniform distribution of the index k was
assumed for the average-case plot.

Volume 17. Number 5 INFORMATION PROCESSING LETTERS 15 Decemlwr IYX3

Acknowledgment [3] M. Furer. The t&t drtermimstlc time hierarchy. I’roc. 34th

ACM Symp. on Theory of Computing (1982) pp. X - 16.

The author is indebted to Gary Levin for his

many astute suggestions. The author also wishes to
thank the referees for their helpful comments.

[4] R. Hood and R. Melville. Real-ume queue operations in

pure LISP. Inform. Process. Lett. 13 (2) (1981) SO&S4.

[S] E. Horowitz and S. Sahni. Fundamentals of Data Structures

(Computer Science Press. Potomac, MD, 1976) pp. 7Y%Xl.

112.-114.

References

(h] J.H. Morris. E. Schmidt and P. Wadler, Experience wth an

applicative string processmg language. Proc. 7th ACM

Symp. on the Principles of Programming Languages (19X0)

[II

PI

J. Bachus. Can programmmg be hberated from the van

Neumann style? A functional style and Its algebra of pro-

grams. Comm. ACM 21 (8) (1978) 613-641.

M. Bray and P. Pepper. Combining algebraic and algorith-

mic reasoning: An approach to the Schorr-Waite algo-

rithm. ACM Trans. Programming Languages and Systems 4

(3) (1982) 362-381

pp. 32-46.

[7] E. Myers. AVL-Dags: An applicative list model. Tech.

Rept. TR82-9. Dept. of Computer Science. Unib. of Awona.

Tucson. AZ. 1982.

[X] J. Welzenhaum. Symmetric list processor. Comm. AC’M 6

(9) (1963) 524m.536.

248

