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1. Introduction 2. The skew-binary number system 

Applicative (functional) programming has long 
been advocated on theoretical grounds as the for- 
mal properties of such programs are simple and 
elegant. Recently, there has been a trend to bring 
the applicative approach into the practical arena 
as a software development tool [2] and even as a 
programming vehicle [1,6]. Unfortunately, the re- 
quirement that operations be side-effect free makes 
efficient implementations difficult to achieve [6]. 
However, some researchers have begun to develop 
effective applicative implementations for classic 
data abstractions such as stacks, queues, tablets, 
lists, etc. [4,7]. 

In this article, applicative algorithms for a ran- 

dom-access stuck @A-stack) are presented. An 
RA-stack is a stack data abstraction in which one 
is further permitted to access the kth element of a 
stack. The approach uses a singly-linked list repre- 
sentation which is augmented with auxiliary 
pointers that permit the access of arbitrary stack 
elements in O(lg N) time were N is the size of the 
stack. The auxiliary linking structure is based on a 
number representation scheme for which subtrac- 
tion by one involves at most one carry operation. 
Another scheme with this property appears in [3]. 

* This research was supported in part by the National Science 
Foundation under Grant MCS-8210096. 

A skew-binary number is a string consisting of 
the digits 0, 1 and 2. Each digit position represents 
a successive power of 2 minus one. That is the 
skew-binary number cx = a,,a,_, . . . a, denotes the 

integer value, [ cx] = C:= ,a,(2’ - 1). For example, 
the skew-binary numbers 1000, 201 and 122 all 
denote the integer value 15(,,,. Unlike common 
radix number systems, a given integer value can 
have more than one skew-binary representation. 

A skew-binary number is canonical if all digits 
are 0 or 1 save for the lowest order non-zero digit, 
which may be 2. More formally, a string is a 
canonical skew-binary number if it is a member of 
the regular language 

CSB = (l(0 + l)* + A)(1 + 2)0* + 0. 

Lemma 1 demonstrates that the length of a CSB 
number is of the order of the base 2 logarithm of 
its value. 

Lemma 1. Suppose (Y E CSB, [a[ = n and [ cx] = A. 
Then 2” - 1 < A < 2”+’ - 2 or equivalently n = 

[lg(A + 111. 

Proof. The CSB number of length n whose value is 
smallest is easily seen to be lo”-’ and its value is 
2” - 1. The CSB number of largest value and 
length n must be of the form 1 J 20 k where j + k + 1 
= n as decrementing any digit in such a number 
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decreases its value. But 

[l-120!+= 5 (2’-1)+2(21“‘_1) 
I=k+2 

2 II + 1 = - 1 -(n-k) 

< 2”” -2 ask<n-1. 

This further implies that the number 20”- ’ has the 
largest value. 0 

This critical feature of the CSB number system 

is that every integer value has a unique CSB 
representation. This is proved in Lemma 2. 

Lemma 2. Euch integer due bus u unique CSB 
representution. 

Proof. It is first shown that each integer value is 
represented by some CSB number. To do so it 

suffices to show by induction on n > 0 that if 
A < 2”+’ - 2, then there exists an (Y such that 
[a] = A. The basis of the induction is easy: 

n=l * A ~2 * A E {[0],[1],[2]}. 

Suppose the induction hypothesis is true for n = k 
andthatA<2k+‘-2.1fA<2k+‘-2,thenancu 
such that [LX] = A exists by the induction hypothe- 
sis. If A = 2k+2 - 2, then A = [20k]. The case where 
2k+l 

- 1 < A < 2k+Z - 3 remains. The induction 

hypothesis assures that there exists a l3 such that 
[13]=A-2kt’+1<2k+‘-2 and Lemma 1 as- 
serts that IpI < k. Thus [lOk-lalp] = 2k+’ - 1 + [p] 
= A. 

It remains to demonstrate that each integer 

value is represented by a unique CSB number. It 
suffices to show that if (Y f p, then [CX] + [PI. If 
cy # l3, then without loss of generality either ]LX[> 
1 f3 + 1 or there exists a p such that 

(Y = pa7. P=pbn, l~l=lnl and aab+l. 

If Ial > IpI+ 1, then, by Lemma 1, 

[LX] >2’“‘- I >2’s1+‘- I > 21”1” -2> [PI. 

In the other case assume n = IT~( = 171). By Lemma 

1, 

[ cxO”] >, [(b + l)O”] = [bO”] + (2”+’ - 1) 

>[bO”]+[n]=[bn] 
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and thus 

[~~]=[pa7]>, [PO”+‘] +[(YO”] 

Suppose cy > 2 is a CSB number and that cy = 
pa0” where a is the lowest order non-zero digit 
and k > 0. Then p = P(a - 1)20r ’ is the predeces- 

sorofcuasa ~(1.2) impliesPECSBand 

[ paOh] - 1 = [ n(a - l)O”] +(21” ~ 1) - 1 

= [ p(a - l)OL] + 2[2” - l] 

= [p(a- 1)20h ‘1. 

Thus a CSB number and its predecessor differ 
only in the lowest order non-zero digit and the 
position to its immediate right (if it exists). Alter- 
nately, in the CSB number system subtraction by 
one involves at most one carry operation. 

3. An applicative random-access stack 

In many applications it is desirable to view a 
stack data structure as but one instance of an 
object from a ‘stack’ data abstraction. For exam- 
ple, programming languages can be viewed as lin- 
guistic vehicles for manipulating data abstractions 
such as ‘integer’, ‘array’, ‘string’, etc. Formally. we 
will assume that a uulue-semantic. stuck dutu uh- 

struction consists of the following: 
(a) An arbitrary and time varying number of 

objects of type stack with homogeneous domain X. 
(Homogeneity is not necessary but is assumed for 
simplicity.) 

(b) A fixed finite collection of operutors that 

access and manipulate objects. 
(c) A time varying set of vuriubles. each of 

which refers to an object. Variables can be created 
and destroyed, and their reference relation can be 
modified by assignment. A variable denotes the 
due of the object to which it refers. Only assign- 
ment can change the value of a variable. 

The state of the data abstraction is the collec- 
tion of objects referred to by the current set of 
variables. A generally accepted stack operation 
repertoire [5] consists of the following four primi- 
tives: 
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(1) EMPTY(S) : Boolean 

(2) TOP(S) : x 

(3) POP(S): Stack-of-X 

(4) PUSH(S, x): Stack-of-X 

Determine if stack S 
contains any ele- 
ments. 
Return the top (last) 
element of stack S. 
Delete the top ele- 
ment of stack S. 
Append x as the top 
element of stack S. 

POP6,) PUSH&G) 

EMPTY(S,)=False , 
TOP(S,)=E G 

,,,\&H ~*-==- =s, 

,s__= N,L $-e-s, 

Fig. 1. Sample state of an applicative stack data type. 
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Observe that the primitives have been formulated 
as functions. The value-semantic constraint that 
only an assignment can change the value of a 
variable forces an implementation in which an 
operator may not modify the value(s) contained in 
its operand object(s), i.e., it must operate upplica- 
tioely. We call such implementations applicative 

data types. 
The elementary singly-linked list model of a 

stack [5] is naturally suited to the formulation of 
an applicative data type. Each variable is modeled 
as a pointer to the head of a list. PUSH operations 
are immediately applicative as the process of ad- 
ding a cell to the end of a list has no side-effect 
upon the list. POP operations are made applicative 
by returning a pointer to the element following the 
head of the list without deleting the head of the 
list. (However, this cell is presumably garbage 
collected if it is no longer a relevant part of the 
current state of the abstraction; i.e., no variable 
references an object (list) of which the cell is a 
component.) ’ All operations require O(1) time 
and PUSH operations require O(1) space. Fig. 1 
depicts a snapshot of the state of a stack data 
abstraction and illustrates the effect of the opera- 
tions. Observe that each list is terminated by a 
unique ‘Nil’ cell. 

We momentarily digress to convince the reader 
of the difficulty in extending alternative stack 
models to an applicative context. For example, 
another elementary model consists of an array for 
storing the stack elements in sequence and an 

The issue of how the list space of the abstraction is garbage 

collected is not treated here. A reference counter scheme 

attributable to Weizenbaum [8] suffices and proves O(1) 

on-line allocation and collection primitives. 

integer variable giving the index of the top element 
[5]. In order to be applicative, the PUSH operation 
must not have a side-effect upon the array. This 
can be done by taking linear time and space to 
make a copy of the entire array. This prohibitive 
cost can be reduced to logarithmic time and space 
using the method in [7]. While an O(1) time and 
space method cannot be ruled out, it is certain that 
it would not be as simple and natural as the 
linked-list approach. 

A random-access stack (RA-stack) abstraction is 
an extension of the stack abstraction in which the 
EMPTY and TOP operators are superceded by the 
following operators: 

(1’) LENGTH(S) : Integer 

(2’) FIND@, k) : X 

Return the number of 
elements in stack S. 
Return the kth (from the 
bottom) element of stack 
S. 

In this abstraction one may query the length of an 
RA-stack and access an arbitrary element by in- 
dex. By additionally retaining in each cell its dis- 
tance from the terminating ‘Nil’ cell, the linked 
list model sketched above suffices to realize an 
applicative RA-stack data type. The shortcoming 
of this solution is in the complexity of the FIND 

operation which requires a linear sequential search 
for the kth element. 

The complexity of FIND can be reduced to 
O(lg N) time (N is the length of the stack in 
question) without increasing the complexity of the 
other operators by augmenting each cell in the 
linked list model with an auxiliary pointer based 
on the skew-binary number system. Suppose each 
cell has the following record structure: 
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F1.g. 2. The structure of an RA-stack. 

Type cell =Record 

NXT. JMP: Tcell 

LEN : integer 

VAL:X 

End 

Type Stack = t cell 

The NXT-field contains the standard list pointer, 

the LEN-field contains the distance of the cell 

from its list’s origin. and the VAL-field contains 

an element of type X. The JMP-field contains the 

auxiliary pointer needed to reduce search times 

and its value is formulated as follows. Let J be the 

function that maps a positive integer A into the 

value of the CSB number obtained by subtracting 

one from the lowest non-Lero digit in the CSB 

representation of A. Formally, J(A) = [ P(a - 1 )O”] 

if there exist p. a > 0, and n such that A = [paO”] 

and p # E or a = 2; J(A) = 0 otherwise. Note that 

the convention J(0) = 0 is adopted. For a cell S 

(including the ‘Nil’ cell), S.JMP contains a pointer 

to the cell T for which T.LEN = J(S.LEN). ’ Fig. 2 

illustrates the RA-stack list model: the JMP- 

pointers are indicated by dashed arrows. 

The algorithms for the RA-stack operations are 

now presented. The functions for LENGTH and POP 

are straightforward: 

Function LENGTH(S : Stack) : Integer 

1. LENGTH + s f .LEN 

Function POP(S : Stack) : Stack 

( * Assume the precondition: LENG l’H( s) f 0 * ) 

1. POP + sT.NXT. 

’ 0~ may Immediately question why a JMP-pointer schernt: 
based on a conventional radix number system is not used. 
The ansuer is that tht: analogous algorithms would not bt: ;LS 
efficlrnt. PUSH would require O(lg N) timr and E.IND would 

require O(lg ‘N) time. Intuitively, the diffcrrnct: is that auh- 
tractIon by one requires O(lg N) carrws in a radix-numb 
system as opposed O(1) carries in the CSB number system. 
The difference can bc morr formally perceived through the 
careful study of Lemmas 3 and 4. 

The FIND algorithm searches for the krh clement 

by using a JMP-pointer whenever its use does not 

take one past the krh element. Otherwise. the 

NXT-pointer is followed. 

Function FIN@5 : Stack: k : Integer) : X 

( *Assume the pre-condition: 

k cz [I, I.l:NWH(S)]*) 

1. While sT.LEN f k Do 

2. If st.JMPt.LEN < k Then 
3 _ s+sT.NXT 

4. Else 

5. SC sT.JMP 

6. IINIII + s T .VAL 

The PLJSH algorithm appends a cell to the linked 

list in lines 6. through 9. The determination of the 

JMP-pointer for this new cell is embodied in lines 

1. through 5. The validity of this code fragment is 

deferred to Lemma 3 below. 

Function PUSH(S : Stack; x : X) : Stack; 

Var p. t : T cell; 

1. t +st.JMP 

2. If sT.LEN - tT.LEN = tt.LEN 

- tr.JMPT.LEN Then 

3. t + tT..JMP 

4. Else 

5. t+s 
6. New(p) 

7. pt.NXT+a 

8. pT.JMP+ t 
9. pT.VAL+ x 

10. pT.LEN+st.LEN+ 1 

11. PUSH&p 

The correctness of the algorithms for IXNGTH 

and POP is immediate. The (partial) correctness of 

I*IND with respect to the precondition 1 < k G 

LENGTH(S) follows from the invariant s t .LEN > k 

for the search loop in lines 1. through 5. FIND must 

terminate as each loop iteration strictly reduces 

the value of s t .LEN. The only difficulty in show- 

ing PUSH is correct is in verifying that the JMP- 

pointer is correctly determined in lines 1. through 

5. This follows from the property of the function J 

stated and proved in Lemma 3. 
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Lemma 3. Let EQJ be the predicate 

A - J(A) = J(A) - J(J(A)). 

Zf EQJ is true, then J(A + 1) = J(J(A)); otherwise 

J(A + 1) = A. 

Proof. Suppose A = [a] where (Y E CSB and let 
ONES = l(0 + l)*. In the next paragraph it is shown 
that if a E ONES, then J(A + 1) = A and EQJ does 
not hold. In the last paragraph it is shown that if 
(Y G ONES, then J(A + 1) = J(J(A)) and EQJ does 
hold. The lemma then follows as, from these facts, 
one can infer that 

EQJ * aEONEs =+ J(A + l)= J(J(A)) 

and not 

EQJ ==z. ~EONES - J(A+ l)=A. 

If (Y E ONES, then either cx contains one ‘1’ or (Y 
contains two or more ‘l’s, i.e., (Y = 10k for k 2 0 or 

CY = plOJIOk for j, k > 0. But 

A = [lOk] =) J(A) =0 

and 

J(J(A))=O d A-J(A)=2k+‘-1+0 

= J(A) -(J(A)). 

Also 

A = [ pl()JIOk] =+ J(A) = [ plOJ+(k+“] 

and 

J(J(A))= [p()O+')+ck+')] ==B 

*A_ J(A)&k+"-1 +2ti+')+(k+')-l 

= J(A) - J(J(A)). 

Thus in either case EQJ does not hold. If (Y E ONES, 

then either OL = plOk for k > 0 or (Y = pl. But 

A=[plOk] * A+l=[plOk-‘11 

d J(A + 1) = [ plOk] = A 

and 

A=[pl] * A+l=[p2] 

==. J(A+l)=[pl]=A. 

Thus in either case J(A + 1) = A. 
If (Y 4 ONES. then either (Y’S non-zero digit of 

lowest order is 2 or (Y is 0, i.e., cx = p20k for k > 0 

or (Y = 0. But 

A= [p20k] =+ J(A)= [plOk] 

and 

J(J(A))=[pOk+‘] * A-J(A)=2k+‘-1 

= J(A) - J(J(A)). 

Also, 

A = 0 * J(A) = J(J(A)) = 0 

* A - J(A) = 0 = J(A) - J(J(A)). 

Thus in either case EQJ does hold. Moreover, 

A= [pa20k] d A+1 = [P(a+l)Ok+‘] 

* J(A + 1) = [ paOk+‘] 

= J(J(A)); 

A = [20k] d A + 1 = [lOk+‘] 

==, J(A + 1) = 0 = J(J(A)) 

and 

A=0 * A+l=l ==, J(A + 1) = 0 = J(J(A)). 

In all cases, J(A + 1) = J(J(A)). 0 

4. Performance analysis 

Each of the operations-PUSH, POP and 
LENGTH-require O(1) time as each is a straight- 
line algorithm. 3 PUSH is the only operation requir- 
ing space. In consumes O(1) space as one cell is 
allocated per call. It is claimed that FIND requires 
O(lg N) time where N is the size of the stack in 
question. This comparatively coarse claim will fol- 
low from the detailed analysis of FIND given in the 
remainder of this section. 

Lemma 4 gives an exact formula for the num- 
ber of times the search loop of FIND(S, k) is re- 

3 A complete analysis requires that the cost of managing 
storage be examined. The scheme of Weizenbaum [8] men- 

tioned in Footnote 1 permits the inclusion of these costs in 

the O(1) complexity claims. 
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peated in terms of the digits of the CSB represen- 
tations of the length of S and the integer k. From 
an intuitive point of view, the lemma gives the 
number of applications of the function J and 
‘subtraction-by-one’ needed to transform a CSB 
string cy into a smaller non-zero CSB string p. 

Lemma 4. Suppose I.ENGTH(S)=[II]. k =[p] und 

0 < k -c I.ENGTH(S). Further suppose that a = 

a,,a,_, . . a, und 0”-““B = b,,b,,_ , . . b,. The 

.seurch loop of FIND(S, k) is repeated e.xact() 

L -1 

c a,+(a,,-b,~,)+‘C’(?-b,) (1) 
1-I I = I_ 

times. k,here 

U=max{a,+b,} und L = min {b, # 0). 
I I 

Proof. First note that [B] f: 0 implies L exists and 
[a] # [ f3] implies U exists. In what follows lines 1. 
through 5. of FIND are referred to as the search 

loop. line 3. is referred to as a next step, and line 
5. is referred to as a jump step. In addition. 
notation s, denotes the value of the variable s after 
i iterations of the search loop and notation J’ 
denotes the ith power of function J. A statement 
of the form s, 7 .LEN = [T] is assumed to assert 
not only that the equality holds, but also that the 
search loop of FIND is repeated at least i times. It 
is further assumed that p is the common prefix of 

(Y and B, i.e.. p = a,, . . a,,, , = b,, t.. b, +,. 
Let A(m)= Cy_,a,. It is shown by induction on 

m that, for all m < U, 

S ,4cmj T.LEN = [pa,, . . . a,,,+,O"']. 

The basis follows as at the start of the algorithm: 

s,,,,,t.LEN=s,,t.LEN=[a]=[pa,!...a,]. 

Now assume k < U and the induction hypothesis 
for m=k- 1. Then, 

JcLL(s i\,~~,)~.LEN)=Ji’i((pa, . ..akOkm’]) 

Z p[ pa,, . . a k tlOkl > [PI 
as the converse would imply [cx] < [p] (see Lemma 
2). Thus after A(k ~ 1) iterations, the search loop 
will continue with ak jump steps and s*(k) t .LEN 
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= [pa, ak, ,O’]. 
Let 

B(m)=A(U-])+(a,,-b, )+ c (2-h,). 

It is shown by induction on decreasing values of m 
that if U > m > L, then 

s13,“,) T .LEN = [ pb,, . b,,,20”’ ‘1. 

For the basis m = U. observe that B(U) = A( U ~ 

l)+(al - b,, ) and. from the paragraph above, 

SR([! ,) T.LEN = [pa,,O’ ‘I. Then 

J (~1, hl ’ ‘( [ pa,,O’ ‘I)-1 = [pb, 20” ‘1 2 [fi] 

as 20 ” ’ is the largest CSB number of U - 1 
digits. Moreover, 

J”’ h, ([ pa,,O’ ‘1 ) = [ pb,,O” ‘1 < [ 131 

as L < U implies [b,, , b,] > 0. Thus after 
A(U - 1) iterations. the search loop will continue 
with (a,, - b, ) - 1 jump steps followed by a single 
next step and s,%(t) t.LEN = [pb,,20’ -‘I_ Nom 
assume k > L and the induction hypothesis for 
m = k + 1. i.e., 

sI%L. + I) T.LEN= [pb,, ... b,+,20k~~‘]. 

(Note that k > L implies b, < 2.) Then. 

Jlmh”([pb,, ... bk+,20hm’I)-1 = 

= [ pb,, b,20” ‘1 z [p] 

as 20’ ~’ is the largest CSB number of k - 1 digits. 
Moreover, 

JZmhh([pb,, ... b,,,20’-‘I)= 

= [pb,, ... b,O’-‘1 < [PI 

as L < k implies [b,_, . . b,] > 0. Thus, after B(k 
+ 1) iterations, the search loop will continue with 
1 - b, jump steps followed by a single next step 

and s B,L, T.LEN = [pb, . . b,20km’]. 
Finally, it is shown that s~,~.) t .LEN = [p]. First 

consider the case in which L >, U. Then, B(L) = 
B(U) and. from the last paragraph, 

J”I’ h”(~,,,,i_,) T .LEN) = [ pb,,OL -‘] 
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Fig. 3. The worst and average performance of FIND. 

which equals [ 81 as L > U implies [b,_, . . . b,] = 
0. Thus, after A(U - 1) iterations, the search loop 
takes a, - b, final jump steps and sacL) t .LEN = 
[ f3]. When L < U, it follows from the last para- 
graph that 

JZphl &_+1) t .LEN) = [ pb, . . . b,OL-‘1 

which equals [ fi] as [b,_, . . . b,] = 0 by the defi- 
nition of L. Thus, after B(L + 1) iterations, the 
search loop takes 2 - b, final jump steps and 
S B(L) t .LEN = 181. 

The proof concludes with the observation that 
B(L) is given by (1) and thus st,) t .LEN = [ 01. 0 

The next result uses Lemma 4 to place an upper 
bound on the number of iterations of the search 
loop in terms of the size of stack S. 

Corollary 5. Suppose N = LENGTH(S). Then, for all 
k, the search loop of FIND(S, k) is repeated at most 

3 [lg(N + 1)) - 2 times. 

15 December 1983 

Proof. Suppose k = [ p] and LENGTH(S) = [IX] where 
the length of (Y is n. Consider formula (1) given in 
Lemma 4. For a given n, the sub-expression I:=-,’ 

ai + (au - b,) attains a maximum value of n + 1 
when U = n, b, = 0 and (Y = 1”-‘2 (the CSB num- 
ber of length n whose digit sum is maximal). The 

sub-expression Cy=PL’(2 - b,) attains a maximum 
value of 2n-3 when U=n, L=l and B=l. 
Both maximums can be met simultaneously when 
(Y = l”-‘2 and p = 1 in which case (1) evaluates to 
3n - 2. The result then follows as Lemma 1 im- 
plies n = [lg(N + l)]. q 

Observe from the proof that the bound of 
Corollary 5 is tight in that it is exactly met by 
FIND(S,~) whenever LENGTH(S)= 2k - k for some 
k > 1. The plot of Fig. 3 shows the upper bound, 
worst-case number of iterations and average-case 
number of iterations of FIND as a function of stack 
size. -4 uniform distribution of the index k was 
assumed for the average-case plot. 
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