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AN O(E log E +1) EXPECTED TIME ALGORITHM FOR THE PLANAR
SEGMENT INTERSECTION PROBLEM*

EUGENE W. MYERSYt

Abstract. It is an open question in computational geometry as to whether there exists an O(E log E + I)
algorithm to determine the I intersections of a collection of E line segments in the plane. An approach
utilizing a work list bubble sort and a distribution-based search is presented. The resulting algorithm has
O(E log E +I) expected time complexity. In the worst case the algorithm has the same complexity as the
algorithm of Bentley and Ottmann [IEEE Trans. Comput., 28 (1979), pp. 643-647]: O(E log E + 1 log E).
The algorithm requires only O(E) space and in contrast to prior work, no restrictions are placed upon the
nature of the intersections.
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1. Introduction. A recenttrend in computer science has been the study of geometric
problems in terms of their algorithmic complexity [3], [12], [13], [17]. In particular,
geometric intersection problems have been studied extensively [2], [5], [11], [18]. The
results are applicable to many practical problems including computer graphics, auto-
mated printed circuit layout, and computer-assisted architectural design. Efficient
algorithms for the intersection problem treated here provide the basis for faster
hidden-line elimination in the “object-space” framework [8], [16], [19].

The problem to be examined is as follows. Given E line segments in the plane,
list (count) all intersecting pairs. Shamos and Hoey [18] presented an O(E log E)
algorithm to detect whether intersections exist. By extending their technique, Bentley
and Ottmann [2] demonstrated an O(E log E + I log E) time, O(I) space algorithm
for listing all intersecting pairs of segments where I is the number of intersections. A
subsequent refinement by Brown [4] reduced the space requirement to O(E). Although
this appears to be an improvement over the naive O(E?) algorithm, it is not the case
when I approaches E>. The problem of designing a definitively superior O(E log E + 1)
time, O(E) space algorithm was first conjectured in [18] and is currently open.

An O(E log E+1I) expected time algorithm is presented here. The necessary
statistical hypothesis is that the 2 E endpoints of the segments are uniformly distributed.
The algorithm’s worst case performance is again O(E log E + I log E). The algorithm
requires only O(E) space. By a direct refinement of the method of Ottmann and
Bentley, A. Schmitt [15] has simultaneously designed an algorithm with the same time
complexity as the one given here. However, his algorithm uses O(I) space and-requires
the more stringent statistical hypothesis that both the segment endpoints and the I
points of intersection be uniformly distributed. The algorithm here achieves the less
restrictive assumption through the novel use of a work list bubble sort to detect
intersections between segment endpoints.

In the next section, the problem statement is formalized and preliminary construc-
tions and definitions are made. Section 3 illustrates the central role of a work list
bubble sort and distribution-based searching in the algorithm presented in § 4. The
discussion in §5 highlights a number of subproblems that can be solved in
O(E log E + I) worst-case time.

* Received by the editors July 19, 1982, and in final revised form May 3, 1984. This work was supported
in part by the National Science Foundation under Grant MCS-8210096.
1 Department of Computer Science, University of Arizona, Tucson, Arizona, 85721.
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2. Preliminaries. The problem is to find all the intersections of a collection of E
planar line segments, SEGMENT ={e,, e,, - - -, ex}. Each line segment is specified by
the x- and y-coordinates of its endpoints: e = ({(x,, y.), {X., ¥.)). It is stipulated that in
an O(E) prepass the segment endpoints have been arranged so that the start-point
(Xe, ye) is to the “left” of the final-point (X,, y.), i.e. x. <X, or X, =X, and Ve = Ve

As in the algorithms of Shamos and Hoey [18] and Bentley and Ottmann [2], the
key conceptualization is to imagine a vertical scan line sweeping from left to right
along the x-axis. The critical events are those moments at which this scan line reaches
the abscissa of a line segment endpoint. Let EVENT =(x,, x5, * *, Xgv) be the list
obtained by sorting the set of abscissas of segment endpoints into ascending order.
Observe that EV =2F as each segment has two endpoints.

For each event, x; there may be more than one segment having an endpoint at
x;. Such segments will be distinguished on the basis of whether x; is the abscissa of
their start-point, final-point, or both (i.e. vertical segments). Formally, let BEG(i) =
(e, e, ,epy be the list of segments for which x,=x;#X,; let END(i)=
(e, e, -+, epqy be the list of segments for which x, # x; = X, ; and let VERT(i)=
(e, ey, * -, ey be the list of segments for which x, = x; = X.. It is further stipulated
that the segments in each of these lists occur in descending order of their start-point
ordinates y.. Figure 1 illustrates these lists.

Algorithmically, all the lists above can be constructed with a single sort. First
form an auxiliary list consisting of the following 4-tuples. For each nonvertical segment
e introduce the 4-tuples (e, x., 0, —y.) and (e, X, 2, —y.). For each vertical segment e
introduce the 4-tuple (e, x,, I, —y.). In O(E log E) time, heapsort this auxiliary list
according to the lexicographical order of the second, third, and fourth components.
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Fi1G. 1. Fundamental structures.



PLANAR SEGMENT INTERSECTION ALGORITHM 627

Then note that EVENT is the list of second components with duplicate entries removed.
Further note that the list of first components is the concatenation of the lists BEG(1),
VERT(1), END(1), BEG(2), -, END(EYV) in the order given. The boundaries of
this partition are easily identified by examining the second and third components.
Thus all the desired lists can be extracted in a final O(E) sweep over the sorted
auxiliary list.

The elements of EVENT divide the range [ x,, xgv] into the event intervals [ x;, X;.+,]
for i between 1 and EV-1. By construction, the abscissa of a segment endpoint cannot
lie strictly within any of the event intervals. Thus if a segment has a point whose
abscissa is interior to an event interval then the segment is guaranteed to span the
entire interval (i.e., have a point at abscissa x for every x in the interval). The set of
segments spanning the ith event interval is formally defined with the recursive definition:

SPAN(i)= Ifi=0Then & Else SPAN(i— 1)U (BEG(i)— END(i)).

Note that for all i, SPAN(i) does not contain any vertical segments.

The algorithm presented here centers on computing the x-order, <,, of the segments
for every event x. Intuitively, <, ranks segments according to the order in which they
intersect a scan line at x. For nonvertical segments let m, be the slope of segment e
and let y.(x) be the ordinate value of segment e at abscissa x. For vertical segments
let m, =00 and let y.(x)=y.. Formally, the rank of a segment on a scan line at x is
the lexicographical rank of the ordinate value/slope pair (y.(x), m.):

e <, fift y.(x) <ys(x) or y.(x) = y;(x) and m. < my.

Figure 2 gives an example of the x-order of a collection of segments. Clearly one can
make analogous definitions for the other x-relations: =,, =,, >,, =,, and #,.

X
)

SEGMENT =
{a,b,c,d, e}

~
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Fi1G. 2. X-order example.
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In prior scan line algorithms [2], [15], [18] for the planar intersection problem,
the following degenerate situations were explicitly excluded from the problem domain.

(a) Vertical lines.

(b) Multi-segment intersections (three or more segments intersecting at a point).

(c) Infinite intersections (collinear segments that intersect).

In this paper the problem domain is unrestricted. The preceding definitions and all
subsequent results have been designed with these anomalous cases in mind. For
example, the inclusion of slope in the definition of <, differs from prior work. This
additional refinement insures that multi-segment intersections will be properly treated
as collinear and only collinear segments are equal in any (and every) x-order.

A characterization of the conditions under which segments intersect in terms of
the above constructions is now presented. Lemma 1 asserts that segments e and f
intersect if there is an event interval in which e and f satisfy one of three mutually
disjoint conditions. Condition 1.1 characterizes intersections involving a vertical seg-
ment. Condition 1.2 covers the case in which two nonvertical segments intersect at the
start point of one (or both) of the segments. The main thrust of Lemma 1 is embodied
in Condition 1.3, the exchange predicate, which reflects an observation first made in
[18]. It asserts that any other intersection between nonvertical segments e and f is
characterized by a reversal in the x-order of e and f at the endpoirnits of an event interval.

LEMMA 1. Without loss of generality if e and f are not vertical then assume x. Z X
otherwise assume that e is vertical and if f is also vertical then further assume y, =y,
Segments e and f intersect if and only if there exists i such that T

(1.1) ee VERT(i) and fe SPAN(i—1)U BEG(i) U VERT (i) and y;(x;) €[y., Jel,
or

(1.2) ee BEG(i) and fe SPAN(i—1)U BEG(i) and y;(x;) = y.,
or

(1.3) e,fe SPAN(i) and (e<, fand e>, _ forf<,eand f>x;e).

Proof. (=) Suppose e and f intersect at (x, y) and if they are collinear that this
is the point of intersection with smallest abscissa (ordinate for vertical segments). First
consider the case where e and f are not vertical and x, = x; If x = x, then let i be the
integer for which e € BEG(i). Observe that y,(x;) = yy(x) = y.(x) = y. and that x; = x €
[x5 %] implies f€ SPAN(i—1)U BEG(i), i.e. Condition 1.2 holds. If x # x, then let i
be the integer for which x € (x;, x;.;]. Observe that e and f cannot be collinear and
that xe€ (x., X.JN (x5 X;] implies e, fe SPAN(i). If e<,f then y.(x;)<ys(x).
Moreover, e and f intersect at x € (x;, x;+;] implies y.(xi11) = y;(xi41) and m,>m,
implies e>,,  f. Similarly e>, f implies e<,,,, f Thus Condition 1.3 holds.

Now suppose that e is vertical. Let i be the integer for which ee VERT(i) and
note that x = x; and y €[y,, 7.]. If f is not vertical then y,(x;) = y and x € [x;, X,] implies
fe SPAN(i—1)U BEG(i), i.e. Condition 1.1 holds. If f is also vertical then e and f
must be collinear, f€ VERT(i), and y; =y, implies y;(x;) = y, =y as y is the smallest
ordinate of an intersection point. Thus Condition 1.1 holds.

(&) Conditions 1.1 and 1.2 imply e and f intersect at (x;, y/{(x;)). Now suppose
Condition 1.3 is true. If y.(x;) = yr(x;) or y.(xi+1) = yr(x;+,) then immediately e and f
intersect. Otherwise e <, f and e>, fimplies y.(x;) <y, (x;) and ye(x;+1) > yr(Xiz1)-
That is, e is below f at x;, above f at x;;, and both segments span the interval. They
must intersect in the interval [x; x;,,]. Similarly e and f intersect when f<, e and
f>y,e O

3. The key methods—work list bubble sort and distribution-based search. Consider
the following simplification of the intersection problem. Suppose that EVENT = (x,, x,)
and that BEG(1) = END(2) = SEGMENT. There is only one event interval and no
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BEG(1)=END(2) =
SEGMENT ={a, b, ¢, d, e}
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F1G. 3. A single interval intersection problem.

vertical segments. An instance of a “Single Interval Intersection Problem” is depicted
in Fig. 3. By Lemma 1 it suffices to find the intersections satisfying Conditions 1.2 and
1.3 for the interval [x,, x,]. An algorithm is sketched that detects these intersections in
O(E log E + 1) time and O(E) space.

As a first step, sort the segments into x,-order in O(E log E) time. Observe that
segments with equal ordinate values, y.(x,), occur in contiguous sub-lists of this
ordering. Every pair of segments from such a sub-list and only these pairs satisfy
Condition 1.2 of Lemma 1. The sub-lists can be detected in O(E) time and the set of
segment pairs from each sub-list can then be listed in O(I) time where I is the number
of intersections.

It remains to find all the intersections satisfying the exchange predicate (1.3).
Consider the application of a bubble sort to the x;-ordered segments to obtain the
x,-ordering of the segments. The key observation is that the set of segment pairs
exchanged in performing the sort is exactly the set of segment pairs satisfying the
exchange predicate.

The naive version of bubble sort requires O(E?) time. What is needed is an
O(E +1) time algorithm where I is the number of intersections or equivalently the
number of exchanged pairs. This can be accomplished with the following work list
variant of bubble sort. Let the current oder of segments be the x,-order computed n
the first step. Initialize the work list to be the set of all segments e for which e and its

successor are not in x,-order. While the work list is not empty, perform the following
steps.

(3A) Pop a segment e from the work list. Let f be its successor in the current order.

(3B) Remove f and the predecessor of e from the work list if present.

(3C) Exchange e and f in the current order and report that they intersect.

(3D) Push the current predecessor of f onto the work list if it and f are not in
x,-order. Push e onto the work list if it and its current successor are not in
x,-order.
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The validity of the algorithm follows from the fact that at the start of each iteration
the work list consists of those segments for which it and its current successor are not
in x,-order. The algorithm terminates as each iteration strictly reduces the “exchange
distance” to the x,-ordered arrangement of segments.

Steps 3A through 3D can be performed in constant time with the following
structures. Model both the current order and work list as doubly-linked lists in which
each cell contains a pointer to the record modeling the appropriate segment. Let each
segment record contain a pointer to its cell in the current order and a pointer to its
cell in the work list if present, the nil pointer otherwise. In constant time, cells can be
popped and pushed from the work list and an arbitrary cell within the list can be
deleted. Given a cell in the work list (current order) one can reach the corresponding
cell in the current order (work list) via the segment record. The links of the current
order list give current successors and predecessors. Segments are exchanged in this
order by interchanging just the segment record pointers of the relevant adjacent cells.

With these models the work list bubble sort requires O(E +I) time and O(E)
space. The initial work list is formed in an O(E) sweep over the x,-order of the
segments. Steps 3A through 3D are repeated exactly I times as an intersection is
reported in each iteration. Thus the sort proper takes O(I) time. Only O(E) space is
required at any given moment as each segment occurs in the work list at most once.
Note that intersections are not necessarily reported in order of increasing abscissa.
For example, when applied to Fig. 3, the algorithm reports intersections out of order
regardless of the initial state of the work list and its implementation as a stack of queue.

The general intersection problem can be viewed as EV — 1 separate single interval
problems. The algorithm presented here solves these individual problems in increasing
event order. One can imagine the scan-line as jumping from event to event while the
work list bubble sort detects the intersections between jumps. The O(E log E) cost of
determining the initial x-order for each interval problem readily distributes across the
computation: the bubble sort for the ith interval delivers the initial order for the (i +1)st
interval. Distributing the O(E) cost of computing the initial work list for each interval
problem is more difficult. If during the processing of some interval, a segment comes
to have a successor in the current x-order with which it satisfies the exchange predicate
then the segment must immedately be placed in the work list of the interval in which
the exchange predicate is satisfied. This requires a search for the interval containing
the abscissa of the point of intersection. An O(log E) bisecting search on the ordered
EVENT list could be used. However, a distribution-based search reduces the cost to
O(1) expected time under the assumption that the elements of EVENT are uniformly
distributed in the interval [x,, xgv].

Recently, much attention has been given to distribution-based sorting methods
[11, [6], [7], [10], [20]. The technique sketched here is the search analogue of the
sorting-by-partition method in [10]. Consider evenly dividing the interval [x,, xgv] into
EV subintervals (buckets) of size A= (xgy —x,)/ EV. Observe that an arbitrary x is in
the bucket [x,+AH(x), x,+A(H(x)+1)) where H(x)=|(x—x,)/A]. For each i in
[0, EV], let MIN(i) be the ordinal position of the smallest event in the interval
[x,+ AL xgv]

MIN (i) =min{j|x;e EVENT and H(x;)=i}.

For the limiting case, let MIN(EV+1)= MIN(EV). It is an elementary exercise to
design an algorithm that constructs the vector MIN in an O(E) sweep of the ordered
EVENT list. Under the hypothesis that the events in EVENT —{x,, xgv} are uniformly
distributed over the interval [x,, xgy], the expected number of events in a bucket is
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(EV—2)/EV as there are EV buckets and the EV —2 events are found in a given
bucket with equal probability. Thus the expected value of MIN(i)—MIN(i—1) is
also (EV—2)/EYV for all i.

Suppose segments e and f are known to intersect by the exchange predicate (1.3)
in some event interval. This interval can be found as follows. First determine the
abscissa of the segments’ point of intersection, XINTER(e, f), by analytic means. Let
8 =H(XINTER(e, f)). It follows from the construction of MIN that Xxpyn(s)—1<
XINTER(e, f) = X pun(s+1y- Thus the event interval, [x;_,, x;], in which the segments
satisfy the exchange predicate must have i in the range [MIN(8), MIN(8+1)]. The
desired event interval can then be found by searching this limited subrange of event
intervals. By the uniform distribution hypothesis the expected number of intervals in
the subrange is (MIN(8+1)— MIN(8))+1<2. Thus by employing a bisecting search
over this subrange, the expected search time is O(1) and the worst case is guaranteed
to be O(log E).

On a floating-point computer the calculation of real quantities is not exact due
to the introduction of rounding errors. When realized on such a machine the search
algorithm_above is correct only if the computation of H is monotonic. That is,
x'zx=>H(x')= H(x) where H is the computed value of H (as opposed to its true
value). If this condition is not met by the host hardware then the computed value of
8 may differ from its true value. In such instances the index of the desired event
interval will not be in the range [MIN(8), MIN (8 + 1)] and the search will fail. This
weakness can be removed by employing a finger-based seach [9] for resolving bucket
collisions. In this context the search would start at the MIN(8)th event interval (the
finger) and then search right or left for the correct interval in a bisecting fashion. The
expected and worst-case times for the search remain unchanged.

The uniform distribution hypothesis was chosen for simplicity. More generally,
the expected time for the search is O(1) + E(max (log N;)) where E denotes “expected
value” and N; is the number of events in the ith bucket. From [1] it follows that the
search is still O(1) if the underlying density function is bounded, Riemann-integrable,
and has compact support. The N-tree method of Ehrlich [7] could also be used here.
It has the advantage of performing well over a wider class of density functions [20]
(including those with exponentially vanishing tails). Its primary disadvantage is that
it requires O(E?) space in the worst case.

4. The algorithm. The work list variation of bubble sort leads to an efficient
algorithm for the single interval problem. The distribution-based search gives an O(1)
expected time method for determining the event interval in which a pair of segments
intersect. With these methods the planar segment intersection problem can be solved
efficiently. The simple data structures employed in the single interval problem must
be enhanced to meet the more dynamic requirements of the general algorithm. The
extension of these structures and the primitive operations that will be assumed are
described in the paragraphs below.

In the general algorithm, the current x-order contains just those segments spanning
the current event interval. This implies that one must be able to add and delete segments
from this order efficiently. The doubly-linked list model of the current x-order is
extended by superimposing a height-balanced tree (assume an AVL tree) upon it.
Conversely, one may view the current x-order to be modeled as an AVL tree XOT
(X-Ordered Tree) whose symmetric order is explicitly threaded with a doubly-linked
list. As before, each cell in the tree points to its corresponding segment record and
vice versa. The following primitives are assumed.
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Add(e, i)—Add segment e to XOT under the x;-order.

Delete(e)—Delete segment e from XOT.

Exchange(e)—Exchange e and Above(e) in the current ordering of XOT.

Above(e) (Below(e))—The segment immediately above (below) e in the current

ordering of XOT if it exists, A otherwise.
The maintenance of the doubly-linked threads in XOT is an elementary exercise. With
this model Add and Delete are O(log E) operations and Exchange, Above, and Below
are O(1) as before. Note that Exchange destroys any particular x-order. However, the
operation Add(e, i) is only applied when XOT is x;-ordered.

In the general algorithm there are EV —1 distinct work lists, WORK (i), one for
each event interval [x; x;,]. The collection of work lists is modeled as an array of
pointers to the first cell of a doubly-linked work list of the form described in § 3. The
following primitives are assumed.

Push(e, i)—Add segment e to WORK (i).

Pop(e, i)—Delete a segment from WORK (i) and return it in e.

Remove(e)—Delete segment e from the work list containing it (if any).

In the previous section it was shown that the primitives in this repertoire can all be
done in O(1) time.

The final primitive is assumed to implement the distribution-based search algorithm
sketched in § 3.

Hash(e, f)—A function returning the index of the interval in which e and f satisfy

the exchange predicate (1.3).
The primitive Hash is only invoked with segments e and f that are known to satisfy
the exchange predicate. It follows from the treatment at the end of § 3 that Hash
requires O(1) time in the expected case and O(log E) time in the worst case.

The complete algorithm is presented below as Algorithm 1. This algorithm begins
by initializing XOT and every work list to be empty. It then proceeds by processing
the event intervals in left to right order. This iteration constitutes the major loop of
Algorithm 1 and at the start of its ith iteration it is claimed that

(4.1) XOT contains the segments in SPAN(i—1) in x;-order.

In each iteration, all the intersections in the current interval are detected and reported.
This task is performed in four steps.

(4A) The segments in BEG(i) are added to XOT. Intersections satisfying Condi-
tion 1.2 of Lemma 1 are reported. After this step XOT contains the segments
in SPAN(i—1)U BEG(i) in x;-order.

(4B) The segments in VERT(i) are checked for intersections satisfying Condition
1.1 of Lemma 1. This step has no net effect on XOT.

(4C) The segments in END(i) are deleted from XOT. After this step XOT
contains the segments in SPAN(i) in x;-order.

(4D) The intersections satisfying the event exchange predicate for the current
interval are detected as XOT is bubble sorted into x;.,-order. Note that
after this step XOT satisfies Assertion 4.1 for the next iteration.

In Algorithm 1, each of Steps 4A through 4D appear as minor loops. It is claimed
that before an iteration of any minor loop, the collection of work lists satisfies the

condition:
(4.2) ee WORK () ift
e and Above(e) satisfy the event exchange predicate in the jth event
interval and j=i where i is the index of the current interval.
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The invariance of this minor loop predicate is maintained throughout the algorithm
by pushing and removing work lists elements to correctly reflect the effect of every
Add, Delete, and Exchange operation on XOT. The critical feature of Assertion 4.2
is that it implies WORK (i) = {e € SPAN(i)| e and Above(e) are not in x;,-order} just
before Step 4D is about to be performed for the ith event interval. Thus the work list
bubble sort performed in Step 4D is correct as WORK (i) is correctly initialized at its
outset.

The specification of Algorithm 1 contains several repeated code fragments that
have been collected into macro definitions. References to these macros are underlined;

their definition follows the algorithm. Keep in mind that macro parameters are passed
by substitution.

ALGORITHM 1. The planar segment intersection algorithm

/* Initialize work lists and AVL tree */
For i< 1 to EV Do

WORK (i) « &
XOT <«

/* For each event x; in increasing order do */
For i< 1 to EV Do

(4A) /* Add segments in BEG(i) and list their start point intersections */
For e € BEG(i) in order Do
Add(e, i)
f < Below(e)
If f# A Then
Remove(f)
Enter(f)
Enter(e)
Report(e, yg(xi) = Xe)

(4B) /* Find all intersections with segments in VERT(i) */
For ec VERT(i) in order Do
Add(e, i)
Report(e, y (i) €[y, 7.1)
For e e VERT(i) in order Do
Delete(e)

(4C) /* Delete segments in END(i) */
For e END(i) in order Do
Jf < Below(e)
Delete(e)
Remove(e)
If f# A Then
Remove(f)
Enter(f)

(4D) /* Find all “event exchange” intersections in [x;, X;+1] */
While WORK (i) # <& Do
Pop(e, i)
“e and Above(e) intersect”
f < Below(e)



634 EUGENE W. MYERS

Exchange(e)

Remove(Below(e))

If f# A Then
Remove(f)

Enter(f)
Enter(e)

Macro Report(e, cond) Macro Enter(e)

g < Below(e) g < Above(e)

While g # A and cond Do If g# A and e> in(x, 5, 8 Then
“e and g intersect” Push(e, Hash(e, g))
g < Below(g)

g < Above(e)

While g # A and cond Do
“e and g intersect”
g < Above(g)

Algorithm 1 is correct regardless of the class of intersections present. The correct-
ness and generality of the algorithm follow directly from Lemma 1 and the discussion
above. One subtle point: the macro Report in Step 4A (4B) correctly reports those
segments that intersect with e by Condition 1.2 (1.1) as the segments are contiguous
in XOT’s order and the intersecting pairs are reported only once as e is being entered
into XOT for the first and only time. In Theorem 1, the algorithm is shown to have
the time and space performance claimed at the outset of the paper.

THEOREM 1. Algorithm 1 requires O(E log E + I) expected time when EVENT is
uniformly distributed. Algorithm 1 requires O(E log E + I log E) time in the worst case.
Algorithm 1 requires O(E) space.

Proof. The initialization of XOT and the work lists at the outset of the algorithm
require O(E) time. As was shown at the time of their introduction, the construction
of all the other auxiliary structures requires O(E log E) time.

The body of Step 4A is repeated once for each segment in a BEG-list. Thus it is
repeated at most E times. The macro Report contains a while loop for which an
intersection is reported in each iteration. The body of the while loop takes O(1) time.
The other primitives in Step 4A take either O(1) or O(log E)time. Thus the total time
taken by Step 4A is O(E log E + I,) time in the worst case where I, is the number of
intersection reported in the step. Similarly, the total times taken by Steps 4B and 4C
are O(E log E + I,) and O(E log E) respectively.

The body of Step 4D is repeated once for each intersecting pair satisfying the
exchange predicate. All operators are O(1) with the exception of Hash which is O(1)
in the expected case and O(log E) in the worst case. Thus the total cost of performing
Step 4D is O(1,) in the expected case and O(I,log E) in the worst case. The total
number of intersections, I, is the sum of I,, I,, and I,. Thus the overall performance
of Algorithm 1 is O(E log E+I) in the expected case and O(E log E+1Ilog E) in
the worst case.

With the exception of the work lists, it is clear that all the data structures involved
require O(E) space. Assertion 4.2 implies that there are at most E —1 segments in all
of the work lists at any time. This follows as there are at most E — 1 adjacent segments
in any ordering and a given segment pair satisfies the exchange predicate in at most
one event interval. Thus Algorithm 1 required only O(E) space. 0O
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5. Discussion. The use of the work list bubble sort implies that Algorithm 1 does
not report intersections in increasing order of abscissa. However, this is true only
within each event interval; the intervals themselves are processed in increasing order.
Informally, one may say that the intersections are sorted “with respect to the event
intervals”. Thus the intersections can be totally ordered by simply sorting each collection
of intersections reported in each execution of Step 4D. Although this requires
O(I log E) time in the worst case, in practice it should result in some additional
efficiency . Moreover, if appropriate a distribution-based method [6], [7], [10] could
be used to solve each sorting subproblem in a total of O(I) expected time.

If all segments are either vertical or horizontal, then Algorithm 1 performs in
O(E log E +I) worst-case time. Simply observe that no pair of segments satisfies the
exchange predicate. Consequently, no segment will ever be entered into a work list;
the body of Step 4D will never be executed ; and Hash will never be invoked. But the
O(log E) worst-case performance of Hash is solely responsible for the I log E term
in Algorithm 1’s performance. This result was first shown in Bentley and Ottmann’s
paper [2] but was posed as a distinct algorithm. In this paper it is simply a direct
consequence of the general algorithm.

A slight variation of Algorithm 1 gives an O(E log E + I) worst-case algorithm
for yet another restricted intersection problem. Suppose that all segments are con-
strained to have their left endpoints at x,. Formally, assume BEG(1)U VERT(1) =
SEGMENT; the END lists are unrestricted. To solve the ‘“‘single start intersection
problem” modify Algorithm 1 as follows. Replace all references to WORK (i) with
references to a single work list and modify all Pop and Push primitives to operate
exclusively on this one work list. The second parameter of these primitives becomes
superfluous and consequently the one and only call to Hash is removed. Since the
primitive Hash is no longer employed, this modified algorithm must run in O(E log E +
I) time in the worst case. Observe that while XOT is no longer reasonably ordered
in later iterations of the major loop, the algorithm is correct as Add is not invoked
after the first iteration.

In problem instances where the intersection density a = I/ E* is high, the following
situation will frequently arise in the course of an event interval bubble sort. An
intersecting pair of segments momentarily become adjacent in XOT and are entered
into some work list only to be removed when another exchange separates them. The
effort expended by Hash to find the appropriate work list was wasted. Such redundant
searches can be eliminated by introducing a temporary work list, WORK 7, which is
empty at the beginning of each bubble sort. During a sort, newly adjacent segments
that intersect in an event interval other than the current one are placed in WORK.
Only when the given sort is complete are the segments that remain in WORKry
transferred via Hash to their respective work lists. This variation is not asymptotically
superior to Algorithm 1 but does significantly reduce the number of searches for high
density problems.

6. Conclusion. An O(E) space, O(E log E + I) expected time algorithm for the
planar segment intersection problem has been presented. The key techniques are the
use of a work list bubble sort for solving individual event interval problems and the
use of a distribution-based search to seed the work lists for these intervals. The expected
time result still leaves open the question of whether or not a comparison based method
must take O(E log E + I log E) worst-case time. However, several restricted problems
were observed to have O(E log E + I) worst-case algorithms.
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The problem was treated in full generality. Vertical segments, multi-segment and
infinite intersections were all permitted. As Sutherland et al. [19] have observed, these
singularities must be carefully treated in order for the algorithm to be useful in graphics
applications.

It was noted earlier that a sorted intersection list could be produced in
O(E log E + I) expected time under the assumption that the abscissas of the intersec-
tion points are uniformly distributed in each event interval. Such a list readily provides
the basis for a hidden-line computation. The method of Sechrest and Greenberg [16]
suggests that with the use of coherence all computations can be done in O(I) time
except for the embeddings of locally minimum points.

The algorithm described in this paper performs a one-time analysis on a set of
planar line segments. In many contexts it would be useful to incrementally obtain a
solution. For example if several new edges are added to the problem or if the locations
of some of the existing segments are perturbed, the new solution could be computed
by simply detecting how it differs from the previous solution. This can obviously be
done in O(E) time per input modification by a direct extension of the naive O(E?)
algorithm. The problem of arranging a more efficient incremental algorithm appears
very difficult. If I, is the number of intersection involving segment e, are O(I,),
O(I,+log E), or even O(I, log E) incremental methods possible? Rosen [14] has noted
in the context of data flow analysis that highly efficient one-time algorithms do not
necessarily lead to efficient incremental algorithms.
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