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Two algorithmic results are presented that are pertinent to the matching of patterns typically used by biologists to

describe regions of macromolecular sequences that encode a given function. The first result is a threshold-sensitive

algorithm for approximately matching both network and regular expressions. Network expressions are regular

expressions that can be composed only from union and concatenation operators. Kleene closure (i.e., unbounded

repetition) is not permitted. The algorithm is threshold-sensitive in that its performance depends on the threshold, k,

of the number of differences allowed in an approximate match. This result generalizes the O(kn) expected-time

algorithm of Ukkonen for approximately matching keywords. The second result concerns the problem of matching

a pattern that is a network expression whose elements are approximate matches to network or regular expressions

interspersed with specifiable distance ranges. For this class of patterns, it is shown how to determine a backtracking

procedure whose order of evaluation is optimal in the sense that its expected time is minimal over all such pro-

cedures.

1. Introduction. Many patterns of interest to molecular biologists investigating the structure of
proteins and their binding to nucleic acid sequences, take the form of a number of "domains" or
"signals" distributed at various locations along the sequence in question, e.g., Miller et al. (1985)
and Posfai et al. (1989). Both the spacing and the domains vary somewhat between sequences
manifesting the behavior or function. This motivates a class of patterns in which one is search-
ing for approximate matches to a consensus sequence for each domain, separated within certain
distance ranges of each other. For example, in a software system called ANREP (Myers and
Mehldau 1993), the specification for a cytosine methyltransferase pattern developed by Posfai et
al. (1989) is shown in Figure 1. The pattern (or "net") MTase consists of ten domains (or
"motifs"), I through X, separated by "spacers" of varying sizes. For example, the spacer
<-9,39> between motifs I and II indicates that the left end of a match to motif II must be
found between 9 symbols to the left and 39 symbols to the right of the right end of a match to
motif I. The search requested in the last statement of the specification, scans the PIR database
for a match to MTase with the parameter t set to .8, which requests that each motif match over
������������������
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at least 80% of its length. The motifs themselves are sequences of symbols, symbol classes (e.g.,
[ILM] which matches I, L, or M), and wild-cards (i.e., . which matches any symbol).

# Cytosine Methyltransferase pattern (Posfai et al. NAR 17, 7 (1989))

motif I = "[ILM][DS][FL]F[ACS]G.[GM][AG][FIL]..[AGS]....G";

motif II = "[ILV]..[INS][DE].[DFN]..[AI]..[STV][FIY]..[IN]";

motif III = "D[IV][RST]";

motif IV = "[DN].[ILV].[AGS]G[FPS]PC[PQ].[FW]S..G.....[EDS]";

motif V = "[EDP].[QR][GN].[LMV][FY]";

motif VI = "[PT].....ENV.[GN]......[GKN]";

motif VII = "[DG]Y.[FIV]";

motif VIII = "[DIN][ADS]..[FHY][FGN][ILV][AP]Q.R[EKQ]R...[EIV][ACG]";

motif IX = "R.[FLM][HTS]..E..[ARV][ILV][MQ].[FY][DEP]";

motif X = "[KRS]....Y[KQR][EMQ].GN[AS][IV].[IPV].[ALV]....[AFG]";

net MTase{t} =

{I,t} <-9,39> {II,t} <-5,20> {III,t} <-4,34> {IV,t} <-13,41> {V,t} <-1,19>

{VI,t} <1,42> {VII,t} <-7,21> {VIII,t} <34,322> {IX,t} <-5,25> {X,t};

search(FASTA) PIR for MTase{.8}; # Search FASTA-formatted PIR for an 80% density match.

Figure 1. An ANREP pattern specification.

A reader interested in the practical engineering issues and the complete range of capabilities
of ANREP are referred to a companion paper (Myers and Mehldau 1993). The focus of this
paper is on the algorithms for the formal discrete pattern matching problem that lies at the heart
of the ANREP system. This introduction presents the essential background concepts and a for-
mal definition of the two-tiered class of patterns for which we present algorithmic results. These
algorithmic results have been implemented and form the core of ANREP’s implementation. The
two-tiered pattern class considered here was formulated in direct response to the range of pat-
terns posited in the current molecular biology literature as exemplified by Figure 1. However, it
should be noted in passing that the pattern class could also be applied to other domains such as
information retrieval and speech recognition.

To begin a formal treatment, one needs the concept of an approximate match to a pattern
(say, a regular expression) R over alphabet Σ. But this requires introducing first the much stu-
died concept of an alignment and its score. Given sequences A = a 1 a 2

. . . a n and
B = b 1 b 2

. . . b m over alphabet Σ, an alignment between them is a sequence of pairs
( i 1 , j 1 ) , ( i 2 , j 2 ) , . . . ( i len , j len ) such that i k < i k + 1 and j k < j k + 1 . This trace aligns a i k
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with b j k
for each k and if one imagines drawing lines between aligned symbols, then the condi-

tion on indices implies the lines do not cross. Observe that there are a tremendous number of
distinct alignments between A and B. What is desired are those alignments that are optimal with
respect to some criterion. To do so, introduce scoring scheme δ(a , b) which is a function giving
a non-negative real-valued score for each pair of symbols a and b from Σ ∪ {ε}. For a , b ∈ Σ ,
δ(a , b) gives the score of aligning a with b; δ(ε , b) is the score of leaving b unaligned in
sequence B; and δ(a , ε) is the score of leaving a unaligned in sequence A. The score of an
alignment is the sum of the scores assigned by δ to its aligned pairs and unaligned symbols. An
optimal alignment is one of minimal score. Finding an optimal alignment and its cost, δ(A , B),
is a much studied problem solvable with a dynamic programming algorithm in O(mn) time
(Levenshtein 1966, Needleman and Wunsch 1970, Wagner and Fischer 1974).

A pattern R, such as a regular expression, is formally a specification of a set (potentially
infinite) of sequences, i.e., the language L(R). From another perspective these are the sequences
exactly matched by the pattern. With this view one can think of a sequence that aligns particu-
larly well with a sequence exactly matched by R, as approximately matching R. Formally, the
set of sequences approximately matching R within threshold T under scoring scheme δ is
L δ (R , T) = { A : ∃ B ∈ L(R) , δ(A , B) ≤ T }. The problem of approximately matching pat-
terns arises naturally in the context of pattern matching for biological sequences because evolu-
tionary pressures mutate any given precursor over time. Myers and Miller (1989) presented an
O(np) algorithm for approximately matching sequence A to regular expression R where p is the
length of R. A regular expression is any pattern that can be built up from symbols via concate-
nation, union, and/or unbounded repetition (formally known as Kleene closure). However, in
most applications in molecular biology the Kleene closure operator is not useful, thus motivating
the definition of a network expression as a regular expression not containing a Kleene closure.
Thus in direct terms, a network expression is any pattern built up from concatenation and union
operations. From here forward, this paper focuses on network expressions and only digresses in
one paragraph of Section 3 to show that the result there is applicable to regular expressions. We
do so primarily because the motivating application, ANREP, only requires networks, but also
because restricting attention to networks simplifies much of what follows. Indeed, approxi-
mately matching networks is not difficult (as will be seen momentarily) and the first algorithm
for doing so is attributable to Sankoff and Kruskal (1983, pp. 265-310).

Hereafter, a network expression when coupled with a threshold will be termed a motif. It
should be noted, however, that the term "motif" has been used broadly in the computational
molecular biology literature to denote a pattern of some type. For example, the Gribskov
profiles (Gribskov et al. 1988) and Staden weight matrices (Staden 1988) have been called
motifs along with several other pattern classes (e.g., Abarbanel et al. 1984, Saurin and Marliere
1987, Bairoch 1991). In the companion paper on ANREP (Myers and Mehldau 1993) we
showed that a simple extension of the concept of a scoring scheme given above, allows the
motifs of this paper to encompass and generalize many of these other pattern classes. In any
event, for this paper we use the term motif to denote a network expression, threshold pair.
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Now consider the composite problem of matching a pattern consisting of several motifs
separated by specifiable distance ranges or spacers. Formally, let a net N be a network expres-
sion over the (infinite) alphabet of motifs, {R :T}, and spacers, [ l , r]. The pair {R :T} denotes an
approximate match within threshold T of network expression R where an implied alphabet Σ and
scoring scheme δ will be assumed to apply to all motifs for simplicity. The spacer [ l , r]
matches any sequence of between l and r symbols. The integers may be negative in which case
the spacer indicates that the left end of the item after it must begin so many characters to
left of the right end of the preceding item. For example, the pattern
{A :2} ( [0, 20] {B :4} | [ − 5, 5] {C:1} ), matches an approximate match to network expres-
sion A, either followed zero to twenty symbols later by a fairly loose match to B, or followed
within five symbols to the left or right by a more stringent match to C. The bar denotes union
(alternation), juxtaposition denotes concatenation, and parentheses may be used to enforce an
arbitrary order of precedence. Proceeding more formally, sequence A = a 1 a 2

. . . a n over
alphabet Σ is said to match net N, written A ∼ N, if and only if there exists index sequence
i 0, i 1 , . . . i p and sequence W = w 1 w 2

. . . w p over the alphabet of motifs and spacers such that
(1) W ∈ L(N), (2) i 0 = 0 and i p = n, and (3) if w k is motif {R :T} then a i k −1 + 1 a i k −1 + 2

. . . a i k

∈ L δ (R , T), and if w k is spacer [ l , r] then i k − i k − 1 ∈ [ l , r]. As noted earlier, this two-tiered
problem of matching network expressions of motifs and spacers is a formal embodiment of the
pattern matching capability built into the ANREP software system for the analysis of biose-
quences (Myers and Mehldau 1993).

In this paper, two results of algorithmic interest for the problem of matching nets are
presented. The first is a threshold-sensitive algorithm for matching motifs that generalizes
Ukkonen’s O(kn) algorithm for approximately matching keywords (Ukkonen 1985). This is
presented in Section 3, after Section 2 which reviews the traditional solution to this problem cast
in an automata-theoretic form required for our second result presented in Section 4. This second
result is a backtracking algorithm for matching net patterns that picks a backtracking order that
minimizes the expected time spent searching for a match.

2. A Review of Approximately Matching Network Expressions. A network expression over
alphabet Σ is any expression built up from the symbols in Σ ∪ {ε} with the operations of con-
catenation (juxtaposition) and alternation ( | ). The symbol ε matches the empty string. For
example, a(bc | ε) d denotes the set {ad , abcd}. While an expression is a convenient textual
representation of a network, a graph theoretic, finite automaton formulation is better suited to
our purpose of approximately matching networks.

There are several different models of finite automata to choose from (Hopcroft and Ullman
1979, pp. 13-76). The non-deterministic, state-labeled, finite automaton model is used here and
will be referred to as an ε-NFA. Formally, an ε-NFA, F = < V , E , λ , θ, φ >, consists of: (1) a
set, V, of vertices, called states; (2) a set, E, of directed edges between states; (3) a function, λ,
assigning a "label" λ s ∈ Σ ∪ {ε} to each state s; (4) a designated "source" state, θ; and (5) a
designated "sink" state, φ. Intuitively, F is a vertex-labeled directed graph with distinguished
source and sink vertices. We will use the notation t→s to denote that there is an edge in F from
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state t to state s. A directed path through F spells the sequence obtained by concatenating the
non-ε state labels along the path. L F (s), the language accepted at s ∈ V, is the set of sequences
spelled on paths from θ to s. The language accepted by F is L F (φ).

Any network expression, R, can be converted into an equivalent finite automaton F with the
inductive construction depicted in Figure 2. For example, the figure shows that F RS is obtained
by constructing F R and F S , adding an edge from φR to θS , and designating θR and φS as its
source and sink states. After inductively constructing F R , an ε-labeled start state is added as
shown in the figure to arrive at F. This last step guarantees that the sequence spelled by a path is
the sequence of symbols at the head of each edge, and together with the choice of finite automa-
ton model is essential for the upcoming alignment graph construction.

a FSFR

FS

FR

ε εFRε

R|Sφ

Sθ Sφ

R|Sθ

Rθ Rφ
R|SF :F:

aF : FRS:

Rφ Sθ Rφ RSφ=

Rθ

RSθ Rθ=

Rφ =φ

aθ aφ=

θ

Figure 2. Constructing the ε-NFA for network expression R.

A straightforward induction shows that automata constructed for network expressions by the
above process have the following properties: (1) every state has an in-degree and an out-degree
of 2 or less; and (2)�V�≤ 2�R�, i.e., the number of states in F is less than twice R’s length. That
is, for any network expression, there is an equivalent ε-NFA whose size, measured in vertices or
edges, is linear in the length of R. Another property of F’s graph is that it is acyclic and so its
states can be topologically ordered. An ordering of the states is said to be a topological order if
and only if for every state, s, its predecessors in R come before s in the ordering. Finally, of
essential importance to the threshold-sensitive algorithm of Section 3, is the fact that F is a
series/parallel graph.

To arrive at the basic dynamic programming algorithm for approximately matching network
expression R with sequence A = a 1 a 2

. . . a n , it is easiest to reduce the problem to one of
finding a shortest source-to-sink path in a weighted and directed alignment graph constructed
from R and A (Myers and Miller 1989). The vertices of the alignment graph consist of n + 1
copies of F, the ε-NFA for R, arranged one on top of another as shown in Figure 3. Formally,
the vertices are the pairs ( i , s) where i ∈ [0, n] and s ∈ V. For every vertex ( i , s) there are up
to five edges directed into it. (1) If i > 0, then there is a deletion edge from ( i − 1, s) that
models leaving a i unaligned and its weight is δ(a i , ε). (2) If s ≠ θ, then for each state t such
that t→ s, there is an insertion edge from ( i , t) that models leaving λ s unaligned (in whatever
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sequence of L(R) that is being spelled) and its weight is δ(ε , λ s ). (3) If i > 0 and s ≠ θ, then,
for each state t such that t→ s, there is a substitution edge from ( i − 1, t) that models aligning a i

with λ s and its weight is δ(a i , λ s ). An exercise in induction reveals that the construction is
such that every path from ( i , t) to ( j , s) models an alignment between a i + 1 a i + 2

. . . a j and the
sequence spelled on the heads of the edges in the path from t to s in F that is the "projection" of
the alignment graph path. The mapping of paths to alignments is not one-to-one since substitu-
tions into ε-labeled states have the redundant effect of leaving a i unaligned, and insertion edges
into ε-states redundantly align ε with ε. However, as long as one defines δ(ε , ε) = 0, then the
cost of paths and their alignments coincide. Moreover, every alignment is modeled by at least
one path. Thus the problem of approximately matching A to R is equivalent to finding a least
cost path between source vertex (0, θ) and sink vertex (n , φ). It can be further shown that all
substitution and deletion edges entering ε-labeled vertices except θ can be removed without des-
troying the property of there being a path corresponding to every alignment. These edges are
removed in the example of Figure 3 to avoid cluttering the graph. In Figure 3, solid circles
denote ε-labeled states and unlabeled edges have weight δ(ε , ε) = 0.

a

b

a b

a

b

a b

a

b

a b

(b,
δ

ε)

(b,
δ

ε)

(b,
δ

ε)

(a, ε
δ

)

(a, ε
δ

)

(a, ε
δ

)

(εδ ,a) (εδ ,b)

(εδ ,a) (εδ ,b)

(εδ ,a) (εδ ,b)

(a,εδ )

(a,εδ )

(b,δ ε)

(b,δ ε)

(a,b)
δ

(b,b)
δ

(a,b)
δ

(b,b)
δ
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δ
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δ

(εδ ,b)

(εδ ,b)

(εδ ,a)

(εδ ,a)

(εδ ,a)θ)(0,

(n, )φ

Figure 3. The alignment graph for A = ab versus R = (a| b) ab.

Any alignment graph is easily seen to be acyclic since F is acyclic. Thus one can readily for-
mulate the following central recurrence for the least path cost, C( i , s), from (0, θ) to vertex
( i , s):

C(i ,s) = min {
t→ s
min {C(i −1,t) + δ(a i ,λ s ) } ,

t→ s
min {C(i ,t) + δ(ε ,λ s ) } , C(i −1,s) + δ(a i ,ε) } (2.1)

For the "boundary" vertices with i = 0 or s = θ, the terms that are undefined should be omitted,
and for the source vertex, C(0, θ) = 0. By construction of the alignment graph, C(i , s) =
min { δ(A i , B) : B ∈ L F (s) }, the score of the best alignment between a sequence in L F (s) and
the prefix A i = a 1 a 2

. . . a i of A. Assuming the length of R is p then there are O(np) vertices in
the alignment graph and the in-degree of each is less than 5. Thus by applying the dynamic
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programming paradigm one can compute C(i , s) for every vertex in increasing order of i and any
topological order of V. Computing the value of each vertex using the recurrence above takes
O(1) time given the value of its immediate predecessors in the graph. Thus C(n , φ) =
min { δ(A , B) : B ∈ L(R) }, the score of the best alignment between A and a sequence in L(R),
can be computed in O(np) time.

Thus far the problem under consideration has been that of determining the score of the best
alignment between A and R. For a given threshold T, a solution to this basic problem suffices to
allow us to determine if A ∈ L δ (R , T) since the predicate is true if and only if C(n , φ) ≤ T. But
in general, one is faced with a very large text — n a million or more — and one is interested in
finding those substrings of A that approximately match motif M = {R:T}. As Sellers (1980)
noticed a decade ago, it suffices to simply modify the boundary of the central recurrence (2.1) so
that C(i , θ) = 0 for all i. This is tantamount to making every θ-vertex a source vertex
as opposed to just (0, θ), and has the consequence that now C(i , s) =
min { δ(A j..i , B) : j ≤ i and B ∈ L F (s) } where A j..i denotes the substring a j +1 a j +2

. . . a i of A (ε
if j = i). It then follows that there exists a suffix of A i matching R within threshold T if and only
if C(i , φ) ≤ T. In such an instance the index i is termed the right end of a match.

In applications where n is very large, it is prohibitive to use O(np) space for the quantities
C(i , s). Let C i denote the "row" of entries {C(i , s) } s ∈ V and observe from the central recurrence
that row C i can be computed given just C i −1 and a i . Thus it is possible using only O(p) space to
scan A from left-to-right computing C i at each index and asking if i is the right end of an approx-
imate match. In direct analogy with the state-set simulation of an ε-NFA on a text string, one
can think of the C i’s as modeling the states of a deterministic automaton where on symbol a i the
machine transits from state C i −1 to state C i . It is impractical to actually build the automaton
since it has an exponential number of states (infinite if δ is irrational). However, it is useful to
think in terms of scanning A with a finite automaton recognizing motif M, for then the issues of
how to report matches (e.g., left-most longest) are identical to those already studied for the
matching of regular expressions. This will be explored further in Section 4.

The concepts expounded to this point are summarized in the pseudo-code of Figure 4. Within
the code, all attributes of a motif M are prefixed by "M.", e.g., M.V is the state set of M’s ε-NFA,
M.θ is its start state, and so on. Also associated with M are two arrays M.C and M. D indexed by
the states in M.V. These O(p) arrays are used to store "rows" of C-entries. The array M.C con-
tains the current "state" of M, and M. D is used temporarily by the function Advance to compute a
next state from the current one. The procedure Start(M) initializes M’s state to C 0. Each call to
Advance(M , a , inject) with inject set to true, updates M.C from its current state (row of C-entries)
to the one obtained after scanning the symbol a. That is, if M.C = C i −1 upon invocation, then
M.C = C i after invoking Advance(M , a i ,true). Also note that Advance returns yes if and only if
M.C[φ] ≤ M.T, i.e., one has just scanned to the right end of an approximate match. Until the
next paragraph, ignore the distinction between the no and never values returned by Advance, and
also what the function does when inject is false. The procedure Scanall uses Start and Advance to
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compute C i for increasing values of i and reports the right end of matches as they are encoun-
tered. It thus realizes the algorithm developed in the previous paragraph.

Consider the following final problem: given a set of indices J ⊆ [0, n] of potential left ends,
determine the set Scan(M , J) = { i : ∃ j ∈ J s.t. A j..i ∈ L δ (R , T) } of right ends of approximate
matches to M having a left end in J. Generalizing the previous discussion, what suffices is to
modify the boundary conditions of the central recurrence (2.1) so that C( j , θ) is set to 0 if and
only if j ∈ J. This has the effect that now C(i , s) = min { δ(A j..i , B) : j ∈ J and B ∈ L F (s) }, and
so the problem is solved by finding all i such that C(i , φ) ≤ T under this modification of the
recurrence’s boundary. Suppose that J = { j 1 , j 2 , . . . j c } where j 1 < j 2 < . . . < j c, i.e., the
elements are sorted. A simple approach is to modify Scanall so that inject is set to true only when
i ∈ J, i.e., the value 0 is "injected" into the θ value of the next state only when an index in J is
traversed during the scan of A. However, efficiency can be improved in two simple ways: (1)
start scanning at j 1, and (2) stop the scan when j c has been passed and a right end is no longer
possible. If the value of every vertex in M’s current state is greater than threshold, then Advance

returns never instead of just no. Because δ is non-negative, it follows that every future state of M

procedure Start(M)
{ M.C[M.θ] ← 0

for s ∈ M.V − M.θ in topological order do
M.C[s] ←

t→ s
min {M.C[ t] + δ(ε , λ s ) }

}

function Advance(M , a , inject): (yes , no , never)
{ M. D[M.θ] ← M.C[M.θ] + δ(a , ε)

if inject then
M. D[M.θ] ← 0

for s ∈ M.V − M.θ in topological order do
M. D[s] ← min {

t→ s
min {M.C[ t] + δ(a , λ s ) } ,

t→ s
min {M. D[ t] + δ(ε , λ s ) } , M.C[s] + δ(a , ε) }

M.C ← M. D
if ∀ s , M.C[s] > M.T then

return never
else if M.C[M.φ] > M.T then

return no
else

return yes
}

procedure Scanall(M) function Scan(M , J): set of [1..n]
{ Start(M) { I ← ∅

for i ← 1 to n do k ← 2
if Advance(M , a i ,true) = yes then Start(M)

print i . "is a match right end" for i ← j 1 + 1 to n do
} { answer ← Advance(M , a i , i = j k )

if k ≤�J�and i = j k then k ← k + 1
if answer = yes then I ← I ∪ {i}
if answer = never and k >�J�then break

}
return I

}

Figure 4. Scanning Routines for Matching Motifs.

- 8 -



will satisfy this condition unless a 0 is injected at some future point. Thus in the procedure Scan
of Figure 4 that implements the reduced scan, condition (2) is detected when never is returned by
Advance after the last possible injection has taken place. While Scanall scans O(n) characters,
Scan scans only O( j c − j 1 + p) provided the insertion and deletion costs of the scoring scheme δ
are bounded away from 0. If the range of indices covered by J is small, as it generally is in the
upcoming problem of Section 4, this refinement is particularly important.

3. A Threshold-Sensitive Motif Matching Algorithm. Several authors have observed that in
the case of a thresholded problem such as matching a motif, one need not compute every value
C( i , s), but simply those that are within the threshold T in question. Generally a few more
entries than just those desired must be computed in order to ensure that none are missed, but this
is acceptable provided the "zone" examined is on the order of the number of vertices whose least
path cost is not greater than T. Fickett (1984) presented such an algorithm for sequence versus
sequence comparison under non-negative δ. Ukkonen (1985) presented an O(kn) expected-time
algorithm for approximate keyword matching where T = k errors are allowed under the unit cost
model: δ(x , y) ≡ if x = y then 0 else 1. Note that approximate keyword matching is just a spe-
cial case of network matching where F is a line graph or chain. The complexity of Ukkonen’s
algorithm depends on the fact that the expected number of vertices in each row C i whose value
is within threshold T is O(T). Because performance depends on the parameter T, the algorithm
is termed threshold-sensitive. The tighter (smaller) the threshold, the faster the algorithm per-
forms. Ukkonen’s algorithm easily generalizes to any non-negative δ, but it becomes difficult to
characterize the expected size of the zone computed in each row. Nonetheless, this treatment
will continue to adhere to the threshold-sensitive characterization since performance depends
primarily on the stringency of the required match and not on the size of the pattern. In this sec-
tion a zone or threshold-sensitive algorithm for approximate network expression matching under
non-negative δ is developed.

Let C i − 1 (s) be the value of vertex ( i − 1, s) in whatever row, C i − 1 , a motif recognizer finds
itself in after scanning the i − 1st text symbol a i − 1 . Let T i − 1 = { s : C i − 1 (s) ≤ T } be the set
of values in row C i − 1 that are within the threshold T. Suppose at this point that one has
somehow managed to arrive at a set Z i − 1 ⊇ T i − 1 and values Ci − 1

* (s) for s ∈ Z i − 1 such that if
C i − 1 (s) ≤ T then Ci − 1

* (s) = C i − 1 (s) and Ci − 1
* (s) > T otherwise. Such a set and its values,

denoted Z i − 1 /Ci − 1
* , is called a zone and it correctly models all the values of C i − 1 within T.

The goal is to advance the motif recognizer over symbol a i to its next state, C i , but only com-
puting enough of this new row to arrive at a new zone, Z i /Ci

* , encompassing the values within
threshold T. Of course the challenge is to keep each zone as small as possible (a trivial solution
would be to let Z i = V). It would be ideal if Z i were T i but it does not seem to be possible to
compute these "perfect" zones at a cost of O(1) time per zone vertex. We can however achieve
this computational rate if Z i is relaxed to a superset of T i such that (1) the subgraph of F res-
tricted to the vertices in Z i is connected, and (2) the removal of any vertex from Z i − T i discon-
nects this subgraph. As will be seen later, the connectedness property (1) is required to
efficiently maintain a topological ordering of zone vertices and associated "dominator" informa-
tion. The minimality condition of property (2) is weaker than requiring Z i’s cardinality to be
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minimal, but again seems to be the best compromise attainable subject to the constraint that the
computation of Z i take time O(Z i ). We term a zone satisfying (1) and (2) as being a minimally
connected zone.

Given a minimally connected zone Z i − 1 /Ci − 1
* and symbol a i our problem is to compute a

minimally connected zone Z i /Ci
* modeling C i . From the structure of the alignment graph it fol-

lows that the least cost path to a vertex in C i within threshold T must consist of a deletion or
substitution edge from a vertex ( i − 1,s) where s ∈ Z i − 1 followed by a possibly empty series
of insertion edges in row i. More formally, the zone U i = Z i − 1 ∪ Inserts(Z i − 1 ) is
guaranteed to be a superset of T i where Inserts(X) = { s : ∃ t ∈ X , t→s or
∃ t ∈ Inserts(X) , ( t→s and C i ( t) ≤ T) }. Certainly U i is connected. If one computes Ci

* over
the states in U i by applying the standard recurrence (2.1) over just the edges of the alignment
graph between vertices in

s ∈ Z i −1

∪ ( i − 1,s) ∪
s ∈ U i

∪ ( i ,s), then Ci
* will properly model C i over

zone U i . After computing U i /Ci
* as the first step, the second step arrives at Z i by arbitrarily

selecting and removing states from U i − T i until a set that is minimal with respect to connected-
ness is obtained. This two step process generalizes Ukkonen’s algorithm for approximate key-
word matching in that it maps into exactly his algorithm when the network expression is a single
keyword. Note that his algorithm, like our generalization, does not compute "perfect" zones.

Before proceeding with a detailed development of the algorithm, we elaborate on the central
difficulty faced in realizing the computation outlined in the preceding paragraph. The problem is
in the first step that must simultaneously discover which vertices are in U i and correctly evaluate
Ci

* for each such vertex, for one cannot know one entity without the other. But the correct com-
putation of the value of Ci

* (u) for some u ∈ U i requires that all predecessors of u in U i be
discovered and have their Ci

* values computed before one proceeds to compute Ci
* (u). This

requires that the states of U i be discovered and evaluated in topological order. Thus if (1) s and
t are both immediate predecessors of u (i.e., s→u and t→u), and (2) s is discovered to be in U i

and have value Ci
* (s) ≤T, then one cannot proceed to place u in U i and evaluate it until it is

known whether or not t is in U i . This difficulty does not arise in the case that R is a simple key-
word.

The threshold-sensitive algorithm takes greater advantage of the structure of the automata F
for motif M than the simple algorithm of Section 2. Specifically, it requires that every state s
have a type, s.type, and links s.succ, s.other, and s.mate to operationally important states as
defined inductively in Figure 5. The algorithm will compute information at a state on the basis
of its type, utilizing the links to efficiently access other states in the automata. The start state, s,
of a subautomaton for R � S is of type SPLIT and has links to its two successors (i.e., s.succ and
s.other) and the final state (i.e., s.mate) of the subautomaton. Within F R � S , the final states, u and
l, of the subautomata for R and S are of type UPPER and LOWER, respectively. They have links
to each other (i.e. u.other and l.other), their single successor (i.e., u.succ and l.succ), and the
start state (i.e., u.mate and l.mate) of the subautomaton for which their partner is the final state.
The final state of F is of type FINAL and requires no link information. All other states, c, are of
type CAT and require only a link to their single successor in F (i.e., c.succ). A second
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requirement is that the states in F be numbered according to the unique topological ordering dic-
tated by the constraint that the vertices of F S precede those of F R in an automaton for F R � S . For
example, if s is of type SPLIT, then s.succ < s.other in this ordering. Observe that all these
definitions make specific use of the fact that the graph of F is series/parallel and acyclic.

FRS:

FSFR

R|SF :

F:

FS

FR

FR

f.type = FINAL

l.type = LOWER

u.type = UPPER

s.type = SPLIT

c.type = CAT

cc

s

u

l

f

s.mate

u.other

l.other

l.succ

u.succ

s.other

s.succ
u.mate

l.mate

c.succ c.succ

Figure 5. Type and Link Definitions for Series/Parallel F.

The goal then is an algorithm that given a zone M.Z/M.C * for a machine M and a character a
will produce a zone for the state of the machine after scanning a. As alluded to earlier the
difficulty is discovering the new zone in topological order. The key to doing so is to maintain
"dominator" information for the states in M.Z. Formally, a state t is dominated by s if and only
if every path from θ to t passes through s. The information needed for each state s is the largest
state (with respect to the topological order) in M. Z that is dominated by s. Formally, for any set
Z ⊆ M.V, let Dom Z (s) = max { t : t ∈ Z and s dominates t }. This dominator information will
be used to maintain the topological ordering property of a list of states exactly as follows. Sup-
pose we have the states of subset Z in a topologically ordered list and we have a state s ∈ Z of
type SPLIT for which x = s.succ is in Z but y = s.other is not in Z. The topological ordering of
the list is preserved if and only if y is inserted immediately after DOM Z (x) (which by definition
is in the list). The same is true when we have a state s ∈ Z of type LOWER for which
x = s.mate is in Z but y = s.succ is not in Z. In all other cases, the issue of where to insert the
successors of a state s ∈ Z in the topologically ordered list are easy and do not require the domi-
nator information. However, for the two cases above, this information is essential.

The procedure ZAdvance(M , a) in Figure 6 gives a detailed specification of our threshold-
sensitive algorithm for updating the current state of M to the one obtained by scanning the sym-
bol a. Having now outlined the two step process for advancing from one zone to another, and
given the key idea of using dominator information to maintain a topological ordering in a sorted
linked list, we proceed directly to a proof of the algorithm’s correctness.
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procedure ZAdvance(M , a)

{ # Pre-Condition: Z ≡ Z i −1 in topological order, C[s] ≡ Ci −1
* (s), In[s] ≡ s ∈ Z i −1 , Dom[s] ≡ Dom Z i − 1

(s) #

1. U ← ∅
2. while Z ≠ ∅ do
3. { s ← pop Z
4. D[s] ← min {

t→ s
min {C[ t] + δ(a , λ s ) } ,

t→ s
min {D[ t] + δ(ε , λ s ) } , C[s] + δ(a , ε) }

5. if In[s] or D[s] ≤ T then
6. { if s.type = SPLIT then
7. if not In[s.other] then
8. if In[s.succ] then
9. insert s.other after Dom[s.succ]
10. else
11. push s.other onto Z
12. if s.type ∈ {SPLIT , CAT , UPPER} then
13. if top(Z) ≠ s.succ then
14. push s.succ onto Z
15. else if s.type = LOWER then
16. if not In[s.succ] then
17. if In[s.mate] then
18. insert s.succ after Dom[s.mate]
19. else
20. insert s.succ after s.mate

}
21. In[s] ← true
22. push s onto U

}

# Invariant: Z ≡ ∅ , U ≡ U i in reverse topological order, D[s] ≡ Ci
* (s), In[s] ≡ s ∈ U i #

23. while U ≠ ∅ do
24. { s ← pop U
25. C[s] ← D[s]
26. In[s] ← C[s] ≤ T or s.type ∈ {LOWER , UPPER} and In[s.succ] and not In[s.other]

or s.type = CAT and In[s.succ]
or s.type = SPLIT and (In[s.succ] or In[s.other])

27. if In[s] then
28. { push s onto Z
29. if s.type = SPLIT then
30. if In[s.mate] then Dom[s] ← Dom[s.mate]
31. else if In[s.other] then Dom[s] ← Dom[s.other]
32. else if In[s.succ] then Dom[s] ← Dom[s.succ]
33. else Dom[s] ← s
34. else if s.type = CAT then
35. if In[s.succ] then Dom[s] ← Dom[s.succ]
36. else Dom[s] ← s
37. else
38. Dom[s] ← s

}
}

# Post-Condition: Z ≡ Z i in topological order, C[s] ≡ Ci
* (s), In[s] ≡ s ∈ Z i , Dom[s] ≡ Dom Z i

(s) #

}

Figure 6. A Threshold-Sensitive Algorithm for Scanning Motif M Over Symbol a.
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Theorem: If M.Z/M.C * ≡ Z i − 1 /Ci − 1
* when ZAdvance(M , a) is called, then

M.Z/M.C * ≡ Z i /Ci
* after it returns.

Proof: The simple algorithm of Section 2 for Advance only needed an O(p) array M.C to model
the current row or "state" of motif M. The threshold-sensitive algorithm must additionally main-
tain (1) a linked list M. Z of the states in the current zone in topological order, (2) a state-indexed
array of boolean values M. In, indicating which states are in M. Z, and (3) a state-indexed array
M. Dom giving dominator information as described above. To alleviate the notational burden,
we will omit the M. prefix for structures such as M. Z for the remainder of this proof.

At the time ZAdvance is called, the precondition assumed is that the data structures Z, C, In,
and Dom are correctly established for the minimally connected zone Z i − 1 /Ci − 1

* obtained after
scanning i − 1 symbols. The condition is formally stated in Figure 6 but note in particular that
for all s ∈ Z, Dom[s] = Dom Z (s), i.e. the Dom array gives the dominator information for all
states in the zone Z.

The first step of the algorithm (lines 1-22) discovers the states in U i in topological order and
simultaneously computes D[s] = Ci

* (s) for every s ∈ U i . Thinking of Z as a stack, this step
pops elements from Z and pushes them onto an initially empty stack U (also realized as a simple
linked list). Thus in outline form, this step "pours" states from the top of stack Z onto the top of
stack U (lines 1, 2, 3, and 22) so that at the end of this first step the list U contains the elements
of U i in reverse topological order. As a state s transits from Z to U (lines 4-21): (a) the value
D[s] is computed (line 4), (b) s’s immediate successors in F are inserted into their appropriate
place in the topologically ordered Z list/stack if they are discovered to be in U i − Z i − 1 (lines 5-
20), and (c) In[s] becomes true (line 21). Note that the states discovered to be in U i − Z i − 1 are
placed into Z so that they will be poured into U in topological order. This insures that D[s] is
correctly evaluated as all s’s predecessors in U i have already been poured and thus had their D-
values computed. The setting of In[s] only upon pouring also insures that one can distinguish
between states on the list Z that are in Z i − 1 and those in U i − Z i − 1 according to whether their
In-indicator is true or false, respectively.

To confirm the invariant claimed in Figure 6 at the completion of the first step, it only
remains to verify that all the vertices in U i − Z i − 1 are discovered and inserted into Z at their
correct positions. When a state s is poured from Z to U, its immediate successors are in U i if an
only if s is in Z i − 1 or C i (s) ≤ T. But this is exactly equivalent to In[s] being true or D[s] ≤ T
after executing lines 3-4 of the "pouring loop". Thus the predicate in line 5 correctly determines
if s’s successors belong to U i . As stated before the tricky part is to insert these successor states
into the right place in Z. There are four cases depending on the type of s. We consider the most
complex case which is when s.type = SPLIT and leave the remaining cases to the reader. Let
x = s.succ and y = s.other be the two successors of s. Note that because s is its only predeces-
sor, x is already in Z if and only if x is in Z i − 1 . The same is true for y. Thus x(y) is already in Z
if and only if In[x](In[y]) is true. If x is not in Z then, it should be added immediately after s
since it comes immediately after it in the topological ordering of V. But s was just popped from
Z, so it is correct to push x onto the front of Z if it is not already there (lines 12-14). If y is not in
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Z then where it goes depends on x: if x is also not in Z then it should be placed immediately after
x because by connectivity none of the states dominated by x are on the list; otherwise it should
be inserted immediately after Dom Z i −1

(x) = Dom[x] (as x ∈ Z i − 1). Note that in the first case

the algorithm is correct to push y (s.other) onto the top of Z in line 11 as immediately thereafter
it pushes x in front of it in line 14. Thus, the logic of lines 6-20 correctly inserts s’s successors in
the event that its type is SPLIT.

After the first step of the algorithm has completed the invariant of Figure 6 is true. Namely, Z
is empty, the list U contains the states in U i in reverse topological order, D[s] contains the value
Ci

* (s) for every s ∈ U i , and the boolean indicator In[s] is true iff s ∈ U i . In the second step
(lines 23-38), the algorithm pours states from U onto the now empty Z (lines 23, 24, and 28) with
some states being dropped (i.e., not pushed onto Z) if they are not needed to maintain the con-
nectedness property of Z i . At the same time, D-values are transferred to C (line 25), In is esta-
blished for Z i (line 26), and the new dominator information for Z i is computed in Dom (lines
29-38). When a state s is poured out of U it flows into Z only if (1) D[s] ≤ T, (2) s is the sole
predecessor of a state already placed in Z, or (3) s has a successor t already in Z, no other prede-
cessor of t has been placed in Z, and s was the last predecessor of t in U. This strategy guaran-
tees that the collection of states poured into Z is minimally connected. The predicate in line 26
realizes the criterion and is assigned to the In-indicator for the state. Dominators are easily com-
puted as a function of the dominators of immediate successors also in Z i as given in Figure 6.
For example, consider s of type CAT. If Dom Z i

(s) ≥ s.succ (in the topological order of states),

then because s.succ is the sole successor of s it follows that Dom Z i
(s) = Dom Z i

(s.succ), and

by connectivity it must be that s.succ ∈ Z i . Thus In[s.succ] is true and Dom[s] = Dom[s.succ]
(line 35). The other case is Dom Z i

(s) = s in which case s.succ cannot be in Z i (line 36).

Verification of the logic for the other state types is left as a simple exercise to the reader. After
executing the loop of lines 23-38, it thus follows that Z, C, In, and Dom are correctly established
for the zone Z i /Ci

* as asserted in the post-condition of Figure 6.�

Next we show that our result is easily extended to regular expressions. We assume the reader
is well acquainted with the result of Myers and Miller (1989) for approximately matching regu-
lar expressions. Note first that ignoring back-edges, the automaton for a regular expression is a
series/parallel graph. So we can use the result of this paper as a subroutine for the two passes of
the Myers/Miller algorithm. In brief, to advance a regular expression automaton over symbol a,
start by calling Zadvance(M ′ ,a) where M ′ is the automaton without back-edges. Then pro-
pagate values across back-edges s→t for all s ∈ M.Z observing that t must also be in M.Z as it
dominates s. Finally, call Zadvance(M ′ ,ε) to complete the second pass.

The final algorithmic consideration is to demonstrate that the procedure ZAdvance is embedd-
able in the context of Section 2 which required the concepts of injection, the status of the result-
ing zone, or how to get started. Figure 7 presents algorithms for the primitives Advance and
Start of Section 2 that use ZAdvance as a subroutine. To achieve an injection of 0 into the C-
value of the start state, Advance first adds θ to the current zone Z if necessary in lines 2 through
4, and then sets C[θ] to − δ(a , ε) in line 5. This guarantees that the subsequent call to

- 14 -



ZAdvance will correctly set D[θ] to 0 in line 4 on the first iteration of the loop of the first step.
Upon return from the call to ZAdvance in line 6, Advance returns yes, no, or never depending on
the zone. If Z is empty then every C-value must be greater than T and so never is the correct
return value (lines 8). Otherwise, if C * (φ) > T then no is returned (line 10), and yes otherwise
(line 12). Start determines the initial zone Z 0 /C0

* by simply establishing the empty zone (lines
1-3) and then calling Advance (line 4) with an arbitrary character (e.g., ε) and injection on.

function Advance(M , a , inject): (yes , no , never)
1. { if inject then
2. { if M. Z = ∅ then
3. { M. Z ← { θ }
4. M. In[θ] ← true

}
5. M.C[θ] ← − δ(a , ε)

}
6. ZAdvance(M , a)
7. if M. Z = ∅ then
8. return never
9. else if not M. In[M.φ] or M.C[M.φ] > M.T then
10. return no
11. else
12. return yes

}

procedure Start(M)
1. { for s ∈ M.V do
2. M.C[s] ← M. D[s] ← M.T + 1
3. M. Z ← ∅
4. Advance(M , ε , true)

}

Figure 7. Threshold-Sensitive Versions of Start and Advance.

Finally, we turn to the consideration of the efficiency of our algorithm. It is easy to see that
the two major loops of ZAdvance are repeated exactly � U i � times when called with zone
Z i − 1 /Ci − 1

* . Because the body of each loop is straight-line code and � U i � is O( � Z i − 1 � + � Z i � ) it
follows that a call to ZAdvance takes O( � Z i − 1 � + � Z i � ) time. Thus the time to find all matches
within threshold T with the procedure Scanall of Figure 4 takes O( tn) expected time where t is
the average size of the zones, � Z i � , over the course of the scan. As for the threshold-sensitive
algorithms presented by Ukkonen (1985) and Fickett (1984), we do not in this paper focus on the
interesting and difficult question of characterizing t in terms of T, R and δ.1 Certainly the two t’s
are positively correlated: the more stringent the choice of T, the smaller the computed zone, and
the faster our threshold-sensitive algorithm performs compared to the simple dynamic program-
ming algorithm of Figure 4. Moreover, we can make some preliminary statements about the
correlation between t and T. Because our algorithm reduces to exactly Ukkonen’s algorithm
when the network expression is a single keyword, it must take O(Tn) expected time when R is a
keyword and δ is the unit cost scoring scheme. It then follows as a corollary that under unit cost������������������
1. Ukkonen’s algorithm was not proven to be O(kn) by Ukkonen in his 1985 paper, but seven years later in a separate paper and
analysis by Chang and Lampe (1992).
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scores, the algorithm takes no more than O(min{ �Σ �T , Tw} n) expected-time where Σ is the input
alphabet and w is the width of the network expression, i.e., the maximum cardinality of a cut-set
of F. The problems of a tighter characterization, or a characterization for the case where δ is
arbitrary, are left open.

To give the reader an idea of the speed of the threshold algorithm in practice we present
Table 1 below which compares its speed for various threshold values against an implementation
of the basic algorithm presented in Figure 4 of Section 2. The implementations were run over
one million characters of a typical protein database. The scoring scheme used was the simple
unit cost model so that the threshold T is coincident with the number of differences in a match.
The times are in seconds and were obtained on a Dec Alpha 4/233. Following each time in
parenthesis is the average size of the zone during the scan. In the case of the entries for the basic
algorithm these numbers are the number of states in the automaton for the pattern. The essential
observation is that the more complex logic required for the threshold-sensitive algorithm makes
it require roughly three times more time per state in the zone over the basic algorithm. Thus it is
more efficient than the basic algorithm only when the threshold is such that, on average, the zone
involves less than 1⁄3 of the states in the automaton. Within the ANREP system mentioned at the
start of the paper (Myers and Mehldau 1993), we have implemented both the basic and threshold
sensitive algorithms. Given a number of motifs in a net pattern, we run the threshold-sensitive
algorithm over a random string of 1000 characters to determine if the average zone occupies
more than 1⁄3 of the automaton. If so then we use the basic algorithm for the motif in question
during the proper scan of the database; otherwise we use the threshold-sensitive algorithm. That
is, ANREP adaptively chooses the better algorithm for the particular motif. It is clear from
Table 1 that there are cases where the threshold algorithm provides superior performance.

Threshold Sensitive Algorithm
Pattern

T=0 T=1 T=2 T=3 T=4
Basic Algorithm��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

GCTCCGICTN 1.40(1.06) 1.68(2.19) 2.38 (3.37) 2.90 (4.53) 3.36 (5.58) 2.54(10)����������������������������������������������������������������������������������������������������
(GCTCCGICTN
|VEKGKKIFVQ
|EETLMEYLEN)

3.41(3.20) 4.97(6.56) 6.85(10.08) 8.66(13.68) 10.68(17.02) 7.44(36)

����������������������������������������������������������������������������������������������������
GCTCC(GICTN

|KIFVQ
|EYLEN)

1.40(1.08) 1.72(2.22) 2.57 (3.43) 3.56 (4.77) 5.88 (7.84) 5.34(26)

����������������������������������������������������������������������������������������������������
[ILM][DS][FL]F[ACS]G.

[GM][AG][FIL]..[AGS]....G
1.50(1.21) 1.99(2.54) 2.78 (3.87) 3.54 (5.40) 4.66 (7.45) 4.24(20)��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Table 1: Empirical Results for a protein scan of length 1,000,000.

4. An Optimized Backtracking Net Matching Algorithm. Faced with the problem of match-
ing a net pattern, one has at least two choices. First, when spacers are restricted to be positive it
can be shown that the class of net patterns is a regular language and thus one could attack the
problem as one of finding an approximate match to a single large regular expression where each
motif matches within its threshold. But such an approach for large nets quickly becomes
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unwieldy and is potentially quite costly because the amount of time spent on a spacer is propor-
tional to the value of its delimiting integers. Given the desire for negative spacers, which cannot
be modeled by such an approach, we take instead a two-tiered approach of viewing the problem
of finding net matches given subroutines, such as those of Figure 4, for matching motifs. One
should note that the net matching problem reduces to "proximity search" when motifs are exact
matches to keywords (Manber and Baeza-Yates 1991).

The performance of the threshold-sensitive versions of the routines Start and Advance can be
estimated via Monte Carlo simulation over a random text whose stochastic properties model the
text to be scanned up to some appropriate level, say a first- or second-order Markov model. By
starting a motif, M, and then advancing it always with inject set to true, one can estimate the
average time, t, for each advance of the recognizer. That is, one can with some precision assert
that the expected time to scan A with M will be tn. Via simulation one can also estimate the
average amount of time, x, it will take for a recognizer to return never when advanced without
injection. The recognizer is assumed to be started in each state according to the probability with
which that state is occupied during an injecting scan. With these two parameters one may then
estimate that a call to Scan(M , { j 1

. . . j k }) will consume ( j k − j 1 ) t + x time.2 During the
simulation one can also get a rough estimate of f, the frequency with which M is found within a
random text. If n is very large, then simulating each motif in a net over a random text of length,
say, 1% or less of n to estimate the parameters above is not an unduly high overhead to pay for
the ability to optimize the search for the net as shown below.

4.1. Optimizing the Backtrack Order. To illustrate the optimized backtracking idea, consider a
"linear" net M 0 S 1 M 1 S 2 M 2

. . . S p M p where the M k are motifs and the S k are spacers
[ l k , r k ]. Let ∆ k = r k − l k be the variance of each spacer. Suppose that searching for a match to
motif M k on a substring of A of length m takes t k m + x k where the parameters t k and x k have
been determined as above. Further suppose that one finds a match to M k on a random string
with frequency f k . Given these parameters, the time that a particular backtracking order will
take can be accurately estimated. For example, consider the strategy of looking for M 0 , when-
ever a match to it is found, search S 1 symbols downstream for M 1 , if an instance of it is found,
search S 2 symbols downstream for M 2 , and so on, backtracking if one fails to find a match at
any point. Assuming motif searches are independent of each other, the time to perform a search
of A for this particular order is expected to be:

nt 0 + n f 0
k = 1
Σ
p

(
c = 1
Π

k − 1
∆ c f c )(∆ k t k + x k ) 3

������������������

2. This is indeed just an estimate as the state occupancy probabilities of the automaton depend on the number of characters scanned
with inject set to true. So more a more accurate model of the average time taken would be t(n) .n +x(n) where n = j k − j 1 and t(n)
and x(n) are functions of n. We find in practice that such accuracy is not necessary especially since the cost of estimating t(n) and
x(n) would outweigh any benefit gained.
3. It takes nt 0 time to search A for instances of M 0 and a match will be found at n f 0 locations. For each of these, ∆ 1 t 1 + x 1 time is
spent looking for matches to M 1 and of the ∆ 1 potential left ends, ∆ 1 f 1 will be matches. Thus at n f 0 ∆ 1 f 1 locations, one will
proceed to search for matches to M 2 . Continuing in this fashion gives the formula.
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However, this order is particularly bad if M 0 is very frequent and/or expensive to search for.
A much better order would be to start by first searching for a motif or subset of motifs that are
fairly rare and inexpensive to search for. All possible consecutive orders are considered as can-
didates for the order in which to perform a backtracking search for the linear net. An order is
consecutive, if at each stage in the search, a consecutive range, say M k through M h of motifs has
been matched and the next one searched for is M k − 1 or M h + 1 . For example, if p = 4 then the
possible orders are 1-2-3-4, 2-1-3-4, 2-3-1-4, 2-3-4-1, 3-2-4-1, 3-2-1-4, 3-4-2-1, 4-3-2-1. Other
orders are prohibited since in general one does not have a range estimate on the size of the sub-
string matched by a motif (e.g. if M 2 were matched then in what range would one search for M 4

if M 3 has not yet been found?). Over this set of orders a simple dynamic programming calcula-
tion can determine an optimal order. As stated earlier, we assume that motif matches are
independent of each other, an approximation satisfactory for our pragmatic purpose. Let
Best(k , h) be the minimum time to match all other motifs conditioned on motifs M k through M h

already being matched. These O(p 2 ) quantities can be computed using the recurrence:

Best(k +1,h −1) = min { ∆ k +1 f k Best(k ,h −1) + t k ∆ k +1 +x k , ∆ h f h Best(k +1,h) + t h ∆ h +x h } 4

It then follows that the best time for a consecutive backtracking order that starts with motif M k ,
Opt(k) is nt k + n f k Best(k , k). Taking the best time over all choices of k gives us a backtrack-
ing order that is optimal in expectation. The first motif to be searched for is called the seed of
the search.

The treatment above can be generalized to finding optimal backtracking orders over arbitrary
nets as opposed to just linear nets. The extension is sketched here. Let F be the ε-NFA for the
net in question; its states are labeled with spacers, motifs, and ε. The seed of a backtracking
search now consists of any cut-set for F all of whose states are labeled with motifs. That is, one
searches in parallel for a match to one of the motifs in this seed cut-set, and whenever one is
found, one trys extending the match in an optimal consecutive order. However, the extension of
the match is no longer along a linear network. A match involving motif M s , where s is the seed
state, can correspond to any path from θ to φ through s, and the subgraph of these vertices and
edges can be a network. So extending a match in both directions from s can follow any of the
paths in this network and there can be an exponential number of such paths. However, the pro-
bability of extension drops of exponentially as well, so that the expected time to
explore/eliminate all possible extensions is generally proportional to the size of the net. The fol-
lowing formula computes Best(u , v), the minimum time to complete searching for an extension
to a match to M u through M v on a path through s under the assumption that the matching of
motifs is an independent event (which it is not):

������������������

4. If M k +1 to M h −1 are matched then the next step must be to either match M k or M h . The two terms in the minimum are the times
to do the respective extensions.
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Best(u , v) = min {
w ∈ Pred(u)

Σ (∆ w→u f w Best(w , v) + t w ∆ w→u + x w ) ,

w ∈ Succ(v)
Σ (∆ v→w f w Best(u , w) + t w ∆ v→w + x w ) }

In the formula above, Pred(u) is the set of states immediately preceding u that are labeled with
motifs, i.e., states w such that there is a path from w to u whose interior vertices (if any) are
labeled with either ε or a space. Succ(u) is analogously defined, and ∆ w→u denotes the aggre-
gate variance of the spacers on the interior of the path from w to u. Assuming that now p is the
length of net N, one can compute Best(u , v) for the O(p 2 ) pairs of motif-labeled states that are
on some source-to-sink path in N’s automaton, and then estimate Opt(s), the best time for a
backtrack procedure that starts at s, as nt s + n f s Best(s , s). Given these estimates, a minimal
seed cut-set can be found in O(p) time5 over the series-parallel automaton of net N where the
cost of a cut-set is the sum of Opt(s) for s in the set. Thus in O(p 2 ) time one can compute an
optimal backtracking order that works well in practice as the interdependence of motif matches
is generally a small effect in expectation.

4.2. Finding and Reporting Matches. Having now determined an order in which to search for
the components of a net, consider the problem of finding and reporting a match to the linear net,
M − p S − p M − (p − 1)

. . . M − 1 S − 1 M 0 S 1 M 1
. . . M q − 1 S q M q , given an optimal backtracking

order over [ − p , q] that begins with seed motif M 0 . It will be left as a straightforward exercise
for the interested reader to extend our treatment to arbitrary nets. From the preceding sections,
assume a routine that determines Scan(M , J) for a subset J of [0, n]. Further observe that by
building an automaton for the reverse, R r , of network expression R6 and scanning A in reverse,
one obtains an analogous routine that computes Scan r (M , J) =
{ i : ∃ j ∈ J s.t. A i.. j ∈ L δ (R , T) }. That is, by scanning right-to-left with the reverse of R, one
can find left ends as opposed to right ends of matches. This is essential since match extension
must proceed right-to-left from M 0 to M − 1 to M − 2 and so on. Also recall from the introduction,
that the notation A ∼ N denotes that string A matches net N so that, for example, one could have
defined Scan(M , J) = { i : ∃ j ∈ J s.t. A j..i ∼ M }. Finally assume the functions Space k (J) =
∪ j ∈ J [ j + l k , j + r k ] and Spacek

r
(J) = ∪ j ∈ J [ j − r k , j − l k ] for spacer S k = [ l k , r k ]. For sets J

that are in sorted order, these simple functions are easily computed "on-the-fly" in time linear in
the size of J.

With these primitives, finding a match to the linear net seems quite straightforward at first
glance. Search for the right ends of matches to M 0 in a forward scan. Such endpoints tend to
cluster in small intervals R 0 = [a , b] when there is a tight match to the motif because extending
the match a few characters in either direction yields approximate matches that are still within
������������������
5. The cost of the best cut set for expression R, Opt(R) is easily computed using the following recurrence. Opt(a) is ∞ if a is ε or a
spacer, and Opt(s) of the state s modeling a otherwise. Inductively, Opt(RS) = min {Opt(R) , Opt(S) } and Opt(R

�
S) =

Opt(R) + Opt(S). A cut-set delivering the optimal value is easily recovered.
6. The reverse of a network expression R is the expression R r that matches the reverse of every word matched by R. It is easily ob-
tained by inductively applying the rules (RS) r = S rR r and (R

�
S) r = R r �S r top-down. For example, (a(b

�
cd) e) r = e(b
�
dc) a.
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threshold, albeit of greater score. For this set of right ends, determine the set of potential left
ends, L 0 via a call to Scan r (M 0 , R 0 ). Next in back track order from this seed set, begin
extending the match in both directions until one either fails or completes the extension. The
invariant for this process is that if at some point M − k through M h have been matched, then the
set L k = { i : ∃ j ∈ [a , b] s.t A i.. j ∼ M − k

. . . M 0 } and the set R h =
{ i : ∃ j ∈ [a , b] s.t A j..i ∼ S 1

. . . M h }. That is, L k contains the left ends of matches to the
subnet M − k

. . . M 0 whose right ends are in [a , b], and R h contains the right ends of matches to
the subnet S 1 M 2

. . . M h whose left ends are in [a , b]. To extend the match to L k + 1 it suffices
to compute Scan r (M − (k + 1) , Space− (k + 1)

r (L k )) and, similarly, R h + 1 =
Scan(M h + 1 , Space h + 1 (R h )). If at any point a set of ends is found to be empty, the process
quits prematurely and the main scan for seed matches continues. This outward extension pro-
cess is "Sweep 1" of the algorithm of Figure 8. Note that the extension of several endpoints is
pursued in parallel whereas the formula driving the choice of back track order assumed the back
tracking proceeded endpoint by endpoint. For approximate matching, where endpoints tend to
cluster in the vicinity of matches, our approach is essential for efficiency in regions precondi-
tioned to match the net.

The surprise is that the extension process can succeed even though there is no match to the
net. If the sets L p and R q are non-empty, what this implies is that there are matches to the sub-
net M − p

. . . M 0 and the subnet S 1
. . . M q whose right and left ends are in [a , b], respectively.

However, by an extremely unlikely coincidence, it may arise that there is not a pair of these
matches, one from each "half", that share the same end in [a , b]. This problem is a result of the
choice to extend sets of match endpoints in parallel and would not have arisen if efficiency con-
siderations hadn’t precluded the application of the extension process to each index in
Scan([0, n] , M 0 ) separately. This difficulty is rectified by proceeding with an additional
inward sweep, "Sweep 2", that determines the set of right ends of matches to M − p

. . . M 0 that
are in [a , b], and similarly, the set of left ends of matches to S 1

. . . M q that are in [a , b].
Clearly, if these two sets intersect then there is a match to the net with a right-end match to M 0

in [a , b]. With Scan and Space the sweep finds, for progressively smaller values of k, the set of
right ends of matches to M − p

. . . S − (k + 1) whose left end is in L p , and then subtracts this set
from L k computed in the first sweep. Since L p is the set of left ends of matches to M − p

. . . M 0

whose right-end is in [a , b], it follows by induction that at the end of the sweep, L k =
{ i : ∃ j ∈ [a , b] and l ≤ i s.t A l..i ∼ M − k

. . . S − (k + 1) and A i.. j ∼ M − k
. . . M 0 }. Proceeding

from the other end with Scan r and Space r , the sweep refines the R-sets so that R h =
{ i : ∃ j ∈ [a , b] and r ≥ i s.t A j..i ∼ S 1

. . . M h and A i..r ∼ S h + 1
. . . M q } at the end of the

sweep. The sweep concludes by determining if the set of desired left ends, R 0 , intersects the
desired set of right ends, Scan(M 0 , L 0 ).
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for [a , b], a maximal interval s.t. [a , b] ⊆ Scan(M 0 , [0,n]), in left-to-right order do

{ R 0 ← [a , b]
X ← L 0 ← Scan r (M 0 , R 0 ) # Sweep 1 #
for k in backtrack order of [ − p , − 1] ∪ [1,q] do

{ if X = ∅ then break
if k < 0 then

X ← L −k ← Scan r (M k , Spacek
r (L −k −1 ))

else
X ← R k ← Scan(M k , Space k (R k −1 ))

}
if X = ∅ then continue

for k ← p − 1 downto 0 do # Sweep 2 #
L k ← L k ∩ Space − (k +1) (Scan(M − (k +1) , L k +1 ))

for k ← q − 1 downto 0 do
R k ← R k ∩ Spacek +1

r (Scan r (M k +1 , R k +1 ))
if Scan(M 0 , L 0 ) ∩ R 0 = ∅ then continue

L 0 ← L 0 ∩ Scan r (M 0 , R 0 ) # Sweep 3 #
R 0 ← R 0 ∩ Scan(M 0 , L 0 )
for k ← 1 to p do

L k ← L k ∩ Scan r (M −k , Space−k
r (L k −1 ))

for k ← 1 to q do
R k ← R k ∩ Scan(M k , Space k (R k −1 ))

for k ← p downto 1 do # Sweep 4 #
The range of M −k is min{ j : j ∈ L k } to max{ j : j ∈ Scan(M −k , L k ) ∩ Space−k

r (L k −1 ) }
The range of M 0 is min{ j : j ∈ L 0 } to max{ j : j ∈ R 0 }
for k ← 1 to q do

The range of M k is min{ j : j ∈ Scan r (M k , R k ) ∩ Space k (R k −1 ) } to max{ j : j ∈ L k }
}

Figure 8. Finding and Reporting a Match to a Linear Net.

Having now found a match, the next question is what to report. In the case of approximate
matching this is a non-trivial question. To illustrate, suppose that there is a match to motif M
well-within its threshold. Then the substrings of A obtained by extending the stringent match a
few characters at either end are also matches within threshold. Does one wish to see the longest
match, the lowest scoring, or some indication of the range of possible matches? This reporting
problem is further compounded in the case of a match to a net where each motif match is well
within threshold and hence where there are a number of choices for each motif. Two algorithms
are presented here: (1) a range algorithm that determines the range of left and right ends possible
for each motif in some match to the entire net, and (2) an optimum algorithm that selects a net
match for which the sum of the scores of its motif matches is minimal.

The range algorithm is presented as Sweeps 3 and 4 in the algorithm of Figure 8. The third
sweep proceeds outward further refining the sets L k and R h computed in Sweeps 1 and 2. At the
start of Sweep 3, R 0 contains the left ends of matches to S 1

. . . M q that are in [a , b]. By
extending this match set to the left with Scan r and Space r , and intersecting the results with the
sets L k from the previous two sweeps, one arrives at the end of the sweep with L k =
{ i : ∃ j ∈ [a , b] , l ≤ i , and r ≥ j s.t A l..i ∼ M − k

. . . S − (k + 1) , A i.. j ∼ M − k
. . . M 0 , and

A j..r ∼ S 1
. . . M q }. Similarly, taking the match endpoint set L 0 and extending it to the right

produces the sets R h = { i : ∃ j ∈ [a , b] , l ≤ i , and r ≥ j s.t A l.. j ∼ M − p
. . . M 0 ,
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A j..i ∼ S 1
. . . M h and A i..r ∼ S h + 1

. . . M q }. Thus at the end of Sweep 3, the set L k gives the
set of all possible left-end matches to motif M k that are part of overall matches to the net N
whose right-end match to M 0 is in [a , b]. Similarly, R h gives the set of all possible right ends
for motifs M h for h from 0 to q. Thus after completing Sweep 3 the only missing information is
the possible right ends of motifs M − k for k ∈ [1, p] and the possible left ends of motifs M h for
h ∈ [1, q]. But the former are readily computed "on-the-fly" by determining
Scan(M − k , L k ) ∩ Space− k

r (L k − 1 ) and the later by Scan r (M h , R h ) ∩ Space k (R h − 1 ). Thus,
by computing these missing endpoint sets on the fly when needed, Sweep 4 can proceed left-to-
right printing the minimum left end and maximum right end for each motif in the net. This treat-
ment should suffice to convince the reader that one can effectively compute useful information
about the degrees of freedom in "a" match to net N.

The second match-reporting algorithm attempts to select a specific match to the net that is in
some sense best, and failing that, at least representative. The simple optimality criterion used is
that the sum of the scores of the motif matches forming a match to the net is minimal. Notice
that because of spacing constraints this is not equivalent to picking the lowest scoring match for
each motif (as this may not form a match to the net). This optimal match algorithm, like the
range algorithm, begins after Sweeps 1 and 2 above have determined that a match exists. It
further decomposes into symmetric left and right halves, so it suffices to focus on the left half.
The essence of the algorithm is a dynamic programming computation that for each L k , in
decreasing order of k, determines Score L k

[ j], the minimum sum over matches to

M − p
. . . S − (k + 1) whose left end j is in L k . In order that a match achieving this score can be

output, the algorithm simultaneously records the trace-back information, Le ft L k
[ j] and

Right L k
[ j], the left and right ends of a match to M − (k + 1) involved in a match achieving score

Score L k
[ j].

The basis for the induction of the algorithm is that Score L p
[ j] = 0 for all j ∈ L p . Le ft L p

and Right L p
are superfluous. So the induction step, achieved by the code fragment in Figure 9,

is given Score L k +1
[ j] for all j ∈ L k + 1 , determine Score L k

[ j], Le ft L k
[ j], and Right L k

[ j] for

j ∈ L k . The first step of the code fragment computes for each i ∈ Scan(M − (k + 1) , L k + 1 ), B[ i]
= min { Score L k +1

[ j] + δ(A j..i , R − (k + 1) ) : j ∈ L k + 1 } and I[ i], an index j giving the

minimum value for B[ i]. Recall that R k is the net expression for motif M k and that δ(A , R) is
the score of the best alignment between A and a sequence in L(R). By the induction hypothesis
on Score L k +1

it follows that B[ i] is the best scoring match to M − p
. . . M − (k + 1) whose right end

is i. This minimum is computed by running the scanner for M − (k + 1) once for each j ∈ L k + 1 ,
letting that j be the only potential left end for the scan. As the scan proceeds, the scanner not
only reports whether i is the right end of a match to the motif, but also, Value( i) the score of the
match given by C( i , φ). If Value( i) + Score L k +1

[ j] improves the current minimum recorded at

B[ i], then it is updated and the j for the scan is recorded in I[ i]. The second step completes the
induction step by computing Score L k

[ j] = min { B[ i] : i ∈ Space− (k + 1)
r ( j) } and for the i giv-

ing the minimum, recording Le ft L k
[ j] = O[ i] and Right L k

[ j] = i. To compute the minimum
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efficiently, Score L k
[ j] is computed in increasing order of j, which implies that the minimum is

needed over a series of intervals [ j − r − (k + 1) , j − l − (k + 1) ] whose endpoints increase. The trick
is to maintain a heap of the B-values in the current interval, and then incrementally update the
heap for the next interval by deleting and adding positions as necessary. Given the heap, each
minimum can be extracted in O(log ∆ − (k + 1) ) time.

low ← min { j : j ∈ Scan(M − (k +1) , L k +1 ) }
hgh ← max { j : j ∈ Scan(M − (k +1) , L k +1 ) }
for i ← low to hgh do

B[ i] ← ∞
for j ∈ L k +1 do

for i ∈ Scan(M − (k +1) , { j}) do
if Score L k + 1

[ j] + Value( i) < B[ i] then
{ B[ i] ← Score L k + 1

[ j] + Value( i)
I[ i] ← j

}
Heap ← ∅
rgt ← low − 1
l ft ← ∞
for j ∈ L k in increasing order do

{ for i ← max {l ft , low} to j − l − (k +1) − 1 do
if B[ i] < ∞ then

delete i from Heap
for i ← rgt + 1 to min { j − r − (k +1) , hgh} do

if B[ i] < ∞ then
add i to Heap with priority B[ i]

l ft ← j − l − (k +1)

rgt ← j − r − (k +1)

i ← extract min from Heap
Score L k

[ j] ← B[ i]
Le ft L k

[ j] ← I[ i]
Right L k

[ j] ← i
}

Figure 9. Determining an optimal match.

Given that the analogous computation for the R-sets has been performed, the score of the
optimum match is easily found by computing the best of
Score L 0

[ j] + δ(A j..i , R 0 ) + Score R 0
[ i] over j ∈ L 0 and i ∈ R 0 . The i and j giving the

minimum delimit the match to M 0 in an optimum match. The left and right indices of the other
matches are obtained by following the trace-back information in the Le ft and Right arrays in the
obvious manner. For example, Le ft L 2

[Le ft L 1
[Le ft L 0

[ j]]] and Right L 2
[Le ft L 1

[Le ft L 0
[ j]]]

give the left and right ends of the match to motif M − 2 in an optimum scoring match (provided j
is the index giving the minimum above). If it is desired, one can also deliver for each motif, an
alignment between one of its sequences and the substring of A it matches that realizes the score
of the optimal match using a linear space algorithm like the one presented in Myers and Miller
(1989).

To conclude consider the worst-case time complexity for reporting matches in the case that a
match does occur in a given region. In regions that are essentially random with respect to the
pattern, the expected amount of time taken is described by the calculation of Section 4.1.

- 23 -



Observe that the algorithm of Figure 8, which includes the range reporting sub-algorithm, makes
a number of scans that together span a range of symbols approximately as long as the span of the
match to the net. More precisely, one can assert that a sweep of the algorithm scans no more
than Σ k (set k + mot k + ∆k ) symbols, where mot k is the length of the longest word matched by
M k , and set k = max{ j : j ∈ X} − min{ j : j ∈ X} where X is L � k � or R k depending on whether k is
positive or negative. Scanning each symbol takes an amount of time depending on the motif
involved in the scan, but letting p be the maximum length of a motif network expression in net
N, the worst case complexity of the algorithm is certainly proportional to p times the sum above.
In expectation, set i is a small constant and mot i is on the order of the size of its network expres-
sion. Thus more coarsely one may estimate the algorithm to take O(mp(p + ∆)) time for a net
with m motifs and average spacer variance ∆. Finally, Figure 9 takes
O( � L k + 1 � mot − (k + 1) p + (set k + ∆ − (k + 1) ) log ∆ − (k + 1) ) worst-case time. Using the approxi-
mations about set i , etc., a "back-of-the-envelope" estimate for the additional overhead of the
optimum match algorithm is O(m(p 2 + ∆log ∆)).
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