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Interactive screen editors repeatedly determine terminal command sequences to update a screen row. 
Computing an optimal command sequence differs from the traditional sequence comparison problem 
in that there is a cost for moving the cursor over unedited characters and the cost of an n-character 
command is not always the cost of n one-character commands. For example, on an ANSI-standard 
terminal, it takes nine bytes to insert one character, ten to insert two, eleven to insert three, and so 
on. This paper presents an O(MN) dynamic programming algorithm for row replacement where an 
n-character command costs otn + @ for constants (Y and 0. M is the length of the original row and N 
is the length of its replacement. Also given is an O(Cost X (M + N)) “greedy” algorithm for optimal 
row replacement. Here Cost is the optimal cost (in bytes) of the replacement, so the algorithm is fast 
when the required update is small. Though the algorithm is rather complicated, it is fast enough to 
be useful in practice. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Program Complexity]: 
Nonnumerical Algorithms and Problems-computation on discrete structures 

General Terms: Algorithms 

Additional Key Words and Phrases: Dynamic programming, greedy algorithm, row replacement, 
screen editor 

1. THE ROW REPLACEMENT PROBLEM 

Screen-oriented programs maintain a representation of an object and present a 
view of it on the screen. For example, screen editors keep an internal edit buffer 
and display a block of lines from the buffer. The screen must be updated when 
the object is changed. In one solution, procedures that modify the object must 
also update the view or at least specify how the view has changed. Optimal use 
of such a package [l] may require learning and calling many different routines. 
A cleaner approach lets an autonomous screen manager module determine how 
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to update the screen by comparing its record of screen contents with views of the 
modified object. The interface to the screen manager is then a single routine, 
refresh, that updates the screen with respect to the current object. It is given no 
information other than the object and screen contents. Writers of screen editors 
are almost unanimous in recommending the use of an autonomous screen 
manager [2, 6, 10, 18, 241. The design greatly improves the editor’s internal 
structure, so it is appropriate with both ASCII and bitmap displays. 

Care is needed to achieve satisfactory efficiency with an autonomous screen 
manager. In many contexts, data travels from the editor to the screen at between 
100 and 1,000 characters per second (e.g., 1,200 or 9,60O’baud), which is orders 
of magnitude slower than the editor’s computing speed. Under such circum- 
stances, it is worthwhile for the editor to compute a minimal, or near minimal, 
set of row-updating commands, as long as the time to do so does not outweigh 
the savings in character-transmission time. Although these considerations are 
far less important with high-speed communication and bitmap displays, the 
results of this paper will be useful as long as people want to access remote 
processors over slow transmission media, such as telephone lines. 

For autonomous screen managers, a basic problem is to optimally update a 
screen row. An algorithm, presented with the row currently on the screen and 
the desired row contents, must produce a shortest-possible sequence of terminal 
commands that replaces the existing row with the desired row. This row repluce- 
ment problem is complicated by varying terminal capabilities and command 
encoding schemes. This paper assumes the following terminal operations, which 
are provided by most modern terminals. 

-Clear. The characters at, and to the right of, the cursor are deleted. The cursor 
does not move. 

-Delete. The character at the cursor is deleted, causing later characters to be 
shifted left. The cursor does not move, so it ends up on the character that 
followed the deleted character. 

-Insert x. The character x is inserted at the cursor’s location, causing the 
characters at and right of the cursor to be shifted to the right. The cursor 
moves one position to the right, so it stays with the same character. 

---Moue to k. The cursor is moved to the kth column in the current row. 
-Replace by x. The character x is displayed at the cursor’s location, overwriting 

the previously displayed character. The cursor moves one position to the right. 

Command encodings vary widely among terminal brands. Typically, replace is 
performed by simply sending the character to the terminal. Other commands 
contain escape sequences that encode the operator. Table I gives escape sequences 
for ANSI-standard terminals and for the IBM 3101 where (esc) denotes the 
“escape character”. The clear and delete commands are three bytes long in one 
case, two in the other. With ANSI-standard terminals, a string of characters is 
inserted by sending a 4-byte sequence to put the terminal in insert mode, then 
sending the desired characters, and finally sending a 4-byte sequence to exit from 
insert mode. For the 3101, each character must be inserted individually using a 
3-byte escape sequence. Thus, inserting n consecutive characters costs n + 8 
bytes in one case and 3n bytes in the other. 
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Table I. Two Command Encodine Schemes 
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Instruction 

clear 
delete 
enter insert mode 
insert character 
leave insert mode 

ANSI standard IBM 3101 

(esc)W (esc)l 
(esc)[P (esc)Q 
(esc)[4h - 

- (esc)P(chur) 
lescH41 - 

On ANSI-standard terminals, the cursor is moved by the command 
‘( esc) [c&H where cy is the decimal representation of the row number and /3 is 
the column number. For example the 7-byte command ‘(esc)[5;20H’ moves to 
row 5, column 20. For these terminals, the move command is 6, 7, or 8 bytes long, 
depending on the destination (and assuming less than 100 rows and columns). 
The 3101 uses the 4-byte move command ‘(e.sc)Ypy’. Here p is a byte containing 
31 plus the row number, and y is 31 plus the column number. The designers add 
31 because p and y are then printable characters in the ASCII code. 

Implementation of a row-replacement strategy requires that a number of 
additional details be addressed. With a line whose length exceeds the screen 
width, some editors fold the line onto several screen rows to make all characters 
visible. Other editors add a special character at the right margin of the screen to 
indicate an overlength line. In either case, a side effect of inserting a character 
in a long line is to delete the rightmost character in the row by pushing it off the 
screen. The implementation of a screen-update procedure must also be concerned 
about swamping the terminal by sending control sequences too quickly; “pad 
characters” or “handshaking” may be required. Such implementation details are 
not considered in this paper. 

The commands discussed above are used for intraline editing or, as we call it, 
row replacement. Other commands, like delete row and insert row, manipulate 
entire screen rows. The methods used by screen editors to recycle entire rows are 
often surprisingly different from those for reusing parts of a row. A complete 
description of one design is given in [ 10, pp. 280-3161, where the row-replacement 
strategy simply avoids retransmission of a common prefix and, if it saves time, 
of a common suffix. This paper is concerned only with row replacement, though 
methods for interline editing are mentioned briefly in the remainder of this 
section and under “Open Problems” in Section 5. 

Gosling [6] proposes a rigorous approach to screen updating based on an off- 
the-shelf application of a sequence-comparison algorithm for both intra- and 
interline edits. However his comparison model ignores cursor-movement costs 
and charges an n-symbol operation like n one-symbol operations. Moreover 
efficiency considerations lead him to use the length of B as an approximation to 
the cost of replacing row A by B when evaluating possible interline editing scripts. 
With these approximate costs, the classic dynamic programming algorithm is 
quite practical for interline edits. Indeed Gosling used the approach in the UNIX 
EMACS editor, though row replacement is nonoptimally performed by simply 
retaining common prefixes and suffixes of the old and new lines. The resulting 
screen manager is quite independent of the remainder of the editor, as illustrated 
by the use of Gosling’s code in the Maryland Window System [23]. 
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Myers [15] uses sequence comparison techniques to solve the “window posi- 
tioning problem”: find a screen-sized block of buffer lines that contains the 
current line and reuses the maximum number of currently visible lines. If R is 
the number of screen rows, then there are generally R choices for the window 
position. A straightforward solution requires time O(R3) when only interline 
edits are considered, but Myers’ algorithm needs only time O(R’). Miller and 
Myers [13] give another optimal row-replacement algorithm with worst-cost 
complexity O(M2N2), but which works efficiently for many practical screen- 
updating problems. 

This paper presents two worst-case efficient algorithms for optimal row re- 
placement. That is, under certain assumptions about the terminal and the 
permissible scripts of screen-update commands, these algorithms minimize the 
number of bytes sent to the screen. Section 2 places these algorithms in historical 
perspective by sketching earlier work on the related sequence-comparison prob- 
lem. Although sequence-comparison algorithms are not immediately applicable 
to row replacement, as shown in Section 2, they contain the seeds of our row- 
replacement algorithms. Sections 3 and 4 give O(MN) and O(Cost x (M + N)) 
row-replacement algorithms, respectively. Section 5 concludes with further re- 
finements, empirical results, and open problems. The experiments cited in 
Section 5 show that the O(Cost x (it! + N)) row-replacement algorithm is fast 
enough to be of practical value. 

2. SEQUENCE COMPARISON ALGORITHMS 

Sequence-comparison problems arise in a variety of disciplines, including com- 
puter science and molecular biology [21]. The basic problem can be phrased in 
terms of editing operations as follows. Given sequences A = ala2 . . . aM and B = 
blbz . . . blv, determine a sequence of “basic operations” that converts A to B and 
minimizes the sum of the operations’ costs (or “weights”). Traditionally, the only 
operations permitted are Delete, Insert, and Replace. There is no notion of a 
cursor; an operation may be applied at any point in the string. Moreover the cost 
of an operation does not depend on its context in the edit script. 

In the point indel model, the basic operations insert a single symbol, delete a 
symbol, or replace one symbol by another, and an operation’s cost may depend 
on the affected symbol or symbols: 

d-cost(a) cost of deleting a 
i-cost(b) cost of inserting b 
r-co&a, b) cost of replacing a with b when a # b 

In the block indel model, an indel (i.e., insertion or deletion) of k > 0 consecutive 
symbols is treated as an atomic operation, rather than k operations on individual 
symbols. The operation is assigned a weight, or gap penalty, wk that depends only 
on the number of symbols inserted or deleted. A variation of the model allows 
insertion costs to differ from deletion costs. The block indel model also includes 
a single-symbol Replace operation of cost r-cost(a, b). 

Simple dynamic programming algorithms compute optimal edit scripts for the 
point indel problem in time O(MN) [2O] and for the block indel problem in time 
O(MN(M + N)) [22], where M and N are the sequence lengths. Let Ak denote 
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Table II. C (i, j) for A = abcabba, B = cbabac 

c b b a 
0 1 2 ; 4 5 s 

b5 5 4 
b6 6 5 4 
a7 7 6 5 4 

. . . 

the k-symbol prefix, ala2 . . . ok, of A. A dynamic programming approach for 
finding the minimum cost of editing A into B requires computing C(i, j), the 
minimum cost of editing Ai into Bj for all i E [0, M] andj E [0, N]. For example, 
if A is abcabba, B is cbabac, and we allow single-symbol Delete, Insert, and Replace 
operations of cost 1, then C is shown in Table II. Observe that C(4, 4) = 3 since 
A4 = abca can be edited to B4 = cbab with either the sequence ‘Replace al with b,, 
Delete a3, Insert b, after a4’ or the sequence ‘Replace al with bl , Replace a3 with 
b3, Replace a4 with b4’. Notice there is no cost associated with shifting attention 
from one part of the string to another and commands may be applied in any 
order. 

The following O(MN) dynamic programming algorithm [20] computes C for 
the point indel model. 

Algorithm la. Computing C(i, j). 
C(0, 0) c 0 
for j c 1,2, . . . , N do 

C(0, j) c C(0, j - 1) + i-COSt(bj) 
fori+1,2,...,Mdo 

( C(i, 0) t C(i - 1,O) + d-cost&,) 
forjc1,2,...,Ndo 

( cl t C(i - 1, j) + d-cost(ai) 
C2 c C(i, j - 1) + i-COSt(bj) 
if ai = bj then 

c3+C(i-l,j-1) 
else 

~3 + C(i - 1, j - 1) + r-cost(ai, bj) 
C(i, j) c min(c1, c2, c3) 

I 
I 

The correctness of the algorithm can be seen by considering the computation 
of C(i, j) in the innermost loop. Any edit script converting A; into Bj must either 
(1) delete ai, (2) insert bj, or (3) replace ai by bj if ai # bj. If the script is optimal, 
then the remainder of the script optimally solves a subproblem. In case 1, the 
script consists of an optimal script converting Ai- to Bj plus the delete command. 
In case 2, it consists of an optimal script converting Ai to Bj-1 plus the insert 
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command. In case 3, it consists of an optimal script converting Ai- to Bj-1 plus 
the replace command if necessary. The algorithm considers the three forms of 
edit scripts, and selects the best. 

Notice that extending an edit script by adding a delete operation corresponds 
to a vertical move in the table from the (i - 1, j) grid points to (i, j). Extensions 
by insert and replace operations correspond to horizontal and diagonal moves, 
respectively. The alignment of aj with bj when oj = bj corresponds to a diagonal 
zero-cost move to grid point (i, j). A script for editing A to B corresponds to a 
sequence or path of moves from point (0,O) to point (M, N). The cost of a script 
is the sum of the costs of the individual moves. Thus finding a minimum-cost 
script corresponds to finding a minimum-cost or shortest path from (0, 0) to 
W, NJ. 

The insight that string editing is a special instance of the shortest paths 
problem led to the design of faster “greedy” algorithms for the point indel problem 
where all operations cost 1 [ll, 14, 191. Let diagonal iz consist of those grid points 
(i, j) for which i + lz = j, as shown in Table II. The diagonals of the C matrix 
range from -M to N. Let L(c, lz) be the length, i, of the longest prefix Ai that can 
be converted to Bi+k with a script of cost c. If no such prefix exists, define L(c, k) 
to be -1. Because all costs are 1, it follows that the values in the C matrix are 
nondecreasing along diagonals and increase by at most 1 with each diagonal 
move. Thus, for this special problem, one can prove that L(c, k) gives the row 
containing the last c in diagonal k if such a row exists. For example, 
L(3, 1) = 4 and L(l, 3) = -1. The reader should note that this characterization 
of L values in terms of C values will not suffice for the more general greedy 
algorithm of Section 4. 

Algorithm lb. Computing L(c, k). 
L(-1, 0) c -1 
for c c 0, 1, 2, . . . do 

for k + -c, -c + 1, . . . , c do 
(last+L(c-l,k)+l 
ifk<cthen 

lust c max(last, L(c - 1, k + 1) + 1) 
if k > -c then 

lust t max(last, L(c - 1, k - 1)) 
if last 2 0 then 

while last < M and last + k c N and alost+, = blmt+k+l do 
lastchst+1 

L(c, k) c last 
ifk=N-Mand.!ust=Mthen 

return “Cost is c” 
1 

Greedy algorithms fill in L for c = 0, 1,2, . . . , until the lower, right-hand value 
of C is known, i.e., they find the value c for which L(c, N - M) = M. Informally, 
the logic for computing L(c, k) goes as follows. We are looking for a c that is as 
far down diagonal k as possible. A script that costs c consists of a script of cost 
c - 1 plus another operation. If this final operation is delete, then the best we 
can do is to make a vertical move from the last c - 1 on diagonal k + 1; this 
reaches row L(c - 1, k + 1) + 1. If the final operation is insert, row L(c - 1, k - 
1) can be reached by a horizontal move from the last c - 1 on diagonal k - 1. If 
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the final operation is replace, row L(c - 1, k) + 1 can be reached with a diagonal 
move. From whichever move places us in the greatest row, last, we then follow 
zero-cost diagonal moves (a&t+1 = blast+k+l ) until the last c entry is reached. 

The central advantage of the greedy approach is that for a given c, L-values 
need to be computed only for k between -c and c. Any script leading to diagonal 
k must involve k insert operations if k is positive or k delete operations if k is 
negative, and hence the script must have cost k or greater. Thus, for k 6! [-c, c], 
we know that L(c, k) = -1 and hence may ignore such entries. 

Suppose the minimum cost of editing A to B is Cost. The code within the two 
for loops is repeated O(Cost”) times since the outer loop is repeated Cost + 1 
times and the inner loop is repeated 2c + 1 times. Thus the algorithm con- 
sumes O(Cost2) time with the exception of the while loop, which must be 
accounted for separately. Charge each iteration of this loop to the grid point 
(last + 1, last + k + 1) for which the character alignment occurs. Each grid point 
is charged at most once and all grid points processed are between diagonals -Cost 
and Cost. Thus O(Cost x (M + N)) time is spent in this loop, the dominant cost 
of the algorithm. 

The O(Cost x (M + N)) worst-case time bound tells only part of the story 
behind the superiority of the greedy approach. Indeed, there are other sequence 
comparison algorithms that achieve this performance [4, 191 and work for 
arbitrary (noninteger) costs. However, the greedy algorithm’s expected perform- 
ance is often far better than this bound indicates since not all entires of a given 
cost c are explicitly found. For example, when r-cost(a, b) = 00 (i.e., the longest 
common subsequence problem) the greedy algorithm has expected running time 
O(iv + Cost”) [14]. 

Algorithms la and lb determine only the minimum cost; they do not explicitly 
produce a shortest-possible edit script. Construction of a script is covered 
elsewhere [ll, 14, 201. It is easy to economize the use of space in both the 
dynamic programming and the greedy algorithms for the minimum cost; both 
require O(M + N) space. It is possible [9,14], though more difficult, to construct 
edit scripts in O(M + N) space. 

The dynamic programming and greedy algorithms developed above work only 
for the point indel model. For applications where the block indel model is 
appropriate, it is critical to find natural conditions on the gap weights wk that 
permit the problem to be solved in time close to O(MN), since the 
O(MN(M + N)) time for general weights is often prohibitive. A natural restric- 
tion is that wk be concaue: 

Awk 2 liWk+l for all k 2 1, where AWk = W&l - Wk 

In words, w is concave if the cost of inserting or deleting an additional 
symbol decreases with the size of the affected substring. For concave weighting 
functions, the dynamic programming approach can be modified to run in time 
O(MN log(M + N)) [12]. Affine gap penalties, i.e., the further restriction that 
wk = (Y + /3k for constants (Y, & permit a solution in time O(MN) [7]. Aftine gap 
costs are currently preferred in biological applications [5], though more general 
concave weights have also been advocated. 

The block indel model with affine indel costs is appropriate for screen update 
costs, such as the (8 + n&byte cost of inserting n characters on an ANSI-standard 
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terminal. To see why the point indel would produce anomalous results, consider 
replacing row ‘abx . . . ’ with row ‘yababz . . . ‘. If inserting n characters costs In 
for some constant I, then the command sequence, ‘Insert y, Move to 4, Insert ab, 
Replace by z’, costs the same as ‘Insert yab, Move to 6, Replace by z’. However, 
with ANSI-standard terminals, the first command set costs 8 bytes more than 
the second (assuming that move is not permitted in insert mode). 

While the algorithmic paradigms of traditional sequence comparison algo- 
rithms are relevant to row replacement, these algorithms do not immediately 
solve the row-replacement problem. A major shortcoming is that the string edit 
models ignore the cost of cursor movement. For example, consider the problem 
of replacing row ‘~axaxaxax’ with ‘yayayayay’. On typical terminals, repeatedly 
moving the cursor to the next x and replacing it by y is inferior to simply replacing 
every character. The clear operation is also omitted from the edit models. For 
updating screen row ‘repeated repeated’ to the string ‘repeated’, moving the 
cursor to the space between the two words and clearing the row is less expensive 
on an ANSI-standard terminal than nine delete commands. 

3. A DYNAMIC PROGRAMMING ALGORITHM FOR ROW REPLACEMENT 

Let OPS be the set (delete, insert, move, replace) and let 0PS-k be the full 
operation repertoire, OPS U (clear). In the row-replacement framework, the cost 
of n consecutive op commands is assumed to be startup + n x perchar 
where startup and perchar (op) are nonnegative integers modeling the startup 
and per-character costs for op. For example, Table III gives cost parameters for 
ANSI-standard terminals. The startup cost is paid (1) for the first operation of 
an edit script, and (2) whenever an operation differs from the previous operation. 
Thus, ‘Replace by a, Move to 4, Insert xy’ costs startup(repluce) + 1 x per- 
char(replace) + startup(move) + 2 X perchur (move) + startup(insert) + 2 X 
perchar(insert) = 19 for ANSI-standard terminals. The coefficient of per- 
char(move) is 2 because the cursor is moved two columns to the right. 

This cost accounting is a simplification. For example, it does not model the 
variable cost of 6-8 bytes for an ANSI-standard move command. (We assume 
conservatively that move costs 8 bytes.) Moreover some terminal brands allow 
cursor movement, deleting of characters, etc., while in “insert mode,” so this 
approach may overestimate attainable costs by charging for unnecessary startups. 
However, the astute reader will observe that our row-replacement algorithms can 
be adapted to cover such variations. 

The algorithms developed in this section and the next compute a minimum- 
cost left-to-right conversion of A to B. A conversion is left-to-right if move 
operations always move the cursor one or more columns to the right of its current 
position. If the cursor starts in column 1 and characters are not “spilled” off the 
end of the row, then a minimum-cost left-to-right script is guaranteed to be 
optimal over all row-updating scripts. Otherwise near-optimal scripts can be 
obtained from our left-to-right scripts as follows. If the cursor is not initially in 
position 1, then preface the script with ‘Move 1’. If a spill occurs, then append 
commands that move to the end of the line and restore the spilled characters. 
Alternatively our algorithms can be modified to consider only left-to-right scripts 
that avoid spills. To do this, entries of the cost matrix above diagonal W - M 
are ignored, where W is the screen width and M is A’s length. 
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989. 



Row Replacement Algorithms for Screen Editors l 41 

Table III. ANSI Standard Command Costs 

startup perchm- 

clear 3 0 
delete 0 3 
insert 8 1 
move 8 0 
replace 0 1 

Table IV. C(i, j, op) for A = abcabba, B = cbabm 

c b a b a c 
0 1 2 3 4 5 6 

v 
8 0 9 m 10 03 11 m 12 00 13 m 14 m 
m QI m m m 

a1 
3 12 13 18 14 15 20 16 17 

m m 12 1 10 10 11 11 12 12 13 13 14 14 
b 2 ; 6 y5 ; 1; ‘; m 14 18 15 m 16 Q) 17 

03 11 11 12 12 13 13 14 14 
c3 m 9 14 7 m 5 m 14 m 15 Q) 16 21 17 

01 m 18 7 16 5 14 3 12 12 13 13 14 14 
m 12 m 10 Q) 1 8 13 6 03 15 20 16 QI 17 - 

Legend: 

The basic row-replacement algorithm operates in two steps. First a dynamic- 
programming algorithm fills in a table giving minimum costs for row replacement 
using certain restricted kinds of edit scripts. In a second pass, boundary values 
in the table are inspected to account for operations omitted from the first step. 

A restricted replacement script for Ai = ala2 . . . ai and Bj = blbz . . . bj is a left- 
to-right script that satisfies: . 

(1) The cursor ends in column j + 1, 
(2) clear is not used, and 
(3) replace commands are not permitted once the cursor is beyond the end of the 

current string. 

One should think of ala2 - . . ai as terminated by a “null character” that is carried 
along as the edit operations are performed. The cursor ends up positioned on it. 
With restricted replacement scripts, one may insert at the null character or move 
to it, but it may not be deleted or replaced. 

For each i 5 M, j s N, and op E OPS, define C(i, j, op) to be the minimum 
cost over all restricted replacement scripts for A; and Bj whose last operation is 
op. Define C(i, j, op) to be 00 if no such script exists. Table IV gives C(i, j, op) for 
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the problem A = abcabba and B = cbabac under the ANSI-standard cost model. 
For example, C(3, 2, delete) = 5 because ‘Replace by cb, Delete’ is a restricted 
replacement script for abc and cb that is optimal among those ending with delete. 
Moreover, since a3 differs from b2, no restricted replacement script converting 
abc to cb ends with move; thus, C(3,2, move) = co. 

Reasoning similar to that for the dynamic programming algorithm of 
Section 2 leads to the following O(MiV) algorithm for computing C(i, j, op) for 
all choices of i, j, and op. This algorithm and the next use the definition: 

onechar(opl, op2) = 
if opl = opz 

+ perchar(op2) if 0p1 # op2 

Onechar(opl, op2) is the cost of applying op2 to a character if the previous 
operation was opl. 

Algorithm 2a. Computing C(i, j, op). 

for op E OPS do 
c(o, 0, Op) C StUFtUp(Op) ’ 

forj+l,Z,...,Ndo 
( c(o, j, iTWeFt) C c(t), j - 1, iTl.WFt) + peFChUF(i?lSeFt); 

C(0, j, delete) t C(0, j, moue) c C(0, j, replace) t co 

I 

fori+l,Z,...,Mdo 
( C(i, 0, delete) c C(i - 1, 0, delete) + perchar(dekte) 

C(i, 0, insert) c C(i, 0, moue) c C(i, 0, replace) c 00 
forjtl,Z,...,Ndo 

for op E OPS do 
( CG, i, 0~) + m 

if not (op = moue and ai # bj) then 
( if op = insert then 

Ici 
else 

I+i-1 
if op = delete then 

Jcj 
else 

Jcj-1 
for 6 E OPS do 

C(i, j, op) c min(C(i, j, op), C(I, J, e)‘+ onechr(0, op)) 

C(0, 0, op) is initialized to startup so that the first operation in a script is 
charged a startup cost. Values in row 0 give costs for converting the empty string 
to Bj. With restricted replacement scripts this conversion requires j insert 
operations, so for j > 0: 

C(0, j, insert) = startup(insert) + j X perchar(insert) 
C(0, j, op) = m for op E (de&e, replace, move] 

Similarly, converting Ai for i > 0 to the empty string requires i delete operations, 
so: 

C(i, 0, delete) = startup(deZete) + i X perchar(deZete) 
C(i, 0, op) = m for op E (insert, replace, move] 
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Consider the computation of C(i, j, delete) where i > 0 and j > 0. We want the 
optimal cost of a restricted replacement script converting Ai to Bj that ends with 
delete. If the delete is removed, then the reduced script optimally converts Ai- to 
Bj and its length is one of the values C(i-1, j, 6) where 0 E OPS. It then follows 
that 

C(i, j, delete) = ozjns (C(i-1, j, 6) + onechar(0, delete)) 

Similar reasoning verifies the remaining recurrences that justify the algorithm: 

C(i, j, insert) = ,,I$-I~ (C(i, j-l, 8) + onechar(fl, insert)) 

C(i, j, replace) = ,,::F~ (C(i-1, j-l, 0) + onechur(8, replace)) 

C(i, j, moue) = if ai # bj then co 
else BF& (C(i-1, j-l, 19) + onechur(0, moue)) 

Once C has been computed, more general row-replacement scripts can be 
considered. First, noue operations can be removed from the ends of scripts since 
they do not help transform A to B. Second, clear commands can be utilized, 
Third, instead of inserting characters at the right end of B, the replace operation 
can be used to simply write them. Additional improvements are possible, but are 
not considered here. For example it might be preferable to delete the last character 
of A by replacing it by a blank. 

The following O(M + N) second pass examines the array C produced in the 
first step in order to treat more general replacement scripts. Min4(i, j) is assumed 
to return the minimum of C(i, j, op) over op E OPS. 

Algorithm 2b. Optimizations after C has been computed. 

optimal + min4(M, N) 
/* account for the common suffix */ 
icM 
jcN 
whilei>Oandj>Oandai=b,do 

( ici-1 
j&j-l 
optimal t min(optimal, min4(i, j)) 

I 
/* account for the clear operation */ 
foricO,l,...,M-ldo 

for op E OPS do 
optimal c 

min(optimal, C(i, N, op)+onechzr(op,cZear)+(M-i-l)xperchar(clear)) 
/* account for overwriting beyond A */ 
forjcO,l,...,N-ldo 

for op E OPS do 
optimal c 

min(optimaZ, C(M, j, op)+onechar(op,rephce)+(N-j-l)Xperchar(replace)) 
return optimal 

These optimizations are based on the following observations: 

(1) Suppose Ui+lUi+a * * * UM = bj+l bj+2 * * * biv and S is a restricted replacement 
script converting Ai to Bj. Then S converts A to B (and leaves the cursor 

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989. 



44 l E. W. Myers and W. Miller 

on bj+l). Note that a common suffix is not necessarily preserved by an optimal 
script, and hence may not be automatically stripped from the original 
problem. 

(2) It can be assumed without loss of generality that dear, if it appears in an 
optimal replacement script, is the final operation. This is because (a) a clear 
or delete after a clear is meaningless; (b) moue (to the right) after a clear is 
also useless since blanks are not treated specially; and (c) a clear-insert or 
clear-replace pair is equally well performed by an insert-clear or a repluce- 
dear, respectively. Suppose S is a restricted replacement script converting Ai 
to B. Appending a clear operation to S gives a script that converts A to B at 
cost cost(S) + sturtup(cZeur) + (M - i) X perckur(cZeur). 

(3) Suppose A is converted to Bj at cost C(M, j, op) by a restricted replacement 
script that ends with the operation op. The script positions the cursor just 
after bj, SO simply replacing by bj+l bj+z . . . b, produces B and the augmented 
script costs C(M, j, op) + onechar(op, replace) + (N - j - 1) X per- 
char(repluce). 

It takes only O(M + N) additional time to produce a minimum-cost replace- 
ment script once the cost matrix C is computed. First determine the entry C(i, j, 
op) from which optimal’s value was attained in the post-pass and output as the 
last command ‘clear’, ‘Replace by bj+l . . . bN’, or nothing, as is appropriate. Then 
trace a path of vertical, horizontal, and diagonal moves backwards from C(i, j, 
op) to C(0, 0, op’) such that the value at the end of each move is the value at the 
start plus the onechur cost of the move. Each move to entry C (i, j, op) corresponds 
to a command: C(i, j, insert) to ‘Insert Ui’, C(i, j, delete) to ‘Delete’, C (i, j, replace) 
to ‘Replace by bj’, and C(i, j, moue) to ‘Moue to j + 1’. Listing these commands 
as the path is traversed in the forward direction gives the restricted portion of 
the script. 

4. A GREEDY ALGORITHM FOR ROW REPLACEMENT 

The greedy algorithm considers, for successive values of c, prefixes of row A 
that can be edited into a prefix of row B at cost c. Suppose the minimum 
cost of replacing A with B is Cost. The greedy algorithm examines only 
O(Cost x (M + N)) grid points of the cost matrix C of Section 3, so it is faster 
than the dynamic programming algorithm when Cost is small. 

The greedy algorithm’s complexity is reduced by permitting left-to-right scripts 
to include move operations that leave the cursor in its current position. However 
no optimal script contains such commands, so reported answers are unaffected. 
This relaxation was not considered in Section 3 because it unnecessarily compli- 
cates the computation of C. 

For given integers c and k and op E OPS, let L(c, k, op) be the length, i, of the 
longest prefix Ai that can be converted to Bi+k by a restricted replacement script 
of cost c that ends with operation op. If no such prefix exists, then let L(c, k, op) 
equal NONE, a negative number, say -1. The relationship between L and the 
matrix C of Section 3 can be captured using the correspondence between edit 
scripts and paths sketched in Section 2. Computing C corresponds to finding, for 
each grid point (i, j) and operation op, the cost of a shortest path from (0, 0) to 
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the grid point ending with an op move. Computing L corresponds to finding, 
for each c, k, and op, the furthest position along diagonal k that can be reached 
by a path of cost c ending with op. For the example giving rise to Table IV, 
L(13, -1, move) = 5 since the last 13 in a moue position on diagonal -1 occurs 
in row 5 of the C matrix. Also, L(7, -1, moue) = NONE because a script 
containing a move must cost at least 8. 

With the general cost functions of the row-replacement problem, there can be 
paths of some cost c reaching some diagonal k and ending with some operation 
op even if no c appears in an op entry of diagonal k of the C matrix. For such a 
c, k, and op, L(c, k, op) is defined but (unlike the case where all costs are 1) 
cannot be characterized as the last row where a c occurs in a diagonal of C. For 
example suppose deleting or inserting n symbols costs 2n and replacing n symbols 
costs 3n. The replace entries on diagonal 0 are 0, 3, 6, . . . , but L(7, 0, replace) = 
2 because the script ‘Delete, Insert bl , Replace by bz’ edits A, to Bz. However if c 
occurs in an op position in diagonal k of C, then L(c, k, op) is the row containing 
the last such c. 

For values of c in the order 1,2, . . . , the greedy algorithm computes L(c, k, op) 
for a relevant range of diagonals k and all choices of op. The algorithm can stop 
when it reaches the first value of c for which L(c, N - M, op) = M for some op 
because it has encountered the smallest cost, c, for which AM = A can be edited 
into BM+(+M) = B. We first show how to compute L(c, k, op) from previously 
computed values. General scripts are then discussed. Finally the complete algo- 
rithm is presented and its complexity analyzed. 

The greedy algorithm presented below rests on three additional but realistic 
assumptions about the cost parameters: 

(Al) perchur(deZete) > 0 andperchur(insert) > 0 
(A2) perchar(repZace) > 0 
(A3) perchar(moue) = 0 and sturtup(moue) > 0 

These assumptions are needed for two reasons. First they permit the formulation 
of computable recurrences for the L values of cost c from the L values of strictly 
smaller cost. Specifically, Assumptions Al and A2 guarantee that best(c, k, op) 
(defined below) is a function of, L values of cost strictly less than c and A3 
guarantees the same property for mbest(c, k). The second reason is to ensure 
that the band of diagonals considered has width not exceeding 2c + 1. Specifically, 
Al guarantees that neither upper(c) nor lower(c) (defined below) exceeds c. 

For the greedy method to be efficient, Assumption Al is essential. Without it 
the approach produces an O(MN) algorithm, no better than dynamic program- 
ming, because every diagonal must be considered. However Assumptions A2 and 
A3 are not critical, A3 can be changed to perchar(move) > 0 and A2 can be 
changed to perchar(replace) = 0 and startup(replace) > 0, without changing the 
feasibility or time complexity of the greedy approach. Nonetheless either the 
assumptions or their alternates must be chosen a priori because the choice affects 
the logic of the algorithm. The most questionable of the assumptions is 
perchar(deZete) > 0, since some terminals support a fixed length “delete n 
symbols” command. However many of these devices disguise a greater-than-zero 
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perchar cost by requiring the transmission of a number of “pad characters” 
proportional to n. 

Fix op E OPS and integers c > 0 and k, and suppose L(C, K, 8) has been 
determined for all C < c and all K and 0. Let firstop be the cost of a first 
operation in an edit script: 

firstop = startup + perchar 

Then L(c, k, op) is computed by: 

Algorithm 3a. Computing L(c, k, op). 
long + NONE 
if op = delete then 

Kc/z+1 
else if op = insert then 

Kck-1 
else 

Kck 
if c = firstop and K = 0 then 

long+0 
else if c > firstop (op) then 

for 9 E OPS do 
if not 0 = op = move then 

long c max(Zow, L(c - onechar(8, op), K, 6)) 
if long # NONE then 

if op = move then 
while long < M and long + k C N and a&,,,+, = blongfk+, do 

longclong+l 
else if op # insert then 

long t long + 1 
UC, k, OP) * W 

The only script of cost firstop ending with op consists of a single op 
command. A single delete command edits A, to Bo, a single replace command 
edits A, to B1, and a single insert command edits A, to B1. The best single moue 
command edits the longest common prefix of A and B into itself. These obser- 
vations lead to the equations: 

L(fir.stop(debte), - 1, delete) = 1 

L(firstop(insert), 1, insert) = 0 
L(firstop(replace), 0, replace) = 1 
L(firstop(moue), 0, moue) = max(i 11 A; = Bi) 

For any other case with c 5 firstop( L(c, k, op) = NONE. These observations 
verify the correctness of Algorithm 3a for small values of c. 

For c > firstop(deZete), consider long = L(c, k, delete), the length of the longest 
prefix Al,, transformable to B lo,,y+k by a cost-c script ending with delete. Define: 

best(c, k, op) = O~;; (L(c - onechar(8, op), 12, 0)) 

Suppose that long # NONE and that stripping the final delete from a correspond- 
ing script leaves a script ending with operation 0. The truncated script costs 
c-onechar(0, delete) and convertsAlO,-I to Blong+k. Thus long -1 5 L(c-onechar(8, 
delete), k + 1, 0) 5 best(c, k + 1, delete). We claim that long -1 = best(c, k + 1, 
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delete). Suppose there were a longer prefix, A l0,,gT--l with long’ > long, that could 
be transformed to Blony3+k with a script costing c - onechur(fl’, delete) and ending 
with operation 0’. Then appending a delete command gives a cost-c script that 
transforms Al,,, to Blong,+k, contradicting the maximality of long. Thus L(c, k, 
delete) = best(c, k + 1, delete) + 1 if it exists. Intuitively, to reach as far as 
possible down diagonal k at cost c, “greedily” append a delete move to a furthest- 
reaching path of cost c - onechur(8, delete) ending in diagonal k + 1. Finally 
observe that L(c, k, delete) = NONE if and only if L(c - onechar(0, delete), 
k + 1,8) = NONE for all 0 E OPS. Similar reasoning for replace and insert leads 
to the following recurrences. 

L(c, k, delete) = if best(c, k + 1, delete) # NONE 
then best(c, k + 1, delete) + 1 else NONE 

L(c, k, replace) = if best(c, k, replace) # NONE 
then best(c, k, replace) + 1 else NONE 

L(c, k, insert) = if best(c, k - 1, insert) # NONE 
then best(c, k - 1, insert) else NONE 

For a concrete example, consider computing L(19, -1, insert) for the ANSI- 
standard model, A = abcabba and B = cbabac (Table IV of Section 3). We seek 
the longest prefix Ai that can be transformed into Bip2 at cost 19 - onechur 
(0, insert) for some 0, since appending an insert command to a corresponding 
script gives a script that transforms Ai to Bi-1 at cost 19. L(10, -2, delete) = 
L(10, -2, replace) = 6, so taking 0 to be delete or replace shows that A6 can be 
edited to B, at cost 19. Trying 13 = ntoue is fruitless, since L(10, -2, moue) = 
NONE. Extending the script for L(18, -2, insert) = 3 obtains a script for 
transforming A3 to B,. Thus, L(19, -1, insert) is 6. 

Computing L(c, k, moue) requires a different approach since perchar(moue) 
equals zero. For c > firstop(moue), consider long = L(c, k, moue), the length of 
the longest prefix Ab, transformable to Blong+ by a cost-c script ending with 
moue. If there are several such scripts, consider one whose final moue command 
moves right the fewest columns. Let: 

mbest(c, k) = XII;~~C (L(c-onechar(8, moue), k, 13)) 

Suppose that long # NONE and that stripping the final moue from a correspond- 
ing script leaves a script ending with operation 8. Note that 0 # moue since two 
consecutive moues can be economized into one. The truncated script costs 
c - onechar(B, moue) and converts Alonp-,,, to Blongem+k, where m is as small as 
possible. Thus long-m 5 L(c - onechur(8, moue), k, 19) s mbest(c, k) andab,-,+ 
. . . along - -b long-m+k+l * . . b long+k. We claim that long - m = mbest(c, 12). Suppose 
there were a longer prefix, Along-,,,, with m’ < m, that could be transformed to 
Blong--m,+k by a script costing c-onechar(8 ‘, moue) and ending with operation 0 ‘. 
If m’ 2 0, then appending a moue command that moves the cursor m’ columns 
to the right gives a cost-c script that transforms Al,,, to Blong,+k, contra- 
dicting the minimality of m. If m’ < 0, then appending a moue command 
that moves zero columns to the right gives a cost-c script that transforms 
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AlongPrn, to Blong-mT+k, contradicting the maximality of long. This reasoning justi- 
fies the recurrence: 

L(c, k, moue) 
= if mbest(c, K) # NONE then 

max(i II ambest(c,k)+l - - - Ui = bmbestk,kj+k+l - - - bi+k or i = mbesttc, k)) 
else 

NONE 

As the value of c is increased, computed values may satisfy L(c, k, op) > M or 
L(c, k, op) + k > N. This happens because the commands delete, replace, insert, 
and move-zero-columns-right are effective regardless of the characters actually in 
A or B. Thus such an entry indicates that any supersequence of A can be 
converted to a prefix of B or that any prefix of A can be transformed into a 
supersequence of B at cost c. Such entries could be eliminated by an additional 
boundary check but this is unnecessary since they cannot contribute to the 
optimal solution. 

Now turn attention to general row-replacement scripts. Since the algorithm’s 
goal is to terminate as soon as the optimal value of c is reached, the additional 
features of general scripts cannot be handled in a postpass, as with the dynamic 
programming algorithm. Instead, checks for general cost-c scripts are “folded” 
into the computation of L-values. 

First consider removal of a final moue operation. Before starting the compu- 
tation of L, the longest common suffix of A and B is identified by setting: 

Zim = min(i 11 oi+l ... UM = bi+cN-w+i ... bN or i = M) 

Pictorially this step finds a line segment beginning at the lower right corner of 
the grid and extending toward the upper left until the row and column labels 
disagree. If long = L(c, N - M, op) 2 lim for some operation op then there is a 
cost-c script converting Ab, to Blong+(~--M) and al0ng+l . . . aM = blo,,g+(N--Mj+l . . . 
b,. This script transforms A to B and leaves the cursor on column long + 1. For 
general edit scripts the algorithm terminates upon encountering a value of c for 
which long 1 lim. 

As explained in Section 3, if clear commands are permitted, then it suffices to 
consider a single clear at the end of the script. If L(c, k, op) = N - k for some 
k > N - M, then there is a cost-c script converting AN-k to B where N - k < M. 
Appending a clear operation gives a script that edits A into B of cost c + 
onechar(op, clear) + (k - (N - M) - 1) Xperchur(&ar). The preceding argument 
assumes the clear operation is appended to a nonempty script, i.e., c > 0. In the 
special case where N = 0, a single clear edits A into B at cost startup(clear) + M 
x perchur(clear). As scripts editing A into B and ending with clear are de- 
tected, their minimum cost is recorded in a variable Clim. If the loop variable c 
reaches this value, the algorithm terminates and reports that the minimum row- 
replacement cost is Clim. If an optimal script editing A to B ends with clear, it 
will be discovered because removing the clear from at least one such script leaves 
a script that edits a longest prefix of A into B. 

Handling overwrites beyond A is the analog of final clear operations. If 
L(c, k, op) = M for some k < N - M, then there is a cost-c script converting AM 
to BM+, where M + k < N. Appending N - (M + k) replace operations 
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gives a script converting A to B of cost c + oneckar(op, replace) + 
((N - M) - k - 1) X perchar(clear). In the special case where M = 0, N replace 
commands edit A into B at cost sturtup(repluce) + N X perchur(replace). It is 
sufficient to let the variable Clim above also record the minimum cost of these 
overwrite-terminated scripts as each is detected. 

Up to this point it has been assumed that for each value c, L(c, k, op) is 
computed for the entire range of diagonals, FE E [-M, N]. A central advantage of 
the greedy approach is that only O(c) L-values need to be computed since the 
remainder are easily inferred to be NONE. Let: 

lower(c) = max 
c - startup(deZete) 

perchur(delete) 90 

upper(c) = max ( c - startup(insert) 
perchur (insert) ,o 

1 

If a cost-c restricted replacement script transforms Ai into Bi+k where k > 0, then 
it must insert at least k characters. Thus c L startup (insert) + k X perchur (insert) 
because at best the k insert commands are contiguous. Rearranging the inequality 
gives the relationship k 5 upper(c). Arguing similarly about the case where 
k < 0 shows that k 2 -lower(c) and leads to the fact: 

If k 65 [-lower(c), upper(c)] then L(c, k, op) = NONE. 

The algorithm uses this fact in two ways. First, for each value of c it only 
computes UC, k, op) for k E [-lower(c), upper(c)]. Second, when referencing 
previously computed values, L(C, K, e), in the innermost loop, it infers that the 
value is NONE if K 4 [-lower(C), upper(C)]. 

Algorithm 3b. The greedy row-replacement algorithm. 
/* identify the longest common suffix */ 
1imtM 
while lim > 0 and lim + N - M > 0 and ali” = blim+N-M do 

limclim- 1 
iflim=OandM=Nthen 

return “cost is 0” 
ifM=Othen 

Clim c startup(clear) + N x perchar(clear) 
else if N = 0 then 

Clim c startup(replace) + M X perchar(replace) 
else 

Clim c 03 
for c c 1,2, . . . , Clim do 

for kc -lower(c), -lower(c) + 1, . . . , upper(c) do 
for op E OPS do 

{ long +- NONE 
if op = delete then 

Kck+l 
else if op = insert then 

K-k-1 
else 

Kck 
if c = firstop and K = 0 then 

long+0 
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else if c > firstop then 
f0reE 0~s a0 

{ Cc c - onechur(op, 19) 
if not ~9 = op = moue and K E [-lower(C), upper(C)] then 

long t max(long, L(C, K, 0)) 
I 

if long # NONE then 
if op = moue then 

while long c M and long + k c N and abn8+, = b,,,ng+k+l do 
long+long+l 

else if op # insert then 
longclong+l 

L(c, 12, op) t long 
/* account for the common suffix */ 
if k = N - M and long 2 lim then 

return “cost is c” 
/* account for the clear operation */ 
ifk>N-Mandlong=N-kthen 

Clim + min(Clim,c+onechar(op,clear)+(k-(N-M)-l)xperchar(clear)) 
/* account for overwrite operations */ 
ifkeN-Mandlong=Mthen 

Clim + 
min(Clim, c+onechar(op,repluce)+((N-M)-k-l)xperchur(repluce)) 

I 
return “cost is Clim” 

Let Cost be the optimal cost of replacing row A with row B of lengths M and 
N, respectively. The greedy algorithm runs in time O(Cost X (M + N)). Identi- 
fying the longest common suffix takes only O(M + N) time. The code within the 
triply nested loops, ‘for c, for k, for op’, is repeated @(CO&~) times because the 
‘for c’ loop is repeated Cost times, the ‘for k’ loop is repeated upper(c) + lower(c) 
+ 1 5 2c + 1 times (by Assumption Al), and the ‘for op’ loop is repeated four 
times. With the exception of the innermost while loop, the code within the three 
for loops takes O(1) time. Thus all portions of the algorithm except for this 
while loop consume O(M + N + Cost2) time. 

To account for the time taken by the innermost while loop, charge each O(1) 
iteration to the grid entry (long + 1, long + k + 1) examined by the loop. We 
claim that a given entry is charged at most A = firstop(moue) + firstop(repZuce) 
times. First observe that if (i, i + k) is charged when computing L(c, k, moue), 
then the recurrence for L(c, k, moue) implies that i E [mbest(c, k) + 1, 
L(c, k, moue) + 11. Now suppose (i, i + k) is first charged when computing 
L(d, k, moue). Then 

mbest(d + A, k) L L(d + firstop(repZace), k, replace) 2 L(d, k, moue) + 1 > i 

Thus mbest(C, k) 2 i for all C 2 d + A. But then entry (i, i + k) cannot be 
charged when computing L(C, k, moue) for such C, since the converse would 
imply mbest(C, k) < i. This proves the claim. The algorithm computes L-values 
only over the range of diagonals -Zower(Cost) to upper(Cost) and there are less 
than (2Cost + l)min(M, N) grid points within this range. Since each grid point 
is charged O(1) time (considering A to be a constant), it follows that O(Cost x 
(M + N)) time is taken by the body of the innermost while loop. 
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Reconstructing a script from the O(Cost2) L-values computed by the greedy 
algorithm is analogous to the postprocess described for the dynamic programming 
algorithm and requires only O(Cost) additional time. However, hierarchical 
screen updating methods [6] require just the costs of row replacements when 
evaluating interline editing strategies. These costs can be computed in only 
O(Cost) space as follows. Observe that the value of L(c, lz, op) depends only on 
values L(C, K, 13) for which C 2 c - MOP where MOP = max,eops( firstop(o 
Thus the cost-only algorithm need only retain the L-values of the most recent 
MOP repetitions of the outer ‘for c’ loop and this requires only O(Cost) space 
(considering MOP to be a constant). 

5. DISCUSSION AND OPEN PROBLEMS 

Algorithmic Variations. Algorithms 2a, 2b, and 3b can be extended in several 
ways. Of the two, the dynamic programming approach is more ‘robust’ in the 
sense of extending easily to certain generalizations of the problem. For example, 
like Algorithm la of Wagner and Fischer, Algorithms 2a and 2b work without 
change for arbitrary real costs. On the other hand, Algorithm 3b, like Algorithm 
lb, requires integer costs, and efficiency considerations demand that per- 
char(delete) and perchar(insert) be positive. 

Both algorithms can be made more space-efficient. To construct an optimal 
script, Algorithms 2a, 2b, and 3b, as presented, require retention of O(MN) and 
O(Cost2) arrays C and L, respectively. If Algorithm 2b’s postpass checks are 
integrated into Algorithm 2a, as was done in Algorithm 3b, then Hirschberg’s 
divide and conquer technique [9] computes the replacement script in only linear 
space. Most of the details are explained in [16], which gives a linear-space 
sequence comparison algorithm for block indels with affine costs. Similarly 
Myers’ approach [14] for computing an edit script in linear space can be adapted 
for Algorithm 3b. However in both cases the necessary adaptations are complex 
and probably unnecessary, given the typical sizes of row replacement problems 
that arise with screen editors. 

Efficiency Considerations. An editor’s screen-updating module must be effi- 
cient. As text is typed, the module is invoked with every keystroke. With the 
algorithms developed in this paper, efficiency considerations are paramount. 
Tests under realistic conditions favor the greedy approach over dynamic pro- 
gramming, but a straightforward implementation of Algorithm 3b may be im- 
practically slow. Fortunately both algorithmic (high-level) and implementation 
(low-level) efficiency gains are possible with the greedy algorithm. 

At the algorithmic level, the screen operations op with startup cost 0 can be 
lumped together since onechar(fI, op) does not vary with 0. Thus, with ANSI- 
standard terminals, the restricted replacement scripts can be classified: (1) ends 
with insert, (2) ends with moue, and (3) ends with delete or replace. That is, 
entries for delete and replace are coalesced into a single entry delrep for which 
L(c, k, delrep) = min(L(c, k, delete), L(c, k, replace)). This reduces space 
requirements and the number of executions of the innermost ‘for op E OPS’ 
loop by the factor 314. 
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The innermost while loop treating the zero perchar cost of move commands 
frequently visits a grid point as many as firstop(move) + firstop(rephce) times. 
This can be reduced to one by maintaining a vector, Fur (12), equal to the maximum 
of L(d, k, move) for all d less than the current c of the outermost loop. Initially 
set Fur(k) to NONE for all k and change Algorithm 3a as follows. 

. . . 
if op = move then 

if bng 5 Far(k) then 
long c Far(k) 

else 
( while long < it4 and long + k < N and aro,,x+l = blong+k+l do 

long+long+ 1 
Far(k) t long 

1 
else if op # insert then 
. . . 

Essentially, mbest(c, k) is nondecreasing in c and so using Fur(k) prevents the 
rediscovery of a sequence of zero-cost diagonal moves. 

At the implementation level a number of code transformations are possible. 
The test ‘K E [-lower(C), lower(C)]’ can be avoided within the inner loop by 
explicitly setting L(c, k, op) to NONE for k E [-Zower(c + MOP), -lower(c) -11 
U [upper(c) + 1, upper(c + MOP)]. The ‘for op’ and ‘for 8’ loops can be 
completely unrolled and the resulting code specialized by eliminating the now 
unnecessary tests on op and 8. Similarly the ‘for c ’ outer loop can be broken into 
a loop for values less than or equal to MOP and one for greater values. In the 
second copy of the loop, the code is specialized by eliminating all tests on c. By 
far the greatest low-level efficiency gains can be made by replacing the triple 
subscripting for L(c, k, op) by pointer manipulations. In effect, this involves 
hand-coding of the strength-reduction optimizations that the compiler cannot 
detect. 

Empirical Results. Nine row-replacement problems were solved by the 
programs: 

S implementation of the algorithm used by the s editor [lo, pp. 290- 
2981 

Dyna straightforward implementation of Algorithms 2a and 2b 
Greedy straightforward implementation of Algorithm 3b 
Hand implementation of Algorithm 3b optimized as above 

Separate measurements were taken for the ANSI and the IBM 3101 cost param- 
eters, since cost parameters determine which scripts are optimal and affect the 
performance of the greedy method. Table V summarizes the results. Row labels 
have the following interpretations: 

M:N lengths of the input rows A and B. 
Script, replacement script generated by S. Edit commands are indi- 

cated by letters C (Clear), D (Delete), I (Insert), M (Move) and 
R (Replace). For example, ‘R’DMI’ denotes a script of the form 
‘Replace, Replace, Delete, Move, Insert’. 
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Scriptopt optimal replacement script. 
Costopt : costs length of the optimal script and of the script generated by S. 

Time,,= (ms ) execution time of Dyna in milliseconds. The procedures were 
written in C and run on a DEC 8600 under the UNIX operating 
system. 

TimeGreedy h ) execution time of Greedy in milliseconds. 

Timeand (ms 1 execution time of Hand in milliseconds. 

A number of interesting facts can be extracted from this data, but two points 
deserve explicit mention. First, Greedy was more efficient than Dyna, especially 
for the 3101. Execution time for the greedy method depends on terminal cost 
parameters and improves with the 3101’s shorter escape sequences. Dyna’s 
execution is essentially independent of these costs. Moreover, hand optimization 
sped up the greedy algorithm by a factor of 12 for the ANSI model and 15 for 
the 3101. 

Table V also indicates conditions where a hand-optimized greedy program can 
outperform a simple row-replacement procedure. A method’s performance is 
determined by the time to compute the script and transmit it to the screen. 
Assuming that it takes a millisecond to transmit a character (e.g., at 960n baud), 
Hand was superior to S whenever S failed to generate an optimal script. This 
occurred when the optimal script contained a noninitial moue command. The 
superiority of Hand over S benefited from the 3101’s economical moue. (Table V 
was simplified by omitting S’s execution times, which were always less than a 
millisecond, and by giving a single line of S’s scripts, which happened to coincide 
for the two cost models on Tests l-9.) 

Open Problems and Future Work. The key assumptions in this paper are that 
the cursor begins in column 1 and that spilling characters off the end of a row is 
not a concern. While a script produced by our algorithms can be transformed 
into one that takes into account the current cursor location and avoids a spill, 
the transformed script is not guaranteed to be optimal. It appears very difficult, 
but still solvable in polynomial time, to compute an optimal script that takes 
into account these factors. Designing an efficient algorithm for this problem is a 
subject of current research. 

Row replacement is just a subproblem in the ultimate goal of building an 
efficient, but autonomous, screen manager that optimally updates the entire 
screen. Optimality is sacrificed by the natural two-level approach that decides 
which lines to delete, insert, and replace at the top level, and that uses row 
replacement to appraise and perform replacements at the bottom level. Moreover, 
there are natural asymmetries between intra- and inter-row edits that resist a 
homogeneous approach. For example, unlike character insertion, the cost of a 
row insertion command is “symbol-dependent” since its cost is a function of the 
length of the row itself. This prevents the greedy algorithm of Section 4 from 
being applied to interline edits. It remains to be seen whether an optimal “screen 
replacement” algorithm of satisfactory efficiency can be developed. 

The change from terminals and serial communications to workstations and 
high-speed networks does not make the screen-update problem disappear, though 
different techniques are needed to minimize the cost of bitblt operations [S]. Pike 
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[17] discusses a simple approach for screen updating by a text editor, while [3] 
treats display-updating problems in computer animation. However, the problem 
of optimally updating a bitmap display is not well understood. 

What is the most general class of sequence comparison problems that can be 
solved with the greedy approach? Algorithm 3b solves, as a special case, the 
problem for block indels with affine gap penalties, which is important in molec- 
ular biology. The algorithm can be extended to handle symbol-dependent replace- 
ment costs, which are used for comparing proteins. However, the exact limits of 
the greedy algorithm remain to be determined. 
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