
Row Replacement Algorithms for Screen
Editors

EUGENE W. MYERS
University of Arizona
and
WEBB MILLER
The Pennsylvania State University

Interactive screen editors repeatedly determine terminal command sequences to update a screen row.
Computing an optimal command sequence differs from the traditional sequence comparison problem
in that there is a cost for moving the cursor over unedited characters and the cost of an n-character
command is not always the cost of n one-character commands. For example, on an ANSI-standard
terminal, it takes nine bytes to insert one character, ten to insert two, eleven to insert three, and so
on. This paper presents an O(MN) dynamic programming algorithm for row replacement where an
n-character command costs otn + @ for constants (Y and 0. M is the length of the original row and N
is the length of its replacement. Also given is an O(Cost X (M + N)) “greedy” algorithm for optimal
row replacement. Here Cost is the optimal cost (in bytes) of the replacement, so the algorithm is fast
when the required update is small. Though the algorithm is rather complicated, it is fast enough to
be useful in practice.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Program Complexity]:
Nonnumerical Algorithms and Problems-computation on discrete structures

General Terms: Algorithms

Additional Key Words and Phrases: Dynamic programming, greedy algorithm, row replacement,
screen editor

1. THE ROW REPLACEMENT PROBLEM

Screen-oriented programs maintain a representation of an object and present a
view of it on the screen. For example, screen editors keep an internal edit buffer
and display a block of lines from the buffer. The screen must be updated when
the object is changed. In one solution, procedures that modify the object must
also update the view or at least specify how the view has changed. Optimal use
of such a package [l] may require learning and calling many different routines.
A cleaner approach lets an autonomous screen manager module determine how

This work was supported in part by National Science Foundation grant DCR-8511455.
Authors’ current addresses: E. W. Myers, Department of Computer Science, University of Arizona,
Tucson, AZ 85721; W. Miller, Department of Computer Science, The Pennsylvania State University,
University Park, PA 16802.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0164-0925/89/0100-0033 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989, Pages 33-56.

34 l E. W. Myers and W. Miller

to update the screen by comparing its record of screen contents with views of the
modified object. The interface to the screen manager is then a single routine,
refresh, that updates the screen with respect to the current object. It is given no
information other than the object and screen contents. Writers of screen editors
are almost unanimous in recommending the use of an autonomous screen
manager [2, 6, 10, 18, 241. The design greatly improves the editor’s internal
structure, so it is appropriate with both ASCII and bitmap displays.

Care is needed to achieve satisfactory efficiency with an autonomous screen
manager. In many contexts, data travels from the editor to the screen at between
100 and 1,000 characters per second (e.g., 1,200 or 9,60O’baud), which is orders
of magnitude slower than the editor’s computing speed. Under such circum-
stances, it is worthwhile for the editor to compute a minimal, or near minimal,
set of row-updating commands, as long as the time to do so does not outweigh
the savings in character-transmission time. Although these considerations are
far less important with high-speed communication and bitmap displays, the
results of this paper will be useful as long as people want to access remote
processors over slow transmission media, such as telephone lines.

For autonomous screen managers, a basic problem is to optimally update a
screen row. An algorithm, presented with the row currently on the screen and
the desired row contents, must produce a shortest-possible sequence of terminal
commands that replaces the existing row with the desired row. This row repluce-
ment problem is complicated by varying terminal capabilities and command
encoding schemes. This paper assumes the following terminal operations, which
are provided by most modern terminals.

-Clear. The characters at, and to the right of, the cursor are deleted. The cursor
does not move.

-Delete. The character at the cursor is deleted, causing later characters to be
shifted left. The cursor does not move, so it ends up on the character that
followed the deleted character.

-Insert x. The character x is inserted at the cursor’s location, causing the
characters at and right of the cursor to be shifted to the right. The cursor
moves one position to the right, so it stays with the same character.

---Moue to k. The cursor is moved to the kth column in the current row.
-Replace by x. The character x is displayed at the cursor’s location, overwriting

the previously displayed character. The cursor moves one position to the right.

Command encodings vary widely among terminal brands. Typically, replace is
performed by simply sending the character to the terminal. Other commands
contain escape sequences that encode the operator. Table I gives escape sequences
for ANSI-standard terminals and for the IBM 3101 where (esc) denotes the
“escape character”. The clear and delete commands are three bytes long in one
case, two in the other. With ANSI-standard terminals, a string of characters is
inserted by sending a 4-byte sequence to put the terminal in insert mode, then
sending the desired characters, and finally sending a 4-byte sequence to exit from
insert mode. For the 3101, each character must be inserted individually using a
3-byte escape sequence. Thus, inserting n consecutive characters costs n + 8
bytes in one case and 3n bytes in the other.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors

Table I. Two Command Encodine Schemes

- 35

Instruction

clear
delete
enter insert mode
insert character
leave insert mode

ANSI standard IBM 3101

(esc)W (esc)l
(esc)[P (esc)Q
(esc)[4h -

- (esc)P(chur)
lescH41 -

On ANSI-standard terminals, the cursor is moved by the command
‘(esc) [c&H where cy is the decimal representation of the row number and /3 is
the column number. For example the 7-byte command ‘(esc)[5;20H’ moves to
row 5, column 20. For these terminals, the move command is 6, 7, or 8 bytes long,
depending on the destination (and assuming less than 100 rows and columns).
The 3101 uses the 4-byte move command ‘(e.sc)Ypy’. Here p is a byte containing
31 plus the row number, and y is 31 plus the column number. The designers add
31 because p and y are then printable characters in the ASCII code.

Implementation of a row-replacement strategy requires that a number of
additional details be addressed. With a line whose length exceeds the screen
width, some editors fold the line onto several screen rows to make all characters
visible. Other editors add a special character at the right margin of the screen to
indicate an overlength line. In either case, a side effect of inserting a character
in a long line is to delete the rightmost character in the row by pushing it off the
screen. The implementation of a screen-update procedure must also be concerned
about swamping the terminal by sending control sequences too quickly; “pad
characters” or “handshaking” may be required. Such implementation details are
not considered in this paper.

The commands discussed above are used for intraline editing or, as we call it,
row replacement. Other commands, like delete row and insert row, manipulate
entire screen rows. The methods used by screen editors to recycle entire rows are
often surprisingly different from those for reusing parts of a row. A complete
description of one design is given in [10, pp. 280-3161, where the row-replacement
strategy simply avoids retransmission of a common prefix and, if it saves time,
of a common suffix. This paper is concerned only with row replacement, though
methods for interline editing are mentioned briefly in the remainder of this
section and under “Open Problems” in Section 5.

Gosling [6] proposes a rigorous approach to screen updating based on an off-
the-shelf application of a sequence-comparison algorithm for both intra- and
interline edits. However his comparison model ignores cursor-movement costs
and charges an n-symbol operation like n one-symbol operations. Moreover
efficiency considerations lead him to use the length of B as an approximation to
the cost of replacing row A by B when evaluating possible interline editing scripts.
With these approximate costs, the classic dynamic programming algorithm is
quite practical for interline edits. Indeed Gosling used the approach in the UNIX
EMACS editor, though row replacement is nonoptimally performed by simply
retaining common prefixes and suffixes of the old and new lines. The resulting
screen manager is quite independent of the remainder of the editor, as illustrated
by the use of Gosling’s code in the Maryland Window System [23].

ACM Transactions on Programming Languages and Systems. Vol. 11, No. 1, January 1989.

36 l E. W. Myers and W. Miller

Myers [15] uses sequence comparison techniques to solve the “window posi-
tioning problem”: find a screen-sized block of buffer lines that contains the
current line and reuses the maximum number of currently visible lines. If R is
the number of screen rows, then there are generally R choices for the window
position. A straightforward solution requires time O(R3) when only interline
edits are considered, but Myers’ algorithm needs only time O(R’). Miller and
Myers [13] give another optimal row-replacement algorithm with worst-cost
complexity O(M2N2), but which works efficiently for many practical screen-
updating problems.

This paper presents two worst-case efficient algorithms for optimal row re-
placement. That is, under certain assumptions about the terminal and the
permissible scripts of screen-update commands, these algorithms minimize the
number of bytes sent to the screen. Section 2 places these algorithms in historical
perspective by sketching earlier work on the related sequence-comparison prob-
lem. Although sequence-comparison algorithms are not immediately applicable
to row replacement, as shown in Section 2, they contain the seeds of our row-
replacement algorithms. Sections 3 and 4 give O(MN) and O(Cost x (M + N))
row-replacement algorithms, respectively. Section 5 concludes with further re-
finements, empirical results, and open problems. The experiments cited in
Section 5 show that the O(Cost x (it! + N)) row-replacement algorithm is fast
enough to be of practical value.

2. SEQUENCE COMPARISON ALGORITHMS

Sequence-comparison problems arise in a variety of disciplines, including com-
puter science and molecular biology [21]. The basic problem can be phrased in
terms of editing operations as follows. Given sequences A = ala2 . . . aM and B =
blbz . . . blv, determine a sequence of “basic operations” that converts A to B and
minimizes the sum of the operations’ costs (or “weights”). Traditionally, the only
operations permitted are Delete, Insert, and Replace. There is no notion of a
cursor; an operation may be applied at any point in the string. Moreover the cost
of an operation does not depend on its context in the edit script.

In the point indel model, the basic operations insert a single symbol, delete a
symbol, or replace one symbol by another, and an operation’s cost may depend
on the affected symbol or symbols:

d-cost(a) cost of deleting a
i-cost(b) cost of inserting b
r-co&a, b) cost of replacing a with b when a # b

In the block indel model, an indel (i.e., insertion or deletion) of k > 0 consecutive
symbols is treated as an atomic operation, rather than k operations on individual
symbols. The operation is assigned a weight, or gap penalty, wk that depends only
on the number of symbols inserted or deleted. A variation of the model allows
insertion costs to differ from deletion costs. The block indel model also includes
a single-symbol Replace operation of cost r-cost(a, b).

Simple dynamic programming algorithms compute optimal edit scripts for the
point indel problem in time O(MN) [2O] and for the block indel problem in time
O(MN(M + N)) [22], where M and N are the sequence lengths. Let Ak denote
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors l 37

Table II. C (i, j) for A = abcabba, B = cbabac

c b b a
0 1 2 ; 4 5 s

b5 5 4
b6 6 5 4
a7 7 6 5 4

. . .

the k-symbol prefix, ala2 . . . ok, of A. A dynamic programming approach for
finding the minimum cost of editing A into B requires computing C(i, j), the
minimum cost of editing Ai into Bj for all i E [0, M] andj E [0, N]. For example,
if A is abcabba, B is cbabac, and we allow single-symbol Delete, Insert, and Replace
operations of cost 1, then C is shown in Table II. Observe that C(4, 4) = 3 since
A4 = abca can be edited to B4 = cbab with either the sequence ‘Replace al with b,,
Delete a3, Insert b, after a4’ or the sequence ‘Replace al with bl , Replace a3 with
b3, Replace a4 with b4’. Notice there is no cost associated with shifting attention
from one part of the string to another and commands may be applied in any
order.

The following O(MN) dynamic programming algorithm [20] computes C for
the point indel model.

Algorithm la. Computing C(i, j).
C(0, 0) c 0
for j c 1,2, . . . , N do

C(0, j) c C(0, j - 1) + i-COSt(bj)
fori+1,2,...,Mdo

(C(i, 0) t C(i - 1,O) + d-cost&,)
forjc1,2,...,Ndo

(cl t C(i - 1, j) + d-cost(ai)
C2 c C(i, j - 1) + i-COSt(bj)
if ai = bj then

c3+C(i-l,j-1)
else

~3 + C(i - 1, j - 1) + r-cost(ai, bj)
C(i, j) c min(c1, c2, c3)

I
I

The correctness of the algorithm can be seen by considering the computation
of C(i, j) in the innermost loop. Any edit script converting A; into Bj must either
(1) delete ai, (2) insert bj, or (3) replace ai by bj if ai # bj. If the script is optimal,
then the remainder of the script optimally solves a subproblem. In case 1, the
script consists of an optimal script converting Ai- to Bj plus the delete command.
In case 2, it consists of an optimal script converting Ai to Bj-1 plus the insert

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

38 l E. W. Myers and W. Miller

command. In case 3, it consists of an optimal script converting Ai- to Bj-1 plus
the replace command if necessary. The algorithm considers the three forms of
edit scripts, and selects the best.

Notice that extending an edit script by adding a delete operation corresponds
to a vertical move in the table from the (i - 1, j) grid points to (i, j). Extensions
by insert and replace operations correspond to horizontal and diagonal moves,
respectively. The alignment of aj with bj when oj = bj corresponds to a diagonal
zero-cost move to grid point (i, j). A script for editing A to B corresponds to a
sequence or path of moves from point (0,O) to point (M, N). The cost of a script
is the sum of the costs of the individual moves. Thus finding a minimum-cost
script corresponds to finding a minimum-cost or shortest path from (0, 0) to
W, NJ.

The insight that string editing is a special instance of the shortest paths
problem led to the design of faster “greedy” algorithms for the point indel problem
where all operations cost 1 [ll, 14, 191. Let diagonal iz consist of those grid points
(i, j) for which i + lz = j, as shown in Table II. The diagonals of the C matrix
range from -M to N. Let L(c, lz) be the length, i, of the longest prefix Ai that can
be converted to Bi+k with a script of cost c. If no such prefix exists, define L(c, k)
to be -1. Because all costs are 1, it follows that the values in the C matrix are
nondecreasing along diagonals and increase by at most 1 with each diagonal
move. Thus, for this special problem, one can prove that L(c, k) gives the row
containing the last c in diagonal k if such a row exists. For example,
L(3, 1) = 4 and L(l, 3) = -1. The reader should note that this characterization
of L values in terms of C values will not suffice for the more general greedy
algorithm of Section 4.

Algorithm lb. Computing L(c, k).
L(-1, 0) c -1
for c c 0, 1, 2, . . . do

for k + -c, -c + 1, . . . , c do
(last+L(c-l,k)+l
ifk<cthen

lust c max(last, L(c - 1, k + 1) + 1)
if k > -c then

lust t max(last, L(c - 1, k - 1))
if last 2 0 then

while last < M and last + k c N and alost+, = blmt+k+l do
lastchst+1

L(c, k) c last
ifk=N-Mand.!ust=Mthen

return “Cost is c”
1

Greedy algorithms fill in L for c = 0, 1,2, . . . , until the lower, right-hand value
of C is known, i.e., they find the value c for which L(c, N - M) = M. Informally,
the logic for computing L(c, k) goes as follows. We are looking for a c that is as
far down diagonal k as possible. A script that costs c consists of a script of cost
c - 1 plus another operation. If this final operation is delete, then the best we
can do is to make a vertical move from the last c - 1 on diagonal k + 1; this
reaches row L(c - 1, k + 1) + 1. If the final operation is insert, row L(c - 1, k -
1) can be reached by a horizontal move from the last c - 1 on diagonal k - 1. If
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors l 39

the final operation is replace, row L(c - 1, k) + 1 can be reached with a diagonal
move. From whichever move places us in the greatest row, last, we then follow
zero-cost diagonal moves (a&t+1 = blast+k+l) until the last c entry is reached.

The central advantage of the greedy approach is that for a given c, L-values
need to be computed only for k between -c and c. Any script leading to diagonal
k must involve k insert operations if k is positive or k delete operations if k is
negative, and hence the script must have cost k or greater. Thus, for k 6! [-c, c],
we know that L(c, k) = -1 and hence may ignore such entries.

Suppose the minimum cost of editing A to B is Cost. The code within the two
for loops is repeated O(Cost”) times since the outer loop is repeated Cost + 1
times and the inner loop is repeated 2c + 1 times. Thus the algorithm con-
sumes O(Cost2) time with the exception of the while loop, which must be
accounted for separately. Charge each iteration of this loop to the grid point
(last + 1, last + k + 1) for which the character alignment occurs. Each grid point
is charged at most once and all grid points processed are between diagonals -Cost
and Cost. Thus O(Cost x (M + N)) time is spent in this loop, the dominant cost
of the algorithm.

The O(Cost x (M + N)) worst-case time bound tells only part of the story
behind the superiority of the greedy approach. Indeed, there are other sequence
comparison algorithms that achieve this performance [4, 191 and work for
arbitrary (noninteger) costs. However, the greedy algorithm’s expected perform-
ance is often far better than this bound indicates since not all entires of a given
cost c are explicitly found. For example, when r-cost(a, b) = 00 (i.e., the longest
common subsequence problem) the greedy algorithm has expected running time
O(iv + Cost”) [14].

Algorithms la and lb determine only the minimum cost; they do not explicitly
produce a shortest-possible edit script. Construction of a script is covered
elsewhere [ll, 14, 201. It is easy to economize the use of space in both the
dynamic programming and the greedy algorithms for the minimum cost; both
require O(M + N) space. It is possible [9,14], though more difficult, to construct
edit scripts in O(M + N) space.

The dynamic programming and greedy algorithms developed above work only
for the point indel model. For applications where the block indel model is
appropriate, it is critical to find natural conditions on the gap weights wk that
permit the problem to be solved in time close to O(MN), since the
O(MN(M + N)) time for general weights is often prohibitive. A natural restric-
tion is that wk be concaue:

Awk 2 liWk+l for all k 2 1, where AWk = W&l - Wk

In words, w is concave if the cost of inserting or deleting an additional
symbol decreases with the size of the affected substring. For concave weighting
functions, the dynamic programming approach can be modified to run in time
O(MN log(M + N)) [12]. Affine gap penalties, i.e., the further restriction that
wk = (Y + /3k for constants (Y, & permit a solution in time O(MN) [7]. Aftine gap
costs are currently preferred in biological applications [5], though more general
concave weights have also been advocated.

The block indel model with affine indel costs is appropriate for screen update
costs, such as the (8 + n&byte cost of inserting n characters on an ANSI-standard

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

40 l E. W. Myers and W. Miller

terminal. To see why the point indel would produce anomalous results, consider
replacing row ‘abx . . . ’ with row ‘yababz . . . ‘. If inserting n characters costs In
for some constant I, then the command sequence, ‘Insert y, Move to 4, Insert ab,
Replace by z’, costs the same as ‘Insert yab, Move to 6, Replace by z’. However,
with ANSI-standard terminals, the first command set costs 8 bytes more than
the second (assuming that move is not permitted in insert mode).

While the algorithmic paradigms of traditional sequence comparison algo-
rithms are relevant to row replacement, these algorithms do not immediately
solve the row-replacement problem. A major shortcoming is that the string edit
models ignore the cost of cursor movement. For example, consider the problem
of replacing row ‘~axaxaxax’ with ‘yayayayay’. On typical terminals, repeatedly
moving the cursor to the next x and replacing it by y is inferior to simply replacing
every character. The clear operation is also omitted from the edit models. For
updating screen row ‘repeated repeated’ to the string ‘repeated’, moving the
cursor to the space between the two words and clearing the row is less expensive
on an ANSI-standard terminal than nine delete commands.

3. A DYNAMIC PROGRAMMING ALGORITHM FOR ROW REPLACEMENT

Let OPS be the set (delete, insert, move, replace) and let 0PS-k be the full
operation repertoire, OPS U (clear). In the row-replacement framework, the cost
of n consecutive op commands is assumed to be startup + n x perchar
where startup and perchar (op) are nonnegative integers modeling the startup
and per-character costs for op. For example, Table III gives cost parameters for
ANSI-standard terminals. The startup cost is paid (1) for the first operation of
an edit script, and (2) whenever an operation differs from the previous operation.
Thus, ‘Replace by a, Move to 4, Insert xy’ costs startup(repluce) + 1 x per-
char(replace) + startup(move) + 2 X perchur (move) + startup(insert) + 2 X
perchar(insert) = 19 for ANSI-standard terminals. The coefficient of per-
char(move) is 2 because the cursor is moved two columns to the right.

This cost accounting is a simplification. For example, it does not model the
variable cost of 6-8 bytes for an ANSI-standard move command. (We assume
conservatively that move costs 8 bytes.) Moreover some terminal brands allow
cursor movement, deleting of characters, etc., while in “insert mode,” so this
approach may overestimate attainable costs by charging for unnecessary startups.
However, the astute reader will observe that our row-replacement algorithms can
be adapted to cover such variations.

The algorithms developed in this section and the next compute a minimum-
cost left-to-right conversion of A to B. A conversion is left-to-right if move
operations always move the cursor one or more columns to the right of its current
position. If the cursor starts in column 1 and characters are not “spilled” off the
end of the row, then a minimum-cost left-to-right script is guaranteed to be
optimal over all row-updating scripts. Otherwise near-optimal scripts can be
obtained from our left-to-right scripts as follows. If the cursor is not initially in
position 1, then preface the script with ‘Move 1’. If a spill occurs, then append
commands that move to the end of the line and restore the spilled characters.
Alternatively our algorithms can be modified to consider only left-to-right scripts
that avoid spills. To do this, entries of the cost matrix above diagonal W - M
are ignored, where W is the screen width and M is A’s length.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors l 41

Table III. ANSI Standard Command Costs

startup perchm-

clear 3 0
delete 0 3
insert 8 1
move 8 0
replace 0 1

Table IV. C(i, j, op) for A = abcabba, B = cbabm

c b a b a c
0 1 2 3 4 5 6

v
8 0 9 m 10 03 11 m 12 00 13 m 14 m
m QI m m m

a1
3 12 13 18 14 15 20 16 17

m m 12 1 10 10 11 11 12 12 13 13 14 14
b 2 ; 6 y5 ; 1; ‘; m 14 18 15 m 16 Q) 17

03 11 11 12 12 13 13 14 14
c3 m 9 14 7 m 5 m 14 m 15 Q) 16 21 17

01 m 18 7 16 5 14 3 12 12 13 13 14 14
m 12 m 10 Q) 1 8 13 6 03 15 20 16 QI 17 -

Legend:

The basic row-replacement algorithm operates in two steps. First a dynamic-
programming algorithm fills in a table giving minimum costs for row replacement
using certain restricted kinds of edit scripts. In a second pass, boundary values
in the table are inspected to account for operations omitted from the first step.

A restricted replacement script for Ai = ala2 . . . ai and Bj = blbz . . . bj is a left-
to-right script that satisfies: .

(1) The cursor ends in column j + 1,
(2) clear is not used, and
(3) replace commands are not permitted once the cursor is beyond the end of the

current string.

One should think of ala2 - . . ai as terminated by a “null character” that is carried
along as the edit operations are performed. The cursor ends up positioned on it.
With restricted replacement scripts, one may insert at the null character or move
to it, but it may not be deleted or replaced.

For each i 5 M, j s N, and op E OPS, define C(i, j, op) to be the minimum
cost over all restricted replacement scripts for A; and Bj whose last operation is
op. Define C(i, j, op) to be 00 if no such script exists. Table IV gives C(i, j, op) for

ACM Transactions IXI Programming Languages and Systems, Vol. 11, No. 1, January 1989.

42 l E. W. Myers and W. Miller

the problem A = abcabba and B = cbabac under the ANSI-standard cost model.
For example, C(3, 2, delete) = 5 because ‘Replace by cb, Delete’ is a restricted
replacement script for abc and cb that is optimal among those ending with delete.
Moreover, since a3 differs from b2, no restricted replacement script converting
abc to cb ends with move; thus, C(3,2, move) = co.

Reasoning similar to that for the dynamic programming algorithm of
Section 2 leads to the following O(MiV) algorithm for computing C(i, j, op) for
all choices of i, j, and op. This algorithm and the next use the definition:

onechar(opl, op2) =
if opl = opz

+ perchar(op2) if 0p1 # op2

Onechar(opl, op2) is the cost of applying op2 to a character if the previous
operation was opl.

Algorithm 2a. Computing C(i, j, op).

for op E OPS do
c(o, 0, Op) C StUFtUp(Op) ’

forj+l,Z,...,Ndo
(c(o, j, iTWeFt) C c(t), j - 1, iTl.WFt) + peFChUF(i?lSeFt);

C(0, j, delete) t C(0, j, moue) c C(0, j, replace) t co

I

fori+l,Z,...,Mdo
(C(i, 0, delete) c C(i - 1, 0, delete) + perchar(dekte)

C(i, 0, insert) c C(i, 0, moue) c C(i, 0, replace) c 00
forjtl,Z,...,Ndo

for op E OPS do
(CG, i, 0~) + m

if not (op = moue and ai # bj) then
(if op = insert then

Ici
else

I+i-1
if op = delete then

Jcj
else

Jcj-1
for 6 E OPS do

C(i, j, op) c min(C(i, j, op), C(I, J, e)‘+ onechr(0, op))

C(0, 0, op) is initialized to startup so that the first operation in a script is
charged a startup cost. Values in row 0 give costs for converting the empty string
to Bj. With restricted replacement scripts this conversion requires j insert
operations, so for j > 0:

C(0, j, insert) = startup(insert) + j X perchar(insert)
C(0, j, op) = m for op E (de&e, replace, move]

Similarly, converting Ai for i > 0 to the empty string requires i delete operations,
so:

C(i, 0, delete) = startup(deZete) + i X perchar(deZete)
C(i, 0, op) = m for op E (insert, replace, move]

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors * 43

Consider the computation of C(i, j, delete) where i > 0 and j > 0. We want the
optimal cost of a restricted replacement script converting Ai to Bj that ends with
delete. If the delete is removed, then the reduced script optimally converts Ai- to
Bj and its length is one of the values C(i-1, j, 6) where 0 E OPS. It then follows
that

C(i, j, delete) = ozjns (C(i-1, j, 6) + onechar(0, delete))

Similar reasoning verifies the remaining recurrences that justify the algorithm:

C(i, j, insert) = ,,I$-I~ (C(i, j-l, 8) + onechar(fl, insert))

C(i, j, replace) = ,,::F~ (C(i-1, j-l, 0) + onechur(8, replace))

C(i, j, moue) = if ai # bj then co
else BF& (C(i-1, j-l, 19) + onechur(0, moue))

Once C has been computed, more general row-replacement scripts can be
considered. First, noue operations can be removed from the ends of scripts since
they do not help transform A to B. Second, clear commands can be utilized,
Third, instead of inserting characters at the right end of B, the replace operation
can be used to simply write them. Additional improvements are possible, but are
not considered here. For example it might be preferable to delete the last character
of A by replacing it by a blank.

The following O(M + N) second pass examines the array C produced in the
first step in order to treat more general replacement scripts. Min4(i, j) is assumed
to return the minimum of C(i, j, op) over op E OPS.

Algorithm 2b. Optimizations after C has been computed.

optimal + min4(M, N)
/* account for the common suffix */
icM
jcN
whilei>Oandj>Oandai=b,do

(ici-1
j&j-l
optimal t min(optimal, min4(i, j))

I
/* account for the clear operation */
foricO,l,...,M-ldo

for op E OPS do
optimal c

min(optimal, C(i, N, op)+onechzr(op,cZear)+(M-i-l)xperchar(clear))
/* account for overwriting beyond A */
forjcO,l,...,N-ldo

for op E OPS do
optimal c

min(optimaZ, C(M, j, op)+onechar(op,rephce)+(N-j-l)Xperchar(replace))
return optimal

These optimizations are based on the following observations:

(1) Suppose Ui+lUi+a * * * UM = bj+l bj+2 * * * biv and S is a restricted replacement
script converting Ai to Bj. Then S converts A to B (and leaves the cursor

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

44 l E. W. Myers and W. Miller

on bj+l). Note that a common suffix is not necessarily preserved by an optimal
script, and hence may not be automatically stripped from the original
problem.

(2) It can be assumed without loss of generality that dear, if it appears in an
optimal replacement script, is the final operation. This is because (a) a clear
or delete after a clear is meaningless; (b) moue (to the right) after a clear is
also useless since blanks are not treated specially; and (c) a clear-insert or
clear-replace pair is equally well performed by an insert-clear or a repluce-
dear, respectively. Suppose S is a restricted replacement script converting Ai
to B. Appending a clear operation to S gives a script that converts A to B at
cost cost(S) + sturtup(cZeur) + (M - i) X perckur(cZeur).

(3) Suppose A is converted to Bj at cost C(M, j, op) by a restricted replacement
script that ends with the operation op. The script positions the cursor just
after bj, SO simply replacing by bj+l bj+z . . . b, produces B and the augmented
script costs C(M, j, op) + onechar(op, replace) + (N - j - 1) X per-
char(repluce).

It takes only O(M + N) additional time to produce a minimum-cost replace-
ment script once the cost matrix C is computed. First determine the entry C(i, j,
op) from which optimal’s value was attained in the post-pass and output as the
last command ‘clear’, ‘Replace by bj+l . . . bN’, or nothing, as is appropriate. Then
trace a path of vertical, horizontal, and diagonal moves backwards from C(i, j,
op) to C(0, 0, op’) such that the value at the end of each move is the value at the
start plus the onechur cost of the move. Each move to entry C (i, j, op) corresponds
to a command: C(i, j, insert) to ‘Insert Ui’, C(i, j, delete) to ‘Delete’, C (i, j, replace)
to ‘Replace by bj’, and C(i, j, moue) to ‘Moue to j + 1’. Listing these commands
as the path is traversed in the forward direction gives the restricted portion of
the script.

4. A GREEDY ALGORITHM FOR ROW REPLACEMENT

The greedy algorithm considers, for successive values of c, prefixes of row A
that can be edited into a prefix of row B at cost c. Suppose the minimum
cost of replacing A with B is Cost. The greedy algorithm examines only
O(Cost x (M + N)) grid points of the cost matrix C of Section 3, so it is faster
than the dynamic programming algorithm when Cost is small.

The greedy algorithm’s complexity is reduced by permitting left-to-right scripts
to include move operations that leave the cursor in its current position. However
no optimal script contains such commands, so reported answers are unaffected.
This relaxation was not considered in Section 3 because it unnecessarily compli-
cates the computation of C.

For given integers c and k and op E OPS, let L(c, k, op) be the length, i, of the
longest prefix Ai that can be converted to Bi+k by a restricted replacement script
of cost c that ends with operation op. If no such prefix exists, then let L(c, k, op)
equal NONE, a negative number, say -1. The relationship between L and the
matrix C of Section 3 can be captured using the correspondence between edit
scripts and paths sketched in Section 2. Computing C corresponds to finding, for
each grid point (i, j) and operation op, the cost of a shortest path from (0, 0) to
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors l 45

the grid point ending with an op move. Computing L corresponds to finding,
for each c, k, and op, the furthest position along diagonal k that can be reached
by a path of cost c ending with op. For the example giving rise to Table IV,
L(13, -1, move) = 5 since the last 13 in a moue position on diagonal -1 occurs
in row 5 of the C matrix. Also, L(7, -1, moue) = NONE because a script
containing a move must cost at least 8.

With the general cost functions of the row-replacement problem, there can be
paths of some cost c reaching some diagonal k and ending with some operation
op even if no c appears in an op entry of diagonal k of the C matrix. For such a
c, k, and op, L(c, k, op) is defined but (unlike the case where all costs are 1)
cannot be characterized as the last row where a c occurs in a diagonal of C. For
example suppose deleting or inserting n symbols costs 2n and replacing n symbols
costs 3n. The replace entries on diagonal 0 are 0, 3, 6, . . . , but L(7, 0, replace) =
2 because the script ‘Delete, Insert bl , Replace by bz’ edits A, to Bz. However if c
occurs in an op position in diagonal k of C, then L(c, k, op) is the row containing
the last such c.

For values of c in the order 1,2, . . . , the greedy algorithm computes L(c, k, op)
for a relevant range of diagonals k and all choices of op. The algorithm can stop
when it reaches the first value of c for which L(c, N - M, op) = M for some op
because it has encountered the smallest cost, c, for which AM = A can be edited
into BM+(+M) = B. We first show how to compute L(c, k, op) from previously
computed values. General scripts are then discussed. Finally the complete algo-
rithm is presented and its complexity analyzed.

The greedy algorithm presented below rests on three additional but realistic
assumptions about the cost parameters:

(Al) perchur(deZete) > 0 andperchur(insert) > 0
(A2) perchar(repZace) > 0
(A3) perchar(moue) = 0 and sturtup(moue) > 0

These assumptions are needed for two reasons. First they permit the formulation
of computable recurrences for the L values of cost c from the L values of strictly
smaller cost. Specifically, Assumptions Al and A2 guarantee that best(c, k, op)
(defined below) is a function of, L values of cost strictly less than c and A3
guarantees the same property for mbest(c, k). The second reason is to ensure
that the band of diagonals considered has width not exceeding 2c + 1. Specifically,
Al guarantees that neither upper(c) nor lower(c) (defined below) exceeds c.

For the greedy method to be efficient, Assumption Al is essential. Without it
the approach produces an O(MN) algorithm, no better than dynamic program-
ming, because every diagonal must be considered. However Assumptions A2 and
A3 are not critical, A3 can be changed to perchar(move) > 0 and A2 can be
changed to perchar(replace) = 0 and startup(replace) > 0, without changing the
feasibility or time complexity of the greedy approach. Nonetheless either the
assumptions or their alternates must be chosen a priori because the choice affects
the logic of the algorithm. The most questionable of the assumptions is
perchar(deZete) > 0, since some terminals support a fixed length “delete n
symbols” command. However many of these devices disguise a greater-than-zero

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

46 l E. W. Myers and W. Miller

perchar cost by requiring the transmission of a number of “pad characters”
proportional to n.

Fix op E OPS and integers c > 0 and k, and suppose L(C, K, 8) has been
determined for all C < c and all K and 0. Let firstop be the cost of a first
operation in an edit script:

firstop = startup + perchar

Then L(c, k, op) is computed by:

Algorithm 3a. Computing L(c, k, op).
long + NONE
if op = delete then

Kc/z+1
else if op = insert then

Kck-1
else

Kck
if c = firstop and K = 0 then

long+0
else if c > firstop (op) then

for 9 E OPS do
if not 0 = op = move then

long c max(Zow, L(c - onechar(8, op), K, 6))
if long # NONE then

if op = move then
while long < M and long + k C N and a&,,,+, = blongfk+, do

longclong+l
else if op # insert then

long t long + 1
UC, k, OP) * W

The only script of cost firstop ending with op consists of a single op
command. A single delete command edits A, to Bo, a single replace command
edits A, to B1, and a single insert command edits A, to B1. The best single moue
command edits the longest common prefix of A and B into itself. These obser-
vations lead to the equations:

L(fir.stop(debte), - 1, delete) = 1

L(firstop(insert), 1, insert) = 0
L(firstop(replace), 0, replace) = 1
L(firstop(moue), 0, moue) = max(i 11 A; = Bi)

For any other case with c 5 firstop(L(c, k, op) = NONE. These observations
verify the correctness of Algorithm 3a for small values of c.

For c > firstop(deZete), consider long = L(c, k, delete), the length of the longest
prefix Al,, transformable to B lo,,y+k by a cost-c script ending with delete. Define:

best(c, k, op) = O~;; (L(c - onechar(8, op), 12, 0))

Suppose that long # NONE and that stripping the final delete from a correspond-
ing script leaves a script ending with operation 0. The truncated script costs
c-onechar(0, delete) and convertsAlO,-I to Blong+k. Thus long -1 5 L(c-onechar(8,
delete), k + 1, 0) 5 best(c, k + 1, delete). We claim that long -1 = best(c, k + 1,
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors 47

delete). Suppose there were a longer prefix, A l0,,gT--l with long’ > long, that could
be transformed to Blony3+k with a script costing c - onechur(fl’, delete) and ending
with operation 0’. Then appending a delete command gives a cost-c script that
transforms Al,,, to Blong,+k, contradicting the maximality of long. Thus L(c, k,
delete) = best(c, k + 1, delete) + 1 if it exists. Intuitively, to reach as far as
possible down diagonal k at cost c, “greedily” append a delete move to a furthest-
reaching path of cost c - onechur(8, delete) ending in diagonal k + 1. Finally
observe that L(c, k, delete) = NONE if and only if L(c - onechar(0, delete),
k + 1,8) = NONE for all 0 E OPS. Similar reasoning for replace and insert leads
to the following recurrences.

L(c, k, delete) = if best(c, k + 1, delete) # NONE
then best(c, k + 1, delete) + 1 else NONE

L(c, k, replace) = if best(c, k, replace) # NONE
then best(c, k, replace) + 1 else NONE

L(c, k, insert) = if best(c, k - 1, insert) # NONE
then best(c, k - 1, insert) else NONE

For a concrete example, consider computing L(19, -1, insert) for the ANSI-
standard model, A = abcabba and B = cbabac (Table IV of Section 3). We seek
the longest prefix Ai that can be transformed into Bip2 at cost 19 - onechur
(0, insert) for some 0, since appending an insert command to a corresponding
script gives a script that transforms Ai to Bi-1 at cost 19. L(10, -2, delete) =
L(10, -2, replace) = 6, so taking 0 to be delete or replace shows that A6 can be
edited to B, at cost 19. Trying 13 = ntoue is fruitless, since L(10, -2, moue) =
NONE. Extending the script for L(18, -2, insert) = 3 obtains a script for
transforming A3 to B,. Thus, L(19, -1, insert) is 6.

Computing L(c, k, moue) requires a different approach since perchar(moue)
equals zero. For c > firstop(moue), consider long = L(c, k, moue), the length of
the longest prefix Ab, transformable to Blong+ by a cost-c script ending with
moue. If there are several such scripts, consider one whose final moue command
moves right the fewest columns. Let:

mbest(c, k) = XII;~~C (L(c-onechar(8, moue), k, 13))

Suppose that long # NONE and that stripping the final moue from a correspond-
ing script leaves a script ending with operation 8. Note that 0 # moue since two
consecutive moues can be economized into one. The truncated script costs
c - onechar(B, moue) and converts Alonp-,,, to Blongem+k, where m is as small as
possible. Thus long-m 5 L(c - onechur(8, moue), k, 19) s mbest(c, k) andab,-,+
. . . along - -b long-m+k+l * . . b long+k. We claim that long - m = mbest(c, 12). Suppose
there were a longer prefix, Along-,,,, with m’ < m, that could be transformed to
Blong--m,+k by a script costing c-onechar(8 ‘, moue) and ending with operation 0 ‘.
If m’ 2 0, then appending a moue command that moves the cursor m’ columns
to the right gives a cost-c script that transforms Al,,, to Blong,+k, contra-
dicting the minimality of m. If m’ < 0, then appending a moue command
that moves zero columns to the right gives a cost-c script that transforms

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

48 l E. W. Myers and W. Miller

AlongPrn, to Blong-mT+k, contradicting the maximality of long. This reasoning justi-
fies the recurrence:

L(c, k, moue)
= if mbest(c, K) # NONE then

max(i II ambest(c,k)+l - - - Ui = bmbestk,kj+k+l - - - bi+k or i = mbesttc, k))
else

NONE

As the value of c is increased, computed values may satisfy L(c, k, op) > M or
L(c, k, op) + k > N. This happens because the commands delete, replace, insert,
and move-zero-columns-right are effective regardless of the characters actually in
A or B. Thus such an entry indicates that any supersequence of A can be
converted to a prefix of B or that any prefix of A can be transformed into a
supersequence of B at cost c. Such entries could be eliminated by an additional
boundary check but this is unnecessary since they cannot contribute to the
optimal solution.

Now turn attention to general row-replacement scripts. Since the algorithm’s
goal is to terminate as soon as the optimal value of c is reached, the additional
features of general scripts cannot be handled in a postpass, as with the dynamic
programming algorithm. Instead, checks for general cost-c scripts are “folded”
into the computation of L-values.

First consider removal of a final moue operation. Before starting the compu-
tation of L, the longest common suffix of A and B is identified by setting:

Zim = min(i 11 oi+l ... UM = bi+cN-w+i ... bN or i = M)

Pictorially this step finds a line segment beginning at the lower right corner of
the grid and extending toward the upper left until the row and column labels
disagree. If long = L(c, N - M, op) 2 lim for some operation op then there is a
cost-c script converting Ab, to Blong+(~--M) and al0ng+l . . . aM = blo,,g+(N--Mj+l . . .
b,. This script transforms A to B and leaves the cursor on column long + 1. For
general edit scripts the algorithm terminates upon encountering a value of c for
which long 1 lim.

As explained in Section 3, if clear commands are permitted, then it suffices to
consider a single clear at the end of the script. If L(c, k, op) = N - k for some
k > N - M, then there is a cost-c script converting AN-k to B where N - k < M.
Appending a clear operation gives a script that edits A into B of cost c +
onechar(op, clear) + (k - (N - M) - 1) Xperchur(&ar). The preceding argument
assumes the clear operation is appended to a nonempty script, i.e., c > 0. In the
special case where N = 0, a single clear edits A into B at cost startup(clear) + M
x perchur(clear). As scripts editing A into B and ending with clear are de-
tected, their minimum cost is recorded in a variable Clim. If the loop variable c
reaches this value, the algorithm terminates and reports that the minimum row-
replacement cost is Clim. If an optimal script editing A to B ends with clear, it
will be discovered because removing the clear from at least one such script leaves
a script that edits a longest prefix of A into B.

Handling overwrites beyond A is the analog of final clear operations. If
L(c, k, op) = M for some k < N - M, then there is a cost-c script converting AM
to BM+, where M + k < N. Appending N - (M + k) replace operations
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors l 49

gives a script converting A to B of cost c + oneckar(op, replace) +
((N - M) - k - 1) X perchar(clear). In the special case where M = 0, N replace
commands edit A into B at cost sturtup(repluce) + N X perchur(replace). It is
sufficient to let the variable Clim above also record the minimum cost of these
overwrite-terminated scripts as each is detected.

Up to this point it has been assumed that for each value c, L(c, k, op) is
computed for the entire range of diagonals, FE E [-M, N]. A central advantage of
the greedy approach is that only O(c) L-values need to be computed since the
remainder are easily inferred to be NONE. Let:

lower(c) = max
c - startup(deZete)

perchur(delete) 90

upper(c) = max (c - startup(insert)
perchur (insert) ,o

1

If a cost-c restricted replacement script transforms Ai into Bi+k where k > 0, then
it must insert at least k characters. Thus c L startup (insert) + k X perchur (insert)
because at best the k insert commands are contiguous. Rearranging the inequality
gives the relationship k 5 upper(c). Arguing similarly about the case where
k < 0 shows that k 2 -lower(c) and leads to the fact:

If k 65 [-lower(c), upper(c)] then L(c, k, op) = NONE.

The algorithm uses this fact in two ways. First, for each value of c it only
computes UC, k, op) for k E [-lower(c), upper(c)]. Second, when referencing
previously computed values, L(C, K, e), in the innermost loop, it infers that the
value is NONE if K 4 [-lower(C), upper(C)].

Algorithm 3b. The greedy row-replacement algorithm.
/* identify the longest common suffix */
1imtM
while lim > 0 and lim + N - M > 0 and ali” = blim+N-M do

limclim- 1
iflim=OandM=Nthen

return “cost is 0”
ifM=Othen

Clim c startup(clear) + N x perchar(clear)
else if N = 0 then

Clim c startup(replace) + M X perchar(replace)
else

Clim c 03
for c c 1,2, . . . , Clim do

for kc -lower(c), -lower(c) + 1, . . . , upper(c) do
for op E OPS do

{ long +- NONE
if op = delete then

Kck+l
else if op = insert then

K-k-1
else

Kck
if c = firstop and K = 0 then

long+0
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

50 l E. W. Myers and W. Miller

else if c > firstop then
f0reE 0~s a0

{ Cc c - onechur(op, 19)
if not ~9 = op = moue and K E [-lower(C), upper(C)] then

long t max(long, L(C, K, 0))
I

if long # NONE then
if op = moue then

while long c M and long + k c N and abn8+, = b,,,ng+k+l do
long+long+l

else if op # insert then
longclong+l

L(c, 12, op) t long
/* account for the common suffix */
if k = N - M and long 2 lim then

return “cost is c”
/* account for the clear operation */
ifk>N-Mandlong=N-kthen

Clim + min(Clim,c+onechar(op,clear)+(k-(N-M)-l)xperchar(clear))
/* account for overwrite operations */
ifkeN-Mandlong=Mthen

Clim +
min(Clim, c+onechar(op,repluce)+((N-M)-k-l)xperchur(repluce))

I
return “cost is Clim”

Let Cost be the optimal cost of replacing row A with row B of lengths M and
N, respectively. The greedy algorithm runs in time O(Cost X (M + N)). Identi-
fying the longest common suffix takes only O(M + N) time. The code within the
triply nested loops, ‘for c, for k, for op’, is repeated @(CO&~) times because the
‘for c’ loop is repeated Cost times, the ‘for k’ loop is repeated upper(c) + lower(c)
+ 1 5 2c + 1 times (by Assumption Al), and the ‘for op’ loop is repeated four
times. With the exception of the innermost while loop, the code within the three
for loops takes O(1) time. Thus all portions of the algorithm except for this
while loop consume O(M + N + Cost2) time.

To account for the time taken by the innermost while loop, charge each O(1)
iteration to the grid entry (long + 1, long + k + 1) examined by the loop. We
claim that a given entry is charged at most A = firstop(moue) + firstop(repZuce)
times. First observe that if (i, i + k) is charged when computing L(c, k, moue),
then the recurrence for L(c, k, moue) implies that i E [mbest(c, k) + 1,
L(c, k, moue) + 11. Now suppose (i, i + k) is first charged when computing
L(d, k, moue). Then

mbest(d + A, k) L L(d + firstop(repZace), k, replace) 2 L(d, k, moue) + 1 > i

Thus mbest(C, k) 2 i for all C 2 d + A. But then entry (i, i + k) cannot be
charged when computing L(C, k, moue) for such C, since the converse would
imply mbest(C, k) < i. This proves the claim. The algorithm computes L-values
only over the range of diagonals -Zower(Cost) to upper(Cost) and there are less
than (2Cost + l)min(M, N) grid points within this range. Since each grid point
is charged O(1) time (considering A to be a constant), it follows that O(Cost x
(M + N)) time is taken by the body of the innermost while loop.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989

Row Replacement Algorithms for Screen Editors l 51

Reconstructing a script from the O(Cost2) L-values computed by the greedy
algorithm is analogous to the postprocess described for the dynamic programming
algorithm and requires only O(Cost) additional time. However, hierarchical
screen updating methods [6] require just the costs of row replacements when
evaluating interline editing strategies. These costs can be computed in only
O(Cost) space as follows. Observe that the value of L(c, lz, op) depends only on
values L(C, K, 13) for which C 2 c - MOP where MOP = max,eops(firstop(o
Thus the cost-only algorithm need only retain the L-values of the most recent
MOP repetitions of the outer ‘for c’ loop and this requires only O(Cost) space
(considering MOP to be a constant).

5. DISCUSSION AND OPEN PROBLEMS

Algorithmic Variations. Algorithms 2a, 2b, and 3b can be extended in several
ways. Of the two, the dynamic programming approach is more ‘robust’ in the
sense of extending easily to certain generalizations of the problem. For example,
like Algorithm la of Wagner and Fischer, Algorithms 2a and 2b work without
change for arbitrary real costs. On the other hand, Algorithm 3b, like Algorithm
lb, requires integer costs, and efficiency considerations demand that per-
char(delete) and perchar(insert) be positive.

Both algorithms can be made more space-efficient. To construct an optimal
script, Algorithms 2a, 2b, and 3b, as presented, require retention of O(MN) and
O(Cost2) arrays C and L, respectively. If Algorithm 2b’s postpass checks are
integrated into Algorithm 2a, as was done in Algorithm 3b, then Hirschberg’s
divide and conquer technique [9] computes the replacement script in only linear
space. Most of the details are explained in [16], which gives a linear-space
sequence comparison algorithm for block indels with affine costs. Similarly
Myers’ approach [14] for computing an edit script in linear space can be adapted
for Algorithm 3b. However in both cases the necessary adaptations are complex
and probably unnecessary, given the typical sizes of row replacement problems
that arise with screen editors.

Efficiency Considerations. An editor’s screen-updating module must be effi-
cient. As text is typed, the module is invoked with every keystroke. With the
algorithms developed in this paper, efficiency considerations are paramount.
Tests under realistic conditions favor the greedy approach over dynamic pro-
gramming, but a straightforward implementation of Algorithm 3b may be im-
practically slow. Fortunately both algorithmic (high-level) and implementation
(low-level) efficiency gains are possible with the greedy algorithm.

At the algorithmic level, the screen operations op with startup cost 0 can be
lumped together since onechar(fI, op) does not vary with 0. Thus, with ANSI-
standard terminals, the restricted replacement scripts can be classified: (1) ends
with insert, (2) ends with moue, and (3) ends with delete or replace. That is,
entries for delete and replace are coalesced into a single entry delrep for which
L(c, k, delrep) = min(L(c, k, delete), L(c, k, replace)). This reduces space
requirements and the number of executions of the innermost ‘for op E OPS’
loop by the factor 314.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

52 l E. W. Myers and W. Miller

The innermost while loop treating the zero perchar cost of move commands
frequently visits a grid point as many as firstop(move) + firstop(rephce) times.
This can be reduced to one by maintaining a vector, Fur (12), equal to the maximum
of L(d, k, move) for all d less than the current c of the outermost loop. Initially
set Fur(k) to NONE for all k and change Algorithm 3a as follows.

. . .
if op = move then

if bng 5 Far(k) then
long c Far(k)

else
(while long < it4 and long + k < N and aro,,x+l = blong+k+l do

long+long+ 1
Far(k) t long

1
else if op # insert then
. . .

Essentially, mbest(c, k) is nondecreasing in c and so using Fur(k) prevents the
rediscovery of a sequence of zero-cost diagonal moves.

At the implementation level a number of code transformations are possible.
The test ‘K E [-lower(C), lower(C)]’ can be avoided within the inner loop by
explicitly setting L(c, k, op) to NONE for k E [-Zower(c + MOP), -lower(c) -11
U [upper(c) + 1, upper(c + MOP)]. The ‘for op’ and ‘for 8’ loops can be
completely unrolled and the resulting code specialized by eliminating the now
unnecessary tests on op and 8. Similarly the ‘for c ’ outer loop can be broken into
a loop for values less than or equal to MOP and one for greater values. In the
second copy of the loop, the code is specialized by eliminating all tests on c. By
far the greatest low-level efficiency gains can be made by replacing the triple
subscripting for L(c, k, op) by pointer manipulations. In effect, this involves
hand-coding of the strength-reduction optimizations that the compiler cannot
detect.

Empirical Results. Nine row-replacement problems were solved by the
programs:

S implementation of the algorithm used by the s editor [lo, pp. 290-
2981

Dyna straightforward implementation of Algorithms 2a and 2b
Greedy straightforward implementation of Algorithm 3b
Hand implementation of Algorithm 3b optimized as above

Separate measurements were taken for the ANSI and the IBM 3101 cost param-
eters, since cost parameters determine which scripts are optimal and affect the
performance of the greedy method. Table V summarizes the results. Row labels
have the following interpretations:

M:N lengths of the input rows A and B.
Script, replacement script generated by S. Edit commands are indi-

cated by letters C (Clear), D (Delete), I (Insert), M (Move) and
R (Replace). For example, ‘R’DMI’ denotes a script of the form
‘Replace, Replace, Delete, Move, Insert’.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Ta
bl

e
V.

Ex

pe
rim

en
ta

l
D

at
a

fo
r

R
ow

-R
ep

la
ce

m
en

t
Al

go
rit

hm
s

Te
st

1

Te
st

2

Te
st

3

Te
st

4

Te
st

5

Te
st

6

Te
st

7

Te
st

8

Te
st

9

M
:N

Sc

rip
ts

AN

SI
-s

ta
nd

ar
d:

SC

riP
to

pt

co
st

Q

: c
os

ts

Ti
m

eD
,.

Ti
m

ec
,d

m
s)

Ti

m
e~

.d
m

s)

IB
M

31

01
:

sc
rip

to
pt

C

O
St

O
pt

:C
O

St
s

Ti
m

es
,,.

Ti

m
ec

,&
m

s)

Ti
m

e~
.,d

m
s)

30
:o

45

:4
4

45
:4

6
40

:3
0

40
:4

0
40

:4
0

40
:4

0
40

:3
9

75
:7

5
C

M

D

M
I

M
R

=C

R
’O

M

R
30

M

R
”

M
R

”D

M
R

7’

C

M
D

M

I
M

R
Y!

R

’O

R
*D

M
R

’
R

I8

R
’D

M
R

R

’*M
R

4
3:

3
11

:ll

17
:1

7
23

:2
3

40
:4

0
21

:3
8

18
:2

3
20

:2
6

53
:8

2
1

19
8

19
6

89

15
7

15
7

15
6

15
2

54
2

<l

5
24

63

24

7
50

29

39

48

2
<l

1

3
5

18

5
3

4
32

C

M
D

M

I
M

R
’*C

R

”O

R
*D

M
R

’
R

*D
M

I
M

D
M

R

IR
8M

R
3D

ZM
IM

R
’

2:
2

6~
6

7:
l

l&
18

40

:4
0

11
:3

4
11

:1
9

11
:2

1
37

~7
8

1
19

2
19

2
86

15

4
15

5
15

6
15

2
54

4
<l

3

6
44

21

9
15

15

14

18

5
C

l
C

l
1

3
14

1

1
1

13

54 ’ E. W. Myers and W. Miller

Scriptopt optimal replacement script.
Costopt : costs length of the optimal script and of the script generated by S.

Time,,= (ms) execution time of Dyna in milliseconds. The procedures were
written in C and run on a DEC 8600 under the UNIX operating
system.

TimeGreedy h) execution time of Greedy in milliseconds.

Timeand (ms 1 execution time of Hand in milliseconds.

A number of interesting facts can be extracted from this data, but two points
deserve explicit mention. First, Greedy was more efficient than Dyna, especially
for the 3101. Execution time for the greedy method depends on terminal cost
parameters and improves with the 3101’s shorter escape sequences. Dyna’s
execution is essentially independent of these costs. Moreover, hand optimization
sped up the greedy algorithm by a factor of 12 for the ANSI model and 15 for
the 3101.

Table V also indicates conditions where a hand-optimized greedy program can
outperform a simple row-replacement procedure. A method’s performance is
determined by the time to compute the script and transmit it to the screen.
Assuming that it takes a millisecond to transmit a character (e.g., at 960n baud),
Hand was superior to S whenever S failed to generate an optimal script. This
occurred when the optimal script contained a noninitial moue command. The
superiority of Hand over S benefited from the 3101’s economical moue. (Table V
was simplified by omitting S’s execution times, which were always less than a
millisecond, and by giving a single line of S’s scripts, which happened to coincide
for the two cost models on Tests l-9.)

Open Problems and Future Work. The key assumptions in this paper are that
the cursor begins in column 1 and that spilling characters off the end of a row is
not a concern. While a script produced by our algorithms can be transformed
into one that takes into account the current cursor location and avoids a spill,
the transformed script is not guaranteed to be optimal. It appears very difficult,
but still solvable in polynomial time, to compute an optimal script that takes
into account these factors. Designing an efficient algorithm for this problem is a
subject of current research.

Row replacement is just a subproblem in the ultimate goal of building an
efficient, but autonomous, screen manager that optimally updates the entire
screen. Optimality is sacrificed by the natural two-level approach that decides
which lines to delete, insert, and replace at the top level, and that uses row
replacement to appraise and perform replacements at the bottom level. Moreover,
there are natural asymmetries between intra- and inter-row edits that resist a
homogeneous approach. For example, unlike character insertion, the cost of a
row insertion command is “symbol-dependent” since its cost is a function of the
length of the row itself. This prevents the greedy algorithm of Section 4 from
being applied to interline edits. It remains to be seen whether an optimal “screen
replacement” algorithm of satisfactory efficiency can be developed.

The change from terminals and serial communications to workstations and
high-speed networks does not make the screen-update problem disappear, though
different techniques are needed to minimize the cost of bitblt operations [S]. Pike
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Row Replacement Algorithms for Screen Editors l 55

[17] discusses a simple approach for screen updating by a text editor, while [3]
treats display-updating problems in computer animation. However, the problem
of optimally updating a bitmap display is not well understood.

What is the most general class of sequence comparison problems that can be
solved with the greedy approach? Algorithm 3b solves, as a special case, the
problem for block indels with affine gap penalties, which is important in molec-
ular biology. The algorithm can be extended to handle symbol-dependent replace-
ment costs, which are used for comparing proteins. However, the exact limits of
the greedy algorithm remain to be determined.

ACKNOWLEDGMENTS

The authors thank the referees for numerous suggestions that improved this
presentation.

REFERENCES
1. ARNOLD, K. C. R. C. Screen updating and cursor movement optimization: a library package. In

UNIX Programmer’s Manual: Supplementary Documents (4.2BSD), University of California,
Berkeley, 1984.

2. BARACH, D., TAENZER, D., AND WELLS, R. The design of the PEN video editor display module.
In Proceedings of the ACM Symposium on Text Manipulation (Portland, Ore., June 8-10, 1981).
SZGPLAN Not. 16,6 (1981), 130-136.

3. DENBER, M. J., AND TURNER, P. M. A differential compiler for computer animation. Comput.
Graph. 20.4 (1986), 21-27.

4. FICKE?T, J. W. Fast optimal alignment. Nucleic Acids Res. 12, 1 (1984), 175-179.
5. FITCH, W. M., AND SMITH, T. F. Optimal sequence alignments. In Proceedings National

Academy of Science USA 80 (1983), 1382-1386.
6. GOSLING, J. A redisplay algorithm. In Proceedings of the ACM Symposium on Tent Manipulation

(Portland, Ore., June 8-10,198l). SIGPLAN Not. 16,6 (1981), 123-129.
7. GOTOH, 0. An improved algorithm for matching biological sequences. J. MO&. Bial. 162 (1982),

705-708.
8. GUIBAS, L. J., AND STOLFI, J. A language for bitmap manipulation. ACM Trans. Graph. 1, 3

(1982), 191-214.
9. HIRSCHBERG, D. S. A linear space algorithm for computing maximal common subsequences.

Commun. ACM 18,6 (1975), 341-343.
10. MILLER, W. A Software Tools Sampler. Prentice-Hall, Englewood Cliffs, N.J., 1987.
11. MILLER, W., AND MYERS, E. W. A file comparison program. Softw. Pratt. &per. 15,11 (1985),

1025-41.
12. MILLER, W., AND MYERS, E. W. Sequence comparison with concave weighting functions. Bull.

Math. Biol. 50, 2 (1988), 97-120.
13. MILLER, W., AND MYERS, E. W. A simple row replacement method. Softw. Pratt. &per. 18, 7

(1988), 597-612.
14. MYERS, E. W. An O(ND) difference algorithm and its variants. Algorithmica 2, 1 (1986),

251-266.
15. MYERS, E. W. Incremental alignment algorithms and their applications. To appear in SIAM J.

Comput. See also TR86-22, Dept. of Computer Science, Univ. of Arizona, Tucson.
16. MYERS, E. W., AND MILLER, W. Optimal alignments in linear space. Comput. App. Biosci. 4, 1

(1988), 11-17.
17. PIKE, R. The text editor Sam. Softw. Pratt. &per. 17,ll (1987), 813-845.
18. STALLMAN, R. M. EMACS-the extensible, customizable self-documenting display editor. In

Proceedings of the ACM Symposium on Text Manipulation (Portland, Ore., June 8-10, 1981).
SZGPLAN Not. 16,6 (1981), 147-157.

19. UKKONEN, E. Algorithms for approximate string matching. Znf. Contr. 64, l-3 (1985), 100-118.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

56 l E. W. Myers and W. Miller

20. WAGNER, R. A., AND FISCHER, M. J. The string-to-string correction problem. J. ACM 21, 1
(1974), 168-173.

21. WATERMAN, M. S. General methods for sequence comparisons. Bulk Math. Biol. 44, 4 (1984),
473-500.

22. WATERMAN, M. S., SMITH, T. F., AND BEYER, W. A. Some biological sequence metrics. Advances
in Math. 20 (1976), 367-387.

23. WEISER, M. CWSH: The windowing shell of the Maryland Window System. Softw. Pratt.
Exper. 15,5 (1985), 515-519.

24. WOOD, S. R. Z-the 95% program editor. In Proceedings of the ACM Symposium on Text
Manipulation (Portland, Ore., June 8-10,198l). SIGPLAN Not. 16,6 (1981), l-7.

Received July 1986; revised November 1987 and August 1988; accepted August 1988

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

